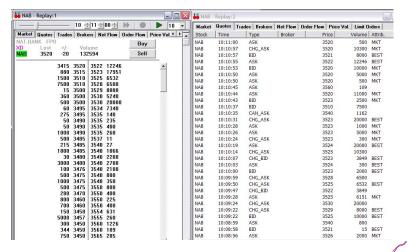
# Modelling and Forecasting Liquidity Supply Using Semiparametric Factor Dynamics

Wolfgang Härdle Nikolaus Hautsch Andrija Mihoci

Institute for Statistics and Econometrics CASE - Center for Applied Statistics and Economics Humboldt-Universität zu Berlin http://ise.wiwi.hu-berlin.de



# Snapshot of a Limit Order Book - ASX



Motivation \_\_\_\_\_\_3

## **Graphical Illustration**

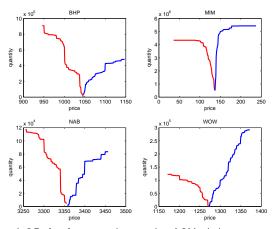


Figure 1: LOB for four stocks on the ASX, July 8, 2002, 10:15

# **Objectives**

- Parsimonious statistical modelling of a limit order book
- Understanding the dynamics of liquidity supply
- Analyzing the predictability of liquidity supply

#### **Economic Motivation**

- LOB displays instantaneous liquidity-induced transaction costs
- Shape of order book curves: marginal trading costs
- Optimal splitting strategies: transaction costs vs. liquidity risks
- Information content: LOB reflects market's expectation (Glosten, 1994, Bloomfield/OHara/Saar, 2002, Cao/Hansch/Wang, 2003)

#### Statistical Motivation

- Providing a flexible but unifying framework for orderbook modelling and forecasting
- Modelling approach: smooth (non-parametrically) in space and parametrically in time
- Dimension reduction: extraction of relevant common factors

### **Outline**

- 1 Motivation ✓
- 2. The Dynamic Semiparametric Factor Model (DSFM)
- 3. Data
- 4. In-Sample Fit
- 5. Out-of-Sample Forecasting
- 6. Conclusions

#### **Notation**

- t: time index,
- j: cross-sectional index, j = 1, ..., J = 202,
- $X_{t,j}$ : limit price at time t at level j,

# The Dynamic Semiparametric Factor Model (DSFM)

 Orthogonal L-factor model of an observable J-dimensional random vector:

$$Y_{t,j} = m_{0,j} + Z_{t,1}m_{1,j} + \cdots Z_{t,L}m_{L,j} + \varepsilon_{t,j}$$

- $m(.) = (m_0, m_1, ..., m_L)^{\top}$  is a tuple of functions with  $m_j : R^d \to R$  representing (time-invariant) factor loadings
- $oxed{\Box} \ Z_t = (1, Z_{t,1}, \dots, Z_{t,L})^{ op}$  are the factors
- $\square$  Including explanatory variables  $X_{t,j}$ :

$$Y_{t,j} = \sum_{l=0}^{L} Z_{t,l} m_l(X_{t,j}) + \varepsilon_{t,j} = Z_t^{\top} m(X_{t,j}) + \varepsilon_{t,j}$$

## Principle of the DSF Model

$$Y_{t,j} = \sum_{l=0}^{L} Z_{t,l} m_l(X_{t,j}) + \varepsilon_{t,j} = Z_t^{\top} m(X_{t,j}) + \varepsilon_{t,j}$$

- Reducing the dimension of the process
- Nonparametric estimation of factor loadings
- Keeping the time structure
- Taking the structure of the high-dimensional object into account

#### **Estimation: Series Estimator**

$$Z_{t}^{\top}m(X) = \sum_{l=0}^{L} Z_{t,l}m_{l}(X_{t,j}) = \sum_{l=0}^{L} Z_{t,l}\sum_{k=1}^{K} a_{l,k}\psi_{k}(X) = Z_{t}^{\top}A\psi(X)$$

- $\psi(.) = (\psi_1, ..., \psi_K)^{\top}$  vector of basis functions, e.g. a tensor B-spline basis
- $\blacksquare$   $A = (a_{l,k}) \in R^{(L+1) \times K}$  is a coefficient matrix

## **Least Squares Estimation**

$$\begin{split} (\widehat{Z}_t, \widehat{A}) &= \operatorname{argmin}_{Z_t, A} S(A, Z) \\ &= \operatorname{argmin}_{Z_t, A} \sum_{t=1}^T \sum_{j=1}^J \{Y_{t,j} - Z_t^\top A \psi(X_{t,j})\}^2 \\ \widehat{Z}_t &= (1, \widehat{Z}_{t,1}, \dots, \widehat{Z}_{t,L})^\top \\ \widehat{A} &= (\widehat{a}_{I,k})_{I=0,\dots,L; k=1,\dots,K} \end{split}$$

#### Identification Issues

The minimization problem has no unique solution. If  $(\hat{Z}_t, \hat{A}_t)$  is a minimizer then also

$$(\tilde{B}^{\top}\hat{Z}_t, \tilde{B}^{\top}\hat{A})$$

is a minimizer. Here  $ilde{B}$  is an arbitrary matrix of the form

$$\tilde{B} = \begin{pmatrix} 1 & 0 \\ 0 & B \end{pmatrix}$$

for an invertible matrix B.

#### Inference

The differences in the inference based on  $\hat{Z}_t$  instead of the (true unobservable)  $Z_t$  are asymptotically negligible (Borak et al, 2007).

This asymptotic equivalence carries over to estimation and testing procedures in the framework of fitting a VAR or VEC model.

Therefore it is justified to fit vector autoregressive model and proceed as if  $\hat{Z}_t$  were observed.

Data — 15

#### The Data

- □ Four traded stocks at the Australian Stock Exchange (ASX) in 2002:
  - Broken Hill Proprietary Ltd. (BHP)
  - ► MIM
  - National Australia Bank Ltd. (NAB)
  - Woolworths Ltd.(WOW)
- □ Period covered: July 8, 2002 until August 23, 2002 (7 weeks, 35 trading days)
- 202 dimensional vector of price-volume pairs each minute for each stock

Data — 16

# **Trading Frequencies**

|       | Recorded |         | Analyzed |         |
|-------|----------|---------|----------|---------|
| Stock | Total    | Per day | Total    | Per day |
| BHP   | 123281   | 3522    | 11258    | 322     |
| MIM   | 27394    | 783     | 8339     | 238     |
| NAB   | 86106    | 2460    | 10811    | 309     |
| WOW   | 39127    | 1118    | 9272     | 265     |

Table 1: Number of transactions for selected stocks in the period under review

## **Data Preprocessing**

- 'Relative' prices were computed as deviations from the best bid and best ask price (respectively)
- Bid and ask side are modelled separately to obtain better fit around the inside quotes

### Selection of K and L

Explained variance:

$$1 - RV(L) = 1 - \frac{\sum_{t}^{T} \sum_{j}^{J_{t}} \left\{ Y_{t,j} - \sum_{l=0}^{L} \hat{Z}_{t,l} \hat{m}_{l}(X_{t,j}) \right\}^{2}}{\sum_{t}^{T} \sum_{j}^{J_{t}} \left( Y_{t,j} - \bar{Y} \right)}$$

|   | BHP, BID |        | BHP, ASK |        |
|---|----------|--------|----------|--------|
| L | K=15     | K = 25 | K=15     | K = 25 |
| 1 | 0.937    | 0.939  | 0.953    | 0.955  |
| 2 | 0.976    | 0.978  | 0.977    | 0.979  |
| 3 | 0.985    | 0.987  | 0.983    | 0.986  |
| 4 | 0.988    | 0.990  | 0.986    | 0.989  |
| 5 | 0.989    | 0.992  | 0.988    | 0.990  |

# In-Sample Parameterisation

- Identical parameterisation for bid and ask side
  - $\triangleright$  2 dynamic factors (L=2)
  - B-splines of order 2 (linear)
  - ▶ 15 knots (K = 15)

In-Sample Fit — 20

## In-Sample Fit

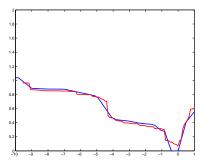


Figure 2: In-sample fit for BHP on July 12, 2002 (13:15)



## Modelling the BID side: 1st Factor Loadings

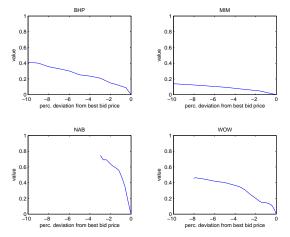
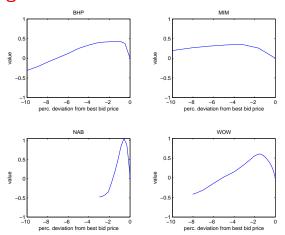


Figure 3: 1st factor loadings for the BID side



# Modelling the BID side: 2nd Factor Loadings



Forecasting Liquidigur@u4p2nd factor loading for the bid side

In-Sample Fit — 23

## Modelling the BID side: 1st Factor

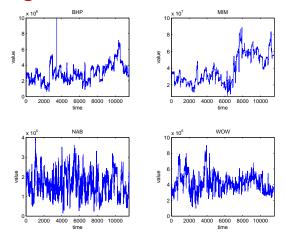


Figure 5: 1st factor for the bid side

In-Sample Fit — 24

### Modelling the BID side: 2nd Factor

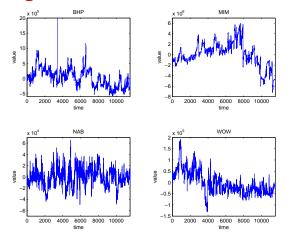
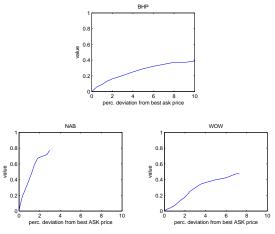


Figure 6: 2nd factor for the bid side

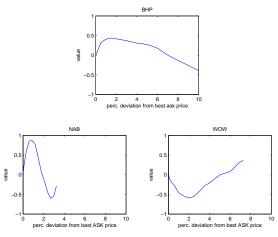


# Modelling the ASK side: 1st Factor Loadings



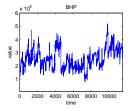
Forecasting Liquidigur@u7pplyst factor loadings for the ask side

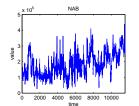
# Modelling the ASK side: 2nd Factor Loadings



Forecasting Liq Figur € &p2nd factor loadings for the ask side

### Modelling the ASK side: 1st Factor





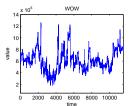


Figure 9: 1st factor for the ask side

## Modelling the ASK side: 2nd Factor

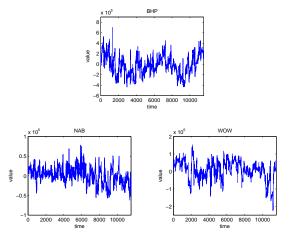


Figure 10: 2nd factor for the ask side

## **Time Series Properties of Factors**

- First factor integrated
- Second factor mostly integrated
- For most periods first and second factors are cointegrated
- Evidence for GARCH effects

#### Estimated Parameters in the VECM

■ Equation with estimated parameters:

$$\begin{bmatrix} \Delta Z_{1,t} \\ \Delta Z_{2,t} \end{bmatrix} = \begin{bmatrix} -0.022^* \\ 0.005^* \end{bmatrix} \cdot \\ \left\{ \begin{bmatrix} 1.000^* & 0.826 \end{bmatrix} \begin{bmatrix} Z_{1,t-1} \\ Z_{2,t-1} \end{bmatrix} + \begin{bmatrix} 2164110.119^* \end{bmatrix} \begin{bmatrix} const \end{bmatrix} \right\} + \\ + \begin{bmatrix} -0.060 & -0.450 \\ 0.004 & -0.006 \end{bmatrix} \begin{bmatrix} \Delta Z_{1,t-1} \\ \Delta Z_{2,t-1} \end{bmatrix} + \begin{bmatrix} u_{1,t} \\ u_{2,t} \end{bmatrix}$$

□ Significant estimates are denoted by \*

## **Out-of-Sample Forecasting Setup**

- Model estimation based on past 1320 trading minutes (4-day period)
- Re-estimation and model selection for factor loadings every 15 minutes
- □ Forecast for every minute during the 15-minute interval
- Model selection:
  - ADF and KPSS test
  - Johansen trace test
  - BIC

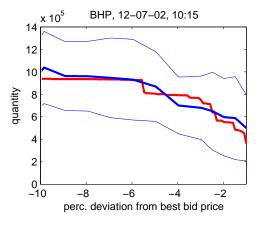


Figure 11: Forecasted LOB (blue) and observed LOB (red)

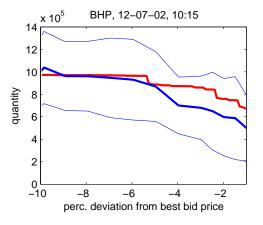


Figure 12: Forecasted LOB (blue) and naive forecast (red)

#### RMSPEs for DSFM and Naive Forecasts

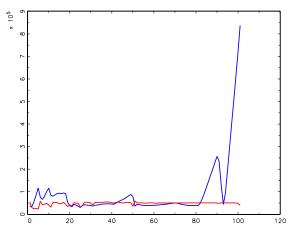


Figure 13: RMSPEs for DSFM forecasts (blue) and naive forecasts (red)

Conclusion — 35

### **Conclusions**

- 2 factors sufficient to model order book dynamics
- 2nd factor captures curvature
- Order book factors are (co-)integrated
- DSFM-VEC based factors (partly) superior to naive forecast
- Confidence intervals for predicted liquidity are provided

Conclusion — 36

## **Further Steps**

- □ Linking liquidity factors to other variables (e.g. liquidity demand, volatility, PIN)
- Studying market elasticities
- Linking factors and loadings to execution risks and execution probabilities
- Studying liquidity risks, GARCH, 'default' risks
- Studying liquidity interdependencies between both sides of the market