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Risky to see only part(s) of the truth!
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∼$   N (age)

� log(Salary) ∼
Years

� “The rich got
richer and the
poor got
poorer!”

� Yu et al.
(2003)



Motivation 1-3

Quantile Regression

� QR: conditional behavior of a response Y
� Median regression = mean regression (symmetric)
� “Gradually developing into a comprehensive strategy for

completing the regression prediction”, Koenker & Hallock
(2001)

Partial Linear Quantile Regression and Bootstrap Confidence Bands



Motivation 1-4
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Figure 1: The 0.9-quantile curve, the 0.9-quantile smoother with h0.9 =

1.25 and 95% confidence bands. QRl
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Motivation 1-5

Example

� Financial Market & Econometrics
I VaR (Value at Risk) tool to measure risk, Lauridsen (2000)
I Detect conditional heteroscedasticity, Koenker & Bassett

(1982)
� Labor Market

I Analyse income of football players w.r.t. different ages, years,
and countries, etc

I Investigate discrimination effects, Buchinsky (1995)

log (Income) = A(year, age, etc)
+β B(education, gender, nationality, union status, etc) + ε

I Inequality analysis
I . . .

Partial Linear Quantile Regression and Bootstrap Confidence Bands



Motivation 1-6

Quantile Regression

� l(x) = F−1
Y |x(p) p-quantile regression curve

� l(x) = linear (parametric) form, Koenker & Bassett (1978)
� lh(x) quantile-smoother

How to decide between functional forms? (global variability of the
estimate, peak or valley really a feature?)

Partial Linear Quantile Regression and Bootstrap Confidence Bands



Motivation 1-7

Theorem (Härdle and Song (2009))
An approximate (1− α)× 100% confidence band over [0, 1] is

lh(t) ± (nh)−1/2{p(1− p)/f̂X (t)}1/2 f̂ −1{l(t)|t}
×{dn + c(α)(2δ log n)−1/2} · {λ(K )}1/2, (1)

where c(α) = log 2− log | log(1− α)| and f̂X (t), f̂ {l(t)|t} are
consistent estimates for fX (t), f {l(t)|t}.

Emil Julius Gumbel on BBI:

Stochastic Integrals and Differential Equations 5-2

This part of the course provides the tools for the valuation of
options.
We will define stochastic processes as solutions of stochastic
differential equations (SDE).

Stochastic process in continuous time

A stochastic process in continuous time is a collection of random
variables {Xt ; t ∈ R+} with a continuous time variable t.

Norbert Wiener on BBI:

SFE
0 1000 2000 3000 4000

X

50
0

10
00

Y
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Motivation 1-8

Challenges

L( || lh - l ||
∞

)

L*( || lh - l ||
∞

)

(log n)-1

(log n)-1
exp{-exp(-x)}

Gumbel, Emil J. 43

Emil Julius Gumbel

BBI

Partial Linear Quantile Regression and Bootstrap Confidence Bands



Motivation 1-9

Opportunities

� “Hungarian machine gun", x ∈ R1 (KMT)
Tool to prove asymptotic bands

� Extend this to x ∈ Rd and improve band precision?
I Hall (1991): bootstrap can beat it! (density)
I Hahn (1995): consistency of bootstraping CDF
I Horowitz (1998): bootstrap (pointwise) for median
I PLM: Green & Yandell (1985), Denby (1986), Speckman

(1988) and Robinson (1988)
I Variable selection for QR: Liang and Li (2009)

Partial Linear Quantile Regression and Bootstrap Confidence Bands



Outline

1. Motivation X

2. Bootstrap Confidence Bands
3. Bootstrap Confidence Bands in PLMs
4. Monte Carlo Study
5. Labour Market Applications



Bootstrap confidence bands 2-1

Quantile Regression

� {(Xi ,Yi )}n
i=1 i.i.d. rv’s, x ∈ J∗ = (a, b) for some

0 < a < b < 1, y ∈ R
� Suppose Yi = l(Xi ) + εi , εi ∼ F (·|Xi ) with F (0|Xi ) = p. Both

l & F are smooth.
� Estimator lh(·): the solution of∑n
i=1 Kh(x − Xi )1{Yi < lh(x)}∑n

i=1 Kh(x − Xi )
< p ≤

∑n
i=1 Kh(x − Xi )1{Yi ≤ lh(x)}∑n

i=1 Kh(x − Xi )

� Sn: any slowly varying function (e.g., S2
n = Sn is valid. . . ).

Partial Linear Quantile Regression and Bootstrap Confidence Bands



Bootstrap confidence bands 2-2

� Local rate of convergence of lh
δn = h2 + (nh)−1/2 = O(n−2/5) with hn = O(n−1/5)

� Auxiliary estimate lg with larger bandwidth gn = hnnζ (ζ:
4/45)

� F̂ (·|Xi ) =
∑n

j=1 Kh(Xj−Xi )1{Yj−lh(Xi )≤·}∑n
j=1 Kh(Xj−Xi )

Partial Linear Quantile Regression and Bootstrap Confidence Bands



Bootstrap confidence bands 2-3

Check Function
ρp(u) = pu1{u ∈ (0,∞)} − (1− p)u1{u ∈ (−∞, 0)}

-2 -1 0 1 20

0.5

1

1.5

Figure 2: Check function for p=0.9, p=0.5 and weight function in condi-
tional mean regression
Partial Linear Quantile Regression and Bootstrap Confidence Bands



Bootstrap confidence bands 2-4

The Quantile Curve

ρp(u) = pu1{u ∈ (0,∞)} − (1− p)u1{u ∈ (−∞, 0)}

�
l(x) = argmin

θ
E{ρp(Y − θ)|X = x}

�

lh(x) = argmin
θ

n−1
n∑

i=1

ρp(Yi − θ)Kh(x − Xi )

where Kh(u) = h−1K (u/h) is a kernel (symmetric density
function with compact support) with bandwidth h

Partial Linear Quantile Regression and Bootstrap Confidence Bands



Bootstrap confidence bands 2-5

Weight Function

ψ(u) = p − 1{u ∈ (−∞, 0)}

lh(x) and l(x): treated as a zero of H̃n{lh(x), x} and H̃{l(x), x}

where:

H̃n{lh(x), x} = 0 : H̃n(θ, x)
def
= n−1

n∑
i=1

Kh(x − Xi )ψ(Yi − θ)

H̃{l(x), x} = 0 : H̃(θ, x)
def
=

∫
R

f (x , y)ψ(y − θ)dy

Partial Linear Quantile Regression and Bootstrap Confidence Bands



Bootstrap confidence bands 2-6

F̂ Approximation Performance around 0

Lemma
[Franke and Mwita (2003), p14] If assumptions (A1, A2, A4) hold,
then for any small enough (positive) ε→ 0,

sup
|t|<ε,i=1,...,n,Xi∈J∗

|F̂i (t)− F (t|Xi )| = Op(Snδnε
1/2 + ε2). (2)

Partial Linear Quantile Regression and Bootstrap Confidence Bands



Bootstrap confidence bands 2-7

The Bootstrap Couple

� U1, . . . ,Un: i.i.d. uniform [0, 1] rv’s
� Bootstrap sample

Y ∗
i = lg (Xi ) + F̂−1

i (Ui ), i = 1, . . . , n

� Couple with the true conditional distribution:

Y #
i = l(Xi ) + F−1(Ui |Xi ), i = 1, . . . , n.

Given X1, . . . ,Xn: Y1, . . . ,Yn and Y #
1 , . . . ,Y

#
n are equally

distributed.

Partial Linear Quantile Regression and Bootstrap Confidence Bands



Bootstrap confidence bands 2-8

A Very Close Couple

Y ∗
i = lg (Xi ) + F̂−1

i (Ui ), i = 1, . . . , n

Y #
i = l(Xi ) + F−1(Ui |Xi ), i = 1, . . . , n.

Values of Y #
i and Y ∗

i are meaningful only if |Ui − p| < Snδn.
By the inverse function theorem around p, we have

max
i :|Y #

i −l(Xi )|<Snδn

|Y #
i − l(Xi )− Y ∗

i + lg (Xi )| = Op{Snδ
3/2
n }.

Partial Linear Quantile Regression and Bootstrap Confidence Bands



Bootstrap confidence bands 2-9

How Close?

� qhi (Y1, . . . ,Yn)
def
= lh(Xi ) for data set {(Xi ,Yi )}n

i=1
� Assumption A3 gives:

max
|Xi−xj |<ch

|lg (Xi )− lg (Xj)− l(Xi ) + l(Xj)| = Op(δn)

� l∗h and l#h : local bootstrap quantile and its coupled sample
analogue. Then

l∗h (Xi )− lg (Xi ) = qhi [{Y ∗
j − lg (Xj) + lg (Xj)− lg (Xi )})nj=1]

l#h (Xi )− l(Xi ) = qhi [{Y #
j − l(Xj) + l(Xj)− l(Xi )}n

j=1]

Thus

max
i
|l∗h (Xi )− lg (Xi )− l#h (Xi )− l(Xi )| = Op(δn).

Partial Linear Quantile Regression and Bootstrap Confidence Bands



Bootstrap confidence bands 2-10

Bootstrapping Approximation Rate

Theorem
If assumptions (A1)–(A3) hold, then

sup
x∈J∗

|l∗h (x)− lg (x)− l#h (x)− l(x)| = Op(δn) = Op(n−2/5).

� Bootstrap improves the rate of convergence.

Partial Linear Quantile Regression and Bootstrap Confidence Bands



Bootstrap confidence bands 2-11

Why Oversmoothing?

� To handle the bias (closer). Tuning parameter: g
� Härdle and Marron (1991), let

bh(x)
def
= E l#h (x)− l(x)

b̂h,g (x)
def
= E∗ l∗h (x)− lg (x)

� Investigate MSE E
[ {

b̂h,g (x)− bh(x)
}2
|X1, . . . ,Xn

]
.

How fast it converges to 0?

Partial Linear Quantile Regression and Bootstrap Confidence Bands



Bootstrap confidence bands 2-12

Oversmoothing

Theorem
Under some assumptions, for any x ∈ J∗

E
[ {

b̂h,g (x)− bh(x)
}2
|X1, . . . ,Xn

]
∼ h4{Op(g4) +Op(n−1g−5)}

in the sense that the ratio between the RHS and the LHS tends in
probability to 1 for some constants C1, C2.

To minimize MSE, g = O(n−1/9), g � h, where h = O(n−1/5)

Partial Linear Quantile Regression and Bootstrap Confidence Bands



Bootstrap Confidence Bands in PLMs 3-1

The Multivariate Case

� x = (u, v)> ∈ Rd , v ∈ R:

l̃(x) = u>β + l(v)

� Estimation idea: ANOVA, approximately linear form (locally)
� Partition [0, 1] (for v) in an intervals Ini & regard l(v) as a

constant item inside Ini .

Partial Linear Quantile Regression and Bootstrap Confidence Bands



Bootstrap Confidence Bands in PLMs 3-2

Two Stage Estimation Procedure

� Linear quantile regression inside each Ini + Weighted mean
yields β̂:

β̂ = argmin
β

min
l1,...,lan

n∑
i=1

ψ{Yi − βTUi −
an∑
j=1

lj1
(
Vi ∈ Ini

)
}

� Smooth quantile estimate l̂h(v) from (Vi ,Yi − U>
i β̂)ni=1.

Theorem
∃ positive definite matrices Dn, Cn, s.t.

√
n(β̂ − β)

L→ N{0, p(1− p)D−1
n CnD−1

n } as n →∞.

Partial Linear Quantile Regression and Bootstrap Confidence Bands



Bootstrap Confidence Bands in PLMs 3-3

Uniform Consistency of l̂h(v)

Lemma
Under assumptions (A7) & (A8), we have a.s. as n →∞

sup
v∈J∗

|̂lh(v)− l(v)| ≤ C5 max{(nh/ log n)−1/2, hα̃} (3)

with another constant C5 not depending on n. If additionally
α̃ > {log(

√
log n)− log(

√
nh)}/log h, (3) can be further simplified

to:
sup
v∈J∗

|̂lh(v)− l(v)| ≤ C5{(nh/ log n)−1/2}.

Partial Linear Quantile Regression and Bootstrap Confidence Bands



Bootstrap Confidence Bands in PLMs 3-4

Multidimensional Uniform Confidence Bands

� Estimation error for parametric part: Op(n−1/2).
� Bootstrapping approximation error for nonparametric part:
Op(n−2/5), dominating!

Corollary
Under the assumptions (A1) - (A8), an approximate
(1− α)× 100% confidence band over Rd−1 × [0, 1] is

u>β̂ + lh(v) ±
[
f̂ {l(x)|x}

√
f̂X (x)

]−1
d∗α,

where d∗α is based on the bootstrap sample (specify later).

Partial Linear Quantile Regression and Bootstrap Confidence Bands



Monte Carlo study 4-1

How to Bootstrap?

1) Simulate {(Xi ,Yi )}n
i=1, n = 1000 w.r.t. f (x , y).

f (x , y) = fy |x(y − sin x)1(x ∈ [0, 1]), (4)

where fy |x(x) is the pdf of N(0, x).
2) Compute lh(x) of Y1, . . . ,Yn and residuals

ε̂i = Yi − lh(Xi ), i = 1, . . . , n.
If we choose p = 0.9, then Φ−1(p) = 1.2816,
l(x) = sin(x) + 1.2816

√
x and the bandwidth is h = 0.05.

Partial Linear Quantile Regression and Bootstrap Confidence Bands



Monte Carlo study 4-2

3) Compute the conditional edf Fn|x :

Fn(t|x) =

∑n
i=1 Kh(x − Xi )1{ε̂i 6 t}∑n

i=1 Kh(x − Xi )

with the quartic kernel

K (u) =
15
16

(1− u2)2, (|u| 6 1).

4) Generate rv ε∗i ,b ∼ Fn|x , b = 1, . . . ,B and construct the
bootstrap sample Y ∗

i ,b, i = 1, . . . , n, b = 1, . . . ,B as follows:

Y ∗
i ,b = lg (Xi ) + ε∗i ,b,

with g = 0.2.

Partial Linear Quantile Regression and Bootstrap Confidence Bands



Monte Carlo study 4-3

5) For each bootstrap sample {(Xi ,Y ∗
i ,b)}n

i=1, compute l∗h and the
random variable

db
def
= sup

X∈J∗

[
f̂ {l(x)|x}

√
f̂X (x)|l∗h (x)− lg (x)|

]
. (5)

6) Calculate the (1− α) quantile d∗α of d1, . . . , dB .
7) Construct the bootstrap uniform confidence band centered

around lh(x), i.e. lh(x)±
[
f̂ {l(x)|x}

√
f̂X (x)

]−1
d∗α.

Partial Linear Quantile Regression and Bootstrap Confidence Bands



Monte Carlo study 4-4
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Figure 3: The real 0.9 quantile curve, 0.9 quantile estimate with corre-
sponding 95% uniform confidence band from asymptotic theory and con-
fidence band from bootstrapping.
Partial Linear Quantile Regression and Bootstrap Confidence Bands



Monte Carlo study 4-5

Convergence Rate (n small)

n Cov. Prob. Area
50 0.144 (0.642) 0.58 (1.01)
100 0.178 (0.742) 0.42 (0.58)
200 0.244 (0.862) 0.31 (0.36)

Table 1: Simulated coverage probabilities & areas of nominal asymptotic
(bootstrap) 95% confidence bands with 500 repetition.

� For small n, bootstrap’s » asymptotic’s & not sacrifice much
on the band’s width

� To achieve same cov. prob., quantile regression usually need
more observations than mean regression

� Use larger bandwidth on both X & Y (f̂ −1{l(x)|x})
Partial Linear Quantile Regression and Bootstrap Confidence Bands



Monte Carlo study 4-6

PLM QR

� Bivariate data {(Ui ,Vi ,Yi )}n
i=1, n = 8000 with:

y = 2u + v2 + ε− Φ(p) (6)

where u ∈ [0, 2], v ∈ [0, 1] and ε is the standard normal rv.
� The real 0.9-quantile curve l̃(x) = 2u + v2.
� h = 0.2 & g = 0.7. For the following specific set of random

variables, an = 20, β̂ = 2.016758

Partial Linear Quantile Regression and Bootstrap Confidence Bands



Monte Carlo study 4-7

# of Partitions?
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Figure 4: β̂ with respect to different p for different # of observations, i.e.
n = 1000, n = 8000, n = 261148.
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Monte Carlo study 4-8

an n = 1000 n = 8000 n = 261148
n1/3/8 3.6 ∗ 10−3

n1/3/4 5.4 ∗ 10−1 4.0 ∗ 10−2 3.3 ∗ 10−3

n1/3/2 6.1 ∗ 10−1 3.5 ∗ 10−2 3.2 ∗ 10−3

n1/3 6.2 ∗ 10−1 3.6 ∗ 10−2 3.1 ∗ 10−3

n1/3 · 2 8.0 ∗ 10−1 3.9 ∗ 10−2 2.9 ∗ 10−3

n1/3 · 4 4.9 ∗ 10−1 3.6 ∗ 10−2 2.8 ∗ 10−3

n1/3 · 8 3.4 ∗ 10−3

Table 2: SSE of β̂ with respect to an for different numbers of observations.

� Suggest an = n1/3 (cost / performance)

Partial Linear Quantile Regression and Bootstrap Confidence Bands



Monte Carlo study 4-9
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Figure 5: Nonparametric part smoothing, real 0.9 quantile curve with re-
spect to v , 0.9 quantile smoother with corresponding 95% bootstrap uni-
form confidence band.
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Labor Market Applications 5-1

Labor Market Application

� How income depends on age w.r.t. different education levels?
� Relation: log (Wage) ∼ β · Education + l(Age)
� Administrative data from the German National Pension Office
� Male, born 1939 ∼ 1942, sample 25 - 59, full-time, begin

receiving a pension in 2004 ∼ 2005

Partial Linear Quantile Regression and Bootstrap Confidence Bands



Labor Market Applications 5-2

� Education categories: “no answer", “low education”,
“apprenticeship” and “university”

� Normal impression:

E(y |v , u = Low education)

< E(y |v , u = Apprenticeship)

< E(y |v , u = University)

Partial Linear Quantile Regression and Bootstrap Confidence Bands



Labor Market Applications 5-3

Box Plot
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Figure 6: Boxplots for “no answer", “low education”, “apprenticeship” &
“university” groups corresponding to v = 0, 0.5, 1.

Partial Linear Quantile Regression and Bootstrap Confidence Bands



Labor Market Applications 5-4

� Drop “no answer" group & n = 175760 observations
� 1 “low education", 2 “apprenticeship" and 3 “university"
� 1757601/3/2 = 28 partitions
� Quartic kernel, h = 0.018 (after rescaling)

Partial Linear Quantile Regression and Bootstrap Confidence Bands



Labor Market Applications 5-5

β Estimates
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Figure 7: β̂ corresponding to 8, 16, 32 partitions.
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Labor Market Applications 5-6

Low Income - Significant
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Figure 8: 95% uniform confidence bands for 0.05-quantile smoothers with 3
different education levels “low education”, “apprenticeship” & “university”.
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Labor Market Applications 5-7

Median Income - Significant
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Figure 9: 95% uniform confidence bands for 0.50-quantile smoothers with 3
different education levels “low education”, “apprenticeship” & “university”.
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Labor Market Applications 5-8

High Income - Not Significant
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Figure 10: 95% uniform confidence bands for 0.99-quantile smoothers with
3 different education levels “low education”, “apprenticeship” & “university”
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Labor Market Applications 5-9

Real effect of education for income?

� High educations offers a safety line!
� For high end (income) labour, high education no significant

effect
I Smart, no need go to school
I Be scientist after Ph.D. graduation
I Poor, not continue school, but hard working & know a lot

from practice
I Education may make people less creative
I . . .

� Causality test, Jeong, Härdle and Song (2009)
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Drawbacks

� Very rich people maybe not recorded in the pension system
� Maybe not same retirement time
� Panel data, not exactly i.i.d. (furthur research)
� . . .

Partial Linear Quantile Regression and Bootstrap Confidence Bands
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Sth must keep in mind!

� You are dealing with 70-year old people now!
� Time flies (technology level ↑), more and more high income

jobs require high educated people. Time variation of the β̂?
further research.

Partial Linear Quantile Regression and Bootstrap Confidence Bands
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Appendix - Assumptions

λi and Ci : generic constants.
A1. X1, . . . ,Xn are an i.i.d. sample, and fX (x) ≥ λ0. The quantile

function satisfies: |l ′(·)| ≤ λ1, |l ′′(·)| ≤ λ2.

A2. F (t|x) have a density, f (t|x) ≥ λ3 > 0, continuous in x , and
in t in the neighborhood of 0. That is, for some A(·) and f0(·)

F (t|x ′) = p + f0(x)t + A(x)(x ′ − x) + R(t, x ′; x),

where supt,x ,x ′
|R(t,x ′;x)|
t2+|x ′−x |2 <∞.

Partial Linear Quantile Regression and Bootstrap Confidence Bands



Appendix 6-2

Note that by Assumption A1, lh(x) is the quantile of a discrete
distribution.
This distribution is equivalent to a sample size of Op(nh) from a
distribution with p-quantile whose biased is Op(h2) relative to the
true value.
Let δn be the local rate of convergence of the function lh,
essentially δn = h2

n + (nhn)
−1/2 = O(n−2/5), with hn = O(n−1/5).
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A3. The estimate lg , satisfies:

sup
x∈J∗

|l ′′g (x)− l ′′(x)| = Op(1),

sup
x∈J∗

|l ′g (x)− l ′(x)| = Op(δn/h)
(7)

Note that there is no Sn term in (7) exactly because the bandwidth
gn used to calculate lg is slightly larger than that used for lh. As a
result lg has a slightly worse rate of convergence (as an estimator
of the quantile function), but its derivatives converge faster.
We assume:

(A4). fX (x) is twice continuously differentiable and f (t|x) is
uniformly bounded in x and t by, say, λ4.

Partial Linear Quantile Regression and Bootstrap Confidence Bands



Appendix 6-4

(A7). The conditional densities f (·|y), y ∈ R, are uniformly local
Lipschitz continuous of order α̃ (ulL-α̃) on J, uniformly in
y ∈ R, with 0 < α̃ 6 1, and (nh)/ log n →∞.

(A8). infv∈J∗
∣∣ ∫

ψ{y − l(v) + ε}dF (y |v)
∣∣ > q̃|ε|, for |ε| 6 δ1,

where δ1 and q̃ are some positive constants, see also [?]. This
assumption is satisfied if there exists a constant q̃ such that
f {l(v)|v} > q̃/p, x ∈ J.
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