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Roman Timofeev

C.A.S.E. — Center for Applied Statistics
and Economics
Chair of Statistics
School of Business and Economics
Humboldt-Universität zu Berlin
http://ise.wiwi.hu-berlin.de
http://case.wiwi.hu-berlin.de

1

http://ise.wiwi.hu-berlin.de
http://case.wiwi.hu-berlin.de


Motivation 1-1

Is There a Bump?
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Figure 1: Neutral and historical
densities for 1/2 year returns in
2000
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Figure 2: Corresponding Em-
pirical Pricing Kernel (EPK),
2000

Testing Monotonicity of Pricing Kernels
confidence 

interval



Motivation 1-2

Basic Notions

Rt - half a year DAX returns defined as Rt = St−St−126

St−126
where St is

observed DAX value at time t

p is the unknown density of the returns Rt

q is the risk neutral density estimated from implied volatility
surfaces over the observed option prices with maturities of half
year.

Due to sufficient number of observations on options, q can be
precisely estimated and is considered to be known.

Testing Monotonicity of Pricing Kernels
confidence 

interval



Motivation 1-3

Basic Notions

Let us define the pricing kernel K as

K (Rt) = q(Rt)
p(Rt)

Problem: Test monotonicity of pricing kernel K (x) = q(x)
p(x) given

that p is unknown
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Motivation 1-4

Monotonicity of Pricing Kernel

Monotone decreasing pricing kernel corresponds to classical
risk-averse utility function.

Non-monotone pricing kernel leads to non-concave utility function
and contradicts to Friedman’s concept of risk averse behavior.

Figure 3: Risk-Aversion and Certainty Equivalence
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Motivation 1-5

Outline of the Talk

1. Motivation X

2. Problem Setup

3. Problem Simplification

4. Values

5. Applications and Simulations
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Problem Setup 2-1

Problem Setup

For increasing sequence of returns R(k) such that

R(1) ≤ R(2), . . . ,≤ R(n)

we test if there exists any interval I , J such that the sequence

K(k) =
q(R(k))

p(R(k))
, I ≤ k ≤ J

is monotone decreasing having only q(Rt) as a known density
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Problem Setup 2-2

Test Outline

1. Reduce our problem to a simpler problem using Pyke’s order
statistics results

2. Construct likelihood ratio test for a nested (reduced) model

3. Compute corresponding test statistics

4. Simulate test distribution via Monte Carlo simulations in order
to find critical values

5. Take decision about monotonicity of pricing kernel K
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Problem Simplification 3-1

Order Statistics

Consider U1, . . . ,Un be i .i .d with a uniform distribution on [0, 1].
For the order statistics

U(1) ≤ U(2), . . . ,≤ U(n)

define uniform spacings Sk as

S1 = U(1) and Sk = U(k) − U(k−1)
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Problem Simplification 3-2

Pyke’s Theorem

Theorem Let U1, . . . ,Un be i .i .d with a uniform distribution on
[0, 1] and e1, . . . , en be i .i .d . standard exponentially distributed
random variables. Then for uniform spacings Sk

L{Sk , 1 ≤ k ≤ n} = L
{

ek∑n
i=1 ek

, 1 ≤ k ≤ n
}

Using the fact that E (ek) = 1 we obtain the following result

n
{
U(k) − U(k−1)

}
= n · Sk ≈ ek (1)
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Problem Simplification 3-3

Problem Simplification

Let P(x) be a cumulative distribution function associated with pdf
p(x) such that

P(x) =
∫ x
−∞ p(u)du

Using Taylor approximation

P(R(k+1)) = P(R(k)) + P ′(R(k)) · (R(k+1) − R(k))

we can write

U(k+1) − U(k) = P(R(k+1))− P(R(k)) ≈ p(R(k)) ·
(
R(k+1) − R(k)

)
(2)
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Problem Simplification 3-4

Problem Simplification

Combining (1) and (2) we obtain the main simplification result

n · q(R(k)) ·
(
R(k+1) − R(k)

)
≈

q(R(k))

p(R(k))
· ek = Kk · ek (3)

Taking n · q(R(k)) ·
(
R(k+1) − R(k)

)
= Z (R(k)) = Zk our problem is

reduced to the following

Check monotonicity of K (R(k)) = Kk using

Zk = Kk · ek
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Testing Hypothesis 4-1

Testing Hypothesis

Let A(I , J) be set of all positive decreasing sequences

A(I , J) = {ak ≥ 0 : ak ≥ ak+1, I ≤ k ≤ J}

Hypothesis H0: K ⊂ A(I , J) and pricing kernel K (Rk) is
monotone decreasing function
Hypothesis H1: K is not monotone decreasing function

I J
( , )I J

1I n= …

1 n

1J I n= + …
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Testing Hypothesis 4-2

Likelihood Ratio Test

The likelihood ratio monotonicity test is defined by the function

φ(Z ) = 1

{
maxK⊂A(I ,J) log {p(Z ,K )}

maxK log {p(Z ,K )}
− hα(I , J) ≥ 0

}
(4)

where hα(I , J) is our critical surface with significance level α

H0 is rejected if φ(Z ) 6= 1 and accepted if φ(Z ) = 1
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Testing Hypothesis 4-3

Computation of ML function

Using the results from equation (3) that Zk = Kk · ek we derive
maximum likelihood function

log {p(Z ,K )} = −
J∑

k=I

Zk

Kk
−

J∑
k=I

log(Kk) (5)

which gives us analytical result for maxK log {p(Z ,K )}

maxK log {p(Z ,K )} = −n −
∑n

k=1 log(Zk)
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Testing Hypothesis 4-4

Computation of ML function

Computation of maxK⊂A(I ,J) log {p(Z ,K )} is performed with
Newton-Raphson method with the projection on decreasing
sequence A(I , J).

The main idea of the method is to find the maximum likelihood
over all possible monotone decreasing sequences by interative
optimization via the Newton Raphson algorithm.

The result of ’best’ decreasing sequences can be achieved through
Isotonic regression combined with Newton Raphson opimization
algorithm.
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Testing Hypothesis 4-5

Isotonic Regression and Newton Raphson
Algorithm
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Figure 4: Isotonic Regression combined with Newton Rapshon algo-
rithm
Testing Monotonicity of Pricing Kernels

confidence 
interval



Critical Values 5-1

Critical Values

Generate ’the worst’ non-increasing case of the sequence K(k) as a
constant:

K(1) = K(2) = . . . = K(n) = 1

Then using the result that Zk = Kk · ek we generate Zk ≈ exp(1)
as an i .i .d standard exponential random variable
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Critical Values 5-2

Critical Values

Define ξ(I , J) as a test statistics over simulated Zk :

ξ(I , J) =
maxK⊂A(I ,J) log{p(Z ,K)}

maxK log{p(Z ,K)}

Define mean M(I , J) and variance V 2(I , J) of ξ(I , J):

M(I , J) = E0ξ(I , J)

V 2(I , J) = E0

[
ξ2(I , J)− E0ξ(I , J)

]2

Parameters M(I , J) and V (I , J) are calculated by simulations.
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Critical Values 5-3

Critical Values

Critical value tα where α is a significance level is calculated as a
root to equation

P0

{
max
I=1,n

max
J=I+1,n

{ξ(I , J)−M(I , J)− tαV (I , J)} ≥ 0

}
= α (6)

over Monte-Carlo simulations.

Equation (6) gives us a corresponding critical surface hα(I , J)

hα(I , J) = M(I , J) + tα · V (I , J)
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Critical Values 5-4

Test Summary

1. Compute Z (R(k)) = n · q(R(k)) ·
{
R(k+1) − R(k)

}
2. Compute test statistics

ξ(I , J) =
maxK⊂A(I ,J) log{p(Z ,K)}

maxK log{p(Z ,K)}
3. Take decision: if

max
I=1,n

max
J=I+1,n

{ξ(I , J)−M(I , J)− tαV (I , J)} ≥ 0

then K (·) is a non-monotone function
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Applications and Simulations 6-1

Real Zk
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Figure 5: Calculated Zk and optimized isotonic regression over DAX
returns data in 2002
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Applications and Simulations 6-2

Simulated surfaces M(I , J) and V (I , J)
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Figure 6: Simulated surface
M(I , J) with Monte-Carlo
method, n=255
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Figure 7: Simulated surface
V (I , J) with Monte-Carlo
method, , n=255
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Applications and Simulations 6-3

Simulated tα
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Figure 8: Critical values tα for different significance levels α
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Applications and Simulations 6-4

Critical surfaces hα(I , J)
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Figure 9: Critical surfaces
hα(I , J) for significance level
α = 5%
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Figure 10: Critical surfaces
hα(I , J) for significance level
α = 10%
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Applications and Simulations 6-5

Obtained results for EPK in 2002

α significance Level 5% 10% 20%

t(α) critical value 3.3325 3.1409 2.9259

Test Value -0.9474 -0.8839 -0.8127

Hypothesis (H0/H1) H0 H0 H0

( ) ( ) ( ) ( ){ }
1, 1,

max max , , ,
I n J I n

I J M I J t V I Jξ α
= = +

− −

Figure 11: Summary of results
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Applications and Simulations 6-6
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