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We investigate the concept of connectedness, which is important for risk

measurement and management in German energy market. Understanding and

learning from these mechanisms are essential to avoid future systemic disas-

ters. To deal with large portfolio selection, we propose regularization approach

to capture the spillover and contagion effects across German power derivatives.

This paper shows how network analysis can facilitate the monitoring of futures

price movements. Our methodology combines high-dimensional variable se-

lection techniques with network analysis, the results show that contracts like

Phelix Base Year Options and Phelix Peak Year Futures are in the core of the

Energy futures market.
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1 INTRODUCTION

Affordable and reliable energy supply is essential for industrial growth. Achieving these in

times of growing demand, raw materials shortage and climate change poses challenges. It

is therefore essential to provide precise forecast for future power supply. Germany’s power

system for the industry and the consumers is undergoing radical change. At present, con-

ventional energy sources generate approximately 74% of Germany’s electricity. However,

the ongoing expansion of renewable energy and the phase-out of nuclear energy for power

generation will change the composition of the electricity mix, which in return, will generate

pricing signals affecting the electricity trading. Therefore a study on the electricity deriva-

tive market, e.g. the forward market can provide a hedge against such risks. Based on

such insights, energy companies may invest in both electricity spot and derivatives mar-

kets. However, the number of variables and relevant factors is typically huge. A properly

designed subset selection must be employed to pick the most informative power contracts

to representing energy market risk.

High-dimensional statistical problems arise from diverse fields of scientific research and

technological development, including energy markets. The traditional idea of best sub-

set selection methods is computationally too expensive for many modern statistical ap-

plications. Variable selection techniques have therefore been successfully developed in

recent years and they indeed play a pivotal role in contemporary statistical learning and

techniques. Researchers have proposed various penalized estimators, a preeminent exam-

ple being the least absolute selection and shrinkage operator (lasso) of Tibshirani (1996)In

recent years, lasso has been extended to high-dimensional cases, see Bickel et al. (2009).

Other popular methods contribute to the literature, such as smoothly clipped absolute de-

viation (SCAD) Fan and Li (2001), adaptive Lasso of Zou (2006), elastic net estimator of Zou

and Hastie (2005), Dantzig selector of Candes and Tao (2007). In an ultra high-dimensional

case where the dimensionality of the model is allowed to grow exponentially in the sample

size, it is helpful to begin with screening to delete some significantly irrelevant variables
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from the model. Fan and Lv (2008) introduce a method called sure independence screen-

ing (SIS hence-after) for this goal. Even when the regularity conditions may not hold, Fan

et al. (2009) extend the iterated-SIS method to work by iteratively performing feature selec-

tion to recruit a small number of features.

The German power market is highly interconnected with a dense and wide range of elec-

tricity derivative contracts. In this paper we investigate the concept of connectedness,

which is important for risk measurement and management. We aim to build up a sparse

network in which nodes represent power contracts and links represent the magnitude of

connectedness, local shocks and events can therefore be easily amplified and turned into

global events. Understanding and learning from these mechanisms are essential to avoid

future systemic disasters. Regularization approach is needed to capture significant spillover

and contagion effects in the energy market. To better understand the interaction between

power contracts, the iterated-SIS method combined with penalized estimators are applied

to estimate the sparse web of connections. Our network of interest is constructed in the

context of time series based on vector autoregression (VAR) models, the iterated-SIS meth-

ods are of much use when building VAR models since the number of parameters to estimate

increases quadratically in the number of variables included. In addition, asymptotic prop-

erties of lasso for high-dimensional time series have been considered by Loh and Wain-

wright (2011), Wu et al. (2016). Kock and Callot (2015) establish the high-dimensional VAR

estimation with focus on lasso and adaptive lasso. Basu et al. (2015) investigate the theo-

retical properties of regularized estimates in sparse high-dimensional time series models

when the data are generated from a multivariate stationary Gaussian process.

To quantify the associations between individual power contract and energy exchange mar-

ket, the network we constructed is obtained from the forecast error variance decomposi-

tion (FEVD) based on VAR estimates in the framework of Koop et al. (1996) and Pesaran and

Shin (1998). This kind of connectedness measure is also used by Diebold and Yılmaz (2014)

for conceptualizing and empirically measuring weighted, directed networks at a variety
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of levels. Related is Demirer et al. (2017) who use lasso method to select, shrink and esti-

mate a high-dimensional network. Related empirical work are with more focus on financial

banking contexts, for examples see Acharya et al. (2012), Hautsch et al. (2014), Giglio et al.

(2016), Babus (2016), Brownlees and Engle (2016), Acharya et al. (2017). There is, however,

no research on energy connectedness. This is particularly unfortunate given the role of the

liberalization of the energy market and the inclusion of renewables. While estimates of the

network yield the qualitative links between power contracts, individual impact from spe-

cific contract can be estimate and speculate accordingly. Hence the risk contribution from

the market component can be identified clearly, this will help us to learn more about the

German power market functioning and environment. For example, the results show that

day-ahead spot power contracts that bidding between 9am and 13am are in the core of the

energy futures market, the key derivatives in connecting markets can be identified.

The rest of the paper proceeds as follows. Section 2 summarizes the energy market. In

section 3, we describe in details how the regularization approach is applied to estimate the

large portfolio and how the network is constructed. Section 4 presents the empirical results

by starting with a discussion of variable selection. Finally section 5 concludes.

2 OVERVIEW OF ENERGY MARKET

2.1 GERMAN ELECTRICITY DERIVATIVE MARKET

The German electricity market is Europe’s largest, with annual power consumption of around

530 TWh and a generation capacity of 184 GW. As a net energy exporter, the export capacity

of Germany is expected to continue to grow as planned interconnections expand cross-

border transmission capacity with several neighboring countries. Germany has significant

interconnection capacity with neighboring EU member states as well. It is interconnected

with Austria, Switzerland, the Czech Republic, Denmark, France, Luxembourg, the Nether-

lands, Poland, and Sweden. To maintain stable and reliable supply of electricity, the so-
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called Transmission system operators (TSOs) keep control power available. Primary con-

trol, secondary control, and tertiary control reserve are procured by the respective TSOs

within a non-discriminatory control power market in accordance with the requirements of

the Federal Cartel Office. Demand for control energy is created when the sum of power

generated varies from the actual load caused by unforeseeable weather fluctuations in the

case of renewable energies.

Electricity is traded on the exchange and over the counter. Standardized products are

bought and sold in a transparent process on the exchange, which, for Germany, is the Euro-

pean Energy Exchange EEX in Leipzig, the European Energy Exchange EPEX SPOT in Paris

and the Energy Exchange Austria (EXAA) in Vienna. The European Energy Exchange (EEX)

is the leading energy exchange in Europe. It develops, operates and connects secure, liq-

uid and transparent markets for energy and commodity products. Contracts on power,

coal and CO2 emission allowances as well as freight and agricultural products are traded

or registered for clearing on EEX. EPEX SPOT, Powernext, Cleartrade Exchange (CLTX) and

Gaspoint Nordic are also members of EEX Group. The German wholesale electricity market

is broadly made up of three elements, a forward market, a day-ahead market and an intra-

day market. These submarkets generate the pricing signal which electricity production and

consumption align to. The objective of this paper is to analyse the interaction of different

future contracts traded in the forward market, whether forward market is influenced by

market power of spot prices traded in EPEX market.

Electricity providers and electricity purchasers submit their bids in their national day-

ahead market zones. The exchange price on the day-ahead market is determined jointly for

coupled markets. Electricity providers and electricity purchasers submit their bids in their

national day-ahead market zones. In an iterative process, the demand for electricity in the

market zone is served by the lowest price offers of electricity from all the market areas until

the capacity of the connections between the market zones (cross-border inter-connectors)

is fully utilized. As long as the cross-border inter-connectors have sufficient capacity, this
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Figure 2.1: The distribution of European power derivatives in EEX market. Source: EEX
website

process aligns the prices in the coupled market areas. On account of market coupling,

the national power demand is covered by the international offers with lowest prices. The

upshot is that on the whole less capacity is required to meet the demand. As shown in

Figure 2.1, Phelix Future, as the product traded in Germany, is a financial derivatives con-

tract settling against the average power spot market prices of future delivery periods for the

German/Austrian market area.

2.2 PHELIX FUTURES

Electricity supply deliveries in the forward market can be negotiated up to seven years

in advance, but for liquidity reasons typically only look out three years, and in fact one

year ahead futures are traded at most. The Phelix Future is a financial derivatives contract

referring to the average power spot market prices of future delivery periods of the Ger-

man/Austrian market area.

As the most liquid contract and benchmark for European power trading, the underlying

of these future contracts is the Physical Electricity Index determined daily by EPEX Spot

Exchange for base and peak load profiles. To be more specific, the Phelix Base contract is
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average price of the hours 1 to 24 for electricity traded on spot market, while the Phelix

Peak is the average price of the hours 9 to 20 for electricity traded on spot market. EEX

offers continuous trading and trade registration of financially fulfilled Phelix Futures, with

Day/Weekend Futures, Week Futures, Month Futures, Quarter Futures and Year Futures

available.

The time series of Phelix day base and Phelix day peak prices are displayed in Figure 2.2.

Phelix day peak exhibit a larger volatility and more pronounced spikes than the Phelix day

base. This is not surprising, since the Phelix day peak corresponds to hours with high

and variable demand. Both price series exhibit positive skewness and an excess kurtosis

of about 1, implying a heavy-tailed unconditional distribution that is skewed to the right.

Figure 2.2: Phelix day base (black) and Phelix day peak (red) index from 2013-01-01 to 2015-
10-31. The red dotted line marks the end of the in-sample period.

In addition, the Phelix market is also successfully connected to other European power mar-

kets. The products of Location Spread enables members to trade price differences between

markets, thus enabling participants to benefit from improved liquidity and tighter spreads,

for instance, Phelix / French Power, Italian / Phelix Power, Phelix / Nordic Power and Phelix
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/ Swiss Power. For the empirical work of this paper, we use the Phelix Future data to find

price drivers and important variables in the big system we construct. The decision-making

mechanism of energy companies will also be explored.

3 THEORETICAL FRAMEWORK

3.1 MODEL DESCRIPTION

We have access to spot prices, trading prices of different future contracts. An interesting

question is how all these prices interact with each other? Which variables are crucial for

the whole system? To answer this question, we are going to build a Vector Autoregres-

sive Model. However, due to the large number of variables in the system, some sparsity

assumption must be imposed for the sake of an accurate estimate. The large dimension

comes from two parts:

1. varieties of power derivative products;

2. large lag in VAR model to avoid the correlation of error terms.

The VAR(p) model (VAR model of order p) is constructed according to Lütkepohl (2005),

yt = ν+ A1 yt−1 + A2 yt−2 +·· ·+ Ap yt−p +ut

= ν+ (
A1, A2, . . . , Ap

)(
y>

t−1, y>
t−2, . . . , y>

t−p

)>+ut (3.1)

where yt = (y1t , y2t , . . . , yK t )> is a (K ×1) random vector consisting K prices we have at time

t , t from 1 to T . Ai are fixed (K ×K ) coefficient matrices. ν is a (K ×1) vector of intercept

terms, p is lag and ut = (u1t ,u2t , . . . ,uK t )> is a K -dimensional innovation process.

The coefficients ν, A1, . . . , Ap are assumed to be unknown in the following. The time series
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data y1, y2, . . . , yT of the y variable is available and will be used to estimate the coefficients.

The multiple time series data will be partitioning into sample and presample values to fa-

cilitate the following analysis. Define

Y = (y1, y2, . . . , yT )

B = (ν, A1, A2, . . . , Ap )

Zt = (
1, yt , yt−p+1

)>
Z = (Z0, Z1, . . . , ZT−1) (3.2)

Hence for multivariate case, the model described in equation (3.1) can also be rewritten as

Y = B Z +U (3.3)

where U = (u1,u2, . . . ,uT ). The compact form (3.3) is equivalent to

vec(Y ) = (Z>⊗ IK )vec(B)+ vec(U ) (3.4)

If the vector of intercept terms ν is assumed to be zero, we can thus conclude that the total

dimension of the model to be estimated is pK 2 and the total number of observations is K T .

The ration K p
T could be large due to the reasons mentioned earlier, which deteriorates the

accuracy of final estimate. Worse still, if K p > T , the model is not identified with tradi-

tional method. Therefore, we use variable selection technique, such as lasso, to estimate

the model. Besides, under normal assumption of error term, the upper bound of error in

estimation is positively correlated in log(K 2p)
T , part of oracle inequality. the estimation re-

sults can be further developed by adding one more step of sure independence screening

(SIS hence-after) before variable selection step. Another advantage of SIS is that it could

mitigate the problem caused by multicollinearity, which is common in time series setting.

The methodologies introduced in the proceeding paragraph are of great importance in the

sense that the true underlying model has a sparse representation.
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3.2 PENALIZED LEAST SQUARE AND VARIABLE SELECTION

Variable selection is an important tool for the linear regression analysis. A popular method

is the lasso estimator of Tibshirani (1996), which can be viewed to simultaneously perform

model selection and parameter estimation. Related literature includes bridge regression

studied by Frank and Friedman (1993) and Fu (1998), the least angle regression of Efron

et al. (2004) and adaptive lasso proposed by Zou (2006). Another remarkable example is

a smoothly clipped absolute deviation (SCAD) penalty for variable selection proposed by

Fan and Li (2001), they proved its oracle properties.

Let us start with consider model estimation and variable selection in a linear regression

model,

y = Xβ+ε (3.5)

where y = (y1, . . . , yn)> is an n ×1 response vector, X = (x1, . . . , xp ) is an n × p matrix with

x j = (x1 j , . . . , xn j )>, j = 1, . . . , p. β̂ denotes the coefficient estimator produced by the fitting

procedure. ε= (ε1, . . . ,εn)> is an n ×1 vector of iid random errors.

The least square estimate is obtained via minimizing ‖y − Xβ‖2, where the ordinary least

squares (OLS) gives nonzero estimatesω= X >y to all coefficients. Normally best-subset se-

lection are implemented to select significant variables, but the traditional idea of best sub-

set selection methods is computationally too expensive for many statistical applications.

Therefore the penalized least square with a penalty term that is separable with respect to

the estimated parameter β̂ is considered here. In this paper we consider two popular esti-

mators, lasso and SCAD.
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The lasso is a regularization technique for simultaneous estimation and variable selection.

Its estimate is defined as,

β̂L ASSO = arg min
β

‖y −Xβ‖2 +λ
p∑

j=1
|β j | (3.6)

= arg min
β

‖y −
p∑

j=1
x jβ j‖2 +λ

p∑
j=1

|β j |

where λ is a tuning parameter. The second term in equation (3.2) is known as the `1-

penalty. The idea behind lasso is the coefficients shrinks toward 0 as λ increase. When λ is

sufficiently large, some of the estimated coefficients are exactly zero. The estimation accu-

racy comes from the trade-off between estimation variance and the bias.

To sum up, lasso is the penalized least square estimates with the `1 penalty in the general

least squares and likelihood settings. Furthermore, the `2 penalty results in a ridge regres-

sion and `p penalty will lead to a bridge regression. In the setting of bridge regression, the

penalty term is of `p norm.

We proceed to a brief introduction of the SCAD method. In the present context, the SCAD

estimator is given by,

β̂SC AD =


sgn(ω)(|ω|−λ)+ when |ω| ≤ 2λ
{(a −1)ω− sgn(ω)aλ}

a −2
when 2λ< |ω| ≤ aλ

ω when |ω| > aλ

(3.7)

where a > 2 is an additional tuning parameter. The continuous differentiable penalty func-

tion for SCAD estimator is defined by,

p
′
λ(β) =λ

{
I (β≤λ)+ (aλ−β)+

(a −1)λ
I (β>λ)

}
for a > 2 and β> 0 (3.8)

Both estimators are members of this penalized likelihood family. LASSO has better per-
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formance when the noise to signal ratio is large, but this approach creates bias. SCAD can

generate variable selection results without generating excess biases.

3.3 ITERATED-SIS ESTIMATION

Fan and Lv (2008) proposed a SIS method to select important variables in ultra high-dimensional

linear models. The proposed two-stage procedure can perform better than other methods

in the sense of statistical learning problems. The SIS method is based on the concept of

sure screening, is defined as the correlation learning which filters out the features that have

weak correlation with the response. By sure screening, all the important variables survive

after variable screening with probability tending to 1.

Fan et al. (2009) improve iterated-SIS to a general pseudo-likelihood framework by allow-

ing feature deletion in the iterative process. Fan et al. (2010) further extend the SIS model

and consider an independent learning by ranking the maximum marginal likelihood esti-

mator or maximum marginal likelihood itself for generalized linear models. Here we com-

bine the VAR(p) model and SIS algorithm to find out the key elements in a big system. The

basic idea of SIS is introduced in the following.

Let ω= (ω1,ω2, . . . ,ωp )> be a p-vector that is obtained by component-wise regression, i.e.,

ω= X >y (3.9)

where y is n vector of response and X is a n ×p data matrix. ω is a vector of marginal cor-

relations of predictors with the response of predictors with the response variable, rescaled

by the standard deviation of the response.

When there are more predictors than observation, LS (least square) estimator is noisy,

that’s why ridge regression is considered. Let ωλ = (ωλ1 , . . . ,ωλp )> be a p−vector obtained
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by ridge regression, i.e.,

ωλ = (X >X +λIp )−1X >y (3.10)

where λ > 0 is a regularization parameter. Obviously, when λ→ 0, ωλ → β̂LS and λ→∞,

λωλ→ω. The component-wise regression is a specific case of ridge regression with λ=∞.

The iterated-SIS algorithm applied for estimating the V AR(p) model is,

1. Apply SIS for initial screening, reduce the dimensionality to a relative large scale d;

2. Apply a lower dimensional model selection method (such as lasso, SCAD) to the sets

of variables selected by SIS;

3. Apply SIS to the variables selected in the previous step;

4. Repeat step 2 and 3 until the set of selected variables do not decrease.

3.4 CONNECTEDNESS MEASURE

The interactions between the variables, i.e., the directional connectedness measure θi j (q)

is calculated by the generalized impulse response analysis using the sparse estimation of

VAR(p) models. With iterated-SIS algorithm to estimate the sparse VARs structure, we can

acquire its moving average (MA) transformation,

yt =
∞∑

i=0
Bi ut−i (3.11)

The coefficient matrices Bi obey Bi = ∑i y
j=1 Bi− j A j , withB0 = IK and A j = 0 for j > p.

A j , j = 1,2, . . . , p is the coefficient matrices of VAR(p) model.
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Denoting the GFEVD by θi j (q),

θi j (q) =
σ−1

j j

∑Q−1
q=0

(
e>

i B̂qΣe j
)2

∑Q−1
q=0

(
e>

i B̂qΣB̂>
q ei

) (3.12)

where q is the lag order, ei is an pK 2 ×1 selection vector with unity as its i -th element and

zeros elsewhere. Σ = E
(
ut u>

t

)
, is the covariance matrix of the non-orthogonalized VAR(p)

in equation (3.1). σ j j is the corresponding j -th diagonal element of Σ. The matrices B̂l are

the estimated coefficient matrices of equation (3.11).

To measure the persistent effect of a shock on the behavior of a series, we aim to acquire

the population connectedness table 3.1, according to Diebold and Yılmaz (2014).

x1 x2 . . . xn From others
x1 θ11(q) θ12(q) . . . θ1n(q)

∑n
j=1θ1 j (q), j 6= 1

x2 θ21(q) θ22(q) . . . θ2n(q)
∑n

j=1θ2 j (q), j 6= 2
...

...
...

...
...

xn θn1(q) θn2(q) . . . θnn(q)
∑n

j=1θn j (q), j 6= n

To others
∑n

i=1θi 1(q), i 6= 1
∑n

i=1θi 2(q), i 6= 2 . . .
∑n

i=1θi n(q), i 6= n
1

n

∑n
i=1, j=1θi j (q), i 6= j

Table 3.1: Connectedness table of interest.

The rightmost column gives the "from" effect of total connectedness, and the bottom row

gives the "to" effect. In particular, the directional connectedness "from" and "to" associ-

ated with the forecast error variation θi j for specific power contract when the arising shocks

transmit from one stock to the others. These two connectedness estimators can be ob-

tained by adding up the row or column elements, the pairwise directional connectedness

from j to i is given by,

CQ
i← j = θi j (q) (3.13)

The total directional connectedness "from" Ci←· (others to i ), "to" C·← j ( j to others) and
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the corresponding net connectedness are defined as

Ci←• =
n∑

j=1
θi j , i 6= j

C•← j =
n∑

i=1
θi j , i 6= j

Ci = Cto −C f r om =C•←i −Ci←• (3.14)

4 EMPIRICAL STUDY

4.1 DATA

As introduced in Section 2, EEX offers continuous trading data of Phelix Futures. The avail-

able load profiles are base, peak and off-peak. The available products with different maturi-

ties have five kinds, Day/Weekend Futures, Week Futures, Month Futures, Quarter Futures

and Year Futures. Nevertheless the products of Day/Weekend Futures and Week Futures

only have the off-peak load data, for all other contracts base and peak only. Here we recall

the underlying of the Phelix Futures data, the Phelix Base contract is average price of the

hours 1 to 24 for electricity traded on spot market, while the Phelix Peak is the average price

of the hours 9 to 20 for electricity traded on spot market. Therefore we involve the prod-

ucts of spot prices as well. The contracts of spot prices are diversified in Hours from 00-01h

up to 23-24h, and in Blocks of Base Monthly, off-peak 01-08, off-peak 21-24, Peak Monthly.

The dataset we constructed is provided by Bloomberg, we have 90 kinds of contracts in to-

tal. The time span is from 30.09.2010 to 31.07.2015. All the contracts are listed on Table 4.1

with detailed information in Table 4.2.

No. Symbol Description

1 GI1.Comdty - GI7.Comdty Phelix Base Month Option, and the respective

next six delivery months
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2 GT1.Comdty - GT7.Comdty Phelix Base Quarter Option, and the respec-

tive next six delivery quarters

3 HP1.Comdty - HP6.Comdty Phelix Base Year Option, and the respective

next five delivery years

4 GJ1.Comdty - GJ7.Comdty Phelix Peak Month Future, and the respective

next six delivery months

5 HI1.Comdty - HI7.Comdty Phelix Peak Quarter Future, and the respec-

tive next six delivery quarters

6 NE1.Comdty - NE6.Comdty Phelix Peak Year Future, and the respective

next five delivery years

7 POA1.Comdty - POA7.Comdty Phelix Off-Peak Month Future, and the re-

spective next six delivery months

8 PDA1.Comdty - PDA7.Comdty Phelix Off-Peak Quarter Future, and the re-

spective next six delivery quarters

9 PBA1.Comdty - PBA6.Comdty Phelix Off-Peak Year Future, and the respec-

tive next five delivery years

10 LPXBHR01.Index -

LPXBHR24.Index

EEX Day-ahead Spot Market with Bid Type

from 00-01 to 23-24h, e.g. LPXBHR14.Index is

EEX Day-ahead Spot price based on bid hours

from 13 -14.

11 LPXBHRxx.Index EEX Day-ahead Spot Market with different

Bid Types: LPXBHB.Index is Base Monthly

00-14h; LPXBHOP1.Index is Off Peak1 01-

08h; LPXBHOP2.Index is Off Peak2 21-24h;

LPXBHP.Index is Peak Monthly 08 - 20h;

LPXBHRB.Index is Baseload; LPXBHRP.Index

is Peakload.
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Table 4.2: Selected contracts from the file "Products 2016" provided by European Energy
Exchange EEX AG.
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(b) Contour plot of log return

Figure 4.1: Overview of dataset

To remove the redundant variable, we apply screening technique to select variables using

the Phelix Futures consisting of different contracts and over different maturities. To imple-

ment the VAR model, first order difference of the data in Figure 4.1a is needed to transform

non-stationary data to stationary time series. The contour plot of the constructed dataset

are depicted in Figure 4.1b.

In the market of Phelix Futures, final settlement at negative prices is also possible. There

are some missing values after transforming the original data to stationary time series by

first order difference. To deal with the missing data in dataset, some quick fixes such as

mean-substitution may be fine in some cases. While such simple approaches usually in-

troduce bias into the data, for instance, applying mean substitution leaves the mean un-

changed (which is desirable) but decreases variance, which may be undesirable. In our

paper, we impute missing values with plausible values drawn from a distribution using an

approach proposed by Van Buuren and Oudshoorn (2000).
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Symbol Types
GI GI1.Comdty GI2.Comdty GI3.Comdty GI4.Comdty

GI5.Comdty GI6.Comdty GI7.Comdty
GT GT1.Comdty GT2.Comdty GT3.Comdty GT4.Comdty

GT5.Comdty GT6.Comdty GT7.Comdty
HP HP1.Comdty HP2.Comdty HP3.Comdty HP4.Comdty

HP5.Comdty HP6.Comdty
GJ GJ1.Comdty GJ2.Comdty GJ3.Comdty GJ4.Comdty

GJ5.Comdty GJ6.Comdty GJ7.Comdty
HI HI1.Comdty HI2.Comdty HI3.Comdty HI4.Comdty

HI5.Comdty HI6.Comdty HI7.Comdty
NE NE1.Comdty NE2.Comdty NE3.Comdty NE4.Comdty

NE5.Comdty NE6.Comdty
POA POA1.Comdty POA2.Comdty POA3.Comdty POA4.Comdty

POA5.Comdty POA6.Comdty POA7.Comdty
PDA PDA1.Comdty PDA2.Comdty PDA3.Comdty PDA4.Comdty

PDA5.Comdty PDA6.Comdty PDA7.Comdty
PBA PBA1.Comdty PBA2.Comdty PBA3.Comdty PBA4.Comdty

PBA5.Comdty PBA6.Comdty
LPXBHR LPXBHR01.Index LPXBHR02.Index LPXBHR03.Index LPXBHR04.Index

LPXBHR05.Index LPXBHR06.Index LPXBHR07.Index LPXBHR08.Index
LPXBHR09.Index LPXBHR10.Index LPXBHR11.Index LPXBHR12.Index
LPXBHR13.Index LPXBHR14.Index LPXBHR15.Index LPXBHR16.Index
LPXBHR17.Index LPXBHR18.Index LPXBHR19.Index LPXBHR20.Index
LPXBHR21.Index LPXBHR22.Index LPXBHR23.Index LPXBHR24.Index

LPXBHxx LPXBHBMI.Index LPXBHOP1.Index LPXBHOP2.Index LPXBHPMI.Index
LPXBHRBS.Index LPXBHRPK.Index

Table 4.1: Phelix Futures data traded at EEX.

The patterns of missing data for the original dataset and imputation dataset are compared

in the Figure 4.2. The distributions of the variables are shown as individual points, the

imputed data for each imputed dataset is showed in magenta while the density of the ob-

served data is showed in blue. The distributions are expected to be similar based on the

assumption. We can observe that the shape of the magenta points (imputed) matches the

shape of the blue ones (observed). The matching shape tells us that the imputed values are

indeed plausible values. With the imputed dataset of interest, we proceed to the estimation

results derived from the iterated-SIS methodology.
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4.2 MODEL SELECTION

With iterated-SIS, we can show the consistency of variable selection. Besides, with only

a small set of relevant variables in the final model after iterated-SIS with lasso, the final

estimate can be shown to be normally distributed.

Each curve corresponds to a variable. It shows the path of its coefficient against the l1-

norm of the whole coefficient vector as λ varies. The estimation results are plotted in Fig-

ure 4.3, while the iterated-SIS-SCAD output is shown in Figure 4.4.

To estimate the accuracy of forecasting behavior concerning the model selected, the ob-

servations yt is partitioning into sample and pre-sample values. In this paper we select the

pre-sample as 30.09.2010 - 28.11.2014, and the rest is treated as the sample from 31.12.2014

to 07.12.2015. We use different lags for estimating the VAR(p)model. The lag length for the

VAR(p) model may be determined using model selection criteria. General approach is as

follows,

• Fit the VAR(p) models with different lags p = 0, . . . , pmax ,

• Choose the value of p which minimizes some model selection criteria.

Model selection criteria for VAR(p) can be written as,

IC (p) = log |Ĥ(p)|+ϕ(K , p)cT (4.1)

where ϕ(K , p) is a penalty function. cT is a sequence indexed by the sample size T . The

residual covariance matrix without a degrees of freedom correction is defined as,

Ĥ(p) = 1

T

T∑
t=1

u>
t ut (4.2)

Rewrite equation 4.1 with different penalty functions, the three most common information
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Figure 4.3: iterated-SIS-LASSO estimation results.
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Figure 4.4: iterated-SIS-SCAD estimation results.
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Model AIC HQ(C) BIC
iterated-SIS-lasso, p = 1 4.5686 4.7249 5.7864
iterated-SIS-lasso, p = 2 4.5006 4.6426 5.6076
iterated-SIS-lasso, p = 3 7.7034 8.3143 12.4637
iterated-SIS-lasso, p = 5 7.0839 8.1209 15.1652

iterated-SIS-SCAD, p = 1 4.5714 4.7277 5.7892
iterated-SIS-SCAD, p = 2 6.1043 6.1043 9.5782
iterated-SIS-SCAD, p = 3 7.2559 7.6820 10.5770

Table 4.3: Model Selection Results according to the Akaike (AIC), Schwarz-Bayesian (BIC)
and Hannan-Quinn (HQ) criteria.

criteria are the Akaike (AIC), Schwarz-Bayesian (BIC) and Hannan-Quinn (HQ),

AIC = log |Ĥ(p)|+ 2

T
pK 2 (4.3)

HQ = log |Ĥ(p)|+ 2loglogT

T
pK 2 (4.4)

B IC = log |Ĥ(p)|+ logT

T
pK 2 (4.5)

The model selection results are shown in Table 4.3. The most common information crite-

ria: the Akaike (AIC), Schwarz-Bayesian (BIC) and Hannan-Quinn (HQ) criteria are com-

pared. One observe that the model using the Iterated-SIS-lasso and p = 2 performs at best.

Recall equation 3.1, the VAR(p) model,

yt = ν+ A1 yt−1 + A2 yt−2 +·· ·+ Ap yt−p +ut

= ν+ (
A1, A2, . . . , Ap

)(
y>

t−1, y>
t−2, . . . , y>

t−p

)>+ut

We select the in-sample dataset as 30.09.2010-28.11.2014, the out-of-sample dataset used

to measure model performance is from 31.12.2014 to 31.07.2015. We roll each model through

the out-of-sample data set one observation at a time while each time forecasting the target
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Lag iterated-SIS-lasso iterated-SIS-SCAD
p = 1 0.0697 0.0697
p = 2 0.0670 0.0701
p = 3 1.9598 0.1413
p = 5 0.1397 -

Table 4.4: MSE of out-of-sample forecasting during 31.12.2014 - 31.07.2015

variable one month ahead. By rolling window. The mean squared errors (MSE) for different

models are calculated and reported in Table 4.4. VAR(2) with iterated-SIS-lasso technique

performs best.

4.3 NETWORK ANALYSIS

We estimate VAR models using the iterated-SIS algorithm as described in previous section.

Then we compute variance decompositions and corresponding connectedness measures

at horizon H = 10, using the estimated VAR parameters.

4.4 FULL-SAMPLE CONNECTEDNESS

The graph of our full-sample energy market network is depicted in Figure 4.5. We observe

the cluster phenomena in this graph, which motivates us to study the connectedness be-

tween contracts within and across 11 different kinds of energy contracts. In general, the

contracts that belong to the same type tend to appear inside the same cluster. We find out

several pairs of strong connections between different types of contracts, for example, the

upper-left area reveals that the LPXBHR-type and LPXBHxx-type are massively connected.

In addition, a cluster consisting of HP-type (Phelix Base Year Future), NE-type (Phelix Peak

Year Future) and PBA-type (Phelix Off-Peak Year Future) indicates the closer relationship

among these contracts, this implies the year futures are closer to each other while the week
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Figure 4.5: The graph for full-sample energy market network, across 11 different kinds with
in total 90 contracts.

future and quarter future remain distinct.

Table 4.5 summarizes the full-sample connectedness of German power market across 11

different power contract types, with the own effects equal to the diagonal elements. We

observe the contracts that have significant impacts are the "From" impact of "LPXBHR"-

type and "To" impact of "HP"-type. The strongest link is the impact of LPXBHxx-type on

the LPXBHR, however the inverse impact does not exist. Furthermore, HP-type contracts

have stronger links from and to the other contract types. We can also conclude that the

total impacts are mainly distributed among three types of contracts, i.e., HP-type, NE-type

and PBA-type. The main risk of the whole market is mainly caused by LPXBHxx-type, HP-
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GI GT HP GJ HI NE POA PDA PBA LPXBHR LPXBHxx From
GI 1.75 0.46 0.86 1.46 0.44 0.71 1.48 0.48 0.80 0.15 0.15 8.74

GT 0.46 2.33 0.98 0.58 2.41 0.93 0.42 2.03 0.84 0.30 0.41 11.70
HP 0.73 0.84 5.27 0.63 0.51 4.78 0.70 1.21 4.19 0.06 0.03 18.95
GJ 1.46 0.58 0.73 1.80 0.63 0.64 1.09 0.51 0.65 0.13 0.13 8.36
HI 0.44 2.41 0.60 0.63 2.65 0.63 0.37 1.92 0.49 0.34 0.48 10.96

NE 0.61 0.79 4.78 0.55 0.54 5.09 0.55 1.05 3.34 0.08 0.12 17.52
POA 1.48 0.42 0.81 1.09 0.37 0.64 1.60 0.48 0.79 0.19 0.18 8.04
PDA 0.48 2.03 1.42 0.51 1.92 1.23 0.48 1.99 1.27 0.26 0.32 11.91
PBA 0.68 0.72 4.19 0.56 0.42 3.34 0.67 1.09 3.88 0.20 0.12 15.88

LPXBHR 0.80 1.24 0.50 0.67 1.35 0.50 0.90 1.12 1.01 7.86 9.81 25.79
LPXBHxx 0.13 0.35 0.03 0.11 0.41 0.12 0.16 0.28 0.13 2.70 3.86 8.28

To 9.03 12.18 20.17 8.59 11.65 18.62 8.41 12.16 17.38 12.28 15.63 146.12
Net 0.29 0.48 1.22 0.23 0.70 1.10 0.37 0.25 1.50 -13.50 7.35

Table 4.5: Population connectedness table for 11 kinds of contracts.
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Figure 4.6: The graph for network across 11 different contract types.

type and NE-type. This is potentially interesting because, although HP-type, NE-type are

important for the whole market as shown in Figure 4.6, their net connectedness are negli-

gible, with 4.52% and 4.08% of the total market power contracts.

4.5 DETERMINING SIGNIFICANT MARKET COMPONENT

In terms of magnitude for individual power contract reported in Table 4.5, the net direc-

tional connectedness from others is distributed rather tightly, in total 77.21% of "LPXBHR"-

type and "LPXBHxx"-type.
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LPXBHR01 LPXBHR02 LPXBHR03 LPXBHR04 LPXBHR05 LPXBHR06 LPXBHR07 LPXBHR08

LPXBHR01 1.00 0.71 0.52 0.35 0.53 0.43 0.13 0.14

LPXBHR02 0.42 0.59 0.47 0.36 0.31 0.18 0.06 0.07

LPXBHR03 0.27 0.41 0.54 0.42 0.36 0.23 0.12 0.12

LPXBHR04 0.19 0.32 0.41 0.53 0.38 0.25 0.21 0.15

LPXBHR05 0.25 0.24 0.30 0.33 0.47 0.37 0.19 0.15

LPXBHR06 0.18 0.12 0.18 0.18 0.34 0.41 0.22 0.23

LPXBHR07 0.10 0.08 0.13 0.20 0.22 0.29 0.45 0.40

LPXBHR08 0.10 0.08 0.13 0.14 0.18 0.30 0.45 0.54

LPXBHR09 0.11 0.08 0.14 0.15 0.18 0.35 0.58 0.70

LPXBHR10 0.25 0.23 0.23 0.33 0.49 0.66 0.46 0.49

LPXBHR11 0.27 0.28 0.26 0.35 0.50 0.61 0.42 0.46

LPXBHR12 0.26 0.29 0.23 0.30 0.42 0.48 0.28 0.31

LPXBHR13 0.23 0.30 0.24 0.30 0.39 0.45 0.21 0.27

LPXBHR14 0.16 0.15 0.17 0.23 0.26 0.30 0.13 0.13

LPXBHR15 0.22 0.18 0.17 0.19 0.22 0.27 0.14 0.13

LPXBHR16 0.07 0.06 0.10 0.13 0.19 0.34 0.36 0.41

LPXBHR17 0.13 0.13 0.18 0.22 0.35 0.51 0.29 0.36

LPXBHR18 0.13 0.11 0.15 0.20 0.32 0.47 0.24 0.27

LPXBHR19 0.15 0.11 0.12 0.24 0.32 0.45 0.33 0.30

LPXBHR20 0.10 0.07 0.08 0.17 0.24 0.38 0.32 0.28

LPXBHR21 0.06 0.07 0.05 0.12 0.17 0.28 0.27 0.25

LPXBHR22 0.11 0.13 0.11 0.12 0.19 0.31 0.23 0.26

LPXBHR23 0.10 0.12 0.06 0.07 0.11 0.18 0.12 0.14

LPXBHR24 0.00 0.00 0.01 0.01 0.01 0.00 0.00 0.00

LPXBHR09 LPXBHR10 LPXBHR11 LPXBHR12 LPXBHR13 LPXBHR14 LPXBHR15 LPXBHR16

LPXBHR01 0.16 0.25 0.27 0.26 0.23 0.13 0.08 0.03

LPXBHR02 0.07 0.15 0.19 0.20 0.21 0.07 0.04 0.03

LPXBHR03 0.10 0.13 0.14 0.13 0.14 0.07 0.05 0.05

LPXBHR04 0.12 0.21 0.23 0.20 0.20 0.11 0.10 0.15

LPXBHR05 0.12 0.24 0.25 0.22 0.21 0.11 0.08 0.11

LPXBHR06 0.20 0.29 0.27 0.23 0.22 0.13 0.12 0.15

LPXBHR07 0.38 0.27 0.26 0.20 0.16 0.09 0.09 0.16

LPXBHR08 0.53 0.28 0.27 0.19 0.17 0.08 0.08 0.09

LPXBHR09 0.73 0.33 0.31 0.22 0.19 0.10 0.11 0.09

LPXBHR10 0.45 0.98 0.94 0.82 0.70 0.43 0.37 0.43

LPXBHR11 0.43 0.94 0.98 0.92 0.81 0.44 0.37 0.43

LPXBHR12 0.31 0.84 0.94 1.00 0.90 0.46 0.36 0.44

LPXBHR13 0.27 0.71 0.83 0.90 1.00 0.62 0.51 0.43

LPXBHR14 0.13 0.39 0.41 0.41 0.54 0.83 0.77 0.27

LPXBHR15 0.14 0.31 0.32 0.30 0.40 0.67 0.71 0.27

LPXBHR16 0.41 0.39 0.38 0.34 0.32 0.22 0.26 0.59

LPXBHR17 0.33 0.68 0.72 0.72 0.78 0.50 0.51 0.65
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LPXBHR18 0.24 0.66 0.66 0.65 0.70 0.48 0.50 0.71

LPXBHR19 0.27 0.63 0.63 0.60 0.63 0.48 0.47 0.62

LPXBHR20 0.26 0.64 0.61 0.58 0.52 0.34 0.32 0.49

LPXBHR21 0.24 0.56 0.54 0.53 0.44 0.25 0.22 0.35

LPXBHR22 0.24 0.51 0.47 0.42 0.35 0.17 0.14 0.32

LPXBHR23 0.14 0.40 0.41 0.44 0.39 0.22 0.17 0.27

LPXBHR24 0.00 0.03 0.04 0.07 0.07 0.02 0.01 0.03

LPXBHR17 LPXBHR18 LPXBHR19 LPXBHR20 LPXBHR21 LPXBHR22 LPXBHR23 LPXBHR24

LPXBHR01 0.13 0.13 0.15 0.10 0.06 0.11 0.10 0.00

LPXBHR02 0.08 0.07 0.08 0.07 0.14 0.17 0.22 0.38

LPXBHR03 0.09 0.08 0.07 0.06 0.11 0.12 0.15 0.42

LPXBHR04 0.16 0.16 0.18 0.15 0.17 0.16 0.18 0.36

LPXBHR05 0.17 0.15 0.16 0.14 0.19 0.18 0.22 0.50

LPXBHR06 0.22 0.20 0.21 0.19 0.25 0.24 0.27 0.55

LPXBHR07 0.20 0.19 0.23 0.22 0.20 0.18 0.16 0.17

LPXBHR08 0.20 0.16 0.18 0.18 0.21 0.20 0.17 0.20

LPXBHR09 0.24 0.17 0.20 0.19 0.17 0.18 0.10 0.00

LPXBHR10 0.67 0.65 0.61 0.63 0.55 0.50 0.39 0.04

LPXBHR11 0.71 0.65 0.62 0.60 0.53 0.46 0.40 0.05

LPXBHR12 0.72 0.65 0.61 0.58 0.53 0.42 0.43 0.08

LPXBHR13 0.78 0.70 0.63 0.52 0.44 0.35 0.39 0.08

LPXBHR14 0.42 0.41 0.41 0.30 0.22 0.16 0.21 0.07

LPXBHR15 0.38 0.37 0.36 0.25 0.18 0.13 0.15 0.05

LPXBHR16 0.46 0.46 0.42 0.36 0.28 0.26 0.20 0.02

LPXBHR17 1.00 0.93 0.74 0.62 0.46 0.36 0.27 0.02

LPXBHR18 0.93 1.00 0.83 0.68 0.46 0.38 0.30 0.02

LPXBHR19 0.74 0.83 1.00 0.81 0.59 0.45 0.46 0.05

LPXBHR20 0.62 0.68 0.81 1.00 0.82 0.64 0.56 0.08

LPXBHR21 0.46 0.46 0.59 0.82 1.00 0.82 0.71 0.27

LPXBHR22 0.36 0.38 0.45 0.64 0.82 1.00 0.81 0.23

LPXBHR23 0.27 0.30 0.46 0.56 0.71 0.81 1.00 0.38

LPXBHR24 0.03 0.03 0.06 0.08 0.22 0.19 0.31 0.82

Table 4.6: Population connectedness table for LPXBHR contracts.

We start with directional connectedness across 24 contracts of "LPXBHR"-type in Table 4.6.

Some blocks of high connectedness are detected, especially for the trading hours ranging

from 9-13h and 16-19h. Table 4.7 provides the "from", "to" and "net" effects for 24 contracts

in descending order of importance. Our finding clearly shows that, the impact from day-

ahead spot power contracts that bidding between 9am and 13am are more relevant to the

stability of the German power market.
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Figure 4.7: The network graph for "LPXBHR"-type and "LPXBHxx"-type power contracts.
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Power Contract From To Net
LPXBHR11.Index 12.48 11.08 -1.40
LPXBHR10.Index 12.27 10.83 -1.45
LPXBHR12.Index 11.83 10.55 -1.27
LPXBHR13.Index 11.55 10.28 -1.27
LPXBHR17.Index 11.46 10.05 -1.41
LPXBHR19.Index 11.27 10.05 -1.23
LPXBHR18.Index 11.06 9.79 -1.27
LPXBHR20.Index 10.61 9.73 -0.88
LPXBHR21.Index 9.51 9.31 -0.19
LPXBHR22.Index 8.77 8.51 -0.26
LPXBHR23.Index 7.80 8.48 0.68
LPXBHR14.Index 7.48 8.16 0.68
LPXBHR16.Index 7.02 7.16 0.14
LPXBHR15.Index 6.51 7.15 0.64
LPXBHR01.Index 5.99 6.99 0.99
LPXBHR09.Index 5.64 6.54 0.90
LPXBHR06.Index 5.60 6.42 0.83
LPXBHR05.Index 5.35 6.30 0.94
LPXBHR04.Index 5.28 6.19 0.91
LPXBHR08.Index 5.13 5.65 0.52
LPXBHR07.Index 5.04 4.98 -0.06
LPXBHR02.Index 4.66 4.87 0.21
LPXBHR03.Index 4.36 4.85 0.49
LPXBHR24.Index 2.07 4.84 2.77

Table 4.7: Summary of "From", "To" and "Net" effects across "LPXBHR" contracts bidding
from 0h to 24h.

The pairwise directional impacts between "LPXBHR"-type and "LPXBHxx"-type are plot-

ted in Figure 4.7, we find a risk cluster of "LPXBHR10", "LPXBHR11", "LPXBHR11", "LPXBHR12",

"LPXBHRP", "LPXBHRB" and "LPXBHB", the graph exhibits strong mutual links between

some of the spot contracts. The "LPXBHB" (Base hours 00:00 - 24:00) has significant im-

pacts on the spot contracts from hours 09 to 13, while the impacts from "LPXBHP" (Peak

Hours 08:00 - 20:00) is negligible. In addition, both "LPXBHRB" (Baseload) and "LPXBHRP"

(Peakload) exhibits strong interconnectedness with the spot contracts from hours 09 to13.

However only the "LPXBHRP" affects the spot prices from hours 16h to18h. We can infer

that the Base spot contract "LPXBHB" is the largest risk contributor due to the strong link-

age to the other spot contracts.
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Figure 4.8: The network graph for "HP" and "NE"-type power contracts.

The network graph in Figure 4.8 illustrates the directional connectedness between "HP"-

type and "NE"-type power contracts. Compared with Figure 4.5, we can see that, the links

between these two types are obviously very strong. "NE" contracts are the Year Futures with

maturities up to six years, the underlying of these contracts is the average price of hours 9 to

20 for electricity traded on the spot market. "HP" contracts are the European style options

on the Phelix Base Future provided by EEX, the underlying of Phelix Base is the average

price of the hours 1 to 24 for electricity traded on the spot market. It is calculated for all

calendar days of the year as the simple average of the Auction prices for the hours 1 to 24

in the market area Germany / Austria. This figure shows the similar connectedness pattern

between "HP1" and "NE1" contracts.

5 CONCLUSION

In this paper we propose a regularization approach for network modeling of German en-

ergy market. We combine high-dimensional variable selection techniques with dynamic

networks (following the Dieboldt-Yilmaz tradition). By comparing our empirical findings,
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we could be able to identify the relevant risk drivers from the portfolio that are unknown

to the power market investors. The selection of important market drivers via iterated-SIS

algorithm enables us to investigate an ultra high-dimensional portfolio, since the number

of parameters to estimate increases quadratically in the number of variables included in

the context of VAR estimation.

The results show that contracts like Phelix Base Year Options and Phelix Peak Year Futures

are in the core of the Energy futures market. With the wide range of power derivative con-

tracts trading in the German electricity market, we are able to identify, estimated the risk

contribution of individual power contract, this helps us to have a better understanding of

the German power market functioning and environment.
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