## **Pricing of Asian Temperature Risk**

Wolfgang Karl Härdle Brenda López Cabrera

Ladislaus von Bortkiewicz Chair of Statistics C.A.S.E. Centre for Applied Statistics and Economics School of Business and Economics Humboldt-Universität zu Berlin http://lvb.wiwi.hu-berlin.de





#### Weather

PricewaterhouseCoopers Survey 2005 releases the Top 5 sectors in need of financial instruments to hedge weather risk.



PwC survey 2005 for Weather Risk Management Association



#### Weather

- Meteorological institutions: business activity is weather dependent
  - ▶ British Met Office: daily beer consumption gain 10% if temperature increases by 3° C
  - ▶ If temperature in Chicago is less than 0° C consumption of orange juice declines 10% on average



#### What are Weather Derivatives?

Hedge weather related risk exposures

- □ Payments based on weather related measurements
- Underlying: temperature, rainfall, wind, snow, frost

Chicago Mercantile Exchange (CME)

- Monthly/seasonal/weekly temperature Future/Option contracts
- 24 US, 6 Canadian, 9 European and 3 Asian-Pacific cities (Tokyo & Osaka since 2008 and Hiroshima since 2009)





Figure 1: CME offers weather contracts on 43 cities throughout the world

#### Weather Derivatives



Figure 2: A WD table quoting prices future contracts. Source: Bloomberg

Pricing of Asian Temperature Risk -



## Types of Weather Derivatives

- CME products
  - ► HDD $(\tau_1, \tau_2) = \int_{\tau_1}^{\tau_2} \max(18^{\circ}\text{C} T_t, 0) dt$
  - ► CDD $(\tau_1, \tau_2) = \int_{\tau_1}^{\tau_2} \max(T_t 18^{\circ}C, 0) dt$
  - ► CAT $(\tau_1, \tau_2) = \int_{\tau_1}^{\tau_2} T_t dt$ , where  $T_t = \frac{T_{t,max} T_{t,min}}{2}$
  - ▶ AAT $(\tau_1, \tau_2) = \int_{\tau_1}^{\tau_2} \widetilde{T}_t dt$ , where  $\widetilde{T}_t = \frac{1}{24} \int_1^{24} T_{t_i} dt_i$  and  $T_{t_i}$  denotes the temperature of hour  $t_i$ , (also referred to as C24AT index).
- □ HDD-CDD parity: CDD( $\tau_1, \tau_2$ )-HDD( $\tau_1, \tau_2$ )=CAT( $\tau_1, \tau_2$ )-c( $\tau_2 \tau_1$ )



#### Weather Risk and Human Capital...

An investor organizes a conference on the 27-31 October 2009 in Kaohsiung. Since he knows there is another conference event that week, he estimates that every additional  $^{\circ}$ C in excess of 135 $^{\circ}$ C accumulated 24-hour average temperatures will reduce the number of participants in favor for the other conference and he will incur 2,500 JPY costs on human capital.



## MPR Algorithm

Econometrics Fin. Mathematics. 
$$T_t \qquad \qquad CAR(3) \\ \downarrow \qquad \qquad \downarrow \\ X_t = T_t - \Lambda_t \qquad \qquad \downarrow \\ X_{t+\rho} = a^\top X_t + \sigma_t \varepsilon_t \qquad MPR \\ \downarrow \\ \hat{\varepsilon}_t = \hat{X}_t \sim N(0,1)$$



#### Estimation of $\hat{\sigma}_t$ : 2 Steps vs 1 Step

2 Steps 1 Step

Fourier Truncated Series (FTS) Local linear Regression (LLR)

+
$$GARCH(p,q)$$

$$\downarrow$$

$$\hat{\varepsilon}_t = \frac{\hat{\chi}_t}{\hat{\sigma}_{t,ETSG}\hat{\sigma}_{t,GARCH}} \sim N(0,1)$$

$$\hat{\varepsilon}_t = \frac{\hat{\chi}_t}{\hat{\sigma}_{t,UR}} \sim N(0,1)$$

#### **Outline**

- 1. Motivation ✓
- 2. Weather Dynamics
- 3. Fitting  $\hat{\sigma}_t$ : 1-2 Steps
- 4. Pricing
- 5. Conclusion

## Weather Dynamics: Asian Data

Temperature Market (CME): Tokyo and Osaka





#### **AAT** Index

#### CME data on weather derivatives for 20081008-20090702:

|      | Trading Period |            | Measurem  | ent Period | Index            |                  |
|------|----------------|------------|-----------|------------|------------------|------------------|
| Code | First-trade    | Last-trade | $	au_{1}$ | $	au_2$    | CME <sup>1</sup> | AAT <sup>2</sup> |
| F9   | 20080203       | 20090202   | 20090101  | 20090131   | 200.2            | 181.0            |
| G9   | 20080303       | 20090302   | 20090201  | 20090228   | 220.8            | 215.0            |
| H9   | 20080403       | 20090402   | 20090301  | 20090331   | 301.9            | 298.0            |
| J9   | 20080503       | 20100502   | 20090401  | 20090430   | 460.0            | 464.0            |
| K9   | 20080603       | 20090602   | 20090501  | 20090531   | 592.0            | 621.0            |

Table 1: Osaka AAT contracts listed on CME. Source: Bloomberg. <sup>1</sup> prices of AAT Futures as listed on CME, <sup>2</sup> AAT index values computed from the historical temperature data

#### **Asian Temperature**

Temperature:  $T_t = X_t + \Lambda_t$ 

Seasonal function with trend: 
$$\Lambda_t = a + bt + \sum_{i=1}^p c_i cos \left\{ \frac{2\pi(t-d_i)}{i \cdot 365} \right\}$$

 $\mathbf{\hat{a}}$ : average temperature,  $\hat{b}$ : global Warming

| City    | Period            | â     | ĥ        | $\hat{c}_1$ | $\hat{d}_1$ |
|---------|-------------------|-------|----------|-------------|-------------|
| Tokyo   | 19730101-20081231 | 15.76 | 7.82e-05 | 10.35       | -149.53     |
| Osaka   | 19730101-20081231 | 15.54 | 1.28e-04 | 11.50       | -150.54     |
| Beijing | 19730101-20081231 | 11.97 | 1.18e-04 | 14.91       | -165.51     |
| Taipei  | 19920101-20090806 | 23.21 | 1.68e-03 | 6.78        | -154.02     |

Table 2: Seasonality estimates of daily average temperatures in Asia. All coefficients are nonzero at 1% significance level. Data source: Bloomberg



Figure 3: Seasonality effect and daily average temperatures for Tokyo Narito International Airport (upper left), Osaka Kansai International Airport (upper right), Beijing (lower left), Taipei (lower right).

#### Check Data

| Date     | Bloomberg | Japan Meteorological Agency (JMA) |
|----------|-----------|-----------------------------------|
| 20080921 | 13        | 23                                |
| 20080918 | 14        | 24                                |
| 20080705 | 16        | 26                                |
| 20080628 | 13        | 23                                |
| 20070906 | 16        | 26                                |
| 20061004 | 12        | 22                                |
| 19980214 | 5         | 13                                |
| 19960114 | 18        | 8                                 |

Table 3: Tokyo: Check outliers with reference of JMA



#### **Temporal Dependence**

Remove seasonality:  $X_t = T_t - \Lambda_t$ 

ADF-Test:

$$(1-L)X = c_1 + \mu t + \tau LX + \alpha_1(1-L)LX + \dots + \alpha_p(1-L)L^pX + \varepsilon_t$$

□ Reject  $H_0$ : τ = 0, hence  $X_t$  is a stationary process I(0)

KPSS Test: 
$$X_t = c + \mu t + k \sum_{i=1}^t \xi_i + \varepsilon_t$$
,

| City    | $\hat{	au}(p	ext{-}value)$ | $\hat{k}(p	ext{-}value)$ |
|---------|----------------------------|--------------------------|
| Tokyo   | -56.29(<0.01)              | 0.091(<0.1)              |
| Osaka   | -17.86(<0.01)              | 0.138(<0.1)              |
| Beijing | -20.40(<0.01)              | 0.094(<0.1)              |
| Taipei  | -33.21(<0.01)              | 0.067(<0.1)              |

Table 4: Stationarity tests





#### PACF of $X_t$



Figure 4: Partial autocorrelation function (PACF) for Tokyo (upper left), Osaka (upper right), Beijing (lower left), Taipei (lower right)

Pricing of Asian Temperature Risk -



#### Moving Window for Stability: Tokyo

| -     | every   | every   | every   | every    | every    |
|-------|---------|---------|---------|----------|----------|
| Year  | 3 years | 6 years | 9 years | 12 years | 18 years |
| 73-75 | AR(1)   | VD(3)   |         |          |          |
| 76-78 | AR(1)   | AR(3)   | AR(3)   | VD(0)*   |          |
| 79-81 | AR(1)   | ΛD(0)*  |         | AR(8)*   | VD(0)*   |
| 82-84 | AR(8)*  | AR(8)*  |         |          | AR(9)*   |
| 85-87 | AR(1)   | AD(2)   | AR(9)*  |          |          |
| 88-90 | AR(1)   | AR(3)   | . ,     | A D(2)   |          |
| 91-93 | AR(1)   | AD(2)   |         | AR(3)    |          |
| 94-96 | AR(1)   | AR(3)   | AR(3)   |          |          |
| 97-99 | AR(1)   | AD(1)   | . ,     |          | AD(2)    |
| 00-02 | AR(1)   | AR(1)   |         | A D(2)   | AR(3)    |
| 03-05 | AR(3)   | AD(2)   | AR(3)   | AR(3)    |          |
| 06-09 | AR(1)   | AR(3)   |         |          |          |

Table 5: Tokyo Moving window for AR \* denotes instability



#### Moving Window for Stability: Osaka

| every    |
|----------|
| 18 years |
|          |
|          |
| ۸D(6)*   |
| AR(6)*   |
|          |
|          |
|          |
|          |
| AD(7)*   |
| AR(7)*   |
|          |
|          |
| =        |

Table 6: Osaka Moving window for AR \* denotes instability



**AR(p)**: 
$$X_{t+p} = \sum_{i=1}^{p} \beta_i X_{t+p-i} + \sigma_t \varepsilon_t$$

| City      | Tokyo(p=3) | Osaka(p=3) | Beijing(p=3) | Taipei(p=3) |
|-----------|------------|------------|--------------|-------------|
| $\beta_1$ | 0.668      | 0.748      | 0.741        | 0.808       |
| $eta_2$   | -0.069     | -0.143     | -0.071       | -0.228      |
| $\beta_3$ | 0.079      | -0.079     | 0.071        | 0.063       |

Table 7: Coefficients of AR(p) , Model selection: AIC

The long memory diagnosis can be replicated by a short memory process with structural breaks!

#### (Squared) Residuals: China - Taiwan



Figure 5: Residuals  $\hat{\varepsilon}_t$  (up) and squared residuals  $\hat{\varepsilon}_t^2$  (down) of the AR(p) (Beijing (left), Taipei (right)). No rejection of  $H_0$  that the residuals are uncorrelated at 0% significance level, according to the modified Li-McLeod Portmanteau test

## (Squared) Residuals: Japan



Figure 6: Residuals  $\hat{\varepsilon}_t$  (up) and squared residuals  $\hat{\varepsilon}_t^2$  (down) of the AR(p) (Tokyo ( left), Osaka (right)) during 19730101-20081231. No rejection of  $H_0$  that the residuals are uncorrelated at 0% significance level, according to the modified Li-McLeod Portmanteau test

#### Seasonal Volatility: China - Taiwan

Close to zero ACF for residuals and highly seasonal ACF for squared residuals of AR(p)



Figure 7: ACF for residuals  $\hat{\varepsilon}_t$  (up) and squared residuals  $\hat{\varepsilon}_t^2$  (down) of the AR(p) for Beijing (left), Taipei (right).

Pricing of Asian Temperature Risk

#### Seasonal Volatility: Japan

Close to zero ACF for residuals and highly seasonal ACF for squared residuals of AR(p)



Figure 8: ACF for residuals  $\hat{\varepsilon}_t$  (up) and squared residuals  $\hat{\varepsilon}_t^2$  (down) of the AR(p) for Tokyo (left), Osaka (right)

Pricing of Asian Temperature Risk -



## Calibration of Seasonal Variance: $\sigma_t^2$

Calibration of daily variances of residuals AR(3) for 36 years:

 $\odot$  2 Steps: Fourier truncated series + GARCH(p,q)  $\hat{\sigma}_{t,FTSG}^2$ 

$$\sigma_{t}^{2} = c_{1} + \sum_{i=1}^{16} \left\{ c_{2i} \cos \left( \frac{2i\pi t}{365} \right) + c_{2i+1} \sin \left( \frac{2i\pi t}{365} \right) \right\} + \alpha_{1} \varepsilon_{t-1}^{2} + \beta_{1} \sigma_{t-1}^{2}$$
(1)

□ 1 Step: Local linear Regression (LLR)  $\hat{\sigma}_{t,LLR}^2$ ,  $Y_i = \hat{\varepsilon}_{t_i}^2$ 

$$\min_{a,b} \sum_{i=1}^{n} \left\{ Y_i - a(t) - b(t)(t_i - t) \right\}^2 K\left(\frac{t_i - t}{h}\right)$$
 (2)



## Calibration of Seasonal Variance: $\sigma_t^2$

#### Calibration of daily variances of residuals AR(3) for 36 years:

|         | ĉ <sub>1</sub> | ĉ <sub>2</sub> | ĉ <sub>3</sub> | ĉ <sub>4</sub> | Ĉ <sub>5</sub> | ĉ <sub>6</sub> | ĉ <sub>7</sub> | α    | β    |
|---------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|------|------|
| Tokyo   | 3.91           | -0.08          | 0.74           | -0.70          | -0.37          | -0.13          | -0.14          | 0.09 | 0.50 |
| Osaka   | 3.40           | 0.76           | 0.81           | -0.58          | -0.29          | -0.17          | -0.07          | 0.04 | 0.52 |
| Beijing | 3.95           | 0.70           | 0.82           | -0.26          | -0.50          | -0.20          | -0.17          | 0.03 | 0.33 |
| Taipei  | 3.54           | 1.49           | 1.62           | -0.41          | -0.19          | 0.03           | -0.18          | 0.06 | 0.33 |

Table 8: First 7 Coefficients of  $\sigma_t^2$  and GARCH(p=1,q=1). The coefficients in black are significant at 1% level.

## Seasonal Variance $\hat{\sigma}_{t,FTSG}^2$ and $\hat{\sigma}_{t,LLR}^2$ : China - Taiwan



Figure 9: Daily empirical variance,  $\hat{\sigma}_{t,FTSG}^2$ ,  $\hat{\sigma}_{t,LLR}^2$  using Epanechnikov Kernel and bandwidth h = 4.49 for Beijing (left), Taipei (right).

Pricing of Asian Temperature Risk -



## Seasonal Variance $\hat{\sigma}_{t,FTSG}^2$ and $\hat{\sigma}_{t,LLR}^2$ : Japan



Figure 10: DDaily empirical variance,  $\hat{\sigma}_{t,FTSG}^2$ ,  $\hat{\sigma}_{t,LLR}^2$  using Epanechnikov Kernel and bandwidth h = 3.79 for Tokyo (left), Osaka (right).



# ACF of (Squared) Residuals after Correcting Seasonal Volatility: China - Taiwan



Figure 11: (Down) Up: ACF for temperature (squared) residuals  $\frac{\hat{\varepsilon}_t}{\hat{\sigma}_{t,LLR}}$  for Beijing (left), Taipei (right)

# ACF of (Squared) Residuals after Correcting Seasonal Volatility: Japan



Figure 12: (Down) Up: ACF for temperature (squared) residuals  $\frac{\hat{\varepsilon}_t}{\hat{\sigma}_{t,LLR}}$  for Tokyo (left), Osaka (right)



## Residuals $\begin{pmatrix} \hat{\underline{\varepsilon}_t} \\ \hat{\sigma}_t \end{pmatrix}$ become normal

| City    |             | $\frac{\hat{arepsilon}_{f t}}{\hat{\sigma}_{f t}, {	t FTS}}$ | $\frac{\hat{arepsilon}_{f t}}{\hat{\sigma}_{f t}, {\it FTSG}}$ | $\frac{\hat{\varepsilon}_{t}}{\hat{\sigma}_{t,LLR}}$ |
|---------|-------------|--------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------|
| Tokyo   | Jarque Bera | 6.49                                                         | 5.30                                                           | 4.68                                                 |
|         | Kurtosis    | 3.59                                                         | 3.53                                                           | 3.49                                                 |
|         | Skewness    | -0.14                                                        | -0.13                                                          | -0.13                                                |
| Osaka   | Jarque Bera | 7.25                                                         | 6.35                                                           | 6.25                                                 |
|         | Kurtosis    | 3.12                                                         | 3.09                                                           | 3.04                                                 |
|         | Skewness    | -0.34                                                        | -0.33                                                          | -0.32                                                |
| Beijing | Jarque Bera | 8.03                                                         | 7.67                                                           | 6.98                                                 |
|         | Kurtosis    | 3.41                                                         | 3.38                                                           | 3.35                                                 |
|         | Skewness    | -0.30                                                        | -0.30                                                          | -0.29                                                |
| Taipei  | Jarque Bera | 12.47                                                        | 11.57                                                          | 11.00                                                |
|         | Kurtosis    | 3.46                                                         | 3.39                                                           | 3.34                                                 |
|         | Skewness    | -0.39                                                        | -0.39                                                          | -0.39                                                |

Table 9: Skewness, kurtosis and values of Jarque Bera test statistics (365 days). Critical value at 5% significance level is 5.99, at 1% is -9.21.



#### Residuals $(\frac{\hat{\varepsilon}_t}{\hat{\sigma}_t})$ become normal:



Figure 13: Log of Kernel smoothing density estimate vs Log of Normal Kernel for  $\frac{\hat{\mathcal{E}}_t}{\hat{\sigma}_{t,LLR}}$  (upper) and  $\frac{\hat{\mathcal{E}}_t}{\hat{\sigma}_{t,FTSG}}$  (lower) of Tokyo (left), Osaka (left middle), Beijing (right middle), Taipei (right)

## **Temperature Dynamics**

Temperature time series:

$$T_t = \Lambda_t + X_t$$

with seasonal function  $\Lambda_t$ .  $X_t$  can be seen as a discretization of a continuous-time process AR(p) (CAR(p)).

This stochastic model allows CAR(p) futures/options pricing.

## **Stochastic Pricing**

Ornstein-Uhlenbeck process  $X_t \in \mathbb{R}^p$ :

$$d\mathbf{X}_t = A\mathbf{X}_t dt + \mathbf{e}_p \sigma_t dB_t$$

 $\mathbf{e}_k$ : kth unit vector in  $\mathbb{R}^p$  for k=1,...p,  $\sigma_t>0$ , A:  $(p\times p)$ -matrix

$$A = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & & \ddots & & \vdots \\ 0 & \dots & \dots & 0 & 1 \\ -\alpha_{p} & -\alpha_{p-1} & \dots & & -\alpha_{1} \end{pmatrix}$$

#### Stationarity condition

Solution of  $X_t = x \in \mathbb{R}^p$ ,  $s \ge t \ge 0$ :

$$\mathbf{X}_{s} = \exp \{A(s-t)\}\mathbf{x} + \int_{t}^{s} \exp \{A(s-u)\}\mathbf{e}_{p}\sigma_{u}dB_{u}$$

is stationarity as long as all the eigenvalues  $\lambda_1, \ldots, \lambda_p$  of A have negative real parts, i.e. the variance matrix:

$$\int_0^t \sigma_{t-s}^2 \exp\left\{A(s)\right\} \mathbf{e}_p \mathbf{e}_p^\top \exp\left\{A^\top(s)\right\} ds$$

converges as  $t \to \infty$ .



 $X_t$  can be written as a Continuous-time AR(p) (CAR(p)):

For p = 1,

$$dX_{1t} = -\alpha_1 X_{1t} dt + \sigma_t dB_t$$

For p=2,

$$X_{1(t+2)} \approx (2 - \alpha_1) X_{1(t+1)} + (\alpha_1 - \alpha_2 - 1) X_{1t} + \sigma_t (B_{t-1} - B_t)$$

For p = 3,

$$X_{1(t+3)} \approx (3 - \alpha_1)X_{1(t+2)} + (2\alpha_1 - \alpha_2 - 3)X_{1(t+1)} + (-\alpha_1 + \alpha_2 - \alpha_3 + 1)X_{1t} + \sigma_t(B_{t-1} - B_t)$$



# $AR(3) \rightarrow CAR(3)$

|             | Coefficient     | Tokyo(p=3) | Osaka(p=3) | Beijing(p=3) | Taipei(p=3) |
|-------------|-----------------|------------|------------|--------------|-------------|
| AR          | $\beta_1$       | 0.668      | 0.748      | 0.741        | 0.808       |
|             | $eta_2$         | -0.069     | -0.143     | -0.071       | -0.228      |
|             | $eta_3$         | -0.079     | -0.079     | 0.071        | 0.063       |
| CAR         | $\alpha_1$      | -2.332     | -2.252     | -2.259       | -2.192      |
|             | $\alpha_2$      | 1.733      | -1.647     | -1.589       | -1.612      |
|             | $\alpha_3$      | -0.480     | -0.474     | -0.259       | -0.357      |
| Eigenvalues | $\lambda_1$     | -1.257     | -1.221     | -0.231       | -0.396      |
|             | $\lambda_{2,3}$ | -0.537     | -0.515     | -1.013       | -0.898      |

Table 10: Coefficients of (C)AR(p) (Berlin (p=3)), Model selection: AIC. real parts of eigenvalues of A are negative.



### **Temperature Futures Price**

 $\exists Q_{\theta}$  pricing so that:

$$F_{(t,\tau_1,\tau_2)} = \mathsf{E}^{Q_\theta} \left[ Y | \mathcal{F}_t \right] \tag{3}$$

where Y equals the payoff of the temperature index and by Girsanov theorem:

$$B_t^{\theta} = B_t - \int_0^t \theta_u du$$

is a Brownian motion for  $t \leq \tau_{\text{max}}$ .  $\theta$ : a real valued, bounded and piecewise continuous function (market price of risk)

### Temperature Dynamics under $Q_{\theta}$

Under  $Q_{\theta}$ :

$$d\mathbf{X}_{t} = (A\mathbf{X}_{t} + \mathbf{e}_{p}\sigma_{t}\theta_{t})dt + \mathbf{e}_{p}\sigma_{t}dB_{t}^{\theta}$$
(4)

with explicit dynamics, for  $s \ge t \ge 0$ :

$$\mathbf{X}_{s} = \exp \{A(s-t)\}\mathbf{x} + \int_{t}^{s} \exp \{A(s-u)\}\mathbf{e}_{p}\sigma_{u}\theta_{u}du$$
$$+ \int_{t}^{s} \exp \{A(s-u)\}\mathbf{e}_{p}\sigma_{u}dB_{u}^{\theta}$$
(5)

#### **AAT Futures**

For  $0 \le t \le \tau_1 < \tau_2$ :

$$F_{AAT(t,\tau_{1},\tau_{2})} = \mathbf{E}^{Q_{\theta}} \left[ \int_{\tau_{1}}^{\tau_{2}} T_{s} ds | \mathcal{F}_{t} \right]$$

$$= \int_{\tau_{1}}^{\tau_{2}} \Lambda_{u} du + \mathbf{a}_{t,\tau_{1},\tau_{2}} \mathbf{X}_{t} + \int_{t}^{\tau_{1}} \theta_{u} \sigma_{u} \mathbf{a}_{t,\tau_{1},\tau_{2}} \mathbf{e}_{p} du$$

$$+ \int_{\tau_{1}}^{\tau_{2}} \theta_{u} \sigma_{u} \mathbf{e}_{1}^{\top} A^{-1} \left[ \exp \left\{ A(\tau_{2} - u) \right\} - I_{p} \right] \mathbf{e}_{p} du \quad (6)$$

with  $\mathbf{a}_{t,\tau_1,\tau_2} = \mathbf{e}_1^{\top} A^{-1} \left[ \exp \left\{ A(\tau_2 - t) \right\} - \exp \left\{ A(\tau_1 - t) \right\} \right], \ I_p : p \times p$  identity matrix

Benth et al. (2007)

Pricing of Asian Temperature Risk -



# Constant MPR $\theta_t^i$

 $\hat{\theta}_t^i$  - constant for each contract  $i, i = 1, 2 \dots 7$  obtained as a solution to:

$$F_{AAT(t,\tau_{1}^{i},\tau_{2}^{i})} \stackrel{!}{=} \int_{\tau_{1}^{i}}^{\tau_{2}^{i}} \hat{\Lambda}_{u} du - \hat{\mathbf{a}}_{t,\tau_{1}^{i},\tau_{2}^{i}} \hat{\mathbf{X}}_{t} - \frac{\theta_{t}^{i}}{t} \left\{ \int_{t}^{\tau_{1}^{i}} \hat{\sigma}_{u} \hat{\mathbf{a}}_{t,\tau_{1}^{i},\tau_{2}^{i}} \mathbf{e}_{\rho} du \right.$$

$$+ \int_{\tau_{1}^{i}}^{\tau_{2}^{i}} \hat{\sigma}_{u} \mathbf{e}_{1}^{\top} A^{-1} \left[ \exp \left\{ A(\tau_{2}^{i} - u) \right\} - I_{\rho} \right] \mathbf{e}_{\rho} du \right\}$$

#### **MPR General Case**

$$\underset{\gamma_{k}}{\operatorname{arg\,min}} \Sigma_{i=1}^{7} \quad \left( F_{AAT(t,\tau_{1}^{i},\tau_{2}^{i})} - \int_{\tau_{1}^{i}}^{\tau_{2}^{i}} \hat{\Lambda}_{u} du - \hat{\mathbf{a}}_{t,\tau_{1}^{i},\tau_{2}^{i}} \hat{\mathbf{X}}_{t} \right) \\
- \int_{t}^{\tau_{1}^{i}} \sum_{k=1}^{K} \gamma_{k} h_{k}(u_{i}) \hat{\sigma}_{u_{i}} \hat{\mathbf{a}}_{t,\tau_{1}^{i},\tau_{2}^{i}} \mathbf{e}_{\rho} du_{i} \\
- \int_{\tau_{1}^{i}}^{\tau_{2}^{i}} \sum_{k=1}^{K} \gamma_{k} h_{k}(u_{i}) \hat{\sigma}_{u_{i}} \mathbf{e}_{1}^{T} A^{-1} \left[ \exp \left\{ A(\tau_{2}^{i} - u_{i}) \right\} \right] \\
- I_{\rho} \mathbf{e}_{\rho} du_{i}$$

$$(7)$$

where  $h_k(u_i)$  is a vector of known basis functions,  $\gamma_k$  defines the coefficients. MPR changes in sign!!

Pricing of Asian Temperature Risk



## MPR with Splines

 $\hat{\theta}_t^{spl}$  – MPR as a solution to the minimization problem defined in (7), with  $h_k(u_i)$  a *B*-spline basis  $B_{i,p,\tau}$  of order p,  $i=1,2,\ldots,n-p-2$  and a knot sequence  $\tau=(\tau_0,\ldots,\tau_{n-1})$ .

$$B_{i,0,\tau}(u) = \begin{cases} 1, & u \in [\tau_i, \tau_{i+1}] \\ 0, & \text{else} \end{cases},$$

$$B_{i,p,\tau}(u) = \frac{u - \tau_i}{\tau_{i+p} - \tau_i} B_{i,p-1,\tau}(u) + \frac{\tau_{i+p+1} - u}{\tau_{i+p+1} - \tau_{i+1}} B_{i+1,p-1,\tau}(u).$$

To compute  $\hat{\theta}_t^{spl}$  use order p=3 of B-splines with 7 knots corresponding to the number of traded contracts.

Pricing of Asian Temperature Risk -



### Tokyo & Osaka AAT Future Prices

| City  | Code | F <sub>AATBloomberg</sub> | $F_{AAT,\hat{	heta}_{\mathbf{t}}^{0}}$ | $F_{AAT,\hat{	heta}_{\mathbf{t}}^{i}}$ | F <sub>AAT, <math>\hat{\theta}_{t}^{spl}</math></sub> |
|-------|------|---------------------------|----------------------------------------|----------------------------------------|-------------------------------------------------------|
| Tokyo | J9   | 450.000                   | 452.125                                | 450.000                                | 461.213                                               |
|       | K9   | 592.000                   | 630.895                                | 592.000                                | 640.744                                               |
| Osaka | J9   | 460.000                   | 456.498                                | 460.000                                | -                                                     |
|       | K9   | 627.000                   | 663.823                                | 627.000                                | -                                                     |

Table 11: Tokyo & Osaka AAT future prices estimates on 20090130 from different MPR calibration methods:  $F_{AAT,\hat{\theta}_{\mathbf{t}}^{\mathbf{0}}}$  with zero MPR,  $F_{AAT,\hat{\theta}_{\mathbf{t}}^{\mathbf{i}}}$  with constant MPR,  $F_{AAT,\hat{\theta}_{\mathbf{t}}^{\mathbf{s}}}$  with spline MPR.

# Parametrization of Constant MPR $\theta_t^i$

- ☑ Average MPR over trading period parameter depending on the risk source over the measurement period – temperature variation.
- $\square$  Average MPR average of the calibrated  $\theta_t^i$ :

$$\hat{\theta}_{\tau_1,\tau_2}^i = \frac{1}{\tau_2 - t_{\tau_1,\tau_2}} \sum_{t=t_{\tau_1,\tau_2}}^{\tau_2} \hat{\theta}_t^i,$$

 $t_{ au_1, au_2}$  is the first trading day of the measurement period  $[ au_1, au_2].$ 

**○** Variation in period  $[\tau_1, \tau_2]$ :

$$\hat{\sigma}_{\tau_1,\tau_2}^2 = \frac{1}{\tau_2 - \tau_1} \sum_{t=\tau_1}^{\tau_2} \hat{\sigma}_t^2.$$

 $\boxdot$  Regress  $\hat{\theta}^i_{\tau_1,\tau_2}$  on  $\hat{\sigma}^2_{\tau_1,\tau_2}$  to parametrize the dependence.



# Parametrization of $\theta_t^i$ : Tokyo



Figure 14: Calibrated MPR and Monthly Temperature Variation of AAT Tokyo Futures from November 2008 to November 2009 (prices for 8 contracts were available). MPR here is a nonmonotone quadratic function of  $\hat{\sigma}_{T1,T2}^2$ .

Pricing of Asian Temperature Risk -

# Parametrization of $\theta_t^i$ : Tokyo

| Parameters  | $\hat{	heta}_{	au_{1},	au_{2}} = a + b\hat{\sigma}_{	au_{1},	au_{2}}^{2} + c\hat{\sigma}_{	au_{1},	au_{2}}^{4}$ |
|-------------|-----------------------------------------------------------------------------------------------------------------|
| а           | 4.08                                                                                                            |
| Ь           | -2.19                                                                                                           |
| С           | 0.28                                                                                                            |
| $R_{adj}^2$ | 0.71                                                                                                            |

Table 12: Parametrization of MPR for AAT Tokyo Futures.

# Parametrization of $\theta_t^i$ : What is the Message?

- $oxed{oxed}$  Example of Tokyo shows that even simple parametrization for  $\hat{ heta}_{ au_1, au_2}$  is possible.
- Infer MPR for regions without weather derivative markets knowing the formal dependence of MPR on seasonal variation.
- Uncertainty about spatial characteristics of MPR parametrization using the closest location with organized weather derivative market.



# Analysis of Weather Dynamics in Kaohsiung





# Analysis of Weather Dynamics in Kaohsiung





# Analysis of Weather Dynamics in 高雄市

1. Seasonal function with trend:

$$\hat{\Lambda}_{t} = 24.4 + 16 \cdot 10^{-5} t + \sum_{i=1}^{3} \hat{c}_{i} \cdot \cos \left\{ \frac{2\pi i (t - \hat{d}_{i})}{365} \right\}$$

$$+ \mathcal{I}(t \in \omega) \cdot \sum_{i=4}^{6} \hat{c}_{i} \cdot \cos \left\{ \frac{2\pi (i - 4)(t - \hat{d}_{i})}{365} \right\},$$

with  $\mathcal{I}(t \in \omega)$  an indicator function taking value 1 for December, January and February and value zero else.

| i           | 1       | 2     | 3     | 4     | 5     | 6     |
|-------------|---------|-------|-------|-------|-------|-------|
| ĉį          | 5.11    | -1.34 | -0.39 | 0.61  | 0.56  | 0.34  |
| $\hat{d}_i$ | -162.64 | 19.56 | 16.72 | 28.86 | 16.63 | 21.84 |

### Analysis of Weather Dynamics in 高雄市

1. Seasonal function with trend:



2. AR(p) process, by AIC p=3

$$\hat{\beta}_1 = 0.77, \quad \hat{\beta}_2 = -0.12, \quad \hat{\beta}_3 = 0.04.$$

CAR(p) 
$$\hat{\alpha}_1 = -2.24$$
,  $\hat{\alpha}_2 = -1.59$ ,  $\hat{\alpha}_3 = -0.31$ .



3. Seasonal volatility: Local Linear Regression (LLR)



4. Normality of residuals: kurtosis=3.32, skewness=-0.22, JB=4.41.



Pricing of Asian Temperature Risk



### **AAT Future Contracts for Kaohsiung**

For  $0 \le t \le \tau_1 < \tau_2$ :

$$\widehat{F}_{AAT(t,\tau_{1},\tau_{2})} = \int_{\tau_{1}}^{\tau_{2}} \widehat{\Lambda}_{u} du + \widehat{\mathbf{a}}_{t,\tau_{1},\tau_{2}} \widehat{\mathbf{X}}_{t} + \int_{t}^{\tau_{1}} \widehat{\boldsymbol{\theta}}_{\tau_{1},\tau_{2}} \widehat{\boldsymbol{\sigma}}_{u} \widehat{\mathbf{a}}_{t,\tau_{1},\tau_{2}} \mathbf{e}_{p} du$$

$$+ \int_{\tau_{1}}^{\tau_{2}} \widehat{\boldsymbol{\theta}}_{\tau_{1},\tau_{2}} \widehat{\boldsymbol{\sigma}}_{u} \mathbf{e}_{1}^{\top} A^{-1} \left[ \exp \left\{ A(\tau_{2} - u) \right\} - I_{p} \right] \mathbf{e}_{p} du \quad (8)$$

where  $\hat{\theta}_{\tau_1,\tau_2}=4.08-2.19\cdot\hat{\sigma}_{\tau_1,\tau_2}^2+0.28\cdot\hat{\sigma}_{\tau_1,\tau_2}^4.$  In this case  $\hat{\sigma}_{\tau_1,\tau_2}^2=1.10 \rightarrow \hat{\theta}_{\tau_1,\tau_2}=2.01$ , and  $\hat{F}_{AAT(20090901,20091027,20091031)}=139.60$ .

### **AAT Call Option**

written on an AAT future with strike K at exercise time  $\tau < \tau_1$  during period  $[\tau_1, \tau_2]$ .

$$C_{AAT(t,\tau,\tau_{1},\tau_{2})} = \exp\left\{-r(\tau-t)\right\}$$

$$\times \left[\left(F_{AAT(t,\tau_{1},\tau_{2})} - K\right) \Phi\left\{d(t,\tau,\tau_{1},\tau_{2})\right\} + \int_{t}^{\tau} \sum_{AAT(s,\tau_{1},\tau_{2})}^{2} ds \varphi\left\{d(t,\tau,\tau_{1},\tau_{2})\right\}\right],$$

$$d(t,\tau,\tau_{1},\tau_{2}) = \frac{F_{AAT(t,\tau_{1},\tau_{2})} - K}{\sqrt{\int_{t}^{\tau} \sum_{AAT(s,\tau_{1},\tau_{2})}^{2} ds}},$$

$$\sum_{AAT(s,\tau_{1},\tau_{2})}^{2} = \sigma_{t} \mathbf{a}_{t,\tau_{1},\tau_{2}} \mathbf{e}_{p},$$

 $\Phi$  and  $\varphi$  denote standard normal cdf and pfd respectively.

Pricing of Asian Temperature Risk -



#### Weather Risk and Human Capital...

An investor organizes a conference on the 27-31 October 2009 in Kaohsiung. Since he knows there is another conference event that week, he estimates that every additional °C in excess of 135°C cumulated 24-hour average temperatures will reduce the number of participants in favor for the other conference and he will incur 2,500 JPY costs on human capital.





#### Weather Risk and Human Capital...

An investor organizes a conference on the 27-31 October 2009 in Kaohsiung. Since he knows there is another conference event that week, he estimates that every additional  $^{\circ}$ C in excess of 135 $^{\circ}$ C cumulated 24-hour average temperatures will reduce the number of participants in favor for the other conference and he will incur 2,500 JPY costs on human capital.





## **Example: the Human Capital Problem**

| Derivative                                                  | Parameters          |  |  |
|-------------------------------------------------------------|---------------------|--|--|
| index                                                       | AAT                 |  |  |
| r                                                           | 4%                  |  |  |
| t                                                           | 1. September 2009   |  |  |
| measurement period                                          | 27-31. October 2009 |  |  |
| strike                                                      | 135°C               |  |  |
| tick value                                                  | 1°C=2,500 JPY       |  |  |
| $\widehat{F}_{AAT(20090901,20091027,20091031)}$             | 139.60              |  |  |
| CAAT(20090901,20090908,20091027,20091031)                   | 3.49                |  |  |
| $\widehat{C}_{AAT}(20090901, 20090915, 20091027, 20091031)$ | 2.64                |  |  |
| $\widehat{C}_{AAT}(20090901,20090922,20091027,20091031)$    | 2.00                |  |  |
| $\widehat{C}_{AAT}$ (20090901,20090929,20091027,20091031)   | 1.51                |  |  |

Table 13: Call Options on AAT Future.



#### Hedging strategy for CAT call option

Delta of the call option:

$$\frac{\partial C_{AAT(t,\tau,\tau_1,\tau_2)}}{\partial F_{AAT(t,\tau_1,\tau_2)}} = \Phi \left\{ d\left(t,\tau,\tau_1,\tau_2\right) \right\} \tag{9}$$

Hold: close to zero CAT futures when the option is far out of the money, otherwise close to 1.

Conclusion — 5-1

#### Outlook

- Financial mathematics can be applied to Beijing, Taipei and Kaohsiung
- new solutions to abolish the remaining seasonality in the data
- $\hat{\theta}_t$  for CDD/HDD temperature futures/options: pricing of other exotic options
- long term (interannual) variability of parameters capture volatility due to climate changes and urbanization.



Conclusion — 5-2

#### References

F.E Benth and J.S. Benth and S. Koekebakker

Putting a price on temperature

Scandinavian Journal of Statistics 34: 746-767, 2007

F.E Benth and W.K Härdle and B.López Cabrera Pricing of Asian Temperature Risk Working Paper SFB649, 2009-046

and W.K. Härdle and B. López Cabrera Implied market price of weather risk Working Paper SFB649, 2009-001

P.J. Brockwell Continuous time ARMA Process Handbook of Statistics 19: 248-276, 2001





#### **Pricing of Asian Temperature Risk**

Wolfgang Karl Härdle Brenda López Cabrera

Ladislaus von Bortkiewicz Chair of Statistics C.A.S.E. Centre for Applied Statistics and Economics
School of Business and Economics
Humboldt-Universität zu Berlin
http://lvb.wiwi.hu-berlin.de

#### 温度风险





# Appendix A

**Li-McLeod Portmanteau Test**– modified Portmanteau test statistic  $Q_L$  to check the uncorrelatedness of the residuals:

$$Q_L = n \sum_{k=1}^{L} r_k^2(\hat{\varepsilon}) + \frac{L(L+1)}{2n},$$

where  $r_k$ ,  $k=1,\ldots,L$  are values of residuals ACF up to the first L lags and n is the sample size. Then,

$$Q_L \sim \chi^2_{(L-p-q)}$$

 $Q_L$  is  $\chi^2$  distributed on (L-p-q) degrees of freedom where p,q denote AR and MA order respectively and L is a given value of considered lags.

Pricing of Asian Temperature Risk —



# Appendix B

Proof CAR(3)  $\approx$  AR(3) I et

$$A = \left(\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -\alpha_3 & -\alpha_2 & -\alpha_1 \end{array}\right)$$

- $\Box$  use  $B_{t+1} B_t = \varepsilon_t$
- $\odot$  substitute iteratively into  $X_1$  dynamics:

Appendix — 6-3

### Appendix B

$$\begin{array}{rcl} X_{1(t+1)} - X_{1(t)} & = & X_{2(t)}dt + \sigma_t \varepsilon_t \\ X_{2(t+1)} - X_{2(t)} & = & X_{3(t)}dt + \sigma_t \varepsilon_t \\ X_{3(t+1)} - X_{3(t)} & = & -\alpha_1 X_{1(t)}dt - \alpha_2 X_{2(t)}dt - \alpha_3 X_{3(t)}dt + \sigma_t \varepsilon_t \\ X_{1(t+2)} - X_{1(t+1)} & = & X_{2(t+1)}dt + \sigma_{t+1}\varepsilon_{t+1} \\ X_{2(t+2)} - X_{2(t+1)} & = & X_{3(t+1)}dt + \sigma_{t+1}\varepsilon_{t+1} \\ X_{3(t+2)} - X_{3(t+1)} & = & -\alpha_1 X_{1(t+1)}dt - \alpha_2 X_{2(t+1)}dt \\ & & -\alpha_3 X_{3(t+1)}dt + \sigma_{t+1}\varepsilon_{t+1} \\ X_{1(t+3)} - X_{1(t+2)} & = & X_{2(t+2)}dt + \sigma_{t+2}\varepsilon_{t+2} \\ X_{2(t+3)} - X_{2(t+2)} & = & X_{3(t+2)}dt + \sigma_{t+2}\varepsilon_{t+2} \\ X_{3(t+3)} - X_{3(t+2)} & = & -\alpha_1 X_{1(t+2)}dt - \alpha_2 X_{2(t+2)}dt \\ & & -\alpha_3 X_{3(t+2)}dt + \sigma_{t+2}\varepsilon_{t+2} \end{array}$$

Pricing of Asian Temperature Risk

