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Motivation

Snapshot of a Limit Order Book - ASX
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[Maike! | Quotes | Trades | Brokers | Net Flow | Order Flow | Price Vol + | (|| stock | Time | Type | Broker | Price | Volume | Atrib.
Buy NAB 10:11:00 ASK 3520 500 MKT
XD NAB 10:10:57 CHG_ASK 3520 10300 MKT
NEE 3520 20 132594 Sell A8 10:10:57  BD 3521 8000 BEST
NAB 10:10:55 ASK 3522 12246 BEST
3415 3520 | 3622 12246 = nAB 10:10:53 B 3520 10000 MKT
[ s e i A8 AsK 3520 5000 MKT
7500 3510 | 3528 6500 o o = o
15 3500 | 3529 8000
360 3500 | 3530 5240 x"g g“%’( ;252 1;233 mg
500 3500 | 3530 20000 i
50 3495 | 3534 7340 1AB 8D 3510 7500
275 3495 | 3535 140 1AB CAN_ASK 3540 1162
50 3490 | 3535 235 1AB CHE_ASK 3523 20000 BEST
50 3490 | 3535 400 naB AsK 3523 1000 MKT
1000 3490 | 3535 260 nag AsK 3523 5000 MKT
500 3485 | 3537 11 NAB CHG_ASK 3523 300
215 3485 | 3540 27 naB ASK 3524 20000 BEST
1800 3485 | 3540 1066 nAB CHG_ASK 3525 10300
30 3480 | 3540 2200 nAg CHG_BID 3523 3849 BEST
30003480 35402700 A8 ASK 3524 300 BEST
100,.3475| oAl 2100, nAB 8D 3523 2000 BEST
1333 g:gg :g:g ggg 1AB CHE_ASK 3528 6500
il gl el e nAB CHE_ASK 3525 6532 BEST
o il A8 CHE_BD 3522 3849
00 3460 | HEED 228 1AB ASK 3525 6151 MKT
700 3450 | 3550 400 1AB CHG_ASK 3530 20000
150 3458 | 3554 631 NAB CHG_ASK 3529 8000 BEST
5000 3457 | 3555 260 NAB. BD 3525 10000 BEST
300 3450 | 3560 1226 nAB ASK 3590 800
344 3450 | 3560 109 naB 8D 3521 15 BEST
750 3450 | 3565 285 } nAB 10:08:56  ASK 3526 2000 MKT
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Graphical lllustration
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Figure 1: LOB for four stocks on the ASX, July 8, 2002, 10:15
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Motivation

Objectives

[] Parsimonious statistical modelling of a limit order book
[] Extracting common factors driving the book

[] Understanding the dynamics of liquidity supply

[] Analyzing the predictability of liquidity supply

Forecasting Liquidity Supply



Motivation 5

Economic Motivation

[] LOB displays instantaneous liquidity-induced transaction costs
[] Shape of order book curves: marginal trading costs
[] Optimal splitting strategies: transaction costs vs. liquidity risks

[J Information content: LOB reflects market’s expectation
(Glosten, 1994, Bloomfield/OHara/Saar, 2002,
Cao/Hansch/Wang, 2003)

Forecasting Liquidity Supply f



Motivation 6

Statistical Motivation

[] Providing a flexible but unifying framework for orderbook
modelling and forecasting

[J Modelling approach: smooth (non-parametrically) in space and
parametrically in time

[ Dimension reduction: extraction of relevant common factors

[] Time series properties of factors?
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Dynamic Semiparametric Factor Model (DSFM)

Notation

CJ t: time index,

(] j: cross-sectional index, j =1,...,J =202,
[] Ygj: offered volume at time t at level j,

[1 Xgj: limit price at time t at level J,

(] L: number of underlying factors, L < J
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The Dynamic Semiparametric Factor Model
(DSFM)

[ Orthogonal L-factor model of an observable J-dimensional
random vector:
Yej=moj+ Zeamij+ - Zyimypj+ e
[ m(.) = (mo,my,...,m)7" is a tuple of functions with
mj : R? — R representing (time-invariant) factor loadings
[ Zy =(1,Z¢1,.--,Z;1) " are the factors

[ Including explanatory variables X ;:
L

Yij =Y Zeymi(Xej) + ey = Z m(Xe ) + €rj
p
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Principle of the DSF Model

L
Yej =Y Zeymi(Xej) + erj = 2 m(Xe)) + £
1=0

[] Reducing the dimension of the process
[] Nonparametric estimation of factor loadings
[] Keeping the time structure

[] Taking the structure of the high-dimensional object into
account
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Estimation: Series Estimator

L L K
ZIm(X) = Zoym(Xej) =D Zea) | anhn(X) = Z Ap(X)
1=0 =0 k=1

[ () = (¢1,...,%k)" vector of basis functions, e.g. a tensor
B-spline basis
[ A= (a) € REFD*K s a coefficient matrix

(] K bandwidth parameter
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Dynamic Semiparametric Factor Model (DSFM)

Least Squares Estimation

(Z, Z) = argming, AS(A, Z)

T J
= argminz, A Z Z{Yt,j - ZtTAw(XtJ)}z

t=1 j=1
7 Z 7 T
Zt - (17Zt,17"'7Zt,L)
A

= (a1k)i=0,..,Lik=1,..K

[J Minimization by Newton-Raphson algorithm
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Dynamic Semiparametric Factor Model (DSFM)

Identification Issues

The minimization problem has no unique solution. If (Z;, A;) is a
minimizer then also

(BTZ,,BTA)

is a minimizer. Here B is an arbitrary matrix of the form
~ 1 0
2= (y 5)

for an invertible matrix B.
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Inference

The differences in the inference based on Z; instead of the (true
unobservable) Z; are asymptotically negligible (Borak et al, 2007).

This asymptotic equivalence carries over to estimation and testing
procedures in the framework of fitting a VAR or VEC model.

Therefore it is justified to fit vector autoregressive model and
proceed as if Z; were observed.
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The Data

[J Four traded stocks at the Australian Stock Exchange (ASX) in
2002:

» Broken Hill Proprietary Ltd. (BHP)
» MIM
» National Australia Bank Ltd. (NAB)
» Woolworths Ltd.(WOW)
[] Period covered: July 8, 2002 until August 23, 2002 (7 weeks,
35 trading days)
[-] 202 dimensional vector of price-volume pairs each minute for
each stock
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Data

Trading Frequencies

Recorded Analyzed
Stock | Total Per day | Total Per day
BHP 123281 3522 11258 322
MIM 27394 783 8339 238
NAB 86106 2460 10811 309
WOw 39127 1118 9272 265

16

Table 1: Number of transactions for selected stocks in the period under

review
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In-Sample Fit 17

Data Preprocessing

[-] 330 vectors of quantities per day for selected stocks starting
from 10:15 until 15:45

[] 'Relative’ prices were computed as deviations from the best bid
and best ask price (respectively)

[] Bid and ask side are modelled separately to obtain better fit
around the inside quotes

Forecasting Liquidity Supply f



In-Sample Fit 18
Selection of K and L

Explained variance:
T s L 5 4 2
S Ve = Sio Zesin (X)) }
T <—Je Y

BHP, BID BHP, ASK
K=15 K=25]|K=15 K=25
0937 0939 [0.953  0.955
0976 0978 | 0.977  0.979
0.985 0987 | 0.983  0.986
0.988  0.990 |0.986  0.989
0.989 0992 |0.988  0.990
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In-Sample Fit

In-Sample Parameterisation

[] Identical parameterisation for bid and ask side

» 2 dynamic factors (L = 2)
» B-splines of order 2 (linear)
» 15 knots (K = 15)
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In-Sample Fit

Figure 2: In-sample fit for BHP on July 12, 2002 (13:15)
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Modelling the BID side: 1st Factor Loadings
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Figure 3: 1st factor loadings for the BID side

Forecasting Liquidity Supply f




In-Sample Fit 22

Modelling the BID side: 2nd Factor
Loadings
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In-Sample Fit

Modelling the
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In-Sample Fit

Modelling the BID side: 2nd Factor
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Figure 6: 2nd factor for the bid side
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In-Sample Fit

Modelling the ASK side: 1st Factor
Loadings
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In-Sample Fit

Modelling the ASK side: 2nd Factor
Loadings
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In-Sample Fit

Modelling the ASK side: 1st Factor
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Figure 9: 1st factor for the ask side
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Modelling the ASK side: 2nd Factor
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Figure 10: 2nd factor for the ask side
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In-Sample Fit 29

Time Series Properties of Factors

First factor integrated
Second factor mostly integrated
For most periods first and second factors are cointegrated

Evidence for GARCH effects
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Out-of-Sample Forecasting 30

Estimated Parameters in the VECM

(] Equation with estimated parameters:
AZy ;| [ —0.022°
AZyy | 0.005*

{[ 1.000* 0.826 | [ 4,1 ] + [ 2164110.119* | [ const ]}+

2211
L[ 0060 —0450 1 [ AZ ] [ ure
0.004 —0.006 AZQ’t_]_ uz t

] Significant estimates are denoted by *
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Out-of-Sample Forecasting Setup

Model estimation based on past 1320 trading minutes (4-day
period)

Re-estimation and model selection for factor loadings every 15
minutes

Forecast for every minute during the 15-minute interval
Model selection:

» ADF and KPSS test
» Johansen trace test
» BIC
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Figure 11: Forecasted LOB (blue) and observed LOB (red)
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Out-of-Sample Forecasting
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Figure 12: Forecasted LOB (blue) and naive forecast (red)
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RMSPEs for DSFM and Naive Forecasts
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Figure 13: RMSPEs for DSFM forecasts (blue) and naive forecasts (red)
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Conclusion

Conclusions

2 factors sufficient to model order book dynamics

1st factor captures slope

2nd factor captures curvature

Order book factors are (co-)integrated

DSFM-VEC based factors (partly) superior to naive forecast

Confidence intervals for predicted liquidity are provided
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Further Steps

Linking liquidity factors to other variables (e.g. liquidity demand,
volatility, PIN)

[ Studying market elasticities

[J Linking factors and loadings to execution risks and execution

probabilities

] Studying liquidity risks, GARCH, "default’ risks

] Studying liquidity interdependencies between both sides of the

market
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