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Abstract

Estimation or mis-specification errors in the portfolio loss distribution can have a considerable im-

pact on risk measures. This paper investigates the sensitivity of tail-related risk measures including

the Value-at-Risk, expected shortfall and the expectile-quantile transformation level in an epsilon-

contamination neighbourhood. The findings give the different approximations via the tail heaviness of

the contamination models and its contamination levels. Illustrating examples and an empirical study

on the dynamic CRIX capturing and displaying the market movements are given. The codes used to

obtain the results in this paper are available via https://github.com/QuantLet/SRMC .
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1 Introduction

Value-at-Risk (VaR) measures the probability of tail events of a given portfolio over a prescribed

holding period. Specifically, the VaR of X ∼ F at probability level α ∈ (0, 1) is given as

qα = inf{x ∈ R : F (x) ≥ α},

i.e., the α quantile qα of the cumulative distribution function (cdf) F of the underlying risk X.

Although VaR has become some sort of standard measure of financial market risk, it has been

criticized for reporting only a tail probability, and thus neglecting effects like the amount of loss

beyond the quantile. Additionally, VaR does not take diversification and risk aggregation effects

into account. Expected shortfall (ES), a natural coherent alternative to VaR, overcomes these

weaknesses, is becoming increasingly used in financial risk management, Artzner et al. (1999);

Delbaen (2002). Specifically, ES is defined as the conditional expectation of the loss given that it

is smaller than VaR, i.e.,

ESα = E [X|X < qα] (1.1)

provided that the underlying distribution function F is continuous. Cont et al. (2010) pointed out

that ES appears to lack robustness with respect to small changes in the underlying cdf. The recent

contribution by Mihoci et al. (2017) provides evidence on expected shortfall robustness through

its link with expectile, which is given by minimizing the asymmetric weighted least square error,

Newey and Powell (1987)

eα = arg min
θ

E
[
|α− I{X − θ < 0}||X − θ|2

]
,

where I{·} stands for the indicator function. It is well-known that the expectile is the only coherent

risk measure possessing elicitability, a desirable property for model selection, generalized regression,

forecast ranking and comparative backtesting, Nolde et al. (2017); Xu et al. (2018). Further, the

expectile is the so-called index of prudentiality in financial set-up, i.e., the amount of money added

to a position with a pre-specified, sufficiently high gain-loss ratio, Bellini and Di Bernardino (2017);
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Daouia et al. (2017).

To find the expectile-quantile transformation level is practically useful for the regulators to set a

proper level of quantile with the extreme loss taken into account, Kuan et al. (2009); Borke and

W.K. (2018). Specifically, using Jones (1994) it is not hard to verify the expectile is obtainable

through a one-to-one mapping with VaR. In other words, if ewα = qα for some α given, then the

corresponding level wα is such that

wα = LPMα − qαα
2(LPMα − qαα) + qα − E [X] , (1.2)

Yao and Tong (1996). Here LPMα =
∫ qα
−∞ x dF (x) stands for the lower partial moment at α quantile.

As a consequence, we get an alternative expression of ES as follows.

ESα = qα + qα − E [X]
1− 2wα

wα
α
, (1.3)

Taylor (2008); Mihoci et al. (2017).

Financial asset returns and fundamental factor exposure data often contain outliers, observations

that are inconsistent with the majority of the data. One might then be interested in the contami-

nation case as follows.

Fε(x) = (1− ε)F (x) + εH(x), x ∈ R, ε ∈ [0, 1], (1.4)

where ε reflects the amount of uncertainty in F , and H represents plausible deviations from F .

Note that (1.4) is a flexible mixture model if one takes H as another mixture model.

Huber (1964) initially employed (1.4) for the robust estimation of a location parameter, Zhu and

Fukushima (2009) considered generally mixture models concerning the worst-case ES of robust

portfolio management. In the spirit of (1.4), Ghosh (2017); Vandewalle et al. (2007) established

robust estimations of extreme value index. We remark that model (1.4) is different from the model

mis-specification studied by Blanchet and Murthy (2016); Engelke and Ivanovs (2017); Escobar-

Bach et al. (2017) concerning the worst VaR and extreme dependence.
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The aim of this paper is to study how the common risk measures vary as a function of the properties

of the neighbourhood. Basically, we investigate the sensitivity of VaR, ES and the expectile-

quantile transformation level wα, the so-called tail-related risk measures in our context since they

are frequently employed in practice with small α level, i.e., modelling the tail of the loss, if the

underlying distribution function Fε deviates from the pre-supposed ideal model F in the framework

of Huber (1964), that is, Fε is in the ε-neighborhood of F specified in (1.4). Our methodology is

from extreme value theory, a powerful tool in financial risk management. Therefore, a common

assumption is that both F andH belong to the max-domain attraction, i.e., the linear normalization

of sample maxima possesses a non-degenerate limit distribution. Further, we suppose that H has

a heavier left tail than F , i.e.,

lim
x→−∞

F (x)
H(x) = 0, (1.5)

We refer to McNeil et al. (2015) for the monograph of heavy tail analysis in finance and insurance

fields.

The contributions of this paper are as follows: a) Sensitivities of common risk measures including

VaR, ES and expectile-quantile transformation level are systematically studied and compared; b)

Effects on VaR, ES and expectile-quantile transformation level of an infinitesimal contamination to

a known F , are investigated by use of influence functions; c) Efficiency of the theoretical results is

illustrated by several typical examples and numerical study; d) As an application of the sensitivity

of VaR and ES, empirical study involved in the CRIX index, a benchmark of the cyptocurrency

market by Trimborn and Härdle (2016); Chen et al. (2017), is given. We expect our research would

be beneficial to both financial practitioners and theoretical experts focusing on risk management

and extreme value statistics.

The paper is outlined as follows. Section 2 is devoted to establishing the sensitivity of tail-related

risk measures in the framework of robustness analysis of Huber (1964). Several illustrating examples

are given in Section 3 followed by a small-scale numerical study and an empirical study concerning

the CRIX. Proofs are postponed to Section 6.
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2 Main Results

Throughout the paper, we keep qα for the VaR of F and write qα(ε) for VaR of the contamination

model Fε. The same understanding is for eα, ESα, wα and LPMα involved in (1.2) and (1.3).

Further, we write

h1 ∼ h2 or h1 = h2 {1 + O(1)}

if two functions hi(·), i = 1, 2 such that h1/h2 goes to 1 as the argument takes limits.

Our first result below concerns extreme approximations of VaR, ES and wα when the underlying

cdf is contaminated by a heavier tail loss H with a fixed level ε ∈ (0, 1], see (1.4).

Theorem 2.1 Consider the contamination model (1.4) with ε ∈ (0, 1] given. Suppose that F and

H satisfying (1.5) are continuous with infinite left endpoint and finite means. We have as α→ 0

qα(ε) ∼ qα′(1) with α′
def= α/ε.

Further, if the α quantile equals the wα(ε) expectile, then

ESα(ε) ∼
∫ qα(ε)
−∞ x dH(x)

α′
, wα(ε) ∼ ε


∫ qα(ε)
−∞ x dH(x)

qα(ε) − α′
 .

Remark 2.2 a) We see that once the reference model F is contaminated by a heavier tail distri-

bution H, the tail event involved will be completely determined by the contamination risk H with a

scaled probability level α/ε. This should be taken as a caveat for the practitioners when they believe

the underlying cdf might tend to a known cdf F .

b) If

∫ qα(ε)

−∞
x dH(x) ∼

∫ qα′ (1)

−∞
x dH(x) def= LPMα′(1), (2.1)

then

ESα(ε) ∼ ESα′(1), wα(ε) ∼ εwα′(1)
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implying that the ratio wα/α satisfies that

wα(ε)
α
∼ wα′(1)

α′
.

c) Since LPMα → 0 as α→ 0, the ratio wα/α satisfies that

wα
α
∼ LPMα − qαα

qαα
= E [(X/qα − 1)|{X < qα}]

depicting the relative distance of the underlying loss X from the α quantile at the left tail. Therefore,

the heavier the underlying loss is, the bigger the ratio wα/α becomes for sufficiently small α.

Note that (2.1) holds for instance when H exhibits considerably heavier tail than typically selected

distributions in practice such that H(x) = |x|−τ`(x), τ > 1 with `(·) a slowly varying function, that

is, `(tx) ∼ `(t), x > 0 as t→ −∞, see Example 3.3 below.

According to the latest revisions of the Basel Accords, the risk level α should be determined by

the risk measure without changing too much its resulting value and the corresponding capital

requirements, Bellini and Di Bernardino (2017). A natural question arising is how the tail-related

risk measures vary with infrequent catastrophe losses. Therefore, we explore below the sensitiveness

of tail-related risk measures at small risk level α by considering the ε-neighborhood

Fε = {Fε|Fε(x) = (1− ε)F (x) + εH(x)}

with ε = εα → 0 as α→ 0. We keep the same notation aforementioned with ε varying in α.

Theorem 2.3 Under the same assumptions of Theorem 2.1, suppose further that ε = εα → 0 as

α→ 0.

a). If H is much heavier than F and/or ε = εα → 0 very slowly, such that F{qα(ε)} = O(1)εH{qα(ε)},

i.e., F{qα(ε)}/[εH{qα(ε)}]→ 0 as α→ 0, then we have limα→0 α/ε = 0, and with α′ def= α/ε

qα(ε) ∼ qα/ε(1), ESα(ε) ∼
∫ qα(ε)
−∞ x dH(x)

α′
, wα(ε) ∼ ε


∫ qα(ε)
−∞ x dH(x)

qα(ε) − α′
 .

b). If H is to some extend heavier than F and/or ε = εα → 0 with certain convergence, such that
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F{qα(ε)} ∼ c′εH{qα(ε)} with some c′ > 0, then

qα(ε) ∼ qα/{(c′+1)ε}(1) ∼ qαc′/(c′+1)

ESα(ε) ∼ (1 + 1/c′)
∫ qα(ε)
−∞ x dF (x)
α

∼
(1 + c′)

∫ qα(ε)
−∞ x dH(x)
α′

wα(ε) ∼ (1 + 1/c′)
∫ qα(ε)
−∞ x dF (x)

qα(ε) − α ∼
(1 + c′)

∫ qα(ε)
−∞ x dH(x)
qα(ε) − α.

c). If H is slightly heavier than F and/or ε = εα → 0 very quickly such that εH{qα(ε)} =

O(1)F{qα(ε)}, then

qα(ε) ∼ qα, ESα(ε) ∼
∫ qα(ε)
−∞ x dF (x)

α
, wα(ε) ∼


∫ qα(ε)
−∞ x dF (x)

qα(ε) − α

 .
Remark 2.4 a) Theorem 2.3 covers all three cases by changing the roles between F (x) and εH(x)

with x = qα(ε)→ −∞ as α→ 0.

b) Case a) indicates the same claim as for ε given, and case c) implies that the tail-related risk

measures are robust with very slight contamination level εα for instance εα = cατ for some c > 0

and all τ ≥ 1.

c) A typical example of contamination model (1− ε)Φ(x
√

1− ε) + εΦ((x−µ)
√
ε) with µ a constant,

and Φ(·) the standard normal cdf, discussed in Kuan et al. (2009), gives different sensitivity with

respect to the contamination level ε = εα.

The influence function approach, known also as the "infinitesimal approach", is generally employed

to give qualitative robustness measure, for instance Fermanian and Scaillet (2005) investigates ro-

bust risk portfolios under netting agreements when the level of contamination in the data gradually

decreases to zero. Recall that the influence function of some risk measure % is defined as follows.

IF (%;F,H) = lim
ε→0

%(ε)− %(0)
ε

= ∂%(ε)
∂ε

∣∣∣∣
ε=0

with %(ε) standing for the risk measure % of the contamination model Fε(x) = (1− ε)F (x) + εH(x).

Below, we study the influence function (IF) of VaR and ES evaluating its approximate bias if the
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corresponding risk measures are based loosely on the pre-supposed idea model F .

Theorem 2.5 Assume that F has positive continuous differential at the α quantile, and H is

continuous at qα. We have

IF (qα;F,H) = α−H(qα)
F ′(qα) , IF (ESα;F,H) = qα{α−H(qα)}+

∫ qα
−∞ x d{H(x)− F (x)}
α

.

Remark 2.6 a) Note that if H has heavier left tail than F , i.e., (1.5) holds, then in view of

Theorem 2.5, both influence functions are negative for small α. Further, it holds for sufficiently

small ε,

qα ' qα(ε)− εIF (qα;F,H), ESα ' ESα(ε)− εIF (ESα;F,H).

We conclude that both VaR and ES based on the referenced model F have a slightly positive bias in

comparison to those strictly on the contamination model.

b) The influence function leads to some robustness measure such as gross error sensitivity of the

estimation of the tail-related risk measure through the following worst-case scenario

sup
H∈H
|IF (%;F,H)| or sup

H∈H
|IF (%;F,H)|2,

where H is the class of contamination models H’s. This might evoke the min-max global robustness

analysis in risk management, Brazauskas (2003).

3 Examples

We illustrate our theoretical results through three examples with the standard normal cdf being

the pre-supposed ideal model F , and H being the normal, Laplace and Power-like distributions in

Examples 3.1-3.3, subsequently.

Example 3.1 Let Fε(x) = (1−ε)Φ(x)+εΦ(x/σ) with σ > 1, the scale parameter of the contamina-

tion model H(x) = Φ(x/σ)(the same as below). Clearly, condition (1.5) holds, and the larger σ is,

8



the heavier tail H possesses. Recall qα(ε) denotes the α quantile of Fε. We have, with α′ = α/ε→ 0

qα(ε) ∼ qα′(1) = σΦ−1(α′),
∫ u

−∞
x dΦ(x/σ) = −σϕ(u/σ), u→ −∞

with ϕ(·) standing for the probability density function (pdf) of a standard normal random variable.

Further,

ESα(ε) = −(1− ε)ϕ{qα(ε)}+ εσϕ {qα(ε)/σ}
α

∼ −σϕ {qα(ε)/σ}
α′

.

Further, a straightforward calculation yields by setting u = qα(ε):

wα(ε) = (1− ε)ϕ(u) + εσϕ(u/σ) + uα

2 {(1− ε)ϕ(u) + εσϕ(u/σ) + uα} − u

∼ −(1− ε)ϕ(u) + εσϕ(u/σ)
u

− α

∼ ε

{
−σϕ(u/σ)

u
− α′

}
.

Next, we consider the case ε = εα. It follows by the Mills’ ratio Φ(x) ∼ ϕ(x)/|x|, x → −∞ that,

for ε =
√
α and 1 < σ2 ≤ 2

ESα(ε) = −(1− ε)ϕ(u) + εσϕ(u/σ)
α

∼ −ϕ(u)
α

,

where u = qα(ε) ∼ Φ−1(α).

Similarly, we have for ε =
√
α and σ2 > 2

ESα(ε) = −(1− ε)ϕ(u) + εσϕ(u/σ)
α

∼ −σϕ(u/σ)
α′

,

where u = qα(ε) ∼ σΦ−1(α/ε).

We conclude the sensitivity of VaR, ES and wα via the contamination level ε and the heaviness

parameter σ, coinciding the claims established in Theorems 2.1 and 2.3.

Example 3.2 Let Fε(x) = (1− ε)Φ(x) + εL(
√

2x/σ), σ > 0 with L(·) the standard Laplace distri-
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bution (double-sided exponential distribution), i.e., the density function l(·) is given by

l(x) = 1
2 exp {−|x|} , x ∈ R.

It follows that (1.5) holds, and for α < 0.5, u < 0

L−1(α) = log(2α),
∫ u

−∞
x dL(x) = 1

2(u− 1)eu def= LP (u).

Clearly, with α′ = α/ε

qα(ε) ∼ qα′(1) = σ√
2
L−1(α′) = σ√

2
log(2α′), α→ 0.

and

ESα(ε) =
−(1− ε)ϕ{qα(ε)}+ εσ/

√
2LP

{√
2qα(ε)/σ

}
α

∼ σ

2
√

2α′

{√
2
σ
qα(ε)− 1

}
exp

{√
2
σ
qα(ε)

}
.

Further, we have by setting u = qα(ε):

wα(ε) = −(1− ε)ϕ(u) + εσ/
√

2LP (
√

2u/σ)− uα
2
{
−(1− ε)ϕ(u) + εσ/

√
2LP (

√
2u/σ)− uα

}
+ u

∼ −(1− ε)ϕ(u) + εσ/
√

2LP (
√

2u/σ)
u

− α

∼ ε

{
LP (
√

2u/σ)√
2u/σ

− α′
}
.

Next, we consider the case ε = εα. It follows by elementary calculations that, for ε =
√
α,

ESα(ε) =
−(1− ε)ϕ(u) + εσ/

√
2LP

(√
2u/σ

)
α

∼ σ

2
√

2α′

(√
2
σ
u− 1

)
exp

{√
2
σ
u

}
,

where u = qα(ε) ∼ qα′(1) = (σ/
√

2) log(2
√
α).
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If we take ε = α, we have u = qα(ε) ∼ qα = Φ−1(α) and

ESα(ε) =
−(1− ε)ϕ(u) + ε(σ/

√
2)LP

(√
2u/σ

)
α

∼ −ϕ(u)
α

.

Comparing the Laplace with normal contamination models, we see that the risk measures are more

sensitive for heavier contamination models with even infrequent contamination data. Financial

practitioners should therefore take care of the extreme value risk due to asset-specific events and

market-wide events.

Example 3.3 Let Fε(x) = (1 − ε)Φ(x) + εH(x/σ), σ > 0, with H a symmetric distribution such

that

H(x) = 1
2

{
1−

(
1− 4

4 + x2

)0.5}
, x < 0.

Clearly, Remark 2.2 a) holds with H(x) ∼ |x|−2/2 as x→ −∞, i.e., H decays slowly like a power

function with index −2. Hence, H is the so-called Power-like distribution with scale parameter

σ > 0 in the context. Further, with α′ = α/ε

qα(ε) ∼ qα′(1) = − 1− 2α′√
α′(1− α′)

, α→ 0 (3.1)

∫ u

−∞
x dH(x) =

∫ u

−∞

2x
(4 + x2)3/2 dx = − 2√

4 + u2
def= LP (u).

We see that |LP (·)| is a regular varying function at −∞ with index −1. Therefore,

ESα(ε) = −(1− ε)ϕ{qα(ε)}+ εσLP{qα(ε)/σ}
α

∼ σLP{qα(ε)/σ}
α′

∼ σLP{qα′(1)/σ}
α′

= ESα′(1).

Further, we have by setting u = qα(ε)

wα(ε) = −(1− ε)ϕ(u) + εσLP (u/σ)− uα
2 {−(1− ε)ϕ(u) + εσLP (u/σ)− uα}+ u

∼ −(1− ε)ϕ(u) + εσLP (u/σ)
u

− α

11



∼ ε

{
σLP (u/σ)

u
− α′

}
∼ εwα′(1).

Next, we consider two cases of ε = εα so that the tail-related risk measures determined by F and

H, respectively.

• For ε =
√
α tending to zero slowly, we have with u = qα(ε) ∼ q√α(1) given by (3.1)

ESα(ε) = −(1− ε)ϕ(u) + εσLP (u/σ)
α

∼ σLP (u/σ)√
α

∼ ESα′(1).

• For ε = α, we have

ESα(ε) ∼ −ϕ(u)
α

, u = qα(ε) ∼ qα = Φ−1(α).

We remark that the Power-like contamination distribution is a typical example that the probability

level ratio wα/α = 1. For a realistic degree of tail heaviness, the ratio wα/α is less than 1, and

increases with the degree of tail heaviness, Mihoci et al. (2017).

4 Numerical study

In this section, we investigate the behavior of the theoretical discussions by Theorems 2.1, 2.3 and

2.5 with the three examples given by Section 3.

In Fig. 1, we fix the contamination level ε to be 0.5. In view of Theorem 2.1, the approximations

of the VaR, ES and the expectile-quantile transformation level ratio are given by the heavier

contamination distribution at level α′ = α/ε, i.e., qα′(1), ESα′(1) and wα′(1)/α′. As the risk level

α→ 0, the more accurate approximations to the true values based strictly on the underlying model

are obtained.

In Fig. 2, we fix small risk level α = 0.5% and investigate how the approximations vary with the

contamination level ε. Clearly, the VaR, ES and the probability level ratio wα/α becomes smaller

and smaller as ε is closer to 1, in other words, the smaller ratio level indicates the heavier left tails

12



of the contamination model. Further, the approximations performs better for larger ε. Finally, we

conclude that the level ratio of expectile vs. quantile is not monotonic for moderate ε, and the

normal-Power-like contamination model have ratio level around 1.

In Fig. 3, we conduct the numerical approximations based on the reference normal model with small

contamination level ε = ατ and small scale parameter σ of the contamination model H. Generally,

the efficiency of approximations supports the claim in c) of Theorem 2.3, and the slower rate of

approximations of ES than that of VaR since ES catches the tails of the loss, and therefore the

slowest rate of approximations is given with the heaviest Power-like model.

In comparison to Fig. 1 and Fig. 3, we investigate, in Fig 4, the approximations based on the

heavier contamination model H and suitable contamination level εα → 0 as α→ 0. Conversely, we

get that the approximations perform better with heavier contamination models, and the efficiency

of approximations for ES is more obvious than that for VaR.

Finally, in view of Theorem 2.5, we estimate the risk measure % by %̃(ε) def= % + εIF (%;F,H) for

small ε, provided that both F and H are asymptotically known. Define the relative error (RE) of

the estimations as follows.

RE(%) = %̃(ε)− %(ε)
%(ε) . (4.1)

We see from Table 1 that, the smaller ε is, the less RE is. Further, the RE of ES is in general

larger than that of VaR since ES gives the essential tail expectation which is more influenced by the

heavy-tailed contamination model. Therefore, we conclude that Theorem 2.5 gives nice estimations

of VaR as well as ES for general α.
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Normal

ε 0.10 1.10 2.10 3.10 4.10 5.10 6.10 7.10 8.10 9.10

qα 67.49 67.86 68.24 68.62 69.01 69.40 69.79 70.18 70.59 71.00

ESα 127.25 128.68 130.10 131.52 132.94 134.36 135.77 137.19 138.60 140.01

RE(qα) −0.02 −0.06 −0.16 −0.31 −0.53 −0.80 −1.13 −143 −187 −2.37

RE(ESα) 0.01 0.02 0.04 0.08 0.13 0.19 0.27 0.32 0.42 0.53

Laplace

ε 0.10 1.10 2.10 3.10 4.10 5.10 6.10 7.10 8.10 9.10

qα 67.44 67.37 67.29 67.21 67.14 67.06 66.98 66.90 66.83 66.75

ESα 127.13 127.30 127.47 127.64 127.81 127.97 128.14 128.31 128.48 128.65

RE(qα) −0.02 −0.02 −0.01 −0.01 0.01 0.02 0.04 0.06 0.08 0.11

RE(ESα) 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.03 0.03

Power-like

ε 0.10 1.10 2.10 3.10 4.10 5.10 6.10 7.10 8.10 9.10

qα 67.48 67.76 68.05 68.34 68.64 68.93 69.23 69.53 69.83 70.13

ESα 127.34 129.61 131.89 134.16 136.43 138.70 140.97 143.24 145.51 147.78

RE(qα) −0.02 −0.05 −0.11 −0.20 −0.33 −0.50 −0.71 −0.94 −1.22 −1.44

RE(ESα) 0.01 0.02 0.03 0.05 0.08 0.1.13 0.15 0.20 0.26 0.28

Table 1: Comparisons of the relative errors (RE) of VaR and ES at level α = 0.25 with varying
level and contamination model H being normal, Laplace and Power-like with mean zero and scale
parameter σ = 2, 1.2, 1. For convenience, the measures are reported as positive numbers, and the
unit of ε, qα, ESα and RE(qα),RE(ESα) are % and h, respectively.

5 Empirical study on CRIX

The CRIX, a market index (benchmark), is designed by Trimborn and Härdle (2016). It enables

each interested party to study the performance of the crypto market as a whole or single cryptos,

and therefore attracts increasing attention of risk managers and regulators. Consequently, we focus

on its tail feature and give the estimations of the tail-related risk measures. As shown below, this

is achieved by using the normal-Laplace contamination model and the approximations given in

Section 2. Here, we use the daily CRIX dataset during 2014-07-31-2018-01-01, which is available
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on http://crix.hu-berlin.de.

Firstly, we explore the distributional feature of the financial dataset CRIX. Clearly, the normal

Q-Q plot in Fig. 5 shows that the log returns of CRIX deviate from normal distribution, both tails

appear to be heavier than the normal distribution.

Next, in Fig. 6 we employ the empirical mean excess function from extreme value theory to analyse

its heaviness:

m̂X(t) =
∑n
i=1 (Xi − t) I{Xi > t}∑n

i=1 I{Xi > t}
, t large,

where Xi’s is a sample of size n, the observations of X, the daily log returns of CRIX. We see

that both of upper and lower tails of CRIX decay exponentially since the graph (t, m̂X(t)) becomes

linear with slope zero for large threshold t. Further, a close look at the horizontal change of

the log mean excess graph (log t, log m̂X(t)) for large t, indicates the Laplace tail-decaying of the

dataset, Dierckx et al. (2009). We remark that the left tail feature of X is given by the right tail

of −X. Consequently, we hereafter use the normal-Laplace contamination model with parameter

ε,µ = (µ1, µ2),σ = (σ1, σ2) to fit the log returns of CRIX:

Fε(x) = (1− ε) ∗ Φ
(
x− µ1

σ1

)
+ ε ∗ L

(√
2x− µ2

σ2

)
, x ∈ R. (5.1)

The estimated parameters involved in (5.1) are given in Table 2 by utilizing the expectation-

maximization (EM) algorithm, Dempster et al. (1977). Further, for the CRIX during 2016.04.01–

2018.01.01 the contamination level ε̂ = 0.730 is slightly bigger than the other two periods. We

conclude the tail heaviness of CRIX time series might probably have an increasing tendency.

Finally, estimations of VaR and ES at level α = 0.5%, 1%, 5% are compared also in Table 2 via three

methods including the historical simulation, written by q̂∗α, ÊS
∗
α; Laplace approximations at level

α′ = α/ε̂ by use of Theorem 2.1, denoted by q̂α′(1), ÊSα′(1); and approximations based directly

on the normal-Laplace mixture model, written by q̂α(ε̂), ÊSα(ε̂). For all the estimations of ES, we

keep the historical simulations of VaR, as in Mihoci et al. (2017).

We conclude that all the estimations for the sub-period of 2016.04.01–2018.01.01 are slightly larger
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(in absolute value) than those for the other periods, which might be caused by the heavier tail of

the CRIX in that period. Further, the Laplace approximations are rather close to the complete

contamination model, illustrating again the efficiency of our theoretical approximation in Theorem

2.1.

period parameter α q̂∗α q̂α′(1) q̂α(ε) ÊS
∗
α ÊSα′(1) ÊSα(ε)

2014.07-2018.01

ε̂ = 0.686

µ̂ = (0.001, 0.004)

σ̂ = (0.009, 0.043)

0.5% 0.137 0.128 0.128 0.179 0.130 0.000

1% 0.105 0.103 0.103 0.152 0.129 0.000

5% 0.054 0.055 0.054 0.091 0.085 0.000

2014.07-2016.04

ε̂ = 0.564

µ̂ = (0.001,−0.002)

σ̂ = (0.013, 0.042)

0.5 0.137 0.128 0.128 0.179 0.130 0.000

1% 0.104 0.101 0.101 0.143 0.119 0.000

5% 0.046 0.053 0.053 0.086 0.095 0.000

2016.04-2018.01

ε̂ = 0.730

µ̂ = (0.002, 0.008)

σ̂ = (0.006, 0.045)

0.5% 0.137 0.128 0.128 0.179 0.130 0.000

1% 0.108 0.106 0.106 0.155 0.130 0.000

5% 0.059 0.055 0.055 0.094 0.080 0.000

Table 2: Estimated parameters of the normal-Laplace contamination model for the log return
CRIX during 2014-7-31–2018-01-01 and the two sub-periods. Here q̂∗α and ÊS∗α stand respectively
for historical simulations of VaR and ES, and q̂α′(1), q̂α(ε) and ÊSα′(1), ÊSα(ε) are those estimations
based on Laplace and the original mixture model with estimated parameters involved and α′ = α/ε.

6 Proofs

Note by (1.2) and (1.3) that ESα = LPMα/α. Hence, in view of (1.3), it suffices to find qα(ε) and

LPMα(ε). Since

(1− ε)F {qα(ε)}+ εH {qα(ε)} = α, (6.1)

we have by (1.5)

H {qα(ε)} ∼ α/ε.

Therefore, it follows further from Lemma 1.2.9 in de Haan and Ferreira (2006) that, for given
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Figure 1: Comparisons of the true values (black line) based strictly on the contamination model
Fε and approximations (red dotted line) based loosely on the contamination distribution H at
level α′ = α/ε via Value-at-Risk, Expected-shortfall and the expectile-quantile transformation level
ratio wα/α. Here ε = 0.5 and H is the normal, Laplace and Power-like distribution with scale
parameter σ = 1.6, 1.6, 1, accordingly.
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Figure 2: Comparisons of the true values (black line) and approximations (dotted line) based
on the contamination model H at level α/ε via Value-at-Risk, Expected-shortfall and the expectile-
quantile transformation level ratio wα/α. Here α = 0.5%, and ε varies in (0.01, 1), and H is normal,
Laplace and Power-like distribution with the scale parameter σ = 1.5, 1.5, 1, accordingly.
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Figure 3: Comparisons of the true values (black line) and approximations (dotted line) based on
the pre-supposed ideal model F (x) = Φ(x). Here H is normal and Laplace, Power-like distributions
with scale parameter σ = 1.1, 1.6, 1.0 and ε = ατ with τ = 0.5, 1, 1, accordingly.
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Figure 6: Mean Excess plot and log Mean Excess plot for log returns of CRIX during 2014.07.31 –
2018.01.01.

ε ∈ (0, 1],

qα(ε) ∼ qα/ε(1), (6.2)

that is, the VaR for the contamination model equals approximately the VaR of H (the heavier df)

at probability level α/ε.

Next, we return to LPMα(ε). Note that by a straightforward application of L’Hôpital’ rule into

(1.5)

LPMα(ε) = (1− ε)
∫ qα(ε)

−∞
x dF (x) + ε

∫ qα(ε)

−∞
x dH(x)

∼ ε
∫ qα(ε)

−∞
x dH(x), (6.3)

which goes to 0 by the fact that E [Y ] <∞ and qα(ε)→ −∞.

Therefore, in view of (1.2), we have (recall α′ = α/ε)

wα(ε) ∼ LPMα(ε)
qα(ε) − α ∼ ε


∫ qα(ε)
−∞ x dH(x)

qα′(1) − α′
 (6.4)
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Consequently, the claim follows by (6.2)-(6.4).

Proof of Theorem 2.3 Clearly, we have limα→0 F {qα(ε)} = 0 since limα→0 max(α, εα) = 0 and

qα(ε) satisfies (6.1). Hence, limα→0 qα(ε) = −∞.

a) If F{qα(ε)} = O(1)εH{qα(ε)}, then

εH {qα(ε)} ∼ (1− ε)F {qα(ε)}+ εH {qα(ε)} = α.

Recalling that H is in the max-domain attraction, it follows by Lemma 1.2.9 by de Haan and

Ferreira (2006) that

qα(ε) ∼ qα/ε(1).

b) If F{qα(ε)} ∼ c′εH{qα(ε)} with some fixed c′ > 0, then

qα(ε) ∼ qα/{(c′+1)ε}(1) ∼ qαc′/(c′+1).

c) If εH{qα(ε)} = O(1)F{qα(ε)}, then

F {qα(ε)} ∼ (1− ε)F {qα(ε)}+ εH {qα(ε)} = α

implying that qα(ε) ∼ qα.

Proof of Theorem 2.5 First, for given α ∈ (0, 1), denote by θ the influence function of VaR

with the underlying df in the ε-neighbourhood Fε = {Fε|Fε(x) = (1− ε)F (x) + εH(x)}. We have

qα(ε) ' qα + εθ.

Therefore, we have by Taylor’s expansion of F at qα that

lim
ε→0

[(1− ε){α + εθF ′(qα)}+ εH(qα)] = α.

This implies that θF ′(qα) +H(qα) = α. The first claim is obtained.
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Similarly, we have for the ES

IF (ESα;F,H) = lim
ε→0

∫ qα(ε)
−∞ x dFε(x)−

∫ qα
−∞ x dF (x)

αε

=
∫ qα
−∞ x d{H(x)− F (x)}+ limε→0 ε

−1 ∫ qα(ε)
qα

x dFε(x)
α

=
∫ qα
−∞ x d{H(x)− F (x)}+ qα{α−H(qα)}

α
,

where the last step follows by qα(ε)− qα ' θε and the continuity of F ′ at qα.
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