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Abstract

In this paper, we study the statistical properties of the moneyness scaling trans-
formation by |Leung and Sircar (2015)). This transformation adjusts the mon-
eyness coordinate of the implied volatility smile in an attempt to remove the
discrepancy between the IV smiles for levered and unlevered ETF options. We
construct bootstrap uniform confidence bands which indicate that in a statistical
sense there remains a possibility that the implied volatility smiles are still not
the same, even after moneyness scaling has been performed. This presents pos-
sible arbitrage opportunities on the (L)ETF market which can be exploited by
traders. We build possible arbitrage strategies by constructing portfolios with
LETF shares and options which possibly have a positive value at the point of
creation and non-negative value at the expiration time. An empirical data ap-
plication shows that there are indeed such opportunities in the market which
result in risk-free gains for the investor. A dynamic "trade-with-the-smile" strat-
egy based on a dynamic semiparametric factor model is presented. This strategy
utilizes the dynamic structure of implied volatility surface allowing out-of-sample
forecasting and information on unleveraged ETF options to construct theoretical
one-step-ahead implied volatility surfaces. The codes used to obtain the results
in this paper, are available on www.quantlet.de.

Key words: exchange-traded funds, options, moneyness scaling, arbitrage,
bootstrap, dynamic factor models

JEL Classification: C00, C14, C50, C58

1 Introduction

Exchange-traded funds (ETFs) are financial products that track indices, commodities,
bonds, baskets of assets. They have become increasingly popular due to diversification
benefits as well as the investor’s ability to perform short-selling, buying on margin and

lower expense ratios than, for instance those of mutual funds.

The trading advantages of the ETFs are enhanced through the use of gearing or
leverage, when derivative products are used to generate multiple or inverse multiple
returns on the underlying asset. For instance, the leveraged ETF ProShares Ultra

S&P500 (SSO) with leverage ratio § = +2 is supposed to gain 2% for every 1%


http://quantlet.de

daily gain in the price of the S&P500 index, with a subtraction of an expense fee.
An inverse leveraged ETF would invert the loss and amplify it proportionally to the
ratio magnitude: the ProShares UltraShort S&P500 (SDS) with leverage ratio § = —2
would generate a 2% gain for every 1% daily loss in the price of the underlying S&P500
index. Naturally, the basic unleveraged SPDR S&P 500 ETF (SPY) returns 100% of
the gain/loss of S&P 500 index, having 5 = +1.

Due to their growing popularity and the nature of ETF and LETF similar dynam-
ics, recently there has been growing research on leveraged ETFs and their consistent
pricing. Specifically, Leung and Sircar| (2015) introduced the so-called "moneyness
scaling" technique which links implied volatilities (IV) between ETF and LETF in the
way that the discrepancy between the implied volatility "smile" pattern is removed.
Recent empirical observations seemingly support this idea. Figure [I| below compares
the empirical implied volatilities for the LETFs SSO, SDS, UPRO (8 = +3), SPXU
(8 = —3) before moneyness scaling is done. The log-moneyness LM is defined as

o K
LM ¥ 1og <L> , (1)
t

where K is the strike of the LETF option and L; the LETF price at time ¢. After

implied volatility re-scaling according to the identity

resc. def - -
OLETF — |5| 1P351*<PB)7 (2)

where Ppg is the option Black-Scholes price and Pj3 is an observed market price of the
LETF, there are still visible discrepancies between the implied volatilities for the SPY
ETF and its leveraged counterparts. The moneyness scaling procedure yields a more

coherent picture as in Figure 2, when the LETF and ETF implied volatilities overlap



significantly better.
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Figure 1: SPY (blue) and LETFs (red) implied volatilities before scaling on June 23,
2015 with 207 days to maturity, plotted against their log-moneyness

Q LETFIV

The question arises whether the moneyness scaling method indeed removes dis-
crepancies consistently in time. To answer this question, a study is required to verify
whether IV deviations are significant from the statistical point of view. This leads to
the problem of constructing confidence intervals (or confidence bands) for the difference
of IV estimators. Several studies including (Cont and da Fonseca| (2002), Ait-Sahalia
et al.| (2001) apply non- and semiparametric approaches to model implied volatilities.
The use of such estimators allows to construct uniform or bootstrap confidence bands
which can be used as a check for the potential existence of price discrepancies among

ETF options with different leverage ratios.
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Figure 2: SPY (blue) and LETF's (red) implied volatilities after moneyness scaling on
June 23, 2015 with 207 days to maturity, plotted against their log-moneyness

Q LETFIVMonSc

2 Consistency study for moneyness scaling

2.1 Implied volatility as estimator

The moneyness scaling technique proposed by |Leung and Sircar (2015]) offers a "coor-
dinate transformation" for the LETF option implied volatility and potentially reflects
the increase of risk in the underlying asset (ETF). Based on the assumption that the
distribution of the terminal price of the S-LETF depends on the leverage ratio [,

the moneyness scaling formula includes an expectation of the S-LETF log-moneyness
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conditional on the terminal value of the unleveraged counterpart. For the LETF log-
moneyness LM? (consider ETFs as LETFs with 3 = 1) the formula linking two LETFs

with different leverage ratios (i, B2 takes the (approximate) form:

LM% = gz LMP2 4 {r(By — 1)+ co}7 + 62(622_ 1)627' —{r(fr = 1)+ }r
Bi(Br—1)_.
-5 71 (3)

Another popular measure for moneyness is the so-called forward moneyness which
is an appropriate choice for European option data because European options can be

only exercised at expiry. It is defined as follows:
Ry KLY, (4)

where 7 is the interest rate, ¢ stock dividend ratio. In terms of the forward moneyness,

the moneyness scaling equation for two LETFs with different leverage ratios 1, 52 can

be shown (see Appendix to satisfy:

1
) = exp {250 g )%, ©
Many researchers, among them Fengler et al.| (2007)), Park et al.| (2009)) have studied

the implied volatility as a random process in time, so that the data generating process

includes some non-parametric function m:

Yt:m(Xt)—i—gt, t:17...,T, (6)



or can be driven by a latent factor process Z;:
Y, =Z'm(X,)+e, t=1,...,T, (7)

where Y, stands for an implied volatility process, the covariates X; can be one- or
multi-dimensional. Usually X; is assumed to contain a moneyness component such as

ks and the time-to-maturity .

2.2 Confidence bands

The statistical properties of the estimators 7 (X;) and Z, m1(X;) for the models @ and
have been outlined, respectively, in, e.g., Hardle (1990)), Ruppert and Wand| (1994)
and [Park et al.| (2009). To study the consistency of the implied volatility difference be-
tween the ETF and the moneyness-scaled LETF case, one needs to consider statistical
differences of the corresponding estimators. Confidence band analysis may provide a
first insight into the matter. An important issue about smooth confidence bands for
functions is the correct probability of covering the "true" curve. One way to address
it is to use the Bonferroni correction to adjust confidence levels for each pointwise
confidence interval to obtain the overall confidence. On the other hand, asymptotic
confidence bands generally tend to underestimate the true coverage probability, see

Hall and Horowitz (2013).

An alternative approach is to use bootstrap confidence bands while the distribution
of the original data is "mimicked" via a pre-specified random mechanism achieving
both uniformity and better coverage. The approach of Hardle et al.| (2015 proposes
a uniform bootstrap bands construction for a wide class of non-parametric M and L-

estimates. It is logical to use a robust M-type smoother for the estimation of @ in the



actual case of implied volatility, as IV data often suffer from outliers. The procedure
runs as follows: consider the sample {X;, Y;}7_,, where Y; denotes the IV process, X;

is taken to be one-dimensional and includes the log-moneyness covariate LM?.

1. Compute the estimate m,(X) by a local linear M-smoothing procedure (see
Appendix with some kernel function and bandwidth h chosen by, e.g., cross-

validation.

2. Given & dof Y; — mp(X;); m obtained in Step 1, do bootstrap resampling from
£, that is, for each t = 1,..., T, generate a random variable €} ~ A5|X(z) and a
re-sample

Y =my(X) +ef, t=1,...,T (8)

B times (bootstrap replications) with an "oversmoothing" bandwidth g > h such

as g = O(T~?) to allow for a bias correction.

3. For each re-sample {X;,Y;*}/_, compute 7 , using the bandwidth % and con-

struct the random variable

def Mty 5 (2) = g (@) |y Fx (2) fope—an (€7)

dy = sup —
v€B Evix{v?(ef)}

. b=1,....B, (9

where B is a finite compact support set of fy and W(u) = p'(+), see Appendix
2

4. Calculate the 1 — o quantile d}, of dy,...,dp.

5. Construct the bootstrap uniform confidence band centered around my,(x):

Ele{W(EZ‘)}dZ :| (10)
VFx (@) Foxman (e0)

’rﬁh(x) +




We use daily data in the period 20141117-20151117 to construct bootstrap confi-
dence bands for the M-smoother of implied volatility Y given forward moneyness X.
For the LETFs SSO, UPRO, SDS X is transformed via moneyness scaling formula (/5]).

The results are shown in Figure [3]
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Figure 3: Fitted implied volatility (blue) and bootstrap (red) uniform confidence bands

for 4 (L)ETFs on SEP500; number of bootstrap replications is 1000; time to maturity:
0.6 years

Q LETFConfBands06SPY Q@ LETFConfBands06SS0 @ LETFConfBandsO6UPRO

Q LETFConfBands06SDS

A closer look at the obtained bootstrap confidence bands’ relative location in Fig-
ure [6] might imply that the moneyness scaling procedure can remove the discrepancy

between the implied volatilities of leveraged ETFs and their unleveraged counterpart


https://github.com/QuantLet/LETF-Moneyness/tree/master/LETFConfBands06SPY
https://github.com/QuantLet/LETF-Moneyness/tree/master/LETFConfBands06SSO
https://github.com/QuantLet/LETF-Moneyness/tree/master/LETFConfBands06UPRO
https://github.com/QuantLet/LETF-Moneyness/tree/master/LETFConfBands06SDS

with possible deviations for two positively leveraged ETFs (SSO and UPRO) for smaller
moneyness values. Should arbitrage opportunities arise, they are quickly traded away,
given that the markets for the presented ETFs are quite liquid. However, caution
should be exercised as the joint hypothesis on the difference of two estimators with a
single band may still be rejected. Similar analysis for time to maturity equal to 0.5
and 0.7 is performed. The bootstrap confidence bands for three LETFs and the base

ETF SPY are shown in Figures [] and
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Figure 4: Fitted implied volatility (blue) and bootstrap (red) uniform confidence bands

for 4 (L)ETFs on SEP500; number of bootstrap replications is 1000; time to maturity:
0.5 years
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Figure 5: Fitted implied volatility (blue) and bootstrap (red) uniform confidence bands

for 4 (L)ETFs on SEP500; number of bootstrap replications is 1000; time to maturity:
0.7 years
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The illustration of the confidence bands’ overlap in Figure [6] shows that the bands
for the SSO LETF become wider than before and are not covered by those of the
unleveraged counterpart. This implies possible discrepancies not removed by the mon-
eyness scaling procedure. Given that the moneyness scaling approximation ({b)) is cor-
rect, there are arbitrage opportunities in the market of SPY and SSO which may be

exploited by traders at different times to maturity.

3 (L)ETF option market arbitrage opportunities

As was implied in the previous section, there exist indications of possible arbitrage in
the (L)ETF option markets. In this section, we propose possible trading strategies for
LETFs and LETF options, then apply them to the empirical data. The options on
SPY and SSO are used, where most arbitrage opportunities may arise, according to

the study of confidence bands.

3.1 Trading strategies

Define the prices of SPY and SSO at time ¢ are Li; and Loy, respectively. The prices
of the corresponding LETF call (put) options are then Cy; (Py;) and Cy (Par). Since
SPY and SSO are designed to track daily return and double daily return of S&P 500,

we have the following identity,

log(Lar) — log(Lag) = 2{log(Lir) — log(L1g)} - (11)

where ¢ = 0 is the date for designing the strategy and ¢ = T is the delivery date for
the corresponding LETF options. Let a = log(Lsg)/log(Lyp), then rearrange as

13



follows:

Lor = L8217, (12)

Equation ((12) provides the relationship between the prices of SPY and SSO at time
point ¢ = T conditional on the initial prices at time point ¢ = 0. Then referring to
Franke et al.| (2015), trading strategy 1 can be illustrated by constructing a portfolio

as follows:

1. Long 1 share SPY at time ¢ = 0 until time ¢t =T

2. Short 1 share call option on SPY with delivery price K; at time t = 0 until the

maturity 7.
3. Short Li;*K; ' shares SSO at time ¢ = 0 until time ¢ = 7.

4. Long Li;*K; " shares call option on SSO with delivery price Ky = L5 2K? at

time ¢ = 0 until the maturity 7.

The portfolio value at time ¢ = T is presented in Table [1] and has a positive value.
At the initial time ¢ = 0, buying 1 share of SPY costs L, selling a call option on 1
share of SPY results in receiving a premium Cy, selling L3, K ! shares of SSO brings
in L2,K; ! and buying Li;*K; " call options on SSO costs Li;*K; 'Cy, so the initial

profit /loss generated by constructing this portfolio is

Py=—Lig+ Cio+ L3yK; ' — L3y " K[ 'Cy. (13)

As shown in Table[], this portfolio has a non-negative value at maturity 7. If initially
Py > 0, then arbitrage opportunities are present and they can be realized by holding

the portfolio until maturity and receive arbitrage profit at ¢ = 0. Empirical results by

14



Value at time T
Position Lir < K; Lir > K,
1. Lir Ly
2. 0 Kl — LlT
3. —Lir Ky — LKy
4. 0 L3 Ki' - K,
Sum | Lyr (1-%2) >0 0

Table 1: Portfolio value at time T of trading strategy 1

real data from the market in Section show that there indeed exist such arbitrage

opportunities.

Similarly, we can also design the following trading strategy 2 based on SPY, SSO

and the corresponding put options:

1. Short 1 share SPY at time ¢ = 0 until time ¢t = 7.

2. Short 1 share put option on SPY with strike K at time ¢t = 0 until the maturity

T.
3. Long Li;*K "' shares SSO at time ¢ = 0 until time t = 7.

4. Long Li;*K; ' shares put option on SSO with strike K, = L5 ?K? at time t = 0

until the maturity 7'

with the initial profit/loss

Py = Lo+ Py — L3, Kt — L2 K{ Py, (14)

The portfolio value at time ¢ = T is presented in Table [2| which is also non-negative.

Finally, if we combine both strategies, yet another trading strategy 3 ensues:

15



Value at time T
Position Lir < K3 Lir > K,
1 _LIT _LlT
2 Ly — K3 0
3 LI K LipKi!
4. | K, - L2k 0
Sum 0 LlT (% - ) Z 0

Table 2: Portfolio value at time T of trading strategy 2

1. Short 1 share call option on SPY with strike K; at time ¢t = 0 until the maturity

T.

2. Short 1 share put option on SPY with strike K at time ¢t = 0 until the maturity

T.

3. Long Li;®K; ! shares call option on SSO with strike Ky = Ly 2K? at time t = 0

until the maturity 7'

4. Long L3iy*K; " shares put option on SSO with strike Ky = L5 2K? at time ¢t = 0

until the maturity 7.

with the initial profit/loss

Py=Cio+ Pio— LIg*K; 'Oy — L3y K Pao. (15)

The portfolio value for strategy 3 at time ¢ = 7' is shown in Table |3| and is always

positive or even strictly positive.

16



Value at time T
Position Lir < K3 Lir > K,
1. 0 K1 — LlT
2. Lir — K, 0
3. 0 L%TKfl - K
4. K, — L%TKfl 0
Sum | Lir (1-%2)>0 Ly (B2 -1)>0

Table 3: Portfolio value at time T of trading strategy 3

3.2 Empirical application

Since the trading strategies proposed in Section promise non-negative profits at the
maturity 7', in order to get a "free lunch", the objective is to search for proper values
of LETFs’ prices and their corresponding options and strikes in the data such that
Py > 0. In this section, we examine strategy 1 using the data for SPY and SSO call
options from Datastream with the maturity date 20160115 over the period 20150101
to 20151112. We also consider transaction costs of 1% when going long or short LETFs
and LETF options.

Table || presents arbitrage opportunities in the indicated period. It shows that one
can get positive initial profits if holding portfolios according to strategy 1 on the days
listed in the first column with particular strikes and shares listed in the second to
fourth columns taking into account the transaction fee. The highest profit is as high

as 0.897% for holding one share of the portfolio.

We plot implied volatility curves of SSO call options after moneyness scaling to-
gether with implied volatility curves of SPY call options on each of the trading days
from Table [4] and mark the implied volatilities of SSO call options selected by Strategy
I in Figure[7] As we can see, most of the implied volatilities marked by asterisks are

smaller than their expected values from moneyness scaling. Looking at those trad-

17



Date K Shares of Lo Ky B,

Jun. 16, 2015 145 4.482 32.5 0.070
Jul. 30, 2015 165 3.952 42 0.447
Aug. 10, 2015 172 3.795 45.5 0.722
173 3.773 46 0.472
Aug. 12, 2015 168 3.883 43.5 0.251
170 3.837 44.5 0.116
Aug. 17, 2015 168 3.884 43.5 0.767
169 3.861 44 0.658
170 3.838 44.5 0.332
172 3.793 45.5 0.043
173 3.771 46 0.082
Aug. 27, 2015 151 4.339 35 0.897
Sep. 15, 2015 146 4.514 32.5 0.372
Oct. 2, 2015 152 4.346 35 0.068
Oct. 5, 2015 157 4.207 37.5 0.726
Oct. 15, 2015 157 4.209 37.5 0.840
172 3.842 45 0.089

Table 4: Arbitrage opportunities from strateqy 1

ing days which present than one arbitrage opportunity such as Aug. 10, 2015, Aug.
12, 2015, Aug. 17, 2015 and Oct. 15, 2015, we find that the more implied volatility
deviates from its "expected" value by moneyness scaling, the larger initial profit can
be obtained by the trading strategy. Thus it is meaningful for traders to study the
relationship between implied volatilities of LETF options with different leverage levels

to gain arbitrage profits.
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4 Dynamic option trading strategy

4.1 The dynamic semiparametric factor model setup

4.1.1 Model description

A generalized version of the model in @ represented by assumes the implied
volatility Y; to be a stochastic process driven by a latent stochastic factor process Z;
contaminated by noise ¢;. To be more specific, define J def [Fmins Kmaz) X [Tmins Tmaz),
Y, ; implied volatility, ¢ = 1,...,7T time index, j = 1, ..., J; option intraday numbering

on day t, X;; dof

(KejsTej) "y Kuj, Tij are, respectively, a moneyness measure (log-,
forward, etc.) and time-to-maturity at time point ¢ for option j. Then the dynamic

semiparametric factor model (DSFM) is defined as follows: assume

}/t,j = ZtTm(Xm-) + Et.js (16)
where Z, = (1,7,), Zy = (Z;1, ..., Z;1) " unobservable L-dimensional stochastic pro-
cess, m = (myg,...,mg) ", real-valued functions; m;, [ = 1,...,L + 1 are defined on a

subset of R%. The full description of the model is given in Park et al.| (2009). One can

estimate:

?t = Z‘/Tm(Xt) (17)

= Z] Av(Xy), (18)

with ¥(X}) o {01(X,), ..., k(X)) being a space basis such as a tensor B-spline
basis, A is the (L + 1) x K coefficient matrix. In this case K denotes the number

of tensor B-spline sites: let (s,)Y_;, (s,)Y_; be the B-spline sites for moneyness and

u=1»
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time-to-maturity coordinates, respectively, then K = U - V. Given some spline orders

N
=1

n,. and n, for both coordinates and sets of knots (¢§)X,, (t7)}_;, one of the Schoenberg-
Whitney conditions requires that U = M —n,, V = N —n,, see |De Boor| (2001)). The
usage of the parameter K is roughly analogous to the bandwidth choice in |Fengler et al.
(2003) and [Fengler et al. (2007); however the results of |[Park et al.| (2009) demonstrate

insensitivity of DSFM estimation results to the choice of K, n.

The estimates for the IV surfaces m; are re-calculated on a fine 2-dimensional
grid of tensor B-spline sites: the estimated coefficient matrix A s reshaped into a
U xV x L+1 array of L+ 1 matrices A of dimension U x V. Factor functions m, can

then be estimated as follows:

u Vv

Miij =Y Z Al;i,jwi,m(/ﬁ)%,m (75), (19)
J

1
where k., k, are knot sequences for the moneyness and time-to-maturity coordinates,

respectively.

The estimated factor functions 77, together with stochastic factor loadings Z; are

combined into the dynamic estimator of the implied volatility surface:

L
IV i =mo,j + Z 24y (20)
=1

can be modeled as a vector autoregressive process. It should be noted that m; and ZAl,t

are not uniquely defined, so an orthonormalization procedure must be applied.

An indication of possible mispricing of LETF options allows to test an investment
strategy based on the comparison of the theoretical price obtained from the money-

ness scaling correction as well as the application of the DSFM model and the market
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price. Such a strategy would mainly exploit the two essential elements of information
from these two approaches. The first element is obtaining an indication of arbitrage
opportunities resulting from the mismatch between ETF and LETF IVs. The money-
ness scaling approach allows to estimate LETF IV using richer unleveraged ETF data
which also would make the DSFM IV estimator more consistent. The second element is
implied volatility forecasting. The DSFM model allows to forecast a whole IV surface

via the dynamics of stochastic factor loadings Z;.

4.1.2 Empirical results

For the model’s empirical testing, we use the data on SPY and SSO (L)ETF European
call options in the period 20140920-20150630. The data summary statistics are outlined

in Table [B] below.

Min. Max. Mean Stdd. Skewn. Kurt.

TTM 0.26 1.05 0.76 0.19 —-0.54 2.76
SPY | Moneyness | 0.05 1.43 048 0.17 —0.34  3.15
v 0.25 1.55 0.46 0.23 1.94 7.17
TTM 0.21 1.04 0.63 0.25 0.01 1.76
SSO | Moneyness | 0.18  1.69  0.63  0.29 0.92 3.61
1A% 0.25 1.34 0.41 0.11 1.91 10.81

Table 5: Summary statistics on SPY, SSO (L)ETF options from 20140920 to 20150630
(in total 3°, J, = 9828, 7619 datapoints, respectively). Source: Datastream

To avoid computational problems, the estimation space [Kmin, fmaz] X [Tmins Tmaz)
for covariates X; = (ky,7:)", which covers in (forward) moneyness x € [0.3,1.5] and
in time-to-maturity 7 € [0.3,1.0], is re-scaled (via marginal distribution functions)
to [0,1)2. The model is estimated using numerical methods, see [Park et al. (2009).
The number of the dynamic functions has to be chosen in advance. One should

also notice that for m; to be chosen as eigenfunctions of the covariance operator
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K(u,v) o Cov{Y(u),Y(v)} in an L-dimensional approximating linear space, where

Y is understood to be the random IV surface, they should be properly normalized,

such that |[|m;(+)|| = 1 and (my, my) = 0 for | # k.

The choice of L can be based on the explained variance by factors:

~ 2
S S Ve — S Zumu(Xo,) )
Z;F:1 Z}']tzl(yt,j - ?)2

EV(L)¥1- (21)

The model’s goodness-of-fit is evaluated by the root mean squared error (RMSE)

criterion:

2

. 1 Lo
RysE | Jtzz{n,j—zzt,lmxxt,j)} (22)

=0

The EV (L) and RMSE criteria are displayed in Table [6] below

Criterion L =2 L=3 L=4 L=5
EV(L) 0.915 0.921 0.925 0.930
RMSE 0.090 0.088 0.087 0.082

Table 6: Ezplained variance and RMSE criteria for different model order sizes

The model order L = 3 is chosen for model estimation. The data for the SPY
ETF option are used with parameters n,,n, = 3; M =9, N = 7, so that U = 6,
V =4, K =6-4 = 24. The estimates for the factor functions m; according to (|19 are
plotted in Figure [9) below. Furthermore, we can study the statistical properties of the
stochastic factor loadings Z, estimated by the model. Figure |8 shows the dynamics of
ZAt in time. The "spikes" in the values of 2t seem to be somewhat synchronized with
2;73 showing the largest instability. Almost all of the loadings’ hikes fall on trading
weeks’ ends, Thursdays or Fridays. This reflects the finding that market volatility

tends to increase on Fridays with releases of corporate and macroeconomic news on
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Thursdays and Fridays, see Berument and Kiymaz| (2002), |Charles| (2010), the so-called

"day-of-the-week" effect, see Lakonishok and Smidt| (1988]).

Theoretical and simulation results in [Park et al.| (2009)) justify using vector au-
toregression (VAR) analysis to model Z,. To select a VAR model, we computed the
Schwarz (SC), the Hannan-Quinn (HQ) and the Akaike (AIC) criteria, as shown in
Table [7} All three criteria select the VAR(1) model. Furthermore, the roots of the
characteristic polynomial all lie inside the unit circle, which shows that the specified
model is stationary. Portmanteau and Breusch-Godfrey LM test results with 12 lags
for the autocorrelations of the error term fail to reject residual autocorrelation at 10%

significance level.

Model order n AIC(n) HQ(n)  SC(n)
—4.20* —4.10* —3.96*
—4.13 —-3.96 —3.72
—4.07 —3.83 —3.48
—4.03 —-3.72 —3.27
—3.97 —3.99 —3.03

Uk~ W N+~

Table 7: The VAR model selection criteria. The smallest value is marked by an asterisk

The estimates of factor functions, stochastic loadings 7, Z; together determine
the dynamics of implied volatility surfaces v ¢, as in . As an illustration, both the

observed IV "strings" and the fitted by DSFM IV surface are displayed in Figure

The degenerate nature of implied volatility data is reflected by the fact that empir-
ical observations do not cover estimation grids at given time points. This is due to the
fact that contracts at certain maturities or strikes are not always traded. The DSFM
fitting procedure introduces basis functions which approximate a high-dimensional
space and depend on time. This allows to account for all information in the dataset
simultaneously in one minimization procedure which runs over all m; and Z, and avoid

bias problems which would inevitably occur if some kernel smoothing procedure such
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Figure 8: Time dynamics of ZAt,l, Z\t’Q; ZAt73
Q LETFStochLoads

as Nadaraya-Watson were applied for this type of degenerate data.

4.2 The strategy
4.2.1 Description

Ability to forecast the whole surface of implied volatility can be used in combination
with the moneyness scaling technique to exploit potential discrepancies in ETF and
LETF option prices or implied volatilities to build an arbitrage trading strategy. A
suitable strategy would be the so-called "trade-with-the-smile/skew" strategy adapted
for the special case of ETF-LETF option IV discrepancy. It would use the ETF option
data to estimate the model (theoretical) smile of the leveraged counterpart and the
information from the IV surface forecast to recognize the future (one-period-ahead)

possible IV discrepancy.

Going back to the results in Section one can come to a conclusion that there’s
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Figure 9: Factor functions mg, my, Mo, ms for SPY option
Q LETFFactorFuncs
a certain discrepancy between SPY and SSO option implied volatilities from the sta-
tistical point of view, so we consider these two options in the strategy setup. The
strategy can be outlined as follows: choose a moving window width w; then for each

t=w,...,T, T is the final time point in the sample do the following:

1. Given two leverage ratios 3, = 1, 31, re-scale the log-moneyness coordinate LM %2
according to the moneyness scaling formula to obtain LM Bl. This will be the

"model" moneyness coordinate for DSFM estimation.

LML) x [P 7SPY)

min’ max mn ) "mazx

2. Estimate the DSFM model on the space [LM
(re-scaled to [0, 1]?, as suggested above). This will yield the IV surface estimates
IViy,... 1V,

3. Forecast the IV surface estimate ﬁtﬂ using the VAR structure of the estimated

26


https://github.com/QuantLet/LETF-Moneyness/tree/master/LETFFactorFuncs

IV ticks and fitted surface on 20150409

1.6 hd

14 \\\\\\\\\\\\\
: N

Wy “““3 AR
12 “nwmn“qw“q&\
.
=
0.8
0.6

0.6

Moneyness 1 0 i TT™

Figure 10: Implied volatility real-data 'strings" and the DSFM-fitted surface on
20150409
Q LETFIVSurfPlot

stochastic loadings Z, and factor functions 7.

4. Choose a specific IV "string" for some time-to-maturity 7* at time point ¢ using
SSO option data and calculate the marginally transformed value LM fl of the

true SSO log-moneyness LM using the marginal distribution of LM .

5. Using [7]\\/161, 7 and IV ++1, interpolate the "theoretical" IV ﬁtH over the
B1

marginally re-scaled [LM LM 1 x [r*,7%] to obtain "theoretical' values

man?

—

v

t+1;LMEL o

n : " TT7 : n n
6. Compare "theoretical' values IV, LML with "true' I Vt;LMf,},T* and construct

a delta-hedged option portfolio:

o if ﬁt—i—l-LMﬁl > 1V LA o for the whole LM?!, then buy (long) options

corresponding to the largest difference v LMD e -1V LMY e
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o if IV <1V, for the whole LM, then sell (short) options

t+1,LMEL 7 LML o

corresponding to the largest difference I Vt; LM e IV, LML

o if IV and IV, intersect, then buy (long) an option with the

t+1,LMPL o LML 7
absolute largest negative deviation from the "theoretical" IV (IV expected
to fall) and sell (short) an option with the smallest positive deviation from
the "theoretical" IV (IV expected to increase). In all three cases use the

underlying SSO LETF asset to make the whole portfolio delta-neutral.

7. At time point ¢+ 1, terminate the portfolio, calculate profit/loss and repeat until

time 7.

The strategy described above aims to exploit the information from the discrep-
ancies between the forecast "theoretical' (model) SSO LETF implied volatilities and
the historical ("true") ones. It protects the portfolio against unfavorable moves in the
underlying asset L, through delta-hedging and aims to gain from forecast moves in an-
other option risk factor, the implied volatility via its explicit estimation and forecasting.
The basic strategy presented here can be extended in several ways: further, including
higher-order, option price sensitivities may be accounted for, such as gamma, theta
hedging or charm-adjusted delta hedging. The amounts of bought and sold options

can also be adjusted according to investor risk and return profiles and preferences.

4.2.2 Empirical application

Steps 2 and 3 of the dynamic strategy described above involve estimation out-of-sample
forecasting of the IV surface v ++1 using the model estimates. The model parameters
are taken to be the same as in Section [{4.1.2] The rolling window width is 100 and

the forecasting horizon is 1 day ahead. The prediction quality at time point ¢ + 1 is
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measured by the root mean squared prediction error (RMSPE) given by

. 1 Jt41 L . 2
RMSPE < » > {Yiﬂ,j - Zt+1,lml<Xt+1,j)} (23)
j=1 1=0

The starting point of rolling-window estimation of the strategy is 20150415. The
plot in Figure [11| below shows the RMSPE measure in time for three different model

orders: L = 2,3,4.

0.25

RMSPE with L = 2, 3, 4
T T T

02
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0 L L L L L L L L L L L
04/12  04/19 04/26 05/03 0510 05/17 05/24 05/31 06/07 06/14 06/21 06/28 07/05
Time

Figure 11: RMSPE for L =2, L =3, L =4

The average RMSPEs for L = 2, 3,4 are, respectively, 0.095, 0.096 and 0.099; they

decrease slightly as the order increases which reflects a well-known finding that more

parsimonious models perform better in forecasting, see Zellner et al. (2002).

The dynamic strategy performance in the period 20150415-20150701 is displayed in
Figure[I2 Out of 55 investment periods, in 13 periods long portfolios were constructed,
the remaining 42 periods net short positions were taken. The strategy appears to
be a self-financing one: no exogenous money infusions are done in its whole course.

Furthermore, the potential of this strategy is even higher than displayed because only
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a fraction of already accumulated total proceeds was invested continuously following
the simple setup in [£.2.1] where only two options were included into the portfolio each

time.
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Figure 12: Cumulative performance of the dynamic strategy

The presented strategy correctly guessed the direction of SSO LETF IV moves 82%
of times. A large jump in accumulated gains on 20150521 is explained by a significant
move in the value of two call options with a total delta of 1.98 before hedging in the
portfolio with a net short exposure due to the sale of the underlying SSO ETF to
make the portfolio delta-neutral. The real and forecasted IV "strings" used to take the

decision about the construction of this portfolio, are shown in Figure [I3]

As is seen, the long position in options profits from a significant jump in implied
volatility at the estimated (marginally transformed) log-moneyness LMPy = 0.55 point
from less than 20% to almost 50%. The right panel of Figure 13| displays the situation
where the true SSO LETF IV IV,

b g and its moneyness-scaling-DSFM forecast
! 0.8
v 1ML 0.8 AT€ quite close, so possible opportunities for arbitrage profit are poten-

tially smaller, which is indeed the fact, as the gain on 20150522 is only $0.56 compared
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Figure 13: Comparison of true SSO LETF option (red dots) and moneyness-scaling
predicted 1V at 7 = 0.8 years before (left panel) and on the day of the jump (right
panel)
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to $49.10 on 20150521.

5 Conclusions

In this paper, we study the statistical properties of the moneyness scaling transforma-
tion by |Leung and Sircar| (2015). This transformation adjusts the moneyness coordi-
nate of the implied volatility smile in an attempt to remove the discrepancy between
the IV smiles for levered and unlevered ETF options. We construct bootstrap uniform
confidence bands which indicate that in a statistical sense there remains a possibility
that the implied volatility smiles are still not the same, even after moneyness scaling
has been performed. This presents possible arbitrage opportunities on the (L)ETF
market which can be exploited by traders. We build possible arbitrage strategies by
constructing portfolios with LETF shares and options which possibly have a positive
value at the point of creation and non-negative value at the expiration time. An

empirical data application shows that there are indeed such opportunities in the mar-
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ket which result in risk-free gains for the investor. A dynamic "trade-with-the-smile"
strategy based on a dynamic semiparametric factor model is presented. This strat-
egy utilizes the dynamic structure of implied volatility surface allowing out-of-sample
forecasting and information on unleveraged ETF options to construct theoretical one-
step-ahead implied volatility surfaces. The proposed strategy has the potential to
generate significant trading gains due to simultaneous use of the information from the
discrepancies between the forecast "theoretical” (model) SSO LETF implied volatilities
and the historical ("true") ones. It protects the portfolio against unfavorable moves in
the underlying asset through delta-hedging and aims to gain from forecast moves in an-
other option risk factor, the implied volatility via its explicit estimation and forecasting

via an advanced statistical model.
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7 Appendix

7.1 Moneyness scaling formula

Given the asset (S&P 500) price dynamics

dSSt — rdt + odWQ (24)
t

with interest rate r and volatility o; WtQ standard Brownian motion under the risk-

neutral measure Q, the (L)ETF dynamics is given by:

dL[;t _3 (f:) —{(B—1)r + ch
— (r = &)dt + BodWQ, (25)

34



where 0 < ¢ < r is the (L)ETF expense ratio (approximates an annual fee charged
by the ETF from the shareholders to cover the fund’s operating expenses). Then the

general solution of is given by:

LT:Ltexp{(r—C)(T—t)—ﬂ; tTU§d8+6/tTJSdWSQ}. (26)

If we write for L, L) we obtain

Ly g . Q
W = exp —?/0 asds+61/0 o dW.X ), (27)
L,(Zéb) /B; T 9 T Q
g~ (=5 ) otds e [ oW, (28)

where o, is the instantaneous volatility at time s.

From it follows:

L¥32) ,3% T 2
T Q log (W) + o fO O'SdS
/ o dWQ = : . (29)
¢ Do
Substitute into to eliminate the stochastic term [, UdeSQ and obtain:
ngl) Bl T ) Lg§2) B2
W = exp _?(61 - 62) /0 O'SdS W (30)

Now take logarithms and expectations conditioned on K1) = ng Y and K = Lgfj 2)
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and obtain:

log(lgf(ﬁ&)) - _521(51 _ 62)EQ (/0 o’ds ‘K(ﬁl) — Lg,?l), K (B2) — L(Tﬁz)>

Assuming constant ¢ and exponentiating, one obtains .

7.2 The local linear M-smoothing estimator

M-type smoothers apply a nonquadratic loss function p(-) to make estimation more
robust. Given the model

def def

where Y; € R, X; € R, &; = o(X;)u;, u; ~ (0,1), iid, X = {(X;,Y;);1 < i < n}, the

local linear M-smoothing estimator is obtained from:

iy, 2o {¥i— o = BT (X - ) W @), (32)

where
ar WK {(x = Xi)/h} Ki(x — Xo)fy ()
fn(2) fi(x)

Whi(x) (33)

is a kernel weight sequence with ﬂl(x) &

n 'Y K, (r — X;), his the bandwidth, K
is a kernel function; [ K(u)du =1, K,(-) & h=2K(-/h). The function p(-) is designed
to provide more robustness than the quadratic loss. An example of such a function is

given by [Huber| (1964), see also Hardle (1989):
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0.5u?, if |u| < ¢
p(u) =
clul —0.5¢% if |u| > c.

with the constant ¢ regulating the degree of resistance.
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