Genetic Algorithm for Support Vector Machines Optimization in Probability of Default Prediction

Wolfgang Härdle Dedy Dwi Prastyo

Ladislaus von Bortkiewicz Chair of Statistics C.A.S.E. – Center for Applied Statistics and Economics Humboldt–Universität zu Berlin http://lvb.wiwi.hu-berlin.de http://www.case.hu-berlin.de

Classifier

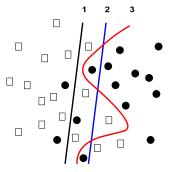


Figure 1: Linear classifier functions (1 and 2) and a non-linear one (3)

Loss

- \odot Nonlinear classifier function f be described by a function class \mathcal{F} fixed a priori, i.e. class of linear classifiers (hyperplanes)
- Loss

$$L(x,y) = \frac{1}{2} |f(x) - y| = \begin{cases} 0, & \text{if classification is correct,} \\ 1, & \text{if classification is wrong.} \end{cases}$$

Expected and Empirical Risk

 Expected risk – expected value of loss under the true probability measure

$$R(f) = \int \frac{1}{2} |f(x) - y| dF(x, y)$$

$$\widehat{R}(f) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{2} |f(x_i) - y_i|$$

VC bound

Vapnik-Chervonenkis (VC) bound – there is a function ϕ (monotone increasing in VC dimension h) so that for all $f \in \mathcal{F}$ with probability $1-\eta$ hold

$$R(f) \le \widehat{R}(f) + \phi\left(\frac{h}{n}, \frac{\log(\eta)}{n}\right)$$

Outline

- 1. Introduction ✓
- 2. Support Vector Machine (SVM)
- 3. Feature Selection
- 4. Application
- 5. Conclusions

SVM

- $\begin{array}{l} \boxdot \quad \mathsf{Classification} \\ \mathsf{Data} \ D_n = \{(x_1, y_1), \dots, (x_n, y_n)\} : \Omega \to (\mathcal{X} \times \mathcal{Y})^n \\ \mathcal{X} \subseteq \mathbb{R}^d \ \mathsf{and} \ \mathcal{Y} \in \{-1, 1\} \end{array}$
- Goal to predict 𝒩 for new observation, 𝑥 ∈ 𝒳, based on information in 𝔻

Linearly (Non-) Separable Case

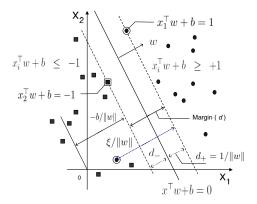


Figure 2: Hyperplane and its margin in linearly (non-) separable case

SVM Dual Problem

$$\max_{\alpha} L_D(\alpha) = \max_{\alpha} \left\{ \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j y_i y_j x_i^\top x_j \right\},$$
s.t. $0 \le \alpha_i \le C$

$$\sum_{i=1}^n \alpha_i y_i = 0$$

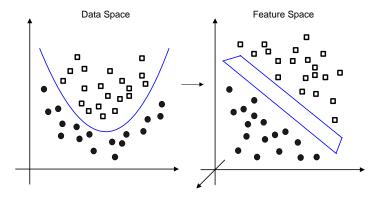


Figure 3: Mapping two dimensional data space into a three dimensional feature space, $\mathbb{R}^2 \mapsto \mathbb{R}^3$. The transformation $\Psi(x_1, x_2) = (x_1^2, \sqrt{2}x_1x_2, x_2^2)^\top$ corresponds to $K(x_i, x_i) = (x_i^\top x_i)^2$

Non-Linear SVM

$$\max_{\alpha} L_{D}(\alpha) = \max_{\alpha} \left\{ \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} K(x_{i}, x_{j}) \right\}$$
s.t. $0 \le \alpha_{i} \le C, \quad \sum_{i=1}^{n} \alpha_{i} y_{i} = 0$

- oxdot Gaussian RBF kernel $K\left(x_i,x_j
 ight) = exp\left(-rac{1}{\sigma}\left\|x_i-x_j
 ight\|^2
 ight)$
- oxdot Polynomial kernel $K(x_i, x_j) = (x_i^{\top} x_j + 1)^p$

Structural Risk Minimization (SRM)

Search for the model structure S_h ,

$$\mathcal{S}_{h_1} \subseteq \mathcal{S}_{h_2} \subseteq \ldots \subseteq \mathcal{S}_{h_k} \subseteq \ldots \subseteq \mathcal{S}_{h_k} = \mathcal{F}$$

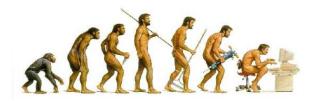
such that $f \in \mathcal{S}_{h*}$ minimises the expected risk bound, with $f \subseteq \mathcal{F}$ is class of linear function and h is VC dimension i.e.

$$SVM(h_1) \subseteq \ldots \subseteq SVM(h_k) \subseteq \ldots \subseteq SVM(h_k) = \mathcal{F}$$

with h correspond to the value of SVM (kernel) parameter

Feature Selection ——————————————————4-2

Evolutionary Feature Selection



- Evolutionary optimization Genetic Algorithm (GA)
- □ GA finds global optimum solution

Feature Selection — 4-3

GA - SVM

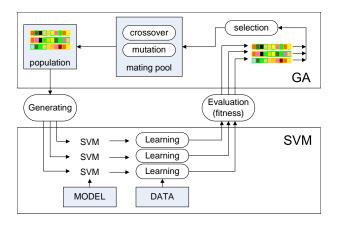


Figure 4: Iteration (generation) in GA-SVM

Credit Scoring & Probability of Default

$$Sc(x) = \sum_{i=1}^{n} \alpha_i y_i K(x_i, x)$$

Probability of Default (PD)

$$f(y = 1|Sc) = \frac{1}{1 + \exp(\beta_0 + \beta_1 Sc)}$$

 β_0 and β_1 are estimated by minimizing the negative log-likelihood function (Karatzoglou and Meyer, 2006)

Validation of Scores

Discriminatory power (of the score)

- Cumulative Accuracy Profile (CAP) curve
- Receiver Operating Characteristic (ROC) curve
- Accuracy, Specificity, Sensitivity

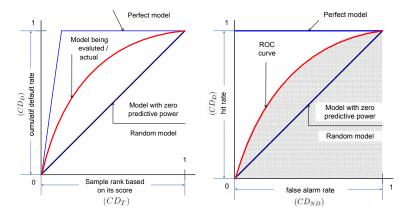


Figure 5: CAP curve (left) and ROC curve (right)

Discriminatory power

- Cumulative Accuracy Profile (CAP) curve
 - ► CAP/Power/Lorenz curve → Accuracy Ratio (AR)
 - ▶ Total sample vs. default sample
- □ Receiver Operating Characteristic (ROC) curve
 - ▶ ROC curve → Area Under Curve (AUC)
 - Non-default sample vs. default sample
- □ Relationship: AR = 2 AUC 1

Discriminatory power (cont'd)

		sample		
		default	non-default	
		(1) (-1)		
predicted	(1)	True Positive (TP)	False Positive (FP)	
	(-1)	False Negative (FN)	True Negative (TN)	
total		Р	N	

- Accuracy, $P(\widehat{Y} = Y) = \frac{TP + TN}{P + N}$
- Specificity, $P(\widehat{Y} = -1|Y = -1) = \frac{TN}{N}$
- Sensitivity, $P(\widehat{Y} = 1 | Y = 1) = \frac{TP}{P}$

Examples – Small Sample

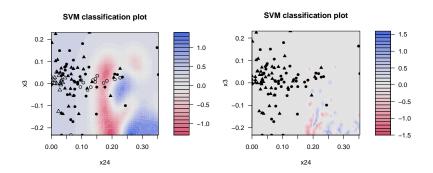


Figure 6: SVM plot, C=1 and $\sigma=1/2$, training error 0.19 (left) and GA-SVM, C=14.86 and $\sigma=1/121.61$, training error 0 (right).

Credit reform data

type	solvent (%)	insolvent (%)	total (%)
Manufacturing	27.37 (26.06)	25.70 (1.22)	27.29
Construction	13.88 (13.22)	39.70 (1.89)	15.11
Wholesale and retail	24.78 (23.60)	20.10 (0.96)	24.56
Real estate	17.28 (16.46)	9.40 (0.45)	16.90
total	83.31 (79.34)	94.90 (4.52)	83.86
others	16.69 (15.90)	5.10 (0.24)	16.14
#	20,000	1,000	21,000

Table 1: Credit reform data

Pre-processing

year	solvent	insolvent	total
	# (%)	# (%)	# (%)
1997	872 (9.08)	86 (0.90)	958 (9.98)
1998	928 (9.66)	92 (0.96)	1020 (10.62)
1999	1005 (10.47)	112 (1.17)	1117 (11.63)
2000	1379 (14.36)	102 (1.06)	1481 (15.42)
2001	1989 (20.71)	111 (1.16)	2100 (21.87)
2002	2791 (29.07)	135 (1.41)	2926 (30.47)
total	8964 (93.36)	638 (6.64)	9602 (100)

Table 2: Pre-processed credit reform data

Scenario

scenario	training set	testing set	
Scenario-1	1997	1998	
Scenario-2	1997-1998	1999	
Scenario-3	1997-1999	2000	
Scenario-4	1997-2000	2001	
Scenario-5	1997-2001	2002	

Table 3: Training and testing data set

Full model, X_1, \ldots, X_{28}

- Predictors 28 financial ratio variables
- □ Population (# solutions) 20
- Evolutionary iteration (generation) 100

- \odot Optimal SVM parameters $\sigma = 1/178.75$ and C = 63.44

Quality of classification (1/2)

		sample	
		training	testing
Disc. power	AR	1	1
	AUC	1	1
	Accuracy	1	1
	Specificity	1	1
	Sensitivity	1	1

Table 4: Discriminatry power of Scenario-1, 2, 3, 4, 5

Quality of classification (2/2)

training	TE (CV)	testing	TE (CV)
1997	0 (8.98)	1998	0 (9.02)
1997-1998	0 (8.99)	1999	0 (10.03)
1997-1999	0 (9.37)	2000	0 (6.89)
1997-2000	0 (8.57)	2001	0 (5.29)
1997-2001	0 (4.55)	2002	0 (4.61)

Table 5: Percentage of Training Error (TE) and Cross-Validation (CV, with group=5)

Conclusion — 6-1

Conclusion

- Optimal feature selection (via Genetic Algorithm) leads to perfect classification
- □ Cross validation overcome the overfiting in training & testing error

Genetic Algorithm for Support Vector Machines Optimization in Probability of Default Prediction

Wolfgang Härdle Dedy Dwi Prastyo

Ladislaus von Bortkiewicz Chair of Statistics C.A.S.E. – Center for Applied Statistics and Economics Humboldt–Universität zu Berlin http://lvb.wiwi.hu-berlin.de http://www.case.hu-berlin.de

References

References

Chen, S., Härdle, W. and Moro, R. Estimation of Default Probabilities with Support Vector Machines

Quantitative Finance, 2011, 11, 135 - 154

Nolland, J.H.

Adaptation in Natural and Artificial Systems University of Michigan Press, 1975

References

References

Karatzoglou, A. and Meyer, D. Support Vector Machines in R Journal of Statistical Software, 2006, 15:9, 1-28

Zhang, J. L. and Härdle, W.

The Bayesian Additive Classification Tree Applied to Credit Risk Modelling

Computational Statistics and Data Analysis, 2010, 54, 1197-1205

Linearly Separable Case

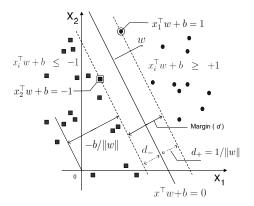


Figure 7: Separating hyperplane and its margin in linearly separable case

- oxdot Choose $f \in \mathcal{F}$ such that margin $(d_- + d_+)$ is maximal

$$x_i^{\top} w + b \ge +1$$
 for $y_i = +1$ $x_i^{\top} w + b \le -1$ for $y_i = -1$

Both constraints are combined into

$$y_i(x_i^\top w + b) - 1 \ge 0$$
 $i = 1, 2, ..., n$

- \odot Distance between margins and the separating hyperplane is $d_+ = d_- = 1/\|w\|$
- ☑ Maximize the margin, $d_+ + d_- = 2/\|w\|$, could be attained by minimizing $\|w\|$ or $\|w\|^2$
- Lagrangian for the primal problem

$$L_P(w,b) = \frac{1}{2} ||w||^2 - \sum_{i=1}^n \alpha_i \{ y_i(x_i^\top w + b) - 1 \}$$

Karush-Kuhn-Tucker (KKT) first order optimality conditions

$$\frac{\partial L_P}{\partial w_k} = 0: \qquad w_k - \sum_{i=1}^n \alpha_i y_i x_{ik} = 0 \qquad k = 1, ..., d$$

$$\frac{\partial L_P}{\partial b} = 0: \qquad \sum_{i=1}^n \alpha_i y_i = 0$$

$$y_i (x_i^\top w + b) - 1 \ge 0 \qquad i = 1, ..., n$$

$$\alpha_i \ge 0$$

$$\alpha_i \{ y_i (x_i^\top w + b) - 1 \} = 0$$

○ Solution $w = \sum_{i=1}^{n} \alpha_i y_i x_i$, therefore

$$\frac{1}{2} ||w||^{2} = \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{\top} x_{j}$$

$$- \sum_{i=1}^{n} \alpha_{i} \{ y_{i} (x_{i}^{\top} w + b) - 1 \} = - \sum_{i=1}^{n} \alpha_{i} y_{i} x_{i}^{\top} \sum_{j=1}^{n} \alpha_{j} y_{j} x_{j} + \sum_{i=1}^{n} \alpha_{i}$$

$$= - \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{\top} x_{j} + \sum_{i=1}^{n} \alpha_{i}$$

Lagrangian for the dual problem

$$L_D(\alpha) = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j y_i y_j x_i^\top x_j$$

□ Primal and dual problems

$$\min_{w,b} L_P(w,b)$$

$$\max_{\alpha} L_D(\alpha) \qquad \text{s.t.} \quad \alpha_i \ge 0, \quad \sum_{i=1}^n \alpha_i y_i = 0$$

- Optimization problem is convex, therefore the dual and primal formulations give the same solution

Linearly Non-separable Case

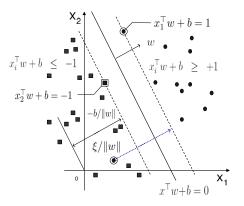


Figure 8: Hyperplane and its margin in linearly non-separable case

oxdot Slack variables ξ_i represent the violation from strict separation

$$x_i^{\top} w + b \ge 1 - \xi_i$$
 for $y_i = 1$, $x_i^{\top} w + b \le -1 + \xi_i$ for $y_i = -1$, $\xi_i > 0$

constraints are combined into

$$y_i(x_i^\top w + b) \ge 1 - \xi_i$$
 and $\xi_i \ge 0$

$$\frac{1}{2} \|w\|^2 + C \sum_{i=1}^n \xi_i$$

■ Lagrange function for the primal problem

$$L_{P}(w, b, \xi) = \frac{1}{2} \|w\|^{2} + C \sum_{i=1}^{n} \xi_{i} - \sum_{i=1}^{n} \alpha_{i} \{y_{i} \left(x_{i}^{\top} w + b\right) - 1 + \xi_{i}\} - \sum_{i=1}^{n} \mu_{i} \xi_{i},$$

where $\alpha_i \geq 0$ and $\mu_i \geq 0$ are Lagrange multipliers

Primal problem

$$\min_{w,b,\xi} L_P(w,b,\xi)$$

First order conditions

$$\frac{\partial L_P}{\partial w_k} = 0: \qquad w_k - \sum_{i=1}^n \alpha_i y_i x_{ik} = 0$$

$$\frac{\partial L_P}{\partial b} = 0: \qquad \sum_{i=1}^n \alpha_i y_i = 0$$

$$\frac{\partial L_P}{\partial \varepsilon_i} = 0: \qquad C - \alpha_i - \mu_i = 0$$

s.t.
$$\alpha_i \ge 0$$
, $\mu_i \ge 0$, $\mu_i \xi_i = 0$
 $\alpha_i \{ y_i (x_i^\top w + b) - 1 + \xi_i \} = 0$

$$L_{D}(\alpha) = \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{\top} x_{j} + \sum_{i=1}^{n} \xi_{i} \left(C - \alpha_{i} - \mu_{i}\right)$$

■ Last term is 0, therefore the dual problem is

$$\max_{\alpha} L_D(\alpha) = \max_{\alpha} \left\{ \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j y_i y_j x_i^\top x_j \right\},$$
s.t.
$$0 \le \alpha_i \le C, \qquad \sum_{i=1}^n \alpha_i y_i = 0$$

▶ back

What is a Genetic Algorithm?

Genetics algorithm is search and optimization technique based on Darwin's principle on natural selection (Holland, 1975)

GA - Initialization



Figure 9: GA at first generation

GA – Convergency

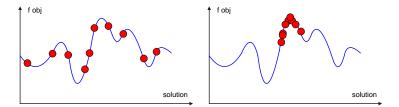


Figure 10: Solutions at 1^{st} generation (left) and r^{th} generation (right)

GA – Decoding

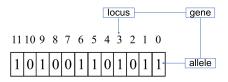


Figure 11: Decoding

$$\theta = \theta_{lower} + (\theta_{upper} - \theta_{lower}) \frac{\sum_{i=0}^{l-1} a_i 2^i}{2^l}$$

where θ is solution (i.e. parameter C or σ), a is allele

GA – Fitness evaluation

- \Box Calculate $f(\theta_i)$, $i = 1, \ldots, popsize$
- $oxed{\Box}$ Relative fitness, $p_i = rac{f_{dp}(heta^i)}{\sum_{k=i}^{popsize} f_{dp}(heta^i)}$

Figure 12: Proportion to be choosen in the next iteration (generation)

GA - Roulette wheel

- \square rand $\sim U(0,1)$
- \odot Select i^{th} chromosome if $\sum_{i=1}^{k} p_i < r$ and $< \sum_{i=1}^{k+1} p_i$
- ☐ Repeat *popsize* times to get *popsize* new chromosomes

GA - Crossover

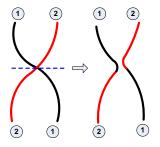


Figure 13: Crossover in nature

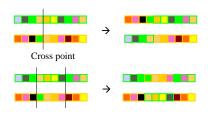


Figure 14: Randomly choosen one-point crossover (top) and two-points crossover (bottom)

GA – Reproductive operator

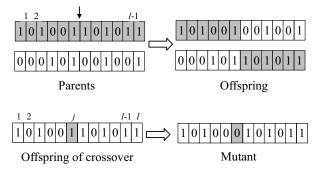


Figure 15: One-point crossover (top) and bit-flip mutation (bottom)

GA - Elitism

- Best solution in each iteration is maintained in another memory place
- New population replaces the old one, check whether best solution is in the population
 - If not, replace any one in the population with best solution

Nature to Computer Mapping

Nature	GA-SVM
Population	Set of parameter
Individual (phenotype)	Parameters
Fitness	Discriminatory power
Chromosome (genotype)	Encoding of parameter
Gene	Binary encoding
Reproduction	Crossover
Generation	Iteration

Table 6: Nature to GA-SVM mapping

