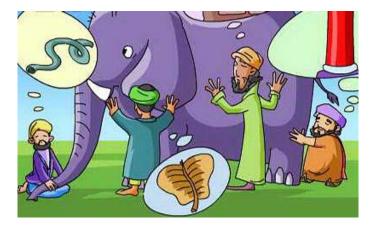
Partial Linear Quantile Regression and Bootstrap Confidence Bands

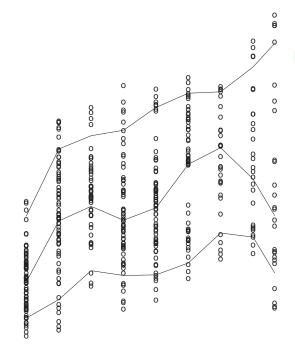
Wolfgang K. Härdle Ya'acov Ritov Song Song

CASE - Center for Applied Statistics and Economics Humboldt-Universität zu Berlin

Department of Statistics The Hebrew University of Jerusalem http://www.case.hu-berlin.de http://www.stat.huji.ac.il

Risky to see only part(s) of the truth!





 log(Salary) ~ Years
 "The rich got richer and the poor got poorer!"
 Yu et al. (2003)

Quantile Regression

- \bigcirc QR: conditional behavior of a response Y
- ⊡ Median regression = mean regression (symmetric)
- "Gradually developing into a comprehensive strategy for completing the regression prediction", Koenker & Hallock (2001)

Motivation

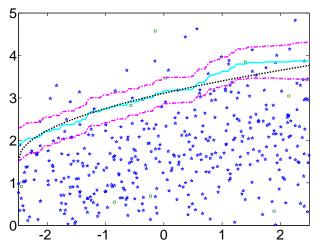


Figure 1: The 0.9-quantile curve, the 0.9-quantile smoother with $h_{0.9} =$ 1.25 and 95% confidence bands. QR1

Partial Linear Quantile Regression and Bootstrap Confidence Bands -

Example

- ☑ Financial Market & Econometrics
 - ► VaR (Value at Risk) tool to measure risk, Lauridsen (2000)
 - Detect conditional heteroscedasticity, Koenker & Bassett (1982)
- Labor Market
 - Analyse income of football players w.r.t. different ages, years, and countries, etc
 - ► Investigate discrimination effects, Buchinsky (1995)

 $\log (Income) = A(year, age, etc)$

 $+\beta$ B(education, gender, nationality, union status, etc) $+\,\varepsilon$

- Inequality analysis
- ► ...

Quantile Regression

$$\Box I(x) = F_{Y|x}^{-1}(p) p$$
-quantile regression curve

- \Box I(x) = linear (parametric) form, Koenker & Bassett (1978)
- \Box $l_h(x)$ quantile-smoother

How to decide between functional forms? (global variability of the estimate, peak or valley really a feature?)

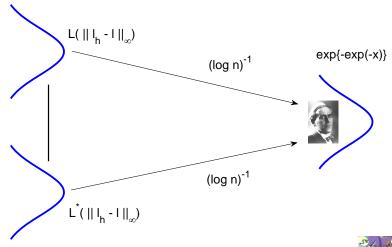
Theorem (Härdle and Song (2009)) An approximate $(1 - \alpha) \times 100\%$ confidence band over [0, 1] is

$$\begin{split} l_h(t) &\pm (nh)^{-1/2} \{ p(1-p)/\hat{f}_X(t) \}^{1/2} \hat{f}^{-1} \{ l(t) | t \} \\ &\times \{ d_n + c(\alpha) (2\delta \log n)^{-1/2} \} \cdot \{ \lambda(K) \}^{1/2}, \end{split}$$

where $c(\alpha) = \log 2 - \log |\log(1 - \alpha)|$ and $\hat{f}_X(t)$, $\hat{f}\{I(t)|t\}$ are consistent estimates for $f_X(t)$, $f\{I(t)|t\}$.

Emil Julius Gumbel on BBI:

Challenges



Opportunities

- □ "Hungarian machine gun", x ∈ ℝ¹ (KMT) Tool to prove asymptotic bands
- \Box Extend this to $x \in \mathbb{R}^d$ and improve band precision?
 - Hall (1991): bootstrap can beat it! (density)
 - Hahn (1995): consistency of bootstraping CDF
 - Horowitz (1998): bootstrap (pointwise) for median
 - PLM: Green & Yandell (1985), Denby (1986), Speckman (1988) and Robinson (1988)
 - Variable selection for QR: Liang and Li (2009)

Outline

- 1. Motivation \checkmark
- 2. Bootstrap Confidence Bands
- 3. Bootstrap Confidence Bands in PLMs
- 4. Monte Carlo Study
- 5. Labour Market Applications

Quantile Regression

$$: \{(X_i, Y_i)\}_{i=1}^n \text{ i.i.d. rv's, } x \in J^* = (a, b) \text{ for some } 0 < a < b < 1, y \in \mathbb{R}$$

□ Suppose $Y_i = I(X_i) + \varepsilon_i$, $\varepsilon_i \sim F(\cdot|X_i)$ with $F(0|X_i) = p$. Both I & F are smooth.

• Estimator
$$I_h(\cdot)$$
: the solution of

$$\frac{\sum_{i=1}^{n} K_{h}(x-X_{i}) \mathbf{1}\{Y_{i} < I_{h}(x)\}}{\sum_{i=1}^{n} K_{h}(x-X_{i})} < p \leq \frac{\sum_{i=1}^{n} K_{h}(x-X_{i}) \mathbf{1}\{Y_{i} \leq I_{h}(x)\}}{\sum_{i=1}^{n} K_{h}(x-X_{i})}$$

 \Box S_n : any slowly varying function (e.g., $S_n^2 = S_n$ is valid...).

• Local rate of convergence of
$$l_h$$

 $\delta_n = h^2 + (nh)^{-1/2} = \mathcal{O}(n^{-2/5})$ with $h_n = \mathcal{O}(n^{-1/5})$
• Auxiliary estimate l_g with larger bandwidth $g_n = h_n n^{\zeta}$ (ζ :
 $4/45$)
• $\hat{F}(\cdot|X_i) = \frac{\sum_{j=1}^n K_h(X_j - X_i) \mathbb{1}\{Y_j - l_h(X_i) \le \cdot\}}{\sum_{j=1}^n K_h(X_j - X_i)}$

Check Function

$$\rho_p(u) = pu\mathbf{1}\{u \in (0,\infty)\} - (1-p)u\mathbf{1}\{u \in (-\infty,0)\}$$

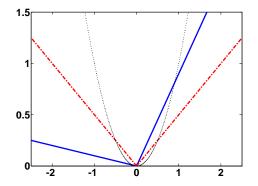


Figure 2: Check function for p=0.9, p=0.5 and weight function in conditional mean regression Partial Linear Quantile Regression and Bootstrap Confidence Bands –

 $\overline{}$

•

The Quantile Curve

$$\rho_p(u) = pu\mathbf{1}\{u \in (0,\infty)\} - (1-p)u\mathbf{1}\{u \in (-\infty,0)\}$$

$$I(x) = \argmin_{\theta} \mathsf{E}\{\rho_p(Y - \theta) | X = x\}$$

$$l_h(x) = \underset{\theta}{\arg\min} n^{-1} \sum_{i=1}^n \rho_p(Y_i - \theta) K_h(x - X_i)$$

where $K_h(u) = h^{-1}K(u/h)$ is a kernel (symmetric density function with compact support) with bandwidth h

Weight Function

 $\psi(u) = p - \mathbf{1}\{u \in (-\infty, 0)\}$ $I_h(x)$ and I(x): treated as a zero of $\widetilde{H}_n\{I_h(x), x\}$ and $\widetilde{H}\{I(x), x\}$

where:

$$\begin{split} \widetilde{H}_n\{I_h(x), x\} &= 0: \qquad \widetilde{H}_n(\theta, x) \stackrel{\text{def}}{=} n^{-1} \sum_{i=1}^n K_h(x - X_i) \psi(Y_i - \theta) \\ \widetilde{H}\{I(x), x\} &= 0: \qquad \widetilde{H}(\theta, x) \stackrel{\text{def}}{=} \int_{\mathbb{R}} f(x, y) \psi(y - \theta) dy \end{split}$$

\hat{F} Approximation Performance around 0

Lemma

[Franke and Mwita (2003), p14] If assumptions (A1, A2, A4) hold, then for any small enough (positive) $\varepsilon \rightarrow 0$,

 $\sup_{|t|<\varepsilon,i=1,\ldots,n,X_i\in J^*} |\hat{F}_i(t) - F(t|X_i)| = \mathfrak{O}_p(S_n\delta_n\varepsilon^{1/2} + \varepsilon^2).$ (2)

The Bootstrap Couple

*U*₁,..., *U_n*: i.i.d. uniform [0, 1] rv's
 Bootstrap sample

$$Y_i^* = I_g(X_i) + \hat{F}_i^{-1}(U_i), \quad i = 1, \dots, n$$

○ Couple with the true conditional distribution:

$$Y_i^{\#} = I(X_i) + F^{-1}(U_i|X_i), \quad i = 1, ..., n.$$

Given X_1, \ldots, X_n : Y_1, \ldots, Y_n and $Y_1^{\#}, \ldots, Y_n^{\#}$ are equally distributed.

A Very Close Couple

$$Y_i^* = I_g(X_i) + \hat{F}_i^{-1}(U_i), \quad i = 1, \dots, n$$

$$Y_i^{\#} = I(X_i) + F^{-1}(U_i|X_i), \quad i = 1, ..., n.$$

Values of $Y_i^{\#}$ and Y_i^* are meaningful only if $|U_i - p| < S_n \delta_n$. By the inverse function theorem around p, we have

$$\max_{i:|Y_i^{\#}-l(X_i)|< S_n\delta_n} |Y_i^{\#}-l(X_i)-Y_i^{*}+l_g(X_i)|=\mathcal{O}_p\{S_n\delta_n^{3/2}\}.$$

How Close?

□
$$q_{hi}(Y_1, ..., Y_n) \stackrel{\text{def}}{=} l_h(X_i)$$
 for data set $\{(X_i, Y_i)\}_{i=1}^n$
□ Assumption A3 gives:

$$\max_{|X_i-x_j| < ch} |I_g(X_i) - I_g(X_j) - I(X_i) + I(X_j)| = \mathcal{O}_p(\delta_n)$$

 \boxdot I_h^* and $I_h^{\#}$: local bootstrap quantile and its coupled sample analogue. Then

$$l_h^*(X_i) - l_g(X_i) = q_{hi}[\{Y_j^* - l_g(X_j) + l_g(X_j) - l_g(X_i)\}]_{j=1}^n]$$

$$l_h^{\#}(X_i) - l(X_i) = q_{hi}[\{Y_j^{\#} - l(X_j) + l(X_j) - l(X_i)\}_{j=1}^n]$$
Thus

Thus

$$\max_{i} |I_{h}^{*}(X_{i}) - I_{g}(X_{i}) - I_{h}^{\#}(X_{i}) - I(X_{i})| = \mathcal{O}_{p}(\delta_{n}).$$

Bootstrapping Approximation Rate

Theorem If assumptions (A1)–(A3) hold, then

$$\sup_{x \in J^*} |l_h^*(x) - l_g(x) - l_h^{\#}(x) - l(x)| = \mathcal{O}_p(\delta_n) = \mathcal{O}_p(n^{-2/5}).$$

⊡ Bootstrap improves the rate of convergence.

 $\overline{}$

Why Oversmoothing?

To handle the bias (closer). Tuning parameter: g
 Härdle and Marron (1991), let

$$b_{h}(x) \stackrel{\text{def}}{=} \mathsf{E} I_{h}^{\#}(x) - I(x)$$
$$\hat{b}_{h,g}(x) \stackrel{\text{def}}{=} \mathsf{E}^{*} I_{h}^{*}(x) - I_{g}(x)$$
Investigate MSE $\mathsf{E} \left[\left\{ \hat{b}_{h,g}(x) - b_{h}(x) \right\}^{2} | X_{1}, \dots, X_{n} \right].$ How fast it converges to 0?

Oversmoothing

Theorem

Under some assumptions, for any $x \in J^*$

$$\mathsf{E}\left[\left\{\hat{b}_{h,g}(x) - b_{h}(x)\right\}^{2} | X_{1}, \dots, X_{n}\right] \sim h^{4}\{\mathcal{O}_{p}(g^{4}) + \mathcal{O}_{p}(n^{-1}g^{-5})\}$$

in the sense that the ratio between the RHS and the LHS tends in probability to 1 for some constants C_1 , C_2 .

To minimize MSE, $g = \mathcal{O}(n^{-1/9})$, $g \gg h$, where $h = \mathcal{O}(n^{-1/5})$

The Multivariate Case

$$\tilde{l}(x) = u^{\top}\beta + l(v)$$

- Estimation idea: ANOVA, approximately linear form (locally)
- Partition [0, 1] (for v) in a_n intervals I_{ni} & regard I(v) as a constant item inside I_{ni} .

Two Stage Estimation Procedure

: Linear quantile regression inside each I_{ni} + Weighted mean yields $\hat{\beta}$:

$$\hat{\beta} = \arg\min_{\beta} \min_{l_1, \dots, l_{a_n}} \sum_{i=1}^n \psi\{Y_i - \beta^\mathsf{T} U_i - \sum_{j=1}^{a_n} l_j \mathbf{1} (V_i \in I_{ni})\}$$

• Smooth quantile estimate $\hat{l}_h(v)$ from $(V_i, Y_i - U_i^{\top}\hat{\beta})_{i=1}^n$.

Theorem

 \exists positive definite matrices D_n , C_n , s.t.

$$\sqrt{n}(\hat{\beta}-\beta) \xrightarrow{\mathcal{L}} N\{0, p(1-p)D_n^{-1}C_nD_n^{-1}\} \text{ as } n \to \infty.$$

Uniform Consistency of $\hat{l}_h(v)$

Lemma

Under assumptions (A7) & (A8), we have a.s. as $n \to \infty$

$$\sup_{v \in J^*} |\hat{l}_h(v) - l(v)| \le C_5 \max\{(nh/\log n)^{-1/2}, h^{\tilde{\alpha}}\}$$
(3)

with another constant C_5 not depending on n. If additionally $\tilde{\alpha} \ge \{\log(\sqrt{\log n}) - \log(\sqrt{nh})\}/\log h$, (3) can be further simplified to:

$$\sup_{v\in J^*} |\hat{l}_h(v) - l(v)| \le C_5\{(nh/\log n)^{-1/2}\}.$$

Multidimensional Uniform Confidence Bands

- : Estimation error for parametric part: $\mathcal{O}_p(n^{-1/2})$.
- ⊡ Bootstrapping approximation error for nonparametric part: $\mathcal{O}_p(n^{-2/5})$, dominating!

Corollary

Under the assumptions (A1) - (A8), an approximate $(1 - \alpha) \times 100\%$ confidence band over $\mathbb{R}^{d-1} \times [0, 1]$ is

$$u^{\top}\hat{\beta}+l_h(v) \pm \left[\hat{f}\{l(x)|x\}\sqrt{\hat{f}_X(x)}\right]^{-1}d_{\alpha}^*,$$

where d^*_{α} is based on the bootstrap sample (specify later).

How to Bootstrap?

1) Simulate $\{(X_i, Y_i)\}_{i=1}^n$, n = 1000 w.r.t. f(x, y).

$$f(x,y) = f_{y|x}(y - \sin x)\mathbf{1}(x \in [0,1]),$$
 (4)

where $f_{y|x}(x)$ is the pdf of N(0, x).

2) Compute $l_h(x)$ of Y_1, \ldots, Y_n and residuals $\hat{\varepsilon}_i = Y_i - l_h(X_i), i = 1, \ldots, n.$ If we choose p = 0.9, then $\Phi^{-1}(p) = 1.2816$, $l(x) = \sin(x) + 1.2816\sqrt{x}$ and the bandwidth is h = 0.05.

3) Compute the conditional edf $F_{n|x}$:

$$F_n(t|x) = \frac{\sum_{i=1}^n K_h(x-X_i) \mathbf{1}\{\hat{\varepsilon}_i \leq t\}}{\sum_{i=1}^n K_h(x-X_i)}$$

with the quartic kernel

$${\cal K}(u)=rac{15}{16}(1-u^2)^2, \quad (|u|\leqslant 1).$$

4) Generate rv $\varepsilon_{i,b}^* \sim F_{n|x}$, b = 1, ..., B and construct the bootstrap sample $Y_{i,b}^*$, i = 1, ..., n, b = 1, ..., B as follows:

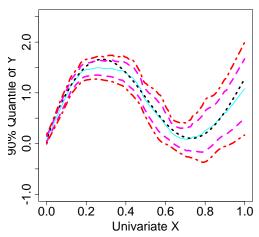
$$Y_{i,b}^* = I_g(X_i) + \varepsilon_{i,b}^*,$$

with g = 0.2.

5) For each bootstrap sample $\{(X_i, Y_{i,b}^*)\}_{i=1}^n$, compute l_h^* and the random variable

$$d_b \stackrel{\text{def}}{=} \sup_{X \in J^*} \Big[\hat{f}\{I(x)|x\} \sqrt{\hat{f}_X(x)} |I_h^*(x) - I_g(x)| \Big].$$
(5)

- 6) Calculate the (1α) quantile d_{α}^* of d_1, \ldots, d_B .
- 7) Construct the bootstrap uniform confidence band centered around $l_h(x)$, i.e. $l_h(x) \pm \left[\hat{f}\{l(x)|x\}\sqrt{\hat{f}_X(x)}\right]^{-1} d_{\alpha}^*$.



4-4

Figure 3: The real 0.9 quantile curve, 0.9 quantile estimate with corresponding 95% uniform confidence band from asymptotic theory and confidence band from bootstrapping. Partial Linear Quantile Regression and Bootstrap Confidence Bands –

Convergence Rate (*n* small)

	Cov. Prob.	Area
50	0.144 (0.642)	0.58 (1.01)
100	0.178 (0.742)	0.42 (0.58)
200	0.244 (0.862)	0.31 (0.36)

Table 1: Simulated coverage probabilities & areas of nominal asymptotic (bootstrap) 95% confidence bands with 500 repetition.

- □ For small n, bootstrap's » asymptotic's & not sacrifice much on the band's width
- ⊡ To achieve same cov. prob., quantile regression usually need more observations than mean regression

 \Box Use larger bandwidth on both $X \& Y (\hat{f}^{-1}\{I(x)|x\})$

Partial Linear Quantile Regression and Bootstrap Confidence Bands -

PLM QR

• Bivariate data $\{(U_i, V_i, Y_i)\}_{i=1}^n, n = 8000$ with:

$$y = 2u + v^2 + \varepsilon - \Phi(p) \tag{6}$$

where $u \in [0,2], \ v \in [0,1]$ and ε is the standard normal rv.

- The real 0.9-quantile curve $\tilde{l}(x) = 2u + v^2$.
- ⊡ h = 0.2 & g = 0.7. For the following specific set of random variables, $a_n = 20$, $\hat{\beta} = 2.016758$

of Partitions?

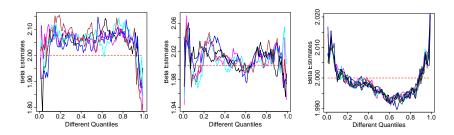


Figure 4: $\hat{\beta}$ with respect to different p for different # of observations, i.e. n = 1000, n = 8000, n = 261148.

Partial Linear Quantile Regression and Bootstrap Confidence Bands -

Monte Carlo study -

a _n	n = 1000	<i>n</i> = 8000	<i>n</i> = 261148
$n^{1/3}/8$			$3.6 * 10^{-3}$
$n^{1/3}/4$	$5.4 * 10^{-1}$	$4.0 * 10^{-2}$	$3.3 * 10^{-3}$
$n^{1/3}/2$	$6.1 * 10^{-1}$	$3.5 * 10^{-2}$	$3.2 * 10^{-3}$
n ^{1/3}	$6.2 * 10^{-1}$	$3.6 * 10^{-2}$	$3.1 * 10^{-3}$
$n^{1/3}\cdot 2$	$8.0 * 10^{-1}$	$3.9 * 10^{-2}$	$2.9 * 10^{-3}$
$n^{1/3}\cdot 4$	$4.9 * 10^{-1}$	$3.6 * 10^{-2}$	$2.8 * 10^{-3}$
$n^{1/3}\cdot 8$			$3.4 * 10^{-3}$

Table 2: SSE of $\hat{\beta}$ with respect to a_n for different numbers of observations.

□ Suggest $a_n = n^{1/3}$ (cost / performance)

Partial Linear Quantile Regression and Bootstrap Confidence Bands -

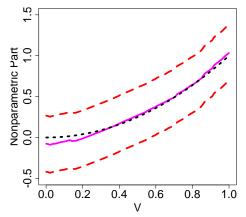


Figure 5: Nonparametric part smoothing, real 0.9 quantile curve with respect to v, 0.9 quantile smoother with corresponding 95% bootstrap uniform confidence band.

Labor Market Application

- ⊡ How income depends on age w.r.t. different education levels?
- \Box Relation: log (Wage) ~ β · Education + *I*(Age)
- ⊡ Administrative data from the German National Pension Office
- \boxdot Male, born 1939 \sim 1942, sample 25 59, full-time, begin receiving a pension in 2004 \sim 2005

 Education categories: "no answer", "low education", "apprenticeship" and "university"

☑ Normal impression:

E(y|v, u = Low education) < E(y|v, u = Apprenticeship) < E(y|v, u = University)

Box Plot

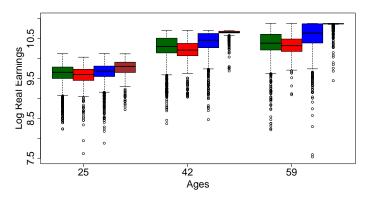


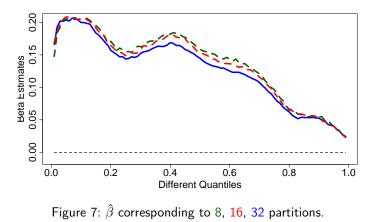
Figure 6: Boxplots for "no answer", "low education", "apprenticeship" & "university" groups corresponding to v = 0, 0.5, 1.

- ⊡ Drop "no answer" group & n = 175760 observations
- ⊡ 1 "low education", 2 "apprenticeship" and 3 "university"

$$\therefore$$
 175760^{1/3}/2 = 28 partitions

 \odot Quartic kernel, h = 0.018 (after rescaling)

β Estimates



Low Income - Significant

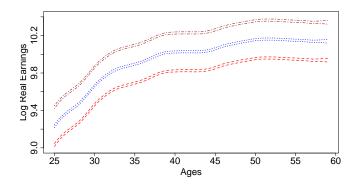


Figure 8: 95% uniform confidence bands for 0.05-quantile smoothers with 3 different education levels "low education", "apprenticeship" & "university".

Median Income - Significant

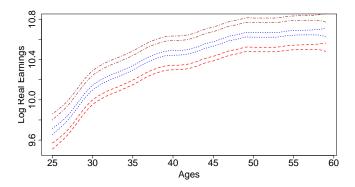


Figure 9: 95% uniform confidence bands for 0.50-quantile smoothers with 3 different education levels "low education", "apprenticeship" & "university".

High Income - Not Significant

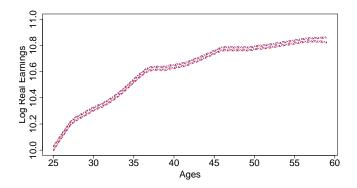


Figure 10: 95% uniform confidence bands for 0.99-quantile smoothers with 3 different education levels "low education", "apprenticeship" & "university"

Real effect of education for income?

- □ High educations offers a safety line!
- For high end (income) labour, high education no significant effect
 - Smart, no need go to school
 - Be scientist after Ph.D. graduation
 - Poor, not continue school, but hard working & know a lot from practice
 - Education may make people less creative
 - ▶ ...

⊡ Causality test, Jeong, Härdle and Song (2009)

Drawbacks

⊡ Very rich people maybe not recorded in the pension system

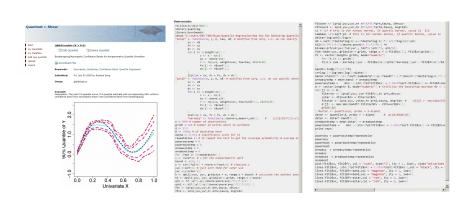
- ☑ Maybe not same retirement time
- Denel data, not exactly i.i.d. (furthur research)

· . . .

Sth must keep in mind!

- ☑ You are dealing with 70-year old people now!
- ⊡ Time flies (technology level ↑), more and more high income jobs require high educated people. Time variation of the $\hat{\beta}$? further research.

Quantnet - Open for sharing



J. Franke and P. Mwita Nonparametric Estimates for conditional quantiles of time series *Report in Wirtschaftsmathematik 87, University of Kaiserslautern*, 2003. P. Hall On convergence rates of suprema *Probab. Th. Rel. Fields*, 89:447-455, 1991. Jinyong Hahn

Bootstrapping Quantile Regression Estimators *Econometric Theory*, 11(1):105-121, 1995.

W. Härdle and J. S. Marron Bootstrap simultaneous error bars for nonparametric regression *Ann. Statist.*, 19:778-796 1991.

W. Härdle and S. Song Confidence bands in quantile regression *Econometric Theory*, forthcoming, 2009.

J. Horowitz

Bootstrap methods for median regression models *Econometrica*, 66:1327-1351, 1998.

- K. Jeong, W. Härdle and S. Song A Consistent Nonparametric Test for Causality in Quantile Revise and resubmit to Econometric Theory, 2009.
- R. Koenker and K. F. Hallock Quantile regression Journal of Econometric Perspectives, 15(4):143^{°°}C156, 2001.
- J. Komlós, P. Major and G. Tusnády An Approximation of Partial Sums of Independent RV'-s, and the Sample DF. I

Z. Wahrscheinlichkeitstheorie verw., 32:111- 131, 1975.

K. Yu, Z. Lu and J. Stander Quantile regression: applications and current research areas J. Roy. Statistical Society: Series D (The Statistician), 52:331-350, 2003.

Appendix - Assumptions

- λ_i and C_i : generic constants.
- A1. X_1, \ldots, X_n are an i.i.d. sample, and $f_X(x) \ge \lambda_0$. The quantile function satisfies: $|l'(\cdot)| \le \lambda_1$, $|l''(\cdot)| \le \lambda_2$.
- A2. F(t|x) have a density, $f(t|x) \ge \lambda_3 > 0$, continuous in x, and in t in the neighborhood of 0. That is, for some $A(\cdot)$ and $f_0(\cdot)$

$$F(t|x') = p + f_0(x)t + A(x)(x'-x) + R(t,x';x),$$

where
$$\sup_{t,x,x'} \frac{|R(t,x';x)|}{t^2+|x'-x|^2} < \infty$$
.

Note that by Assumption A1, $I_h(x)$ is the quantile of a discrete distribution.

This distribution is equivalent to a sample size of $\mathcal{O}_p(nh)$ from a distribution with *p*-quantile whose biased is $\mathcal{O}_p(h^2)$ relative to the true value.

Let δ_n be the local rate of convergence of the function l_h , essentially $\delta_n = h_n^2 + (nh_n)^{-1/2} = \mathcal{O}(n^{-2/5})$, with $h_n = \mathcal{O}(n^{-1/5})$.

A3. The estimate I_g , satisfies:

$$\sup_{x \in J^*} |l''_g(x) - l''(x)| = \mathcal{O}_p(1),$$

$$\sup_{x \in J^*} |l'_g(x) - l'(x)| = \mathcal{O}_p(\delta_n/h)$$
(7)

Note that there is no S_n term in (7) exactly because the bandwidth g_n used to calculate l_g is slightly larger than that used for l_h . As a result l_g has a slightly worse rate of convergence (as an estimator of the quantile function), but its derivatives converge faster. We assume:

(A4). $f_X(x)$ is twice continuously differentiable and f(t|x) is uniformly bounded in x and t by, say, λ_4 .

6-3

(A7). The conditional densities $f(\cdot|y)$, $y \in \mathbb{R}$, are uniformly local Lipschitz continuous of order $\tilde{\alpha}$ (ulL- $\tilde{\alpha}$) on *J*, uniformly in $y \in \mathbb{R}$, with $0 < \tilde{\alpha} \leq 1$, and $(nh)/\log n \to \infty$.

(A8).
$$\inf_{v \in J^*} \left| \int \psi\{y - l(v) + \varepsilon\} dF(y|v) \right| \ge \tilde{q}|\varepsilon|, \text{ for } |\varepsilon| \le \delta_1,$$

where δ_1 and \tilde{q} are some positive constants, see also [?]. This assumption is satisfied if there exists a constant \tilde{q} such that $f\{l(v)|v\} > \tilde{q}/p, x \in J$.

