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Abstract

Modelling dynamic conditional heteroscedasticity is the daily routine in time series econometrics. We

propose a weighted conditional moment estimation to potentially improve the efficiency of the QMLE

(quasi maximum likelihood estimation). The weights of conditional moments are selected based on the

analytical form of optimal instruments, and we nominally decide the optimal instrument based on the

third and fourth moments of the underlying error term. This approach is motivated by the idea of general

estimation equations (GEE). We also provide an analysis of the efficiency of QMLE for the location and

variance parameters. Simulations and applications are conducted to show the better performance of our

estimators.

1 Introduction

Nonlinear, dynamic models of means, variances, and covariances are routinely estimated in financial eco-

nomics, macroeconomics, and other disciplines. A leading example is the set of models coming from the

GARCH (generalized autoregressive conditional heteroskedasticity) family, see Bollerslev [1986]. Bollerslev

and Wooldridge [1992] show that the Gaussian (normal) quasi maximum likelihood estimator (QMLE) has a

critical robustness property in the general multivariate case: provided that the first two conditional moments

are correctly specified, the Gaussian QMLE consistently estimates the parameters indexing the means, vari-

ances, and covariances under weak regularity conditions. Moreover, inferences that are robust to arbitrary

departures from normality (subject to enough finite moments) are readily available.
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Newey and Steigerwald [1997] suggest that for dynamic models with conditional means and variance

components to be estimated, identification will be related to the symmetry of the density, excluding some

special cases. Of course, if the normality assumption fails, then it is possible to obtain more efficient

estimators. One possibility is to model the deviations from normality: assume that the new distribution is

correctly specified and then use MLE to estimate the mean and variance parameters along with any new

parameters. A leading example is Bollerslev [1987], who proposed replacing the normal distribution with a

t-distribution with unknown degrees of freedom (df). The degrees-of-freedom parameter is estimated along

with the mean and variance parameters. For specific parametric models such as GARCH, Fan et al. [2014]

consider Quasi-maximum likelihood estimation of GARCH models with heavy-tailed likelihoods. Hafner and

Rombouts [2007] looks at a nonparametric estimation for innovation distributions of the multivariate Garch

model to improve the efficiency.

It is difficult to extend to multivariate settings with a general likelihood function tailored to heavy tail

distributions. People can use copulas, see, for example, Chen and Fan [2006], who consider a copulae

model for the temporal dependency. But estimation and theory might be involved. Semiparametric efficient

properties for dynamic models have been studied in the literature, see, for example, Drost et al. [1997] with

assumptions on the independent and identically distributed (iid) innovations. To obtain the most efficient

estimator, which can be easily computed under very general model conditions, might be too demanding for

practitioners.

In general, a QMLE framework is to construct an efficient estimator, and an efficiency lower bound is

available under certain regularity conditions. However, it might be too much to ask for hitting the efficiency

lower bound in practice. Instead, we can focus on a class of simple and useful estimators obtained from

solving a set of general estimation equations (GEE). The GEE is set up in a way that the estimators would

be efficient at the elements of certain ”ideal submodel”, and we would in turn have more robustness and

better finite sample properties. For estimation in dynamic models, a few conditional moment equations are

convenient to obtain, and optimal instruments are used to achieve estimation efficiency in a general GMM

framework. Optimal weights are theoretically feasible but difficult to be estimated as it implicitly depends

on the data generating process, in particular on moments of the underlying data generating processes.

To mimic the GEE idea in our moment estimation and optimal instrument framework, we can restrict

the data generating process to a class of submodels under which the optimal instrument matrix is easy to

be estimated. In particular, connected to the GEE approach as in Liang and Zeger [1986], we specify “a

working” optimal instrument matrix. This involves a ‘working” conditional variance-covariance matrix for

the residual function that defines the first two conditional moments. Namely, we consider an estimator that,

like the QMLE, requires only the first two moments to be correctly specified for consistency. Within this
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class, we would like to find the optimal IV estimator under weaker assumptions than are commonly imposed.

We then show that the estimator is likely to be more efficient than the QMLE quite generally when only

the first two moments are correctly specified. The simulation results in many univariate and multivariate

models strongly support this point: If the first two moment conditions are correctly specified, for example,

the underline distribution of innovation term follows the standard normal, QMLE and our methods have

similar performances. If we change the underline data generating process to a skewed normal distribution,

our method outperforms QMLE.

We contribute to the literature in three aspects. First, we propose an easy to use estimator for dynamic

models with dynamic moments. Second, we illustrate its efficient properties for many commonly used

dynamic models. Third, we show its theoretical properties. The paper is organized as follows. In Section 2,

we show the basic univariate framework and our proposed estimator. In Section 3, we extend the estimator

to multivariate models. We study in Section 4 some model scenarios under which QMLE is indeed efficient.

Simulations and applications are set in Section 5 and Section 6. We show the theoretical properties of our

estimator in Section 7.

2 Univariate models

We start with the univariate case, where yt is a scalar response. Let xt be a vector of conditioning variables,

which would generally include lagged values of yt. It can also include contemporaneous values of some other

series, say zt, as well as lags of zt. Let wt = (yt,xt). We assume models of the conditional mean and

variance:

mt(xt, θ), vt(xt, θ), θ ∈ Θ.

where vt(xt, θ) > 0 for all xt and θ ∈ Θ. The assumption that these models are correctly specified is that

for some θo ∈ Θ,

E(yt|xt) = mt(xt, θo) (1)

V ar(yt|xt) = vt(xt, θo), t = 1, 2, .... (2)

We will assume that we have T observations from the stochastic process, and, as an indexing convention, we

also assume that t = 1 is the first period we observe all elements of (yt,xt).

The setup is general enough to allow the variance parameters and mean parameters to overlap, or to

be completely separate. This allows traditional models where the variance is modeled separately from the
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variance, as well as ARCH-in-mean type models. See, for example, Engle et al. [1987].

Assumptions (1) and (2) are generally sufficient for consistency and
√
T -asymptotic normality under

suitable regularity conditions and weak dependence requirements. However, it is traditional in the settings

of interest to assume that the models are dynamically complete in mean and variance:

E(yt|xt, It−1) = E(yt|xt) (3)

V ar(yt|xt, It−1) = V ar(yt|xt), (4)

where

It−1 = (yt−1,xt−1, yt−2,xt−2, ..., y1,x1)

is the information observed through time t − 1. Dynamic completeness in the first two moments is always

essentially assumed in ARCH and GARCH models, and so are their numerous variations and extensions.

A more realistic setting would allow misspecification of all kinds. However, this is rarely done in practice.

We follow convention and assume the first two conditional moments are correctly specified and dynamically

complete. This is the framework assumed in Bollerslev and Wooldridge [1992].

It is also important that we do not try to exploit all of the moment conditions implied by correct dynamics

beyond the lags of variables included in xt. In other words, the optimal instrumental variables we derive

depend only on xt and not further lags. We take this approach for a few reasons. First, we want our

estimator to be a direct extension of the Gaussian QMLE – henceforth, QMLE for brevity – which can be

viewed as a particular IV estimator whose instruments depend only on xt. Second, the efficiency gains in

going beyond functions of xt are unlikely to be impressive, given that we are assuming the dynamics in the

first two moments are completely captured by xt. Third, it would not be clear how to add additional moment

conditions to ensure nontrivial efficiency gains. These points will become clear as we derive the proposed

estimator. Along the way, we will derive the conditions under which the QMLE is the asymptotically

efficient estimator based only on the first two moments and dynamic completeness. Henceforth, the dynamic

completeness assumption is taken as given.

To see how to potentially improve over the QMLE, define the error term as well as the standardized error

as

ut = yt −mt(xt, θo)

et =
ut√

vt(xt, θo)
.
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By construction,

E (ut|xt) = 0, V ar (ut|xt) = vt(xt, θo)

E (et|xt) = 0, V ar (et|xt) = 1,

and these conditional moments continue to hold conditional on (xt, It−1). It is important to observe that

et is not guaranteed to be even independent of xt, let alone (xt, It−1). Treatments such as Newey and

Steigerwald [1997] make the assumption

et is independent of (xt, It−1) , t = 1, 2, .... (5)

assume et is independent of (xt, It−1), an extra assumption that is not implied by the specification of the

first two moments. As discussed in Bollerslev and Wooldridge [1992], the correct specification of the first

two conditional moments implies that the score of the quasi-log likelihood is a vector martingale difference

sequence (MDS). Along with weak dependence requirements, the MDS result ensures that the QMLE is
√
T -asymptotically normal. Assumption (5) can be used to simplify the verification of regularity conditions,

but it has no substantive effect on the asymptotic properties of the QMLE. See also Wooldridge [1994] for

a more general discussion.

To obtain a simple estimator that is asymptotically more efficient than the QMLE, we nominally assume

E
(
e3
t |xt

)
= κo3 (6)

E
(
e4
t |xt

)
= κo4, (7)

which is implied by the independence assumption (5). Written in terms of the errors ut,

E
(
u3
t |xt

)
= κo3 [vt(xt, θo)]

3/2
,

E
(
u4
t |xt

)
= κo4 [vt(xt, θo)]

2
.

Under the assumption of normality, we have κo3 = 0 and κo4 = 3. Bollerslev and Wooldridge [1992] show that

neither of these restrictions is necessary for the consistency of the QMLE. In fact, neither is the assumption

that these E
(
e3
t |xt

)
and E

(
e4
t |xt

)
are constant. For the estimators here, we use these assumptions to derive

optimal instruments for estimating θo, but (6) and (7) are not required for the consistency of our estimator.

Later, we will need to consistently estimate κo3 and κo4, but this is easily done given an initial preliminary
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estimator of θo, which would typically be the QMLE. In deriving the asymptotic properties, we will only

assume that the estimators converge to some constant without invoking (6) or (7).

Our estimator is motivated by finding the optimal instruments under the assumption that the model as

dynamically complete in the first two moments and the auxiliary assumptions (6) and (7). For each t, define

the 2× 1 residual function (wt not defined here)

rt(wt, θ) =

 yt −mt(xt, θ)

[yt −mt(xt, θ)]
2 − vt(xt, θ)

 .

If the model is dynamically complete then,

E [rt(wt, θo)|xt] = E [rt(wt, θo)|xt, It−1] = 0.

As discussed in Wooldridge [1994], the optimal instrumental variables based on these moment conditions

depend on

E [∇θrt(wt, θo)|xt] ,

Var [rt(wt, θo)|xt] .

The first matrix is easily obtained under correct specification of the first two moments as the 2× P matrix

Rt(xt, θo) ≡ E [∇θrt(wt, θo)|xt] = −

∇θmt(xt, θo)

∇θvt(xt, θo)

 .

In general, Var [rt(wt, θo)|xt] can be any positive semi-definite matrix function of xt, making it difficult

to implement an always efficient IV estimator. Our key innovation is to impose a “working” version of

V ar [rt(wt, θo)|xt], where we borrow the term “working” from the generalized estimating equations (GEE)

literature (for example, Zeger and Liang [1986]). In particular, if we impose (6) and (7), then

Dt(xt, θo, κo) ≡ V ar [rt(wt, θo)|xt] =

 vt(xt, θo) κo3 [vt(xt, θo)]
3/2

κo3 [vt(xt, θo)]
3/2

(κo4 − 1) [vt(xt, θo)]
2

 .

Rather than being unrestricted, Dt(xt, θo, κo) has a relatively simple form and depends on only two additional

parameters. Under normality and other symmetric distributions, this structure holds with κo3 = 0. Specific

distributions also imply a value for κo4, or in some cases – such as the skewed normal distribution or t

distribution – treat it as a parameter to be estimated using an MLE approach. Here, we use this structure
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to obtain an estimator more efficient than the QMLE, if (6) and (7) hold. As in the GEE literature, we

expect efficiency will carry over even if we drop (6) and (7).

As discussed in Wooldridge [1994], the optimal instruments, obtained only from the moments conditional

on xt, are

[Dt(xt, θo, κo)]
−1

Rt(xt, θo).

In order to implement the optimal IV estimator, we need consistent estimators of θo and κo. For θo, the

obvious choice is the QMLE, say θ̌. For κo3, a natural method of moments estimator is to obtain the

standardized residuals,

ět =

[
yt −mt(xt, θ̌)

]√
vt(xt, θ̌)

,

and then

κ̌3 = T−1
T∑
t=1

ě3
t = T−1

T∑
t=1

 ǔt√
vt(xt, θ̌)

3

.

Next, define ηo4 = κo4 − 1, so that

ηo4 = E
[(
e2
t − 1

)2]
.

Therefore, a method of moments estimator that ensures nonnegativity is

η̌4 = T−1
T∑
t=1

(
ě2
t − 1

)2
= T−1

T∑
t=1

[
ǔ2
t

vt(θ̌)
− 1

]2

,

and an unbiased version can be switched with the denominator T to be T − 1.

Given the preliminary estimators, we now obtain what would be estimates of the optimal instruments

under correct model specification, including complete dynamics, (6) and (7):

Žt = Ď−1
t Řt. (8)

These can be used to obtain an optimal IV estimator. Namely, θ̂ solves

T∑
t=1

Ž′trt(θ̂) = 0, (9)

which is a set of P nonlinear equations in the P unknowns θ̂.
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It is true that, under correct specification (dynamic completeness is not needed for this), the preliminary

estimation of θo and κo does not affect the asymptotic distribution of
√
T
(
θ̂ − θo

)
, see conditions in Theorem

3. In fact, in the formal statement of our result, we will drop (6) and (7), and simply assume that κ̌3 converges

in probability to some constant, say κ∗3, and η̌4 converges to a positive constant η∗4 . The estimator will not

be the optimal IV estimator without (6) and (7), but it could still be asymptotically more efficient.

To avoid solving the nonlinear first-order condition, we can consider a one-step estimation. The idea of

a one-step estimator is to consider a linear approximation to the moment condition in (9). Provided that

we have a well-chosen initial estimator θ̌, for example, a consistent QMLE. Then we can improve upon the

estimator θ̌ using our one-step procedure. The one-step estimation can be defined as:

θ = θ̌ − {
T∑
t=1

Ž′t∇rt(θ̌)}−1
T∑
t=1

Ž′trt(θ̌). (10)

Suppose that θ̌ is a consistent and asymptotic normal estimator. θ̂ is an ”ideal” consistent estimator for

θ0. Then we can prove that θ̃ is asymptotic equivalent to the estimator θ̂.

3 The multivariate case

We now formulate our estimation in the multivariate case. We can similarly look at the vector d× 1 vector

yt, and the conditional mean specification E(yt|xt) = m(xt, θo), Var(yt|xt) = Σt(xt, θo), and ut(θ) =

yt−m(xt, θo). We suppress the dependence of the function Σt(xt, θo) on xt. We can define the standardized

vector as et = Σt(θo)
−1/2(yt −m(xt, θo)) = Σt(θo)

−1/2ut(θo). Note that et is a d × 1 dimensional random

vector, and θ is a P -dimensional parameter. As a generalization in the multivariate case, we look at the

moment vector rt(θ)
(d+d(d+1)/2)×1

= (ut(θ)
′,Vech(ut(θ)u

′
t(θ)− Σt(θ))

′)′. It should be noted that Vec is the

vectorization of a matrix, and Vech is denoted as a half vectorization. The switching between Vec and Vech

is via a duplication and elimination matrix, i.e., DnVechA = Vec(A), and LnVecA = VechA for an n × n

symmetric matrix A.

E (ut(θo)|xt) = 0, Var (ut(θo)|xt) = Σt(xt, θo)

E (et|xt) = 0, Vec{Var (et|xt)} = E(et ⊗ et|xt) = Vec(Id)

We define the third and fourth condition moments of et as E(et⊗ete
′
t|xt) = K3, and E(et⊗ete

′
t⊗e′t|xt) =

K4, which in the case of multivariate Gaussian has constant matrix forms. In particular for independent

8
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standard normal random vector, K4 = Id2 + K̃d + Vec(Id)Vec(Id)
′, where K̃d is a commutation matrix

defined for example in Magnus and Neudecker [1979], and K3 = 0.

We can see that K3 and K4 can be similarly estimated from the sample. In particular, let j1, j2, j3, i1,

and i2 be integers taking values from 1 to d, and we have

Ǩ3 is d2 × d with [Ǩ3](j1−1)d+j2,j3 = ětj1 ětj2 ětj3

Ǩ4 is d2 × d2 with [Ǩ4](j1−1)d+j2,(j3−1)d+j4 = ětj1 ětj2 ětj3 ětj4

, where

ět = Σt(θ̌)
−1/2(yt −m(xt, θ̌))

The estimate of ((j1−1)d+ j2)× j3 element of Ǩ3 is T−1
∑T
t=1 ě

3
tj for j1 = j2 = j3 = j, and otherwise 0, due

to the fact that E(ej1ej2ej3) = 0, when two of the elements in j1, j2, j3 are unequal. Moreover, the nonzero

elements (j1 − 1)d+ j2, (j3 − 1)d+ j4 in Ǩ4 is when j1 = j2 = i1, j3 = j4 = i2, j1 = j4 = i1, j2 = j3 = i2,

j1 = j3 = i1, j2 = j4 = i2 and j1 = j2 = j3 = j4 = j. We can then estimate the nonzero element by

(T−1
∑T
t=1 ě

2
ti1

)(T−1
∑T
t=1 ě

2
ti2

) for the first three cases, and T−1
∑T
t=1 ě

4
tj for j1 = j2 = j3 = j4 = j.

The matrix D in Section 2 becomes

D(xt, θo) =

 Σt Σ12,t

Σ′12,t Σ22,t

 ,

where

Σ′12t = LdΣt(θo)
1/2 ⊗ Σt(θo)

1/2K3Σt(θo)
1/2, and

Σ22t = Ld(Σt(θo)
1/2 ⊗ Σt(θo)

1/2K4Σt(θo)
1/2 ⊗ Σt(θo)

1/2 −VecΣt(θo)VecΣt(θo)
′
)L′d.

The partial derivative of the moment functions (d+ d(d+ 1)/2)× P is

Rt = ∇rt(xt, θo) = (∇mt(xt, θo)
′, (Ld(ut ⊗ I + I ⊗ ut)∇mt(xt, θo))

′)′.

The optimal instrument matrix is D(xt, θo)
−1Rt(xt, θo), and define Žt = D(xt, θ̌)

−1Rt(xt, θ̌) we solve the

estimation as in equation (9).
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4 When is the Gaussian QMLE asymptotically efficient?

To understand better that the circumstances under which we are going to improve upon QMLE, we study

in this section the efficiency of QMLE for some specific dynamic models. In particular, we study the effect

of third and fourth moments on the asymptotic variance-covariance matrix. It is not difficult to obtain a

sufficient condition for the Gaussian QMLE to be the asymptotically efficient estimator. We follow Bollerslev

and Wooldridge [1992] to introduce the setup in the Gaussian QMLE briefly. The Gaussian QMLE is defined

to be

θ̌
def
= argmaxθ∈ΘT

−1
T∑
t=1

`t(θ; yt,xt). (11)

The log likelihood function is denoted as

`t(θ; yt,xt) = −1/2 log |Σt(xt, θ)| − 1/2(ut(wt, θ)
′)Σ−1

t (xt, θ)(ut(wt, θ)). (12)

We breviate ut(wt, θ) to ut(θ). The score function is

st(θ) = ∇θmt(θ)
′Σt(θ)

−1ut(θ) + 1/2∇θΣt(θ)′(Σ−1
t (θ)⊗ Σ−1

t (θ))Vec(ut(θ)ut(θ)− Σt(θ)). (13)

where ∇θΣt(θ) = ∇θ′Vec(Σt(θ)) is d2 ×P matrix, and ∇θmt(θ)
′ = −∇θut(θ)′ is a P × d dimension matrix.

The negative Hessian evaluated by expectation at the θo, i.e., E(∇θ(st(θo)′)) is

It(θo) = ∇θmt(θo)
′Σt(θo)

−1∇θut(θo) + 1/2∇θΣt(θo)′(Σ−1
t (θo)⊗ Σ−1

t (θo))∇θΣt(θo). (14)

It is not hard to see that

Jt(θo)
def
= E(st(θo)s

′
t(θo)) = ∇θut(θo)′Σ−1

t (θo)∇θut(θo)

+1/2∇θΣ(θo)
′Σt(θo)

−1/2 ⊗ Σt(θo)
−1/2K3Σt(θo)

−1/2∇ut(θ)

+1/2{∇θΣ(θo)
′Σt(θo)

−1/2 ⊗ Σt(θo)
−1/2K3Σt(θo)

−1/2∇ut(θ)}′

+1/4∇θΣt(θo)′Σt(θo)−1/2 ⊗ Σt(θo)
−1/2K4Σt(θo)

−1/2 ⊗ Σt(θo)
−1/2∇θΣt(θo))

−1/4∇θΣt(θo)′Vec(Σt(θo)
−1

)Vec′(Σt(θo)
−1)∇θΣt(θo)

def
= Jt1 + Jt2 + J ′t2 + Jt3 + Jt4

Under regularity conditions, the asymptotic variance of the QMLE is (I−1
o JoI

−1
o ), see, for example, Theo-

rem 7, where Jo = limT→∞T
−1
∑T
t=1 Jt(θo) corresponds to the information matrix, and Io = limT→∞T

−1
∑T
t=1 It(θo).
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If the conditional distribution of et is indeed a standardized multivariate Gaussian, we have Io = Jo, and

the asymptotic variance would hit the lower bound J−1
o .

The efficiency of a Gaussian QMLE would depend on the analytical form of Jt(θo) and It(θo). In the

one dimensional case, for a GARCH(p,q) model, mt(θ)
′ = 0, and thus Jt1 = 0 and Jt2 = 0, we can see that

Jt(θo) = (κo4 − 1)/2It(θo). If κo4 = 3 corresponding to the fourth moment of a Gaussian random variable

Jt(θo) = It(θo), the asymptotic variance would hit the lower bound. This corresponds to the finding of

Francq and Zaköıan [2004].

Now we let

limT→∞T
−1

T∑
t=1

(Jt2 + J ′t2 + Jt3 + Jt4) := J2o + J ′2o + J3o + J4o,

and

limT→∞T
−1

T∑
t=1

1/2∇θΣt(θo)′(Σ−1
t (θo)⊗ Σ−1

t (θo))∇θΣt(θo) := Io.

Proposition 1. If (i) the model is dynamic complete, (ii) satisfying 1, 2, 3, 4, (iii) has consistent QMLE,

(iv) and the innovations et have a finite fourth-order moment, then the efficiency loss of the Gaussian QMLE

by misspecifying the moments are Vo
def
= I−1

o (J2o + J ′2o + J3o + J4o − I2o)I−1
o , with Vo1 = I−1

o (J2o + J ′2o)I
−1
o

coming from skewness part, and Vo2 = I−1
o (J3o + J4o − I2o)I−1

o coming from the fourth moment part. In

particular, when the mean parameter and the variance parameter overlap, the Vo1, Vo2 would be of specific

structure so that the skewness matrix would affect the variance of the mean and the variance of the QMLE,

and the fourth-moment matrix would only affect the variance of the QMLE.

To investigate the role of third and fourth moments of the underlying distribution of et on the efficiency

of estimation, we look at Jt2 concerning the third moment matrix K3 and Jt3 concerning the fourth moment

K4. Ideally, for innovation distribution that is symmetric K3 = 0, which is true for a Gaussian vector, any

deviation from K3 = 0 would contribute to the deviation of Jt to It.

If we were to look at the case when the mean parameter and the variance parameter do not overlap,

which is to say θ = (β′, γ′)′, where β′ is 1 × P1, and γ′ is 1 × P2, then ∇θut(θo) consists of ∇βut(θo)
d×P1

and

∇γut(θo)
d×P2

= 0, and ∇θΣt(θo) contains ∇βΣt(θo) = 0 and ∇γΣt(θo).

limT→∞T
−1
∑T
t=1 It

=

limT→∞T
−1
∑T
t=1∇βut(θo)

′Σt(θo)
−1∇βut(θo) 0

0 limT→∞T
−1
∑T
t=1∇γΣt(θo)

′O2t∇γΣt(θo)

 ,
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with O2t
def
= Σt(θo)

′(Σ−1
t (θo)⊗ Σ−1

t (θo)), which is defined to be

limT→∞T
−1

T∑
t=1

It
def
=

I1 0

0 I2

 ,

limT→∞T
−1

T∑
t=1

(Jt2 + J ′t2) =

 0 Dκo3

D′κo3 0

 ,

where Dκo3
is a P1×P2 matrix corresponding to the formulae of Jt, and limT→∞T

−1
∑T
t=1 Jt3 =

0 0

0 Eκo4


where Eκo4 is a P2 × P2 matrix corresponding to the formulae of Jt.

We can then find that Vo would be consistent of the following part (I−1
o (J2o + J ′2o + J3o)I

−1
o ), which

would take the following form,

0 0

0 I−1
2 Eκo4I

−1
2

+

 0 I−1
1 Dκo3

I−1
2

I−1
1 D′κo3I

−1
2 0

 .

In sum, we can see that if the parameter does not overlap, the third moment would not affect the

asymptotic variance of the estimated mean parameter β̂ and estimated variance parameter γ̂, but rather

play a role in their covariance. And the fourth moment would play a role only on the variance of the estimated

variance parameter γ̂. However, if they overlap, both the third and fourth moments of error would play a

role in efficiency. Now, if the mean and variance parameters vary separately, the Gaussian QMLE is efficient

for any value of κo3. And we need κo4 = 3 only for the efficiency of γ̂. Generally, if the mean and variance

depend on the same parameters, κo4 = 0 and κo4 = 3 are needed.

It is worth noting that one can also implement a one-step QMLE, which is indicated for example in

Newey and McFadden [1994]. For any consistent initial estimator θ̌ of θo, we denote the estimated Hessian

of the likelihood function to be

IT (θ)
def
= −T−1

T∑
t=1

∇θθ′`t(yt,xt, θ). (15)

Then the one-step estimation of the Gaussian QMLE is defined to be

θ
def
= θ̌ + IT (θ̌)−1T−1

T∑
t=1

st(θ̌). (16)

The theoretical properties of the one-step QMLE can be found in Theorem 8 in the Appendix.
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5 Simulations

To evaluate the performance of our method, we run four Monte Carlo simulation experiments. We compare

the finite sample performances of our method and QMLE. We show that for both univariate models and

multivariate models, our method significantly outperforms QMLE in the case that the assumption on the

normality is violated, while they perform similarly in the case that the innovation terms εt are normally

distributed. The sample sizes of our experiments are n = 500, 1000, and 2000. The number of Monte Carlo

replications is 500. We use the function rsnorm of the R package fGarch to generate series of skewed normal

distribution. The resulting series has a skewness κ0
3 ≈ 0.78 and a kurtosis κ0

4 ≈ 3.491, compared with the

standard normal distribution where κ0
3 = 0 and a kurtosis κ0

4 = 3.

5.1 Univariate models

We first show our results for a univariate GARCH/ARCH model.

5.1.1 Data generating process

We let the conditional variance σ2
t = vt(xt, θ0). Based on our discussion in Section 2, we have

Dt(xt, θo, κo) ≡ V ar [rt(wt, θo)|xt] =

 vt(xt, θo) κo3 [vt(xt, θo)]
3/2

κo3 [vt(xt, θo)]
3/2

(κo4 − 1) [vt(xt, θo)]
2


=

(
σ2
t κ0

3σ
3
t

κ0
3σ

3
t (κ0

4 − 1)σ4
t

)

Let Dt(xt, θ0, κ0) := Dt, we have

D−1
t =

1

(κ0
4 − 1)σ6

t − (κ0
3)2σ6

t

(
(κ0

4 − 1)σ4
t −κ0

3σ
3
t

−κ0
3σ

3
t σ2

t

)

=:
1

ck

(
(κ0

4 − 1)σ−2
t −κ0

3σ
−3
t

−κ0
3σ
−3
t σ−4

t

)
. (17)

1The arguments of the function rsnorm are chosen as: mean = 0, sd = 1, xi = 2
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Case 1: ARCH(1)

We apply the score function (9) to ARCH(1) model,

εt = σtηt,

σ2
t = ω0 + α0ε

2
t−1,

where the noise term ηt
i.i.d∼ (0, 1). Recall that σt is the conditional volatility. The parameter of interest is

θ = (ω, α). We recall from (8) that our estimator solves the following equation,

T∑
t=1

(Ď−1
t Řt)

′rt(wt, θ̂) = 0. (18)

For ARCH(1), we have

rt(θ) =

(
εt

ε2
t − σ2

t

)
=

(
εt

ε2
t − ω − αε2

t−1

)
, (19)

Rt = −
(

0 0

1 ε2
t−1

)
. (20)

Combining (18), (19), and (20), we can solve our optimal IV estimator from the following score function.

0 =

T∑
t=1

ŘtĎ
−1
t rt(θ̂)

= −
T∑
t=1

1

ĉk

( −κ̂3σ̂
−3
t σ̂−4

t

−κ̂3σ̂
−3
t ε2

t−1 σ̂−4
t ε2

t−1

)(
εt

ε2
t − ω̂ − α̂ε2

t−1

)

= − 1

ĉk

T∑
t=1

( −κ̂3σ̂
−3
t εt +

ε2t−ω̂−α̂ε
2
t−1

σ̂4
t

−κ̂3σ̂
−3
t ε2

t−1εt +
ε2t−ω̂−α̂ε

2
t−1

σ̂4
t

ε2
t−1

)
. (21)

The QMLE score function of ARCH(1) is (See, e.g., p.147 of Francq and Zakoian (2010))

T∑
t=1

( ε2t−ω̂−α̂ε
2
t−1

σ̂−4
t

ε2t−ω̂−α̂ε
2
t−1

σ̂−4
t

ε2
t−1

)
= 0. (22)
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Case 2: GARCH (1,1) with mean

For a GARCH(1,1) model we have

yt = µ+ λσt + εt,

εt = σtηt,

σ2
t = ω + αε2

t−1 + βσ2
t−1,

rt(wt, θ0) =

 yt − (µ+ λσt),

ε2
t − (ω + αε2

t−1 + βσ2
t−1)

 .
The parameter of interest is θ = (µ, λ, ω, α, β). And we have

Rt = −
(

1 σt

0 0

λ
2σt

1

λ
2σt

ε2
t−1

λ
2σt

σ2
t−1

ε2
t−1 σ2

t−1

)
.

Correspondingly, we have D−1
t as in (17)

D−1
t =

1

(κ0
4 − 1)σ6

t − (κ0
3)2σ6

t

(
(κ0

4 − 1)σ4
t −κ0

3σ
3
t

−κ0
3σ

3
t σ2

t

)
,

=:
1

ck

(
(κ0

4 − 1)σ−2
t −κ0

3σ
−3
t

−κ0
3σ
−3
t σ−4

t

)
.

Also the optimal weight matrix is obtained as

ŘtĎ
−1
t = − 1

ck



(κ̂4 − 1)σ̂−2
t −κ̂3σ̂

−3
t

(κ̂4 − 1)σ̂−1
t −κ̂3σ̂

−2
t

(κ̂4 − 1)σ̂−3
t

λ
2 − κ̂3σ̂

−3
t σ̂−4

t − κ̂3σ̂
−4
t

λ
2

[(κ̂4 − 1)σ̂−3
t

λ
2 − κ̂3σ̂

−3
t ]ε2

t−1 [σ̂−4
t − κ̂3σ̂

−4
t

λ
2 ]ε2

t−1

[(κ̂4 − 1)σ̂−3
t

λ
2 − κ̂3σ̂

−3
t ]σ̂2

t−1 [σ̂−4
t − κ̂3σ̂

−4
t

λ
2 ]σ̂2

t−1



′

.

Let ε̂t := yt − µ̂− λσ̂t and σ̂2
t = ω + αε̂2

t−1 + βσ̂2
t−1, the estimator solves the following equation.
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0 =

T∑
t=1

ŘtĎ
−1
t rt(θ̂)

= − 1

ĉk

T∑
t=1



(κ̂4 − 1)σ̂−2
t ε̂t − κ̂3σ̂

−3
t (ε̂2

t − σ̂2
t )

(κ̂4 − 1)σ̂−1
t ε̂t − κ̂3σ̂

−2
t (ε̂2

t − σ̂2
t )

ε̂2t−σ̂
2
t

σ̂4
t

(1− κ̂3
λ
2 ) + [(κ̂4 − 1)σ̂−3

t
λ
2 − κ̂3σ̂

−3
t ]ε̂t

ε̂2t−σ̂
2
t

σ̂4
t

(1− κ̂3
λ
2 )ε̂2

t−1 + [(κ̂4 − 1)σ̂−3
t

λ
2 − κ̂3σ̂

−3
t ]ε̂tε̂

2
t−1

ε̂2t−σ̂
2
t

σ̂4
t

(1− κ̂3
λ
2 )σ̂2

t−1 + [(κ̂4 − 1)σ̂−3
t

λ
2 − κ̂3σ̂

−3
t ]ε̂tσ̂

2
t−1


. (23)

The score function of QMLE (multiplied by 2) is

T∑
t=1



2σ̂−2
t ε̂t

2σ̂−1
t ε̂t

λσ̂−3
t ε̂t +

ε̂2t−σ̂
2
t

σ̂4
t

λσ̂−3
t ε̂tε

2
t−1 +

ε̂2t−σ̂
2
t

σ̂4
t
ε2
t−1

λσ̂−3
t ε̂tσ̂

2
t−1 +

ε̂2t−σ̂
2
t

σ̂4
t
σ̂2
t−1


= 0. (24)

5.1.2 Simulation results

Table 1 and Table 2 present the Monte Carlo averages µ̂ and variances σ̂2 (multiplied by n) of each 500

estimates in the above two cases. The true values are chosen as (ω0, α0) = (1, 0.1) for ARCH(1), and are

(µ0, λ0, ω0, α0, β0) = (2, 1.5, 1, 0.3, 0.3) for the GARCH (1,1) with mean model.
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Table 1: Simulation results for ARCH(1), with ω0 = 1 and α0 = 0.1. OLS denotes the regular ordinary least

square estimators; OPIV is our estimator.

.

ηt is standard normal. ηt is skewed normal.

n Methods µ̂ω µ̂α σ̂2
ω σ̂2

α µ̂ω µ̂α σ̂2
ω σ̂2

α

500

OLS 1.0047 0.0951 3.8726 1.8665 1.0051 0.0911 4.4729 2.3845

QMLE 1.0015 0.0982 3.5846 1.6287 1.0001 0.0958 3.7918 1.9290

OPIV 0.9962 0.0967 3.7452 1.7384 0.9960 0.0954 3.2009 1.7298

1000

OLS 1.0000 0.0987 4.3567 2.2480 0.9988 0.0982 5.0749 2.7023

QMLE 1.0003 0.0984 3.8703 1.8652 0.9967 0.1000 4.1823 2.1477

OPIV 0.9973 0.0979 3.9271 1.8916 0.9970 0.0991 3.3964 1.6315

OLS 0.9997 0.0987 4.1172 2.0477 1.0016 0.0965 4.6833 2.7404

2000 QMLE 0.9993 0.0991 3.6429 1.7455 1.0001 0.0979 4.1662 2.1456

OPIV 0.9978 0.0990 3.6565 1.7301 0.9994 0.0978 3.6539 1.8497

In Case 1, we can first compare (21) to (22). Note that the term − 1
ĉk

does not affect the solution of

(21) and can be ignored. The score function of the optimal IV estimator (21) has an additional item in

each row. These terms are products of estimated skewness κ0
3 and some zero-mean term. We notice that κ4

does not play a role in the estimation efficiency. If the original distribution is symmetric, such as normal

distribution, we have κ0
3 = 0, so the optimal IV estimator should be approximately equivalent to QMLE. If

the skewness of ηt is not zero, the optimal IV estimator should capture this information and beat QMLE in

terms of efficiency. Table 1 confirms this conjecture.

In Table 1, we also include OLS estimators into our comparison since the ARCH model can be estimated

by OLS. By comparing µ̂’s and the true parameters, we see that three estimators seem to be all asymptotically

unbiased in general. Therefore, to compare the efficiency, we can focus on the variances. The left panel shows

the simulation results with ηt
i.i.d∼ N(0, 1), which implies κ0

3 = 0. OLS has the largest variances in every

sample size since it does not take heteroskedasticity into account. If the sample size is small, the QMLE

performs slightly better than our method since our method uses an estimated version of κ3, which might

be considerably different from the true κ0
3 = 0 in small samples. If we increase the sample size to 2000,

variances of QMLE and our method become very close to each other. The right panel shows the case where

ηt follows the skewed normal distribution and κ0
3 ≈ 0.78. OLS still has the worst performance. With a

non-zero κ0
3, QMLE is no longer efficient, and we see that our method has achieved better performance in

terms of variances, in every sample size and every parameter (as marked in bold). For example, in the sample
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size n = 2000, the Monte Carlo variance of ω has dropped from 4.16 to 3.65, and the Monte Carlo variance

of α has dropped from 2.15 to 1.85.

In Case 2, the results are similar. First, we can compare (23) and (24). We see that they are equivalent if

k0
3 = 0 and k0

4 = 3, which are satisfied with ηt ∼ N(0, 1). In this case, QMLE and our method should perform

similarly. This is confirmed in the upper panel of Table 2. If ηt follows the skewed normal distribution, our

estimator should capture the departure from the standard normal distribution and beat QMLE in terms of

efficiency. This phenomenon is illustrated in the lower panel of Table 2. As marked in bold, our method

outperforms QMLE in the case κ0
3 ≈ 0.78 and κ0

4 ≈ 3.49, for all different sample sizes and almost every

coefficient.

Table 2: Simulation results for GARCH (1,1), with mean µ0 = 2, λ0 = 1.5, ω0 = 1, α0 = 0.3, and β0 = 0.3.

n Methods µ̂µ µ̂λ µ̂ω µ̂α µ̂β σ̂2
µ σ̂2

λ σ̂2
ω σ̂2

α σ̂2
β

ηt is standard normal.

500
QMLE 1.9676 1.5313 1.0053 0.2939 0.2993 87.75 43.36 26.92 1.81 6.43

OPIV 1.9465 1.5454 1.0059 0.2920 0.3003 94.50 46.63 25.73 1.80 6.32

1000
QMLE 1.9923 1.5101 0.9940 0.2969 0.3035 96.05 45.21 25.93 2.12 5.88

OPIV 1.9958 1.5074 0.9940 0.2969 0.3036 84.62 40.59 26.02 2.07 5.95

2000
QMLE 1.9990 1.5031 0.9946 0.2990 0.3017 89.83 42.63 25.40 2.10 6.04

OPIV 1.9856 1.5124 0.9950 0.2981 0.3022 108.48 51.69 25.63 2.22 6.18

ηt is skewed normal.

500
QMLE 1.9798 1.5183 1.0445 0.2903 0.2861 94.17 43.90 46.33 3.08 9.94

OPIV 1.9211 1.5588 1.0436 0.2891 0.2874 84.87 40.85 36.70 3.33 8.91

1000
QMLE 1.9520 1.5369 1.0177 0.2966 0.2925 175.74 85.56 37.75 3.59 10.29

OPIV 1.9849 1.5138 1.0134 0.2992 0.2923 79.75 39.56 37.75 3.34 10.30

2000
QMLE 2.0033 1.4988 1.0106 0.2995 0.2956 103.21 45.30 39.25 3.02 9.37

OPIV 1.9908 1.5080 1.0102 0.2983 0.2965 70.38 34.64 35.41 3.04 8.72

5.2 Multivariate models

5.2.1 Data generating process

In this subsection, we show our methods can perform well in multivariate models. For simplicity, we consider

two dimensional cases. Now we have ηt
i.i.d∼ (0, 1)2. Let κ0

3 = E(η3
1,t), and κ0

4 = E(η4
1,t).

In Section 3 we define
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D ≡ Var[rt(wt, θ0)|xt] =

 Σt Σ12,t

Σ′12,t Σ22,t

 , (25)

where Σt is the abbreviation of Σt(xt, θo) defined in Section 3, and Σ′12,t = L2Σ
1/2
t ⊗ Σ

1/2
t K0

3Σ
1/2
t ,

Σ22,t = L2(Σ
1/2
t ⊗ Σ

1/2
t K0

4Σ
1/2
t ⊗ Σ

1/2
t −VecΣtVecΣ′t )L′2,

with L2 =


1 0 0 0

0 1/2 1/2 0

0 0 0 1

 ,

K0
3 = E(ηt ⊗ ηtη′t) =



κ0
3 0

0 0

0 0

0 κ0
3


and K0

4 = E(ηt ⊗ ηtη′t ⊗ η′t) =



κ0
4 0 0 1

0 1 1 0

0 1 1 0

1 0 0 κ0
4


.

Case 3: CCC-GARCH

Now let εt be two dimensional. We have the Constant Conditional Correlations model



εt = Σ
1/2
t ηt

Σt = ΛtΓtΛt

σ2
1,t = ω1 + α1ε

2
1,t−1 + β1σ

2
k,t−1

σ2
2,t = ω2 + α2ε

2
2,t−1 + β2σ

2
2,t−1 ,

with

Λt =

(
σ1,t 0

0 σ2,t

)
Γt =

(
1 ρ

ρ 1

)
.

We have to ensure that Σt is positive definite. Thus we need −1 < ρ < 1. We reparameterize ρ = sinδ,

to avoid adding parameter restriction in the estimation. Note δ = arcsin ρ.
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Then we have the score function written as,

rt(wt, θ) =



ε1,t

ε2,t

ε2
1,t − (ω1 + α1ε

2
1,t−1 + β1σ

2
1,t−1)

ε1,tε2,t − sin δσ1,tσ2,t

ε2
2,t − (ω2 + α2ε

2
2,t−1 + β2σ

2
2,t−1)


,

where the parameter of interest are θ = (ω1, α1, β1, ω2, α2, β2, δ).

Rt = −



0 0 0 0 0 0 0

0 0 0 0 0 0 0

1 ε2
1,t−1 σ2

1,t−1 0 0 0 0

sin δσ2,t

2σ1,t

sin δσ2,t

2σ1,t
ε2

1,t−1
sin δσ2,t

2σ1,t
σ2

1,t−1
sin δσ1,t

2σ2,t

sin δσ1,t

2σ2,t
ε2

2,t−1
sin δσ1,t

2σ2,t
σ2

2,t−1 σ1,tσ2,t cos δ

0 0 0 1 ε2
2,t−1 σ2

2,t−1 0


.

With Dt defined in (25), we can construct our sample moment condition
∑T
t=1 ŘtĎ

−1
t rt(θ̂) = 0 accord-

ingly.

Case 4: BEKK-GARCH

We consider the BEKK-GARCH model
εt = Σ

1/2
t ηt

Σt = C +Aεt−1ε
′
t−1A

′ +BΣt−1B
′

.

In the simulation, we set

C =

(
c11 c12

c12 c22

)
A =

(
a11 0

0 a22

)
B = 0.

For this model we have

rt(wt, θ) =



ε1,t

ε2,t

ε2
1,t − (c11 + a2

11ε
2
1,t−1)

ε1,tε2,t − (c12 + ε1,t−1ε2,t−1a11a22)

ε2
2,t − (c22 + a2

22ε
2
2,t−1)


.
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where the parameter of interest are θ = (c11, c12, c22, a11, a22). And we have

Rt = −



0 0 0 0 0

0 0 0 0 0

1 0 0 2a11ε
2
1,t−1 0

0 1 0 a22ε1,t−1ε2,t−1 a11ε1,t−1ε2,t−1

0 0 1 0 2a22ε
2
2,t−1


,

with D defined in (25). We can solve the sample moment condition
∑T
t=1 ŘtĎ

−1
t rt(θ̂) = 0 accordingly.

5.2.2 Simulation results

Table 3 and Table 4 present the Monte Carlo averages µ̂ and variances σ̂2 (multiplied by n) of each 500

estimates for Case 3 and Case 4. The true values are (ω0,1, α0,1, β0,1, ω0,2, α0,2, β0,2, ρ0) =

(0.4, 0.8, 0.15, 0.2, 0.7, 0.2, 0.7) for the CCC-GARCH(1,1) model, and

(c0,11, c0,12, c0,22, a0,11, a0,22) = (0.8, 0.5, 0.7, 0.6, 0.5) in the BEKK-GARCH model.

Table 3: Simulation results of CCC-GARCH (1,1), with

(ω0,1, α0,1, β0,1, ω0,2, α0,2, β0,2, ρ0) = (0.4, 0.8, 0.15, 0.2, 0.7, 0.2, 0.7)

ηt is standard normal.

mean

n Methods µ̂ω1 µ̂α1 µ̂β1 µ̂ω2 µ̂α2 µ̂β2 µ̂ρ

500
QMLE 0.4097 0.7982 0.1466 0.2043 0.6968 0.1978 0.7028

OPIV 0.4071 0.8051 0.1452 0.2034 0.7015 0.1962 0.7042

1000
QMLE 0.4048 0.7982 0.1474 0.2012 0.6985 0.1990 0.7002

OPIV 0.4042 0.8015 0.1458 0.2005 0.7020 0.1979 0.7008

2000
QMLE 0.4011 0.7986 0.1499 0.2009 0.6973 0.1996 0.7004

OPIV 0.4015 0.8027 0.1485 0.2009 0.7003 0.1985 0.7009

variance

n Methods σ̂2
ω1

σ̂2
α1

σ̂2
β1

σ̂2
ω2

σ̂2
α2

σ̂2
β2

σ̂2
ρ

500
QMLE 1.8855 4.2735 0.9867 0.5283 3.5460 1.3148 0.2551

OPIV 1.8424 4.2181 1.0391 0.5024 3.5502 1.2925 0.2301

1000
QMLE 1.7578 4.0821 0.9992 0.4972 4.0567 1.2688 0.2668

OPIV 1.7521 4.0926 1.0886 0.4450 4.3099 1.3089 0.2515
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2000
QMLE 1.6287 4.7403 0.9895 0.491 3.6837 1.3723 0.2554

OPIV 1.6286 4.7654 1.0249 0.4387 3.7833 1.4295 0.2440

ηt is skewed normal.

mean

n Methods µ̂ω1
µ̂α1

µ̂β1
µ̂ω2

µ̂α2
µ̂β2

µ̂ρ

500
QMLE 0.4057 0.7971 0.1466 0.2054 0.6942 0.1967 0.7011

OPIV 0.4025 0.8048 0.1433 0.2031 0.7017 0.1953 0.7020

1000
QMLE 0.4022 0.7993 0.1486 0.2022 0.7008 0.1969 0.7013

OPIV 0.4035 0.8051 0.1461 0.2012 0.7036 0.1965 0.7021

2000
QMLE 0.4024 0.7961 0.1495 0.2004 0.6977 0.2000 0.7008

OPIV 0.4033 0.7985 0.1487 0.2006 0.7005 0.1989 0.7010

variance

n Methods σ̂2
ω1

σ̂2
α1

σ̂2
β1

σ̂2
ω2

σ̂2
α2

σ̂2
β2

σ̂2
ρ

500
QMLE 2.3803 4.6442 1.3126 0.7193 4.4313 1.7120 0.2642

OPIV 1.6862 3.6131 1.0543 0.5342 3.4227 1.4295 0.2509

1000
QMLE 2.1661 5.1899 1.1421 0.6381 3.9831 1.6058 0.2399

OPIV 1.6571 3.9749 0.8762 0.4389 2.9682 1.2012 0.2278

2000
QMLE 2.2955 5.2833 1.3333 0.6570 4.5339 1.7018 0.2270

OPIV 1.8981 4.3921 1.0868 0.4812 3.6749 1.3623 0.2119

In Case 3, both QMLE and our method seem to be consistent and asymptotically unbiased. We can see

that in both upper panel and lower panel of Table 3, the Monte Carlo mean of estimates µ̂’s are converging

to the true values as sample sizes grow. Therefore, we can focus on the comparison of variances. For

multivariate cases, as illustrated in Section 3, both κ3 and κ4 matter. The upper panel shows the simulation

results with ηt
i.i.d∼ N(0, 1), which implies κ0

3 = 0 and κ0
4 = 3. We see that across all the sample sizes, QMLE

and our method have similar performances. The Monte Carlo variances of these two methods are very close

across the whole upper panel. The differences in variances are mostly smaller than 0.1. The lower panel

shows the case where ηt follows the skewed normal distribution with κ0
3 ≈ 0.78 and κ0

4 ≈ 3.49. As predicted,

QMLE is no longer efficient due to the model misspecification. We see that our method has achieved smaller

variances in every sample size and every coefficient, as marked in bold. For example, in the sample size

n = 2000, our method decreases the Monte Carlo variances by approx. 21%, 20%, 23%, 37%, 23%, 25%,

and 7%.
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In Case 4 for the BEKK-GARCH model, we see the same pattern: our methods and QMLE have similar

performances if the underline ηt is correctly specified as N(0, 1). If ηt is drawn from a skewed normal

distribution, our method outperforms QMLE in every sample size and every parameter, as marked in bold.

To summarize, in both univariate models and multivariate models, the simulation results show that our

method has good performances. While QMLE and our methods perform similarly in the case of normally

distributed ηt, our methods outperform QMLE in the case of skewed normally distributed ηt. Overall, the

simulation results are encouraging to support our estimation strategy.

Table 4: Simulation results of BEKK-GARCH, with c0,11 = 0.5, c0,12 = 0.5, c0,22 = 0.7, a0,11 = 0.6, and

a0,22 = 0.5.

ηt is standard normal.

n Methods µ̂c11 µ̂c12 µ̂c22 µ̂a11 µ̂a22 σ̂2
c11 σ̂2

c12 σ̂2
c22 σ̂2

a11 σ̂2
a22

500
QMLE 0.8040 0.5054 0.7035 0.5958 0.4938 2.2722 1.1816 1.3283 1.3559 1.2791

OPIV 0.7991 0.5024 0.699 0.5938 0.4919 2.1995 1.1181 1.2595 1.3311 1.2721

1000
QMLE 0.7998 0.4995 0.6992 0.5972 0.4968 2.4484 1.2653 1.3792 1.3667 1.2274

OPIV 0.7973 0.4981 0.6973 0.5962 0.4959 2.4135 1.2464 1.3583 1.3577 1.2146

2000
QMLE 0.7992 0.4997 0.6991 0.5993 0.4988 2.3611 1.2553 1.5122 1.4003 1.1858

OPIV 0.7982 0.4991 0.6982 0.5988 0.4984 2.3353 1.2221 1.4894 1.398 1.1806

ηt is skewed normal.

n Methods µ̂c11 µ̂c12 µ̂c22 µ̂a11 µ̂a22 σ̂2
c11 σ̂2

c12 σ̂2
c22 σ̂2

a11 σ̂2
a22

500
QMLE 0.8005 0.5028 0.7024 0.5943 0.4933 2.5267 1.3466 1.6874 1.5667 1.4354

OPIV 0.794 0.4996 0.6992 0.5949 0.493 1.9389 1.127 1.2894 1.2861 1.1772

1000
QMLE 0.7978 0.5002 0.6994 0.5987 0.4984 2.7234 1.3224 1.7553 1.6537 1.4653

OPIV 0.7968 0.4988 0.6965 0.5982 0.4979 2.3056 1.1948 1.3877 1.4348 1.1959

2000
QMLE 0.8013 0.501 0.6996 0.5959 0.4965 2.7604 1.3792 2.0095 1.6591 1.5410

OPIV 0.8018 0.5011 0.6998 0.5952 0.4966 2.2133 1.1999 1.7316 1.3656 1.2623

6 Application

In this section, we illustrate the use of our methods by modeling the processes of two stock price series, i.e.

Apple (APPL) and Amazon (AMZN). The observations are dated from Feb. 2013 to April. 2014. The data

is downloaded from Yahoo Finance, finance.yahoo.com.

Figure 1 shows the original series of these two stock prices. The solid red line represents the stock price
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of APPL, and the dashed blue line represents the stock price of AMZN. Compared to the price of APPL,

the price of AMZN is on a higher level and seems to show a larger range of variation. Therefore, we work

with their logarithmic first-difference series. Figure 2 shows these series (re-scaled by 100), and Table 5

summarizes their descriptive statistics.

Figure 1: Plot of stock price. The

solid red line represents that of APPL,

and the dashed blue line represents

that of AMZN.

Figure 2: Plot of the first difference of

log price. The solid red line represents

that of APPL, and the dashed blue

line represents that of AMZN.

Table 5: Summary statistics of the differenced logarithmic series of stock prices

Stock Mean Std. dev. Min. Max Std.skewness Std.kurtosis

APPL 0.0756 1.5812 -8.3302 7.8795 -0.1685 4.8011

AMZN 0.0398 1.8743 -11.6503 8.9709 -1.1588 9.2150

In the first-difference logarithmic series, the price of AMZN still shows a larger variance and data range.

The sample skewness and kurtosis of both series suggest clear deviations from the normal distribution. In

this application, we use AR(1) to model the conditional mean function of the first-difference logarithmic

series of these two stock prices and apply QMLE and our methods to their AR(1) residuals. For both QMLE

and our methods, we fit the CCC-GARCH (1,1) model described in Section 5.2.1. The parameters of interest

are θ = (ω1, α1, β1, ω2, α2, β2, ρ), and the model is specified as
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rt(wt, θ) =



ε1,t

ε2,t

ε2
1,t − (ω1 + α1ε

2
1,t−1 + β1σ

2
1,t−1)

ε1,tε2,t − ρσ1,tσ2,t

ε2
2,t − (ω2 + α2ε

2
2,t−1 + β2σ

2
2,t−1)


.

Table 6 summarizes the estimation results of QMLE and our method. (ωap, αap, βap) are coefficients

for APPL, and (ωam, αam, βam) are coefficients for AMZN. From the table, we see that the estimates from

QMLE and our methods are close to each other. All the coefficients of the constant terms are significant.

It seems that in this dataset, the constant term and the ARCH effects dominate since all the estimates

of GARCH parameters are close to zero and most of them are insignificant. It suggests that during this

period, the main factor affecting the variation of stock prices is the realized historical innovation. Among

the parameters for ARCH effects, the coefficients in our method are all significant, and the coefficients of the

second stock price in QMLE are insignificant. We see a weak correlation between the prices of two stocks.

The estimated ρ of QMLE and our method are significant at 5% and 10% level. This is in line with the

pattern in Figure 2. During this period, the stock prices of these two companies are rarely moving in the

same direction together.

Table 6: Estimation results of CC-MGARCH(1,1) for QMLE and our method. Subscript ap denotes param-

eters for Apple, and am denotes parameters for Amazon.

Methods ωap αap βap ωam αam βam ρ

QMLE 1.5212 0.3606 0.1361 1.9509 0.5280 0.0000 0.1195

(0.3809)*** (0.1373)*** (0.0792)* (0.1154)*** (0.4088) (0.1294) (0.0577)**

OPIV 1.4953 0.4400 0.1092 1.9950 0.5723 0.0296 0.1127

(0.3733)*** (0.1648)*** (0.1504) (0.3970)*** (0.2786)** (0.0532) (0.0667)*

7 Proof

We show in this section a few theoretical properties of our proposed estimators.

7.1 Consistency

Assume that {yt,xt}t are strictly stationary and Ft = σ(yt,xt) is the sigma field generated by yt,xt.

We assume that the score function {rt(θ)}t≥1 is constructed as stationary, ergodic, and square-integrable
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martingale difference sequence with respect to Ft under the dynamic completeness assumption (3) and

(4). The weights Rt(θo)Dt(xt, θo, κo)
−1 are measurable with respect to Ft−1. Moreover, to ensure that

our nuisance parameter κ3, κ4 exists, we assume that for the process {yt,xt}t, T−1
∑T
t=1 e

4
tj →p c4o and

T−1
∑T
t=1 e

3
tj →p c3o, where κo = (κ3o, κ4o) are two constants.

Define for our general estimation equation on the parameter space Θ×Γ. θ is known to be the parameter

of interest, and κ = (κ3, κ4) ∈ Γ is denoted as the nuisance parameter. Define the score function

QT (θ̌, κ̌, θ) = T−1
T∑
t

Ř′tDt(xt, θ̌, κ̌)−1rt(θ).

And we can see that

(θo, κo) = argzeroθ∈Θ,κ∈ΓQ∞(θ, κ),

where Q∞(θ, κ) = limT→∞T
−1
∑T
t E[Rt(θ)

′Dt(xt, θ, κ)−1rt(θ)]. Also, the theoretical estimator is defined to

be

θo = argzeroθ∈ΘQ∞(θo, κo, θ),

where Q∞(θo, κo, θ) = limT→∞T
−1
∑T
t E[Rt(θo)

′Dt(xt, θo, κo)
−1rt(θ)]. Our estimator is

θ̂ = argzeroθ∈ΘQT (θ̌, κ̌, θ),

with plugged-in estimators θ̌, κ̌.

We shall show the consistency of θ̂ →p θo. We need to set a few high order conditions. Define the |v|2 as

the l2 norm or a vector v, and |A|2 as the 2-norm of a matrix A.

A.1 {yt,xt}t are strictly stationary. The score function {rt(θ)}t≥1 is constructed as stationary, ergodic, and

square-integrable martingale difference sequence with respect to Ft under the dynamic completeness

assumption (3) and (4).

A.2 (Uniform consistency) supθ∈Θ|QT (θo, κo, θ)−Q∞(θo, κo, θ)|2 →p 0

A.3 (Identifiability) For any constant ε > 0, we have sup|θ−θo|2≥ε |Q∞(θo, κo, θ)|2 > 0 = |Q∞(θo, κo, θo)|2.

A.4 The empirical estimator is almost the point of our first-order function QT (θ̌, κ̌, θ̂) = Op(1), and the

plugged-in estimator is not affecting our estimation, i.e., supθ∈Θ|QT (θ̌, κ̌, θ)−QT (θo, κo, θ)|2 = Op(1).

Theorem 2. Under A.1-A.4, we have θ̂ →p θo.

Proof. See Theorem 5.9 in Van der Vaart [2000]. By [A.3] for any positive constant ε, exits a positive constant
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δ such that P(|θ̂ − θo)|2 > ε) ≤ P(|Q∞(θo, κ, θ̂|2 > δ)). P(|Q∞(θo, κo, θ̂)|2 > δ) → 0 as |Q∞(θo, κo, θ̂)|2 ≤

|Q∞(θo, κo, θ̂)|2 − |QT (θo, κo, θ̂)|2 + Op(1) ≤ supθ∈Θ |Q∞(θo, κo, θ) −QT (θo, κo, θ)|2 + Op(1) = Op(1), which

is implied by [A.2] and [A.4].

Uniform convergence of the criterion functions is not hard to obtain in normal cases.

In principle, [A.2] is a relatively very strong assumption, and we can switch to a different set of assump-

tions such as lower semi-continuous and compactness parameter set from the Wald consistency proof.

A.1’ For every θ ∈ Θ, lim infT→∞ |QT (θo, κo, θ)|2 ≥ limT→∞|EQT (θo, κo, θ)|2, a.s.

A.2’ Θ is compact. The moment is bounded |E supθ∈ΘQT (θo, κo, θ)|2 <∞.

A.4’ We have pointwise weak law of large numbers. QT (θo, κo, θ)→p Q∞(θo, κo, θ) for every θ.

Remark. The nuisance parameters need not to converge to the true parameters θo, κo. Therefore, the above

condition can be changed to QT (θ∗, κ∗, θ)→p Q∞(θ∗, κ∗, θ) for any θ∗, κ∗ in the parameter space.

Theorem 3. Under A.1, A.1’, A.2’, A.3, A.4’, we have θ̂ →p θo.

Proof. Vk(θi)
def
= {θ : |θ−θi|2 < 1/k} is a sequence of open balls centered around θi ∈ Θ. For any θ ∈ Θ 6= θo,

with a sequence of increase k, Vk(θ) is shrinking in size and thus

lim inf
θ→Vk(θ)

|limT→∞EQT (θo, κo, θ)|2 ↑ |Q∞(θo, κo, θ)|2 > 0 = |Q∞(θo, κo, θo)|2 (26)

by monotone convergence theorem and the notion of low semi-continuous as in [A.1’].

Thus, for any θi 6= θo ∈ Θ we can find a k(θi) such that

lim inf
θ∈Vk(θi)(θi)

|limT→∞E|QT (θo, κo, θ)|2 > 0 = |Q∞(θo, κo, θo)|2.

Define δ = min{infi∈1,··· ,l lim infθ∈Vk(θi)(θi) limT→∞E|QT (θo, κo, θ)|2, 1}.

Consider the compact set Θε
def
= {θ : |θ − θo|2 ≥ ε} for a positive constant ε, and we can find a finite

subcover of Θε ⊂ ∪li=1Vk(θi)(θi).

Notice that

P(|θ̂ − θo| ≥ ε) ≤ P( inf
i=1,··· ,l

inf
θ′∈Vk(θi)(θi)

|QT (θ̌, κ̌, θ′)|2 − |QT (θo, κo, θo)|2 ≤ 0).

We now prove that the right-hand side of the equation is O(1).
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By [A.4’] and (26), infi=1,··· ,l infθ′∈Vk(θi)(θi) |QT (θ̌, κ̌, θ′)|2 can be made big enough, for example, δ, with

probability approaching 1. By [A.4’], |QT (θo, κo, θo)|2 can be made close to |Q∞(θo, κo, θo)|2 = 0 with

probability 1, say P(|QT (θo, κo, θo)|2 > δ/2) = O(1), for a positive constant δ.

Thus, P(|θ̂ − θo| ≥ ε) ≤ P(δ/2 ≤ 0) + O(1) = O(1).

7.2 Normality

In this section we show the asymptotic normality of our estimator. We first introduce a few definitions,

recall that

Rt(θ̃) = ∇rt(θ̃) = ∂rt(θ))/∂θ
′|θ=θ̃,

Q̌T (θo) = QT (θ̌, κ̌, θo)
def
= T−1

T∑
t=1

Ř′tDt(xt, θ̌, κ̌)−1rt(θo),

Ǎo(θo) = Q∞(θ̌, κ̌, θo)
def
= limT→∞T

−1
T∑
t=1

E(Ř′t(θ̌)Dt(xt, θ̌, κ̌)−1rt(θo)),

B̌T (θ̃)
def
= T−1

T∑
t=1

Ř′tDt(xt, θ̌, κ̌)−1∇rt(θ̃),

BT (θ̃)
def
= T−1

T∑
t=1

Rt(θo)
′Dt(xt, θo, κo)

−1R(θ̃),

B̌o(θ̃)
def
= limT→∞T

−1
T∑
t=1

E(Ř′tDt(xt, θ̌, κ̌)−1∇rt(θ̃)).

(27)

In addition we assume that

Ao
def
= limT→∞T

−1
T∑
t=1

E(Rt(θo)
′Dt(xt, θo, κo)

−1rt(θo)),

Bo
def
= limT→∞T

−1
T∑
t=1

E(Rt(θo)
′Dt(xt, θo, κo)

−1Rt(θo)).

(28)

Define Vθo(c) as an 1/
√
T -ball around θo, i.e., {θ : |θ − θo|2 ≤ c/

√
T}. Co is defined to be

Co
def
= limT→∞T

−1
T∑
t=1

E(Rt(θo)
′Dt(xt, θo, κo)

−1rt(θo)r
′
t(θo)Dt(xt, θo, κo)

−1Rt(θo)).

We denote ‖X‖2 as (E(X2))1/2.

B.1 θ̌ and κ̌ are pre-estimators lies in the interior of Θ and Γ, and are consistent.

B.2 θ̂ is
√
T -consistent.
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B.3 Each element of rt(θ) is measurable and twice continuously differentiable. Each element of Dt(θ, κ) is

first continuously differentiable.

B.4 ‖ supθ∈Θ |rt(θ)|22‖2 ≤ M1, ‖ supθ∈Θ |Rt(θ)|22‖2 ≤ M2, and E(tr(R′tD
−1
t Rt)) ≤ M3, where M1,M2, and

M3 are constants.

B.5 Co and Bo are positive definite.

B.6 supθ∈Vθo (c) |BT (θ)−Bo(θ)|2 = Op(1).

B.7 The map θ 7→ Bo(θ) is element-wise first order differentiable in Vθo(c) .

Theorem 4. Under conditions B.1- B.7, the estimator θ̂ can be linearized through the following form,

√
T (θ̂ − θo) = −

√
TB−1

o T−1
T∑
t=1

Rt(θo)
′Dt(xt, θo, κo)

−1rt(θo) + Op(1). (29)

Furthermore, we have the asymptotic normality of our estimator θ̂,

√
T (θ̂ − θo)→d N(0, B−1

o CoB
−1
o ). (30)

Moreover, if E(rt(θo)r
′
t(θo)|Ft−1) = Dt(xt, θo, κo), then we have the minimum variance of the form B−1

o .

Remark. The consistency in B.1 is needed for the minimum variance, but not necessary for asymptotic

normality. If θ̌ and κ̌ are converging to θ∗ and κ∗, we have

√
T (θ̂ − θo) = −

√
TB∗−1

o T−1
T∑
t=1

Rt(θ
∗)′Dt(xt, θ

∗, κ∗)−1rt(θo) + Op(1), (31)

where B∗o
def
= limT→∞T

−1
∑T
t=1 E(Rt(θ

∗)′Dt(xt, θ
∗, κ∗)−1Rt(θo)).

Proof. In our procedure, (9) becomes

T−1
T∑
t

Ř′tDt(xt, θ̌, κ̌)−1rt(θ) = 0,

and we are interested in θ̂, the solution of θ in this score function.
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A Taylor expansion would lead to

T−1
T∑
t=1

Ř′tDt(xt, θ̌, κ̌)−1rt(θ̂)

= T−1
T∑
t=1

Ř′tDt(xt, θ̌, κ̌)−1(rt(θo) +∇rt(θ̃)(θ̂ − θo)),

where θ̃ is a point lies in the line segment between θ̂ and θo.

It is known that under proper assumptions and by the uniform weak law of large numbers, we would

have the closeness of the partial sums Q̌T (θ̂) and B̌T (θ̃) to Ǎo(θo) and B̌o(θ̃) respectively. In B.5 we assume

that Bo is positive definite, so the minimum eigenvalue λmin(Bo) > c, for a positive constant c.

We would attain the following expansion

√
T (θ̂ − θo) = −

√
TB−1

o T−1
T∑
t=1

Rt(θo)
′Dt(xt, θo, κo)

−1rt(θo)−
√
TB−1

o (Ǎo(θo)−A(θo)) + IT (32)

IT is a residual term that is needed to be proved to be of small order. Let us rewrite it into

IT = −
√
TB−1

o (B̌T (θ̃)−Bo)(θ̂ − θo)

− {
√
TB−1

o T−1
T∑
t=1

(Ř′tDt(xt, θ̌, κ̌)−1 −Rt(θo)
′Dt(xt, θo, κo)

−1)rt(θo)−
√
TB−1

o (Ǎ(θo)−A(θo))}

=: IT1 + IT2.

The drift term
√
TB−1

o (Ǎo(θo)−A(θo)) characterizes the dependency of our pre-estimated nuisance parameter

θ̌, κ̌.
√
TB−1

o (Ǎo(θo)−A(θo)) = 0 by construction since the conditional moment property of E[rt(θo)|xt] = 0.

We need to prove that IT = Op(1). Recall that Vθo(c) as a 1/
√
T -ball around θo, i.e., {θ : |θ−θo|2 ≤ c 1√

T
}.

Define

BT (θ̃) = T−1
∑T
t=1 Rt(θo)

′Dt(xt, θo, κo)
−1R(θ̃),

BT (θ) = T−1
∑T
t=1 Rt(θo)

′Dt(xt, θo, κo)
−1R(θ),

and Bo(θ) = limT→∞EBT (θ).

Looking at IT1 first. Note

|IT1|2 ≤
√
T |B−1

o |2(|B̌T (θ̃)−BT (θ̃)|2 + |BT (θ̃)−Bo(θ̃)|2 + |Bo(θ̃)−Bo|2)|θ̂ − θo|2.
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If we have |B̌T (θ̃)−BT (θ̃)|2 ≤ supθ∈Vθo (c) |BT (θ)− B̌T (θ)|2, we would have the right-hand side = Op(1). To

check this point, note

sup
θ∈Vθo (c)

|BT (θ)− B̌T (θ)|2

≤ sup
θ∈Vθo (c)

T |T−1
T∑
t=1

(Řt −Rt(θo))Dt(xt, θ̌, κ̌)−1

− Rt(θ)Dt(xt, θo, κo)
−1(Dt(xt, θo, κo)−Dt(xt, θ̌, κ̌))Dt(xt, θ̌, κ̌)−1|2 · |T−1

T∑
t=1

Rt(θ)|2

by Cauchy Schwartz inequality. As |T−1
∑T
t=1 Rt(θ)|2 consists of a partial sum of martingale differences, we

can apply Burkholder inequality and show that |T−1
∑T
t=1 Rt(θ)|2 = Op( 1√

T
) by assuming that the second

moment of E(supθ∈Vθo (c) |Rt(θ)|22) is bounded (B.4). And we can show

|T−1
T∑
t=1

(Řt −Rt(θo))Dt(xt, θ̌, κ̌)−1

− Rt(θ)Dt(xt, θo, κo)
−1(Dt(xt, θo, κo)−Dt(xt, θ̌, κ̌))Dt(xt, θ̌, κ̌)−1|2

= O(
1√
T

),

due to the differentiability and consistency of θ̌ and κ̌ (B.1 and B.3). Also by the uniform law of large number

|BT (θ̃) − Bo(θ̃)|2 ≤ supθ∈Vθo (c)|BT (θ) − Bo(θ)|2. Finally, we need |Bo − Bo(θ̃)|2 = O(1), this is implied by

the differentiability of the map θ 7−→ limT→∞EBT (θ) at the neighborhood around θo (B.7). IT2 = O(1) is

implied by the uniform law of large numbers (B.6).

Finally, we apply a central limit theorem to the leading term

−
√
TB−1

o T−1
T∑
t=1

Rt(θo)
′Dt(xt, θo, κo)

−1rt(θo)−
√
TB−1

o Ǎo(θo)

as in El Machkouri et al. [2013] as follows.

Lemma 5 (Theorem 1 of El Machkouri et al. [2013]). Denote Yt = f(Ft), where f is some measurable

function. Let Sn =
∑n
t=1 Yt, and δς,t = ‖Yt − Y ∗t ‖ς . (Y ∗t is Yt replaced by a i.i.d. copy of the underlying

innovations at time point zero.) If E(Yi) = 0,
∑∞
t=0 δς,t <∞, some ς ≥ 2, and σ2

n
def
= E(S2

n)→∞, then

σ−1
n Sn →L N(0, 1).

−
√
TB−1

o T−1
∑T
t=1∇rt(θo)Dt(xt, θo, κo)

−1rt(θo) would give us the asymptotic normality of the estima-
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tion.

We are applying Lemma 5 to the object

−
√
TB−1

o T−1
T∑
t=1

Rt(θo)
′Dt(xt, θo, κo)

−1rt(θo)
def
= −
√
TT−1

T∑
t=1

d̃t.

Let c to be any vector in RP , and take ς to be 2, then we can verify that c′d̃t is MDS, and we then have∑∞
t=0 δς,t ≤ C‖c′d̃t‖2 < M3, by imposing [B.4]. In addition, we have limT→∞E(S2

T ) = T−1
∑T
t=1 Ec′B−1

o CoB
−1
o c.

We have then following the above lemma 5, the Cramár Wold device, and the expansion as in (32).

√
T (θ̂ − θo)→L N(0, B−1

o CoB
−1
o ), (33)

where Co is defined to be

limT→∞T
−1

T∑
t=1

E(Rt(θo)
′Dt(xt, θo, κo)

−1rt(θo)r
′
t(θo)Dt(xt, θo, κo)

−1Rt(θo)).

It is not hard to see that if we correctly specify the variance-covariance matrix of the conditional moment,

namely E(rt(θo)r
′
t(θo)|Ft−1) = Dt(xt, θo, κo), then

E(Rt(θo)
′Dt(xt, θo, κo)

−1rt(θo)r
′
t(θo)Dt(xt, θo, κo)

−1Rt(θo))

= E(E(Rt(θo)
′Dt(xt, θo, κo)

−1rt(θo)r
′
t(θo)Dt(xt, θo, κo)

−1Rt(θo)|Ft−1))

= E(Rt(θo)
′Dt(xt, θo, κo)

−1E(rt(θo)r
′
t(θo)|Ft−1)Dt(xt, θo, κo)

−1Rt(θo))

= E(Rt(θo)
′Dt(xt, θo, κo)

−1Rt(θo)).

Thus Co = Bo and the asymptotic variance would be B−1
o .

7.3 One-step estimation

In this subsection, we show the asymptotic equivalence of the one-step estimator θ and the ideal estimator

θ̂, by updating any
√
T -consistent estimator θ̌.

Bo, BT , and B̌T in the following assumptions are defined in (27) and (28).

C.1 For each random sequence θT = θo +O( 1√
T

), |BT (θT )−Bo(θo)|2 = Op(1). Bo is invertible.

C.2 |B̌T (θ)−BT (θT )|2 →p 0.

C.3 Both θ̂ and θ̌ are
√
T -consistent.
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C.4 BT (θ) converges in probability to Bo(θ) within Vθo(c).

Theorem 6. Under assumption C.1- C.4, we have the asymptotic equivalence of the one-step estimator θ

and the ideal estimator θ̂, namely, θ − θ̂ = Op(
1√
T

).

Proof. Define Q̌T (θ) = T−1
∑T
t=1 Ž′trt(θ), the score function leading to the ideal estimator θ̂. Recall that

B̌T (θ̌) = T−1∂Q̌T (θ)/∂θ′|θ=θ̌,

θ = θ̌ − (B̌T (θ̌))−1Q̌T (θ̌).

Rearrange the last equation, we have

B̌T (θ̌)(θ − θ̌) = −Q̌T (θ̌) (34)

By the property Q̌T (θ̂) = 0 and Assumption C.3, we have

0 = Q̌T (θ̂) = Q̌T (θ̌) + B̌T (θ̌)(θ̂ − θ̌) + Op(
1√
T

) (35)

Rearrange (35), we have

−Q̌T (θ̌) = B̌T (θ̌)(θ̂ − θ̌) + Op(
1√
T

) (36)

Combining (34) and (36) and rescaling them by
√
T , we have

Op(1) =
√
TB̌T (θ̌)(θ − θ̂)

=
√
T (Bo(θ) + Op(1))(θ − θ̂))

=
√
TBo(θ)(θ − θ̂)) + Op(1)

where the second equality follows from C.2 and C.4. The last equality follows from C.3.

By the invertibility of the matrix Bo, we have

|
√
T (θ − θ̂)|2 ≤ |Bo|−1

2 |Op(1)|2 = Op(1), (37)

This shows the asymptotic equivalence of θ̂ and θ̃.

7.4 Asymptotic consistent of the QMLE and the one-step estimation

The asymptotic normality and consistency are well understood in the literature.

M.1 θo ∈ int(Θ).
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M.2 `t(yt,xt, θ) are measurable and second-order differentiable.

M.3 Io is positive definite.

M.4 supθ∈Θ |T−1
∑T
t=1 It(θ)− Io(θ)|2 → 0.

M.5 1√
T

st(θo)→L N(0, Jo).

Theorem 7 (Wooldridge [1994]). Under assumption M.1 to M.5, the QMLE is asymptotically normal,
√
T (θ̌ − θo)→ N(0, I−1

o JoI
−1
o ).

Theorem 8. Under assumption M.1 to M.5, the one-step estimation of QMLE is asymptotically normal,

and θ − θ̌ = O( 1√
T

),
√
T (θ − θo)→ N(0, I−1

o JoI
−1
o ).

Proof. The proof is similar to the proof in Theorem 6 and therefore omitted.

References

Tim Bollerslev. Generalized autoregressive conditional heteroskedasticity. Journal of econometrics, 31(3):

307–327, 1986.

Tim Bollerslev and Jeffrey M Wooldridge. Quasi-maximum likelihood estimation and inference in dynamic

models with time-varying covariances. Econometric reviews, 11(2):143–172, 1992.

Whitney K Newey and Douglas G Steigerwald. Asymptotic bias for quasi-maximum-likelihood estimators in

conditional heteroskedasticity models. Econometrica: Journal of the Econometric Society, pages 587–599,

1997.

Tim Bollerslev. A conditionally heteroskedastic time series model for speculative prices and rates of return.

The review of economics and statistics, pages 542–547, 1987.

Jianqing Fan, Lei Qi, and Dacheng Xiu. Quasi-maximum likelihood estimation of GARCH models with

heavy-tailed likelihoods. Journal of Business & Economic Statistics, 32(2):178–191, 2014.

Christian M Hafner and Jeroen VK Rombouts. Semiparametric multivariate volatility models. Econometric

Theory, 23(2):251–280, 2007.

Xiaohong Chen and Yanqin Fan. Estimation of copula-based semiparametric time series models. Journal of

Econometrics, 130(2):307–335, 2006.

Feike C Drost, Chris AJ Klaassen, Bas JM Werker, et al. Adaptive estimation in time-series models. The

Annals of Statistics, 25(2):786–817, 1997.

34

Electronic copy available at: https://ssrn.com/abstract=3690826



Kung-Yee Liang and Scott L Zeger. Longitudinal data analysis using generalized linear models. Biometrika,

73(1):13–22, 1986.

Robert F Engle, David M Lilien, and Russell P Robins. Estimating time varying risk premia in the term

structure: The arch-m model. Econometrica: journal of the Econometric Society, pages 391–407, 1987.

Jeffrey M Wooldridge. Estimation and inference for dependent processes. Handbook of econometrics, 4:

2639–2738, 1994.

Scott L Zeger and Kung-Yee Liang. Longitudinal data analysis for discrete and continuous outcomes. Bio-

metrics, pages 121–130, 1986.

Jan R Magnus and Heinz Neudecker. The commutation matrix: some properties and applications. The

Annals of Statistics, pages 381–394, 1979.
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