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a b s t r a c t

Modelling the dynamics of credit derivatives is a challenging task in finance and economics.
This work studies risk of collateralized debt obligations (CDOs) by investigating the evolu-
tion of tranche spread surfaces andbase correlation surfaces using a dynamic semiparamet-
ric factor model (DSFM). The DSFM offers a combination of flexible functional data analy-
sis and dimension reduction methods, where the change in time is linear but the shape is
nonparametric. The study provides an empirical analysis based on a big data set of iTraxx
Europe tranches and proposes an application to curve trading strategies. The DSFM allows
us to describe the dynamics of all the tranches for all available maturities and series simul-
taneously which yields better understanding of the risk associated with trading CDOs and
other structured products.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

This study proposes an empirical research of a large data set of iTraxx Europe indices and their tranches of Series 2–10.
We investigate around 50000 observations of iTraxx tranches over 1000 days between the year 2005 and 2009. To the best
of our knowledge, this is the first study on CDOs that considers such an extensive data set. Moreover, the dynamics of the
iTraxx tranches over time has not been investigated in literature so far.

The iTraxx Europe is the most widely traded credit index in Europe. Its reference portfolio consists of 125 equally
weighted, most liquid credit default swaps (CDS) on European companies. For every index five standardized tranches of
different risk profiles are traded. The cash-flows structure of iTraxx tranches is the same as of synthetic CDO tranches.
Because of the regular index roll, every day we find on the market tranches with various times to expiration. By plotting
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Fig. 1. Spreads of all tranches of all series observed on 20080909 (left) and 20090119 (right).

prices (base correlations) of all available tranches at one day as a function of the time to maturity and the tranche seniority,
one gets a two-dimensional surface that represents the entire market information about spreads (base correlations), see
Fig. 1. The tranches with 5 years maturity are the most liquid, unlike those with 3 years maturity that are rarely quoted.
This makes the modelling of the surfaces a challenging task as each day one observes a different number of curves with not
necessarily the same number of points on each curve. When we record these surfaces every day, we can follow how they
change their shape and level. The dynamics over time of such surfaces is the main goal of this paper.

Mainly because of the high dimensionality of the CDO problem the vast majority of papers consider only CDOs of one
particular maturity, see e.g. Hamerle et al. [17]. Up to our knowledge, the available literature do not look at the CDOmarket
as a whole. Since CDOs are quoted for distinct maturities and with different liquidity, we should consider the effect of the
CDO term structure.

Froman investor’s point of view, it is desirable to have an insight into the behaviour in the future of spreads and theirmain
characteristics, namely base correlations. The forecasting has useful applications in hedging and trading CDOs, computation
of riskmeasures, or construction of investment strategies. One of the simplest solutionswould be to consider the classic time
series analysis for each tranche of each series for every maturity. However, there are several reasons why this methodology
is not applicable. Firstly, due to illiquidity of the tranche market we encounter multiple missing observations. Moreover,
many iTraxx series issued during the financial crisis have too short data history. For the same reasons multivariate time
seriesmodels could not find their application here. Thus, themajor challengewe are facing in the analysis of iTraxx tranches
is that every day only scattered observations of a two-dimensional surface are observable. This study proposes an estimation
and forecasting method for CDO surfaces.

Modelling surfaces is one of the primary goals of the functional data analysis (FDA) where the data are functions, see [6].
Functional data sets naturally appear inmany fields of science ranging from finance to genetics.Worthmentioning statistical
approaches for handling complex high-dimensional problems are a structural analysis of curves by Kneip and Gasser [22],
a functional regression with scalar (see [4]) or functional [5] response, a stochastic warping model by Liu and Müller [24],
penalized splines by Kauermann et al. [21], and a functional principal components approach by Gromenko et al. [15]. For
recent advances in FDA we refer the reader to Ramsay and Silverman [27], Ferraty and Vieu [13], Ferraty and Romain [12],
Horváth and Kokoszka [19] and Bongiorno et al. [3]. One of the most popular methods are factor type models as they ef-
fectively reduce the dimensionality. Factor models assume that the comovements of big number of variables are generated
by a small set of latent factors. When data disclose a dynamic structure then one needs a technique that is able to correctly
detect and describe the observed behaviour, e.g. [16].

In this study we employ a dynamic semiparametric factor model (DSFM). In the DSFM the observed variables are ex-
pressed as linear combinations of the factors. The factors and the factor loadings are estimated from the data. The first ones
represent the spatial, time-invariant component. The latter ones formmultidimensional time series that reflect the dynam-
ics. The inference on the original variables reduces to the inference on the factors and the factor loadings. For advances in
semiparametric functional data modelling we refer reader to Goia and Vieu [14].

The DSFM was introduced by Fengler et al. [11] for modelling the dynamics of implied volatility surfaces. Further,
Härdle [18] use it for limit order book analysis, Detlefsen and Härdle [8] for variance swaps, and van Bömmel [30] for fMRI
images. In this work we study the dynamics of CDO surfaces with the DSFM and propose an application to curve trading
strategies.

The paper is structured as follows. Section 2 discusses the CDOs. Section 3 describes the DSFM. Section 4 shows results
of the empirical modelling. Section 5 presents applications in CDO trading. Section 6 concludes.

2. Collateralized debt obligations

A collateralized debt obligation is a credit derivative used by financial institutions to repackage individual assets into a
product that can be sold to investors on the secondary market. The assets may be mortgages, auto loans, credit card debt,
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corporate debt or credit default swaps (CDS). CDOs were initially constructed for securitization of big portfolios. The entire
portfolio risk is sliced into tranches and then transferred to investors. Prior to the credit crisis, CDOs provided outstanding
investment opportunities tomarket participants. Tranchingmade it possible to create new securities of different risk classes
that met the needs of a wide range of clients. The market observed an excess demand for senior CDO tranches because they
were considered as safe and offered unusual high returns. As we know now, the rating agencies underestimated default risk
of CDOs. Consequently, investors were exposed to more risk than the ratings of these CDOs implied. The CDO market has
significantly shrunk since the beginning of the financial crisis. However, themethodology proposed in our study can be used
in modelling and trading other financial instruments, especially non-standardized and bespoke structured products.

Consider a CDOwith amaturity of T years, J tranches and a pool of d entities at the valuation day t0. A tranche j = 1, . . . , J
absorbs losses between lj percent and uj percent of the total portfolio loss. lj and uj are called an attachment and a detachment
point respectively and lj < uj. For the iTraxx Europe, successive tranches have the following attachment points: 0%, 3%, 6%,
9%, 12%, 22%. The corresponding detachment points are 3%, 6%, 9%, 12%, 22%, 100%.

2.1. Valuation

We assume that there exists a risk-neutral measure P under which the discounted asset prices are martingales. The
expectations in the formulas below are taken with respect to this measure.

The loss of the portfolio of d assets at time t is defined as

L(t) = LGD
d

dX

i=1

�i(t), t 2 [t0, T ],

where LGD is a common loss given default and �i(t) = 1(⌧i  t), i = 1, . . . , d, is a default indicator showing that the credit
i defaults at time t within the period [t0, T ] if the time of default random variable ⌧i  t . The loss of a tranche j = 1, . . . , J
at time t is expressed as Lj(t) = Lu(t, uj) � Lu(t, lj), with Lu(t, x) = min{L(t), x}, x 2 [0, 1]. The outstanding notional of the
tranche j is given by Fj(t) = Fu(t, uj)�Fu(t, lj)with Fu(t, x) = x�Lu(t, x), x 2 [0, 1]. At the predefined dates t = t1, . . . , T ,
t1 > t0, the protection seller and the protection buyer exchange the payments. The protection buyer pays to the protection
seller a predetermined premium, called a spread on the outstanding tranche notional and is compensated for losses that
occur within the range of the tranche. Each default in the portfolio reduces the outstanding tranche notional. This leads to
a decline in the value of the periodic fee payment. The cash exchange takes place until T or until the portfolio losses exceed
the detachment point.

The protection leg DLj is defined as the present value of all expected payments made upon defaults

DLj(t0) =
TX

t=t1

�(t0, t)E{Lj(t) � Lj(t �1t)}, j = 1, . . . , J, (1)

where � is a discount factor and1t is a time between t and the previous payment day. The premium leg PLj is expressed as
the present value of all expected premium payments

PLj(t0) =
TX

t=t1

�(t0, t)sj(t0)1tE{Fj(t)}, j = 2, . . . , J, (2)

where sj denotes the spread of tranche j. The first tranche, called the equity is traded with an upfront payment ↵ and a fixed
spread of 500 bp. Its premium leg (2) turns into

PL1(t0) = ↵(t0)(u1 � l1) +
TX

t=t1

�(t0, t) · 500 ·1tE{F1(t)}.

A spread sj is calculated once, at t0 so that the marked-to-market value of the tranche is zero, i.e. the value of the premium
leg equals the value of the protection leg

sj(t0) =

TP
t=t1

�(t0, t)E{Lj(t) � Lj(t �1t)}
TP

t=t1
�(t0, t)1tE{Fj(t)}

, for j = 2, . . . , J. (3)

The upfront payment of the equity tranche is computed as

↵(t0) = 100
u1 � l1

TX

t=t0

(�(t, t0) [E{L1(t) � L1(t �1t)} � 0.051tE{F1(t)}]) .
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For more details we refer to Bluhm and Overbeck [2] and Kakodkar et al. [20].
The main challenge in calculating the fair tranche spread (3) is the correct calculation of the expected losses. This task

requires the analysis of how the portfolio entities are likely to default together. There are two main types of credit risk
models: structural and reduced form models. The structural model is motivated from a Merton style approach where a
default occurs when the value of an asset drops below a certain level. In the reduced form approach a default is modelled
with an intensity process. A third class is based on copula theory and is connected with the first two approaches. For a
comprehensive overview we refer to Bielecki and Rutkowski [1].

There has been amultitude of CDO riskmodels proposed that apply different dependency concepts. Themarket standard
for pricing CDOs is the large pool Gaussian copula model that has been introduced to the valuation of multi-name credit
derivatives by Li [23]. Themain drawback of the Gaussian copula is that it exhibits no tail dependence and in consequence it
cannot model the extreme events accurately. However, due to its analytical tractability and numerical simplicity, the large
pool Gaussian copula model still remains the benchmark on the market.

2.2. Base correlation

In the Gaussian copula model the main driver of the tranche price is the correlation coefficient. The correlations can be
computed from market data by inverting the pricing formula (3). If we keep the value of other parameters fixed, then the
correlation parameter thatmatches the quoted tranche spread is called an implied compound correlation. It is observed that
implied compound correlations are not constant across the tranches. This phenomenon is called an implied correlation smile.
Still, the main disadvantage of the compound coefficient is that the mezzanine tranches are not monotonic in correlation
and two parameters might result in the same spread value. The second problem that we might encounter is a nonexistence
of the implied correlation. These disadvantages caused the enhanced popularity of base correlations proposed by McGinty
and Ahluwalia [25].

The main idea behind the concept of the base correlation is that each tranche [lj, uj] can be represented as a difference
of two, equity type tranches that have the lower attachment point zero: [0, uj] and [0, lj]. Here we use a property that the
equity tranche is monotone in correlation. The base correlations can be implied from the market spreads using standard
bootstrapping techniques. One needs the spread value of the tranche [lj, uj] and the base correlation of the tranche [0, lj] in
order to imply the base correlation [0, uj]. In this approach, (3) is calculated as

sj(t0) =

TP
t=t1

�(t0, t)
⇥
E⇢(0,uj){Luj (t, uj) � Luj (t �1t, uj)} � E⇢(0,lj){Luj (t, lj) � Luj (t �1t, lj)}

⇤

TP
t=t1

�(t0, t)1t
⇥
E⇢(0,uj){Fu

j (t, uj)} � E⇢(0,lj){Fu
j (t, lj)}

⇤ (4)

for j = 2, . . . , J , where the expected value E⇢(0,uj) is calculated with respect to the loss distribution determined by the base
correlation ⇢(0, uj) of the tranche [0, uj]. In the Gaussian copulamodel the base correlations are nondecreasingwith respect
to the seniority of tranches and the implied correlation smile turns into a correlation skew.

3. Dynamic semiparametric factor model

Let Yt,k be a data point, a tranche spread or a base correlation, observed on a day t , t = 1, . . . , T . The index k represents
an intra-day numbering of observations on that day, k = 1, . . . , Kt . The observations Yt,k are regressed on two-dimensional
covariates Xt,k that contain the tranche seniority and the remaining time to maturity

Yt,k = m0(Xt,k) +
LX

l=1

Zt,lml(Xt,k) + "t,k, (5)

where ml : R2 ! R, l = 0, . . . , L, are factor loading functions, Zt,l 2 R are factors, and "t,j are error terms with zero means
and finite variances.

The additive structure of (5) is a typical approach in regression models. Here, the functions m are estimated
nonparametricly and represent the time-invariant, spatial component. The factors Zt drive the dynamics of Yt . The number
of factors L is fixed and should be small relative to the number of observed data points so that we achieve a significant
reduction in the dimension. The investigation of the dynamics of the entire system boils down to the analysis of the factors’
variability. These arguments justify calling (5) a dynamic semiparametric factor model.

Fengler et al. [11] estimatem and Zt iteratively using kernel smoothing methods, Härdle and Ritov [29] apply functional
principal component analysis, Härdle and Borak [26] estimate m with a series based estimator. For numerical convenience
we follow the last paper and define functions  b : R2 ! R, b = 1, . . . , B, B � 1, such that

R
R2  

2
b dx = 1. Then, a tuple

of functions (m0, . . . ,mL)
> may be approximated by A , where A is a (L + 1 ⇥ B) matrix of coefficients {{al,b}L+1

l=1 }Bb=1 and
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 = ( 1, . . . , B)
>. We take { b}Bb=1 to be a tensor B-spline basis. For a survey over the mathematical foundations of

splines we refer to de Boor [7]. With this parametrization (5) turns into

Yt,k = Z>
t m(Xt,k) + "t,k = Z>

t A (Xt,k) + "t,k,

where Zt = (Zt,0, . . . , Zt,L)> with Zt,0 = 1 andm = (m0, . . . ,mL)
>.

The estimatesbZt = (bZt,0, . . . ,bZt,L)> andbA are obtained similarly to Ramsay and Silverman [27] by

(bZt ,bA) = arg min
Zt ,A

TX

t=1

KtX

k=1

�
Yt,k � Z>

t A (Xt,k)
 2

, (6)

yielding estimated basis functions bm = bA . The minimization is carried out using an iterative algorithm. However, the
estimates ofm and Zt are not uniquely defined. Therefore, the final estimates ofm are orthonormalized and Zt are centered.
Park et al. [26] also prove that the difference of the inference based on the estimatedbZt,l and the true, unobserved Zt,l is
asymptotically negligible. This result justifies fitting an econometric model, like a vector autoregressive to the estimated
factors for further analysis of data.

The number of factors L as well as the numbers of spline knots in both maturity and tranche directions R1, R2, and the
orders of splines r1, r2 have to be chosen in advance. A common approach is to maximize a proportion of the variation
explained by the model among the total variation. We propose a following criterion

EV(L, R1, r1, R2, r2) = 1 �

TP
t=1

KtP
k=1

⇢
Yt,k �

LP
l=1

Zt,lml(Xt,k)

�2

TP
t=1

KtP
k=1

�
Yt,k � em0(Xt,k)

 2
, (7)

where

em0(X`) = 1
T

TX

t=1

KtP
k=1

Yt,k1{X` = Xt,k}
KtP
k=1

1{X` = Xt,k}
, ` = 1, . . . , Kmax, (8)

is an empirical mean surface and Kmax is the number of all different Xt,k observed during T days. The criterion (7) is a
modified version of the one considered in [11] and other literature on theDSFM,where instead of the empiricalmean surface,
the overall mean of the observations is used. The mean surface (8) makes more sense, since our data reflect monotonous
behaviour w.r.t. the tranche seniority.

The em0 factor in (5) is usually interpreted as a mean function of the data. We propose to first subtract the estimate (8)
from the data and then fit the DSFM. The extraction of the empirical meanem0 leads to the following model

Yt,k = em0(Xt,k) +
LX

l=1

Zt,lml(Xt,k) + "t,k = em0(Xt,k) + Z>
t A (Xt,k) + "t,k, (9)

where ml are factor functions, l = 1, . . . , L, Zt,l are factor loadings, and A is a (L ⇥ B) coefficient matrix. The representation
(9) reduces the number of the factor functions estimated in the iterative algorithm (6). As the model (9) achieved a bit
better performance in the empirical study we present only the results of this approach. For simplicity’s sake the model (9)
is hereafter called the DSFM.

4. Modelling the dynamics of CDO surfaces

4.1. Data description

The data set analysed in this study contains daily spreads of iTraxx tranches of Series 2–10 between 30 March 2005
(hereafter denoted 20050330) and 2 February 2009 (denoted 20090202) obtained from Bloomberg. We have in totalPT

t=1 Kt = 49 502 data points over T = 1004 days.
Twice a year, every March and September, a new series of iTraxx is issued. Therefore, every day one observes a bunch

of indices from various series and different maturities. Here we analyse tranche spreads and also base correlations, both
denoted Yt , as a function of the tranche seniority ⇠t and the remaining time to maturity ⌧t . Each iTraxx index has 3, 5, 7, or
10 years maturity. The seniority of a tranche ⇠t is represented by its corresponding detachment point. The remaining time
to maturity of a tranche is an actual time left till its expiration and takes values between zero and 10.25. For every day a
separate surface representing the entire market information is available. The number of observed every day indices is low
(minimum 4, maximum 17, median 12, see Fig. 2). This results in a string structure in the data. Each string corresponds to
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Fig. 2. Daily number of curves for every surface during the period 20050330–20090202.

Fig. 3. Base correlations of all series observed on 20080909 (left) and 20090119 (right).

Table 1
Percentage of missing values during the period 20050330–20090202.

Year 3Y 5Y 7Y 10Y
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

2005 100 100 100 100 100 34 34 34 34 48 5 5 5 5 5 35 34 35 34 35
2006 78 56 55 100 100 6 7 6 6 8 3 3 3 4 4 5 5 6 8 6
2007 88 99 99 100 100 3 2 2 3 3 2 2 3 2 3 3 2 3 2 2
2008 47 99 100 100 100 24 25 25 24 27 24 25 25 25 27 24 27 24 25 24
2009 100 100 100 100 100 42 42 47 42 42 42 43 43 42 42 42 43 42 42 43
All 72 93 93 100 100 16 17 17 16 20 13 14 13 13 14 16 17 16 17 16

one ⌧t 2 [0, 10.25] and is composed out of at most five points. The market quotes five out of six tranches as the most senior
tranche is usually not traded. Figs. 1 and 3 present the curves ofmarket spreads and corresponding implied base correlations
on 20080909 and 20090119. As time passes, the curves move through the space towards expiry and simultaneously change
their skewness and level.

Since the shortest maturity is 3 years and every half a year new four indices are issued, the number of indices present on
the market grows in time. Table 1 outlines a percentage of missing values for every maturity and for every tranche during
the entire period considered and during the annual subperiods. We see that the CDO market was booming in 2006 and
2007. However, since the beginning of the financial crisis in 2008 the demand for credit derivatives had been shrinking
meaningfully. In the first quarter of 2009 the iTraxx tranches became highly illiquid. As mentioned before, many missing
data may create challenges to the econometric analysis. Because tranches with 3 years maturity were rarely traded, this
maturity was excluded from our study.

Sometimes on a particular day, for a particular tranche and a particular remaining time to maturity we observe two
different spreads. As an example consider a day t0 on which a new series with 3 years maturity is issued. If 5 years earlier
a series with 7 years maturity was issued, then on day t0 this series has also 3 years remaining time to maturity. In this
situation we include in our data set the observation that comes from the most actual series (in the example we take the
series issued on t0).
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Fig. 4. Sample mean, estimated factors and loadings (Zt,1 black, Zt,2 red) in the DSFM for the log-spreads. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

The base correlations (4) are implied from themarket spreads using the large pool Gaussian copula model (assuming the
LGD of 60%). The common intensity parameters are derived from iTraxx indices. The discount factors are calculated from
rates of Euribor and Euro Swaps.

The structure of the equity tranche is different from the other tranches. It is quoted as an upfront payment plus 500 bp
spread paid quarterly. In order to include the equity tranche in the joint analysis of all the tranches, we convert its quotes
to standard spreads with zero upfront fee using the large pool Gaussian copula model.

4.2. DSFM estimation results

Since our data are positive andmonotone,we convert spreads into log-spreads and for base correlations apply the Fisher’s
Z-transformation defined as

T (u) = arctanh(u) = 1
2
log

1 + u
1 � u

.

It transforms the empirical Pearson’s correlations between bivariate normal variables to a normally distributed variable.We
will use it for the base correlations as it stabilizes their variance.

Since the design of the data in the tranche seniority dimension is fixed, we choose in this direction quadratic B-splines
and five knots. Table 2 presents a proportion of the explained variation (7) for different numbers of factors, knots and
different orders of splines in the maturity dimension. Similar to Park et al. [26], we find that the order of splines and the
number of knots have a small influence on the proportion of the explained variation. We pick two factors and the quadratic
B-splines placed on 10 knots in ⌧ dimension for both types of data. The number of knots is close to the median number of
observed strings every day. Figs. 4 and 5 exhibitbm and bZt estimated in the DSFM for the log-spreads and the Z-transformed
base correlations respectively.

In the DSFM for the log-spreads the first and the second factor can be interpreted as a shift function and a slope-curvature
respectively. When we shiftbZt,1, the whole surface shifts along the z-axis. IncreasingbZt,2 results in the enhancement of the
surface’s steepness, whereas, decreasingbZt,2 implies its flattening. The interpretation of the DSFM factors of Z-transformed
base correlations is not so clear. When varyingbZt,1 andbZt,2 both the slope and the curvature change. The upward shift of the
surface can be a result of a decrease inbZt,1 or an increase inbZt,2.

Fig. 6 displays the in-sample fit of the models to data on 20080909 and 20090119. The convergence of the models is
typically reached after 8 cycles. The mean squared error of the in-sample fit over all dates considered in this study is 0.045
for the log-spreads surfaces and equals 0.006 for the Z-transformed base correlations surfaces.
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Fig. 5. Sample mean, estimated factors and loadings (Zt,1 black, Zt,2 red) in the DSFM for the Z-transformed base correlations. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 2
Proportion of the explained variation by the DSFM for L = 1, 2, 3, different numbers of knots and different orders of splines in the maturity dimension. The
values of the selected models marked with italic.
Number of factors Spline Log-spr Z-BC

Order Knots
5 10 15 20 5 10 15 20

1 0.797 0.876 0.897 0.898 0.629 0.640 0.660 0.660
2 0.877 0.896 0.905 0.910 0.633 0.654 0.657 0.664
3 0.867 0.898 0.906 0.908 0.638 0.650 0.662 0.664
4 0.871 0.898 0.907 0.910 0.639 0.653 0.659 0.662
1 0.842 0.925 0.940 0.945 0.730 0.835 0.860 0.869
2 0.926 0.952 0.961 0.954 0.781 0.861 0.876 0.888
3 0.911 0.952 0.941 0.950 0.763 0.867 0.883 0.887
4 0.917 0.956 0.947 0.954 0.783 0.870 0.881 0.886
1 0.858 0.940 0.959 0.973 0.746 0.854 0.888 0.898
2 0.941 0.967 0.977 0.982 0.815 0.896 0.907 0.925
3 0.927 0.967 0.975 0.979 0.805 0.901 0.922 0.930
4 0.932 0.972 0.977 0.982 0.817 0.903 0.910 0.927

The covariance structure of thebZt time series is investigated by means of VAR analysis. The augmented Dickey–Fuller
test indicates that the first differences of bZt are stationary. The check of the sample partial autocorrelation functions
of the residuals of the estimated VAR(1) models for the factor loadings confirms that the VAR(1) process captures the
autocorrelation structure of the factor loadings. Certainly, one may investigate more complex multivariate time series
models that account for a dynamic structure of the conditional variance–covariance and of the conditional correlation like
the BEKK-GARCH or the DCC-GARCH, see [9]. Since we are interested in the conditional mean process only, the VAR model
appears to be sufficient.Moreover, a relatively simple out-of-sample VAR forecasting can be used in forecasting the evolution
of the surfaces.



B. Choro±-Tomczyk et al. / Journal of Multivariate Analysis ( ) – 9

(a) DSFM for the log-spreads.

(b) DSFM for the Z-transformed base correlations.

Fig. 6. In-sample fit (black points) of the models to data (red points) on 20080909 (left) and 20090119 (right). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

5. Applications in trading

5.1. Curve trades

The popularity of the iTraxx market led to increased liquidity in its standardized tranches allowing investors to imple-
ment complex credit positions. Here we present curve trades, namely flatteners and steepeners—strategies that combine
tranches of different time to maturity, see also [20].

A flattener is a trade that involves a simultaneous sale of protection on a long-term tranche and a purchase of protection
on a short-term tranche. An example would be: sell 10Y 3%–6% and buy 5Y 6%–9%. In this trade the investor expresses not
only a bullish long-term outlook but also a bearish short-term view on themarket. The opposite trade is called a steepener. It
is achieved by selling the short-term protection and buying the long-term protection. Both strategies are popular in trading
CDS, credit indices, and yield curves. Credit curves got a lot of attention in May 2012 when J.P. Morgan announced a loss of
$2 billion on its flattener trade on the CDX IG 9 index. The final loss reached $6.2 billion.

In our study both long and short term tranches have equal notional amounts. However, by adjusting the notionals, a
trade can be structured so that it is risky duration neutral, carry neutral, correlation neutral, or theta (sensitivity to implied
correlation changes) neutral, see [28]. As recommended by Felsenheimer et al. [10] we consider trades that generate no or
a positive carry, i.e. the spread of the sold protection does not exceed the spread of the bought protection.

It is important to remark that our trades are exposed to default risk. If one buys 6%–9% and sells 3%–6%, then these
tranches provide protection of different portions of portfolio risk. If there is any default in 3%–6%, then we must deliver a
payment obligation and incur a loss. Since we do not possess data of historical defaults in iTraxx, we cannot include the
default payments in the further analysis. Consequently, in calculating the profit-and-loss (P&L) of the strategy we also do
not account for the positive carry that we cumulate until the both positions are closed.

Felsenheimer et al. [10], Kakodkar et al. [20] and Roy [28] consider various scenarios of flattener trades. They also assume
that we do not observe any defaults in the collateral. However, their examples are not based on real data and do not
investigate the performance of the trades over time.

Assume that an investor enters a curve trade and sells protection at a spread of s1(t0) for the period [t0, T1] and buys
protection at a spread of s2(t0) for the period [t0, T2]. If the trade is a flattener, then T1 > T2. The spreads of the tranches are
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calculated in such a way that on the date of the trade t0 the marked-to-market (MTM) values of both positions are zero

MTM`(t0) =
TX̀

t=t1

�(t0, t) [s`(t0)1tE{F`(t)} � E{L`(t) � L`(t �1t)}] = 0, ` = 1, 2.

Since spread values constantly vary over time, immediately after initiation of the trade, t̃ > t0, the market trades the
tranches at s`(t̃). In consequence, we observe a change in the MTM value of our positions

MTM`(t̃) = �
s`(t0) � s`(t̃)

 TX̀

t=t̃1

�(t̃, t)1tE{F`(t)}, ` = 1, 2, (10)

where t̃1 is the first payment day after t̃ .
A positive MTM means that the contract has a positive value to the protection seller. If the protection seller closes the

position ` at time t̃ , then receives from the protection buyer the amount MTM`(t̃).
The aim of the curve trade investor is to maximize the P&L function that equals the total MTM value

PL(t̃) = MTM1(t̃) � MTM2(t̃). (11)

5.2. Empirical results

The key decision in constructing a curve trade is which tranche to buy and which to sell. If an investor entered a flattener
on 20080909, then the trade incorporated two tranches whose spreads are depicted on the left panel of Fig. 1. If the investor
decided to close the positions on 20090119, then their MTM values (10) were calculated using the spread quotes exhibited
on the right panel of Fig. 1 and using the base correlations (needed for E{F`}) shown on the right panel of Fig. 3. Having
the data displayed on Figs. 1 and 3, we can compute the MTM values of all tranches that were quoted on both days. In
consequence, we can easily recover those two tranches that maximize the P&L function (11). However, it is only possible if
we possess the whole market information from these two points in time.

With an efficient forecasting technique, one can compute, for a given time horizon, a prediction of each point that is
displayed on Figs. 1 and 3. By doing it using standard econometric methods, each tranche from every series has to be traded
as an individual time series. Disregarding the fact that there are manymissing values in our data, see Table 1, we havemany
series that do not have a long history. If an investor bought a tranche from Series 9 on 20080320, the day of its launch and
decided to sell it a day or a week later, then we might not have enough past observations to fit and forecast the time series
model.

In the DSFMmodellingwe do not differentiate the indices by their series number but by their remaining time tomaturity.
If in the past we already had observations with a very long remaining time to maturity, then we are able to price upcoming
series even before they appear on the market. Moreover, we can forecast them using the DSFM.

We carry out the forecasting of log-spreads and Z-transformed base correlations in moving windows. A moving window
procedure is used when only the most recent data are considered to be relevant for the estimation. We impose a static
window of w = 250 days. Then for every time t0 between the day w and the last day T in our data, we analyse
{{Yt,k}Ktk=1}t0t=t0�w+1. For each such set we estimated the DSFMmodel (9). As a result, we obtain T �w+1 times the estimated
factor functionsbm = (bm0, . . . ,bmL)

> and the series of the factor loadingsbZt = (bZt,0, . . . ,bZt,L)> of length w. Since the factor
functions are fixed, the forecasting is performed only on the factor loadings. As discussed in Section 4.2, we apply VAR(1)
models to compute the predictions for a horizon h of one day, oneweek (five days), and onemonth (20 days). Due to the fixed
scheme of issuing the iTraxx on themarket, for every time t ,w+h  t  T weknowwhich indices are traded. Therefore, the
number of points that could be observed Kt and the possible remaining times to maturity ⌧t are known. Thus, the bivariate
vector Xt,k, k = 1, . . . , Kt , does not have to be forecasted. The forecastbYt,k is calculated from thebZt forecast. Finally, a proper
inverse transformation is applied tobYt,k in order to recover the values of the spreads and the base correlations.

The calculation of the expected tranche losses using the large pool Gaussian copula model needs as an input a
homogeneous default probability. Since the spread predictions are calculated out-of-sample, we also forecast the default
probabilities. All predicted values of spreads and base correlations that lead to an arbitrage in prices, i.e. negative spreads,
default probabilities and base correlations outside [0, 1], were excluded.

Afterwards, for every predicted {ŝk(t), ⇢̂k(t)}, t = w + h, . . . , T , k = 1, . . . , Kt , we compute \MTMk(t) according to (10)
where the initial spread is the spread observed on t �h. Consequently, we create a surface of the predicted MTM values, see
Fig. 7. Each surface has its extremes that indicate the tranches recommended for buying and selling.

The empirical analysis of the curve trades’ performance is conducted using tranches 2–5 for all dates and indices
considered in Section 4.2. Since the equity tranche is quoted in percent as an upfront fee, its corresponding spread is
significantly higher than the spreads of other tranches. As it causes a large skew of our spread surfaces, we excluded it
from the study. However, the calculation of the spread and the MTM value of the tranche 2 requires as an input a value of
the base correlation of the equity tranche. Therefore, we first estimate and forecast the DSFM in moving windows using all
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Fig. 7. MTM surfaces on 20080909 (left) and 20090119 (right) calculated using one-day spread and base correlation predictions.

Table 3
Average bid–ask spread excess over themid spread as a percentage of themid
spread for tranches of Series 8 during the period 20070920–20090202.

Maturity 1 2 3 4 5

5Y 1.88 1.78 2.52 3.77 6.28
7Y 1.49 1.65 2.31 2.97 4.87
10Y 1.41 1.66 1.83 2.52 4.09

Table 4
Flatteners. Calculations based on predictions of log-spreads and Z-transformed BCs marked as LZ; based only on Z-transformed BCs marked as Z.

Tranches Maturity Mean of daily gains in % Number of executed trades
1 day 1 week 1 month 1 day 1 week 1 month
LZ Z LZ Z LZ Z LZ Z LZ Z LZ Z

2 All 0.28 0.32 0.12 0.11 0.05 0.04 751 750 744 742 728 729
3 All 0.16 0.20 0.06 0.07 0.02 0.01 754 754 750 750 734 735
4 All 0.10 0.15 0.03 0.04 0.01 0.01 754 754 750 750 735 734
5 All 0.08 0.10 0.03 0.03 0.01 0.01 741 739 733 734 735 733
All 10–5 0.19 0.21 0.06 0.08 0.02 0.02 698 754 700 750 701 727
All 10–7 0.25 0.25 0.08 0.08 0.03 0.03 736 754 730 749 726 730
All 7–5 0.14 0.15 0.04 0.05 0.01 0.00 724 750 714 748 717 733
2 10–5 0.26 0.26 0.12 0.13 0.04 0.04 476 549 483 566 495 622
3 10–5 0.12 0.17 0.05 0.05 0.01 �0.01 576 718 587 705 571 690
4 10–5 0.12 0.11 0.03 0.02 0.01 �0.01 573 731 582 722 582 695
5 10–5 0.07 0.07 0.03 0.02 0.01 0.00 587 696 572 689 577 660
2 10–7 0.34 0.29 0.14 0.12 0.06 0.05 555 542 560 571 545 635
3 10–7 0.17 0.22 0.06 0.05 0.02 0.00 635 704 635 703 616 712
4 10–7 0.12 0.13 0.03 0.03 0.01 0.00 596 721 610 717 602 719
5 10–7 0.08 0.07 0.03 0.02 0.01 0.00 604 707 590 702 595 709
2 7–5 0.17 0.18 0.06 0.06 0.02 0.00 587 721 573 708 587 708
3 7–5 0.09 0.11 0.04 0.03 0.01 �0.01 627 727 616 732 637 718
4 7–5 0.08 0.08 0.02 0.02 0.01 �0.00 592 704 595 724 623 711
5 7–5 0.06 0.05 0.02 0.02 0.01 0.00 650 704 645 718 644 703

tranches 1–5. From this analysis we obtain the forecast of the first tranche’s parameter which we use in calculations of the
final results.

Buying and selling tranches involve transaction charges. However, we do not have information on trading costs neither
the entire history of the bid and ask prices. We only analyse the bid–ask spreads of Series 8. Table 3 shows an average
distance of the bid spread and of the ask spread from themid spread as a percentage of themid spread. For the investigation
of the trading strategies, the tranche spread data used in this study are adjusted in the following way. The protection buyer
delivers an ask spread that is calculated as a mid spread increased by a proper percent listed in Table 3. The protection seller
receives a bid spread which is calculated as a mid spread reduced by this percentage.

For every day w  t  T � h we construct a curve trade. Namely, we fit and forecast the DSFM model and calculate
h-day forecasts of the MTM surfaces. From these surfaces we recover which two tranches and from which series optimize
a given strategy. The accuracy of the predictions is evaluated by conducting a backtesting of the trades using the historical
observations. For a given strategy and for tranches selected by the DSFM forecasting procedureswe check the corresponding
observed market spreads, calculate the resulting MTM values, and register the realized P&L. Tables 4 and 5 present the
overall means of the daily gains given in percent and the number of executed trades for the flattener and steepener trades
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Table 5
Steepeners. Calculations based on predictions of log-spreads and Z-transformed BCs marked as LZ; based only on Z-transformed BCs marked as Z .

Tranches Maturity Mean of daily gains in % Number of executed trades
1 day 1 week 1 month 1 day 1 week 1 month
LZ Z LZ Z LZ Z LZ Z LZ Z LZ Z

2 All 0.45 0.46 0.13 0.16 0.05 0.06 509 507 498 487 473 451
3 All 0.30 0.35 0.09 0.09 0.02 0.02 435 423 427 412 423 401
4 All 0.20 0.24 0.05 0.06 0.01 0.01 439 435 441 445 426 423
5 All 0.12 0.16 0.04 0.04 0.01 0.02 474 455 459 462 472 443
All 5–10 0.16 0.18 0.05 0.08 0.01 0.00 723 744 711 741 708 722
All 7–10 0.21 0.25 0.07 0.09 0.02 0.02 726 748 716 748 717 735
All 5–7 0.12 0.13 0.03 0.03 0.00 �0.01 747 749 740 746 717 727
2 5–10 0.33 0.48 0.13 0.35 0.05 0.12 80 80 76 76 61 61
3 5–10 0.02 0.11 �0.03 0.04 �0.05 �0.04 69 61 65 57 50 50
4 5–10 0.22 0.26 0.09 0.10 0.08 0.09 51 48 49 44 37 30
5 5–10 0.09 0.13 0.07 0.07 0.04 0.05 49 47 48 42 35 28
2 7–10 0.44 0.66 0.21 0.42 0.10 0.11 86 87 82 83 67 68
3 7–10 0.41 0.56 0.09 0.23 0.03 0.04 81 84 77 78 62 61
4 7–10 0.38 0.55 0.11 0.13 0.04 0.04 89 93 85 82 71 68
5 7–10 0.24 0.29 0.12 0.13 0.05 0.05 122 121 119 113 102 95
2 5–7 0.56 0.50 0.27 0.19 0.15 0.02 93 80 89 78 74 63
3 5–7 0.40 0.39 0.16 0.09 0.09 0.03 103 91 99 83 83 64
4 5–7 0.23 0.28 0.08 0.07 0.05 0.04 108 105 105 94 86 73
5 5–7 0.20 0.18 0.07 0.05 0.03 0.02 109 116 108 108 85 78

Table 6
Joint flatteners and steepeners. Calculations based on predictions of log-spreads and Z-transformed BCs marked as LZ; based only on Z-transformed BCs
marked as Z .
Tranches Maturity Mean of daily gains in % Number of executed trades

1 day 1 week 1 month 1 day 1 week 1 month
LZ Z LZ Z LZ Z LZ Z LZ Z LZ Z

All All 0.30 0.30 0.11 0.13 0.04 0.03 754 754 750 750 735 735
2 All 0.33 0.28 0.12 0.13 0.05 0.04 752 753 745 748 729 735
3 All 0.18 0.23 0.07 0.07 0.02 0.02 754 754 750 750 735 735
4 All 0.12 0.18 0.04 0.05 0.01 0.01 754 754 750 750 735 734
5 All 0.08 0.11 0.03 0.04 0.01 0.01 741 744 735 739 735 733

respectively. For every trade the two tranches are selected either from a fixed seniority (e.g. choose always tranche 2) or
always from all seniorities. Moreover, one can restrict the choice to fixed maturities (e.g. always buy 7Y maturity, sell 5Y)
or choose from maturities. We also include a strategy that allows the investor to switch between flatteners and steepeners
every day, see Table 6. If a strategy that combines flatteners and steepeners allows in addition choosing any tranche and any
maturities, then the selected tranches are the maximum and the minimum of the forecasted MTM surface.

If for a particular day there are no tranches that for a given strategy return a positive P&L forecast, we assume that the
investor decides not to take any action and we do not include this date in the overall summary of this strategy.

The spread predictions can alternatively be computed directly from the base correlations predictions by using (4). In
consequence, it is not necessary to apply the DSFM to historical spreads. In Tables 4–6 the columns labelled with Z present
the results obtained by modelling and forecasting the Z-transformed base correlations only.

The results show that the highest daily gains achieve the strategies that invest in tranche 2 and 3. Obviously, these
tranches are quoted at the highest spreads but also carry the greatest risk. The steepeners for a fixed tranche and fixed
maturities reveal a very good performance. However, these strategies were rarely carried out which means that the
conditions of these strategies are difficult to meet. The models based entirely on the predictions of the base correlations
achieve better results for one-day and one-week forecasting horizon. The models that combine the spread predictions and
the base correlations predictions show better results for one-month forecasting horizon. Since the forecasting for the longer
time horizons is less accurate, we observe a significantly better performance of the trades designed for short term periods.

6. Conclusions

This work investigates dynamics of collateralized debt obligations (CDOs) by modelling the evolution of tranche spread
surfaces and base correlation surfaces using a dynamic semiparametric factor model (DSFM). The empirical study is
conducted using an extensive data set of 49,502 observations of iTraxx Europe tranches of Series 2–10 for the time period
between 30 March 2005 and 2 February 2009. The base correlations are implied from spreads using the large pool Gaussian
copula model. The tranche spreads and the base correlations are represented as a function of the tranche seniority and the
remaining time to maturity. Every day data appear in a small number of curves that form a surface in the three-dimensional
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space. As time passes, the surfaces move through the space towards expiry and simultaneously change their shapes. The
DSFM captures their evolution simultaneously in space and time dimensions by a small number of factors. We propose a
modification of the classic DSFM and of the criterion of choosing the number of factors. The results show that the DSFM
successfully reproduces the dynamics in data. The study is completed by presenting an application in trading strategies.
We show how DSFM can be used in constructing the curve trades. Based on the DSFM predictions of the spread and base
correlation surfaceswe calculate the predictions of themarked-to-market (MTM) surfaces for different investment horizons.
We analyse the performance of 43 strategies that combine different positions, tranches, and maturities. A backtesting using
historical data shows that the curve trades achieve high daily gains.
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1 Introduction

The empirical pricing kernel puzzle emerged as an empirical phenomenon in the financial markets,

particularly with respect to the prices of European options written on the underlying stock index. Sev-

eral authors have investigated if such patterns of the EPK can be justified in a general equilibrium set-

ting and if the observed prices can be the outcome of investors’ optimal behavior. The starting point

for many of the investigations is settled within similar economic models that assume a representative

agent in financial markets whose preferences have classical expected utility representation. Addition-

ally, the risk neutral valuation principle is supposed to be valid for the financial markets by means

of pricing kernels. If the pricing kernels represent state contingent equilibrium prices they might be

identified with the v. Neumann-Morgenstern marginal utility indices of the representative agent.

Starting with Ait-Sahalia and Lo (2000), Jackwerth (2000), Engle and Rosenberg (2002), different econo-

metric methods have been applied to estimate pricing kernels with varying underlying models for the

financial markets. It turned out as a common result, that the estimates, the so called empirical pricing

kernels (EPK), have non-monotonic shape regardless of the used data sets. Typically, we find either a

U-shaped pricing kernel or a hump-shaped pricing kernel. In either cases the empirical kernels fail to

be monotone, contrasting the standard theory of expected utility. This is what we shall call the EPK

puzzle. Based on conditional estimates of the risk neutral and physical densities, it appears that peri-

ods of unusual low and stable realized and risk neutral volatility feature a hump shaped EPK, whereas

during periods of high volatility the estimates look U-shaped. Several studies report the shape of the

pricing kernel as being hump-shaped for most months between 2004 and 2007. This holds for both

the German DAX 30 index Giacomini and Härdle (2008); Grith et al. (2012) and the American S&P 500

index Barone-Adesi et al. (2013); Beare and Schmidt (2012); Polkovnichenko and Zhao (2012).

Monotonicity tests for the EPK have been proposed by Golubev et al. (2008) who construct test for the

local concavity of the utility function and Härdle et al. (2012) who build uniform confidence bands for

the empirical pricing kernel; they apply the test to DAX 30 index EPK. Beare and Schmidt (2012) test the

concavity of the ordinal dominance curve associated with the risk neutral and physical distributions

associated with S&P 500 index. Typically, the null hypothesis of nonincreasing EPK was rejected.
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Recent econometric models point at volatility as a state variable, that help explain the observed non-

monotonicities in the pricing kernel. Chabi-Yo (2012); Song and Xiu (2012) find that, consistent with

economic theory, the pricing kernel decreases in the market index return, conditional on the market

volatility As such, unconditional estimates of the PK may appear U-shaped. Christoffersen et al. (2012),

propose an augmented Heston and Nandi (2000) model that allows for U-shaped pricing kernel in a

one period model by introducing a variance preference parameter.

There is a large body of literature that investigates the mechanisms through which a locally increasing

region in the pricing kernel can occur. Hens and Reichlin (2012) conduct a systematic analysis of the

EPK puzzle by relaxing in turn the assumptions embedded in the standard expected utility models:

complete markets, risk-averse investors and correct beliefs. They calibrate a hump-shaped pricing

kernel and find that incomplete markets can alone explain the puzzle. The authors rule out local risk-

proclivity, that works only as a ’pathological example with a few states’. With homogeneous agents,

misestimation of objective probability in isolations misses some essential features of the data. This

finding is in line with Ziegler (2007).

Closely related to the latter interpretation, heterogeneity in beliefs about the future realizations of the

returns occurs in several papers as a possible interpretation for the EPK puzzle. Bakshi and Madan

(2008); Bakshi et al. (2010) consider an equilibrium model with short and long equity investors that

is able to explain U-shaped pricing kernel; in particular, the positively sloped regions in the pricing

kernel occur when some investors are shorting equities. This model is able to explain some features

of the option data: decreasing negative returns in strikes of the OTM calls and the even pronounced

negative returns of put options, increasing in strike prices. However, it cannot capture the positive

returns of call options for high strikes as reported in Bondarenko (2003). Ziegler (2007) considers three

groups of heterogeneous agents with biased beliefs about the physical density but concludes that the

estimates of the mean are not realistic for the pessimistic groups. Optimism and pessimism reflect

biases in the first moment of the objective probabilities; Shefrin (2008) points out that one should

consider higher order biases in order to explain the empirical findings and emphases the bias in the

second moments that leads to risk neutral and physical distribution having different variance.
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Some studies argue that modifications of standard preferences are needed to explain the data. Depart-

ing from the expected utility framework, Polkovnichenko and Zhao (2012) propose a rank dependent

utility model and estimate probability weighting function nonparametrically. For most of the years

the estimates are inverse S-shaped, consistent with a U-shaped PK but they become S-shaped in the

years 2004-2007, suggesting a hump-shaped EPK. In line with experimental findings, inverse S-shaped

weighting function imply that investors tend to overweight low-probability events while underweight-

ing the likelihood of high-probability ones. The converse holds for the S-shaped probability weighting

function but the authors do not make further investigations about the differences in these treatments.

Hens and Reichlin (2012) show that a combination of reasonable pessimism and inverse S-shaped

weighting function can explain the hump shaped EPK.

Shefrin (2008) rationalizes the EPK puzzle in a model with mixed expected utility maximizers and

agents endowed with SP/A preferences - security, potential and aspiration theory, proposed by Lopes

(1987) and developed in Lopes and Oden (1999). The idea that investors are endowed with utilities

that mirror their concerns for portfolio maximization also pervades our paper.

Another stream of literature that tries to rationalize the EPK puzzle considers state dependence. State

dependence has been traditionally used to explain the asset pricing puzzles in equilibrium models

mainly based on two utility classes: habit formation, see Constantinides (1990), Campbell and Cochrane

(1999), or recursive utilities, see Epstein and Zin (2001). In these papers, one typically assumes a

Markov switching process for the evolution of states and derive asset related characteristics in a con-

sumption based model. Garcia et al. (2003) investigate recursive utility functions with state depen-

dency in the fundamentals. Melino and Yang (2003) disentangle the roles played by state dependent

intertemporal substitution and time preference in explaining the risk aversion puzzle in a model with

state dependent recursive preferences. Veronesi (2004) extends the state dependent utility by assum-

ing that the agents possess a probability distribution over their state and introduces the concept of

’belief-dependent preferences’. A first explanation for the empirical pricing kernel puzzle via state de-

pendence has been offered by Chabi-Yo et al. (2008), who generalize the setup of Melino and Yang

(2003). The crucial idea of the authors is to suppose that regime switches are inherent of the price
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process of the stock market. More specifically, within a discrete time period {0,1, ...,T }, there are two

types of price processes (S0
t )t2{0,...,T }, (S1

t )t2{0,...,T } for the risky asset which have joint continuous distri-

butions, and constitute separately together with the riskless bond arbitrage free financial markets in

the sense of section 2. Furthermore, they assume a latent regime switching variables in terms of an

unobservable Markov-chain (Ut )t2{0,1,...,T } of Bernoulli-distributed random variables. The observable

price process (St )t2{0,1,...,T } is then modeled by St =Ut S1
t + (1°Ut )S0

t for t 2 {0, ...,T }. Assuming the risk

neutral valuation principle for the latent two basic financial markets and for the observable one, the

authors drew a comparison of the associated pricing kernels via a simulation study. Indeed it turned

out that the empirical pricing kernels in the separated financial market were nonincreasing whereas

the empirical pricing kernel in the integrated financial market failed to have the property of mono-

tonicity. Therefore the empirical pricing kernel might be explained by a switch of the price processes

of the underlying in the financial market. The authors also investigate what type of conditioning - in

preferences, economic fundamentals or beliefs - are more likely to explain the EPK puzzle over time.

The time variant shape of the EPK is explained in Barone-Adesi et al. (2013) through optimism/pessimism

and overconfidence/underconfidence defined as the difference in the first and second moments of the

physical and risk neutral distribution. In this sense the authors find that the hump-shaped pricing ker-

nel stems from a mix of optimistic overconfident and pessimistic underconfident agents.

Grith et al. (2012) use the shape invariant model, a semi-parametric approach for multiple curves

with shape-related nonlinear variation, to model the dynamics of the empirical pricing kernel (EPK)

based on the hump feature. The approach allows to summarize the nonlinear variability with a few

interpretable parameters that can be used to conduct a further analysis that links the shape of the

pricing kernel to the business condition. They find that over periods of concerted negative evolution

of the economic indicators, the EPK hump will move to the right in the returns space, increase its

spread and shrink in vertical direction.

Based on the initializing thought that regime switching is caused by changes of the investors’ prefer-

ences our aim is to make the influence of these changes on the shape of the pricing kernels more ex-

plicit. We conjecture that the existing models with variance dependent component can be improved
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by exploiting the time varying and possible nonmonotone relationship between returns and volatil-

ity. We apply the concept of reference points in a different context that it has been previously used in

prospect theory, underlying another type of behavior that is not focused on loss aversion but perfor-

mance comparative to a benchmark.

We propose a model that can accommodate both shapes of the EPK observed in the empirical liter-

ature while retaining the expected utility framework in a one period model and endow the financial

investors with preferences that might be state sensitive. More technically, investors switch between

two utility indexes - over terminal wealth sets - at a point that projected on the market index space we

call ’reference point’. As a consequence, while the individual utility indices are concave, the market

utility may have jumps in the aggregate wealth space. In equilibrium, this renders pricing kernel non-

monotonic. Agents’ heterogeneity with respect to their ’reference point’ is summarized in the model

by a distribution of the reference points. This, together with preference parameters will characterize

the shape of PK.

2 Financial Market and Preferences

We consider a simple one period two-dates exchange economy model. Let [0,T ] be the time interval

of investment in the financial market, where t = 0 denotes the present time and t = T 2]0,1[ the time

of maturity. It is assumed that a riskless bond and a risky asset are traded in the financial market as

basic securities. The price process of the riskless bond (Bt ){t2[0,T ]} is defined by Bt = exp(°
Rt

0 rx d x) via

a deterministic Riemannian-integrable interest process (rt )t2[0,T ]. The price process of the risky asset

(St )t2[0,T ] is taken to be a nonnegative semimartingale with continuously distributed marginals St .

Discrete time models may be also subsumed to this setting. Let us further suppose that the financial

market is arbitrage free in the sense that there exists an equivalent martingale measure. We further

assume that the risk neutral valuation principle is valid for nonnegative payoffs √(ST ). Hence there is

an unknown Radon-Nikodym density º of a martingale measure such that the price of any random

payoffs √(ST ) is characterized by
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£
B°1

T √(ST )º
§

. (1)

By factorization with some Borel-measurable K º, that we call Kº pricing kernel (w.r.t. º) with [º|ST ] =

Kº(ST ) we obtain Z1

0
B°1

T √(x)Kº(x) pST (x) d x, (2)

where pST denotes a density function of the distribution of ST .

We will consider a portfolio choice problem that links risk attitudes of investors to the pricing rule of

the financial markets. Within the classical framework, that assumes a representative agent, investor

preferences may be represented by expected utilities [u {w̄(ST )}] depending on the aggregate final

wealth w̄(ST ), with v. Neumann-Morgenstern utility index u. Under some further technical conditions

one can show that there is some positive Ø such that

du

d x

ØØ
x=w̄(sT )=ØKº (sT )

for every realization sT of ST . Within this framework the pricing kernel has to be nonincreasing due to

concavity of the utility index u. We shall provide a simple economic model where the pricing kernel

need not to be nonincreasing. The key idea is to consider the investors preferences representable by

state dependent utilities. An axiomatic justification for this concept of state dependent preferences is

provided by Karni et al. (1983).

3 A Microeconomic View on the EPK puzzle

3.1 State Dependent Preferences

Let us assume that we have m investors who have exogenous initial wealth w10, ..., wm0 > 0 and stochas-

tic financial wealth in form of nonnegative random variables e1(ST ), ...,em(ST ). Without loss of gener-

ality we assume that the numeraire bond equals one. This means that all the prices are discounted.

The terminal wealth wi (ST ) fulfills the individual budget constraint:
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Z1

0
wi (x)Kº(x)pST (x) d x ∑ wi 0 +

Z1

0
ei (x)Kº(x)pST (x) d x, i = 1, . . . ,m. (3)

Financial wealth ei (ST ) at t = T depends on the initial holdings of securities and the investment choice

at t = 0. If we denote by ±i the fraction of the portfolio invested in the risky asset, ei (ST ) = ±i (ST °1)+1

and ±i expresses the risk exposure given initial wealth wi 0.

The consumers are assumed to have state dependent utilities in terms of extended expected utility

preferences within the terminology of Mas-Colell et al. (1995). In particular, this means that consumer

i has numerical representation of her preferences as:

ui {ST , w(sT )}

where ui : R+£R+ ! R[ {°1} denotes a state dependent v. Neumann-Morgenstern utility index sat-

isfying:

ui (x, y) 2R for x ∏ 0, y > 0, (4)

ui (x, ·) is strictly increasing and strictly concave for any x ∏ 0, (5)

ui (·, y) is Borel-measurable for every y ∏ 0. (6)

If ui (x, ·) is continuously differentiable the usual Inada conditions are assumed to hold for i = 1, ...,m

lim
y!0

dui (x, ·)
d y

ØØ
y =1, lim

y!1
dui (x, ·)

d y

ØØ
y = 0. (7)

Investors choose their optimal wealth (w̄1(ST ), ..., w̄m(ST )) such that the following properties are ful-

filled.

(ii) individual optimization: For each consumer i , w̄i (ST ) solves

max
wi (ST )

h
ui {ST , wi (ST )}

i
(8)

s.t. wi (ST ) satisfies individual budget constraint (3).
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(i) market clearing:
mX

i=1
w̄i (ST ) = w̄(ST ). (9)

The conditions (8) and (9) describe a weak version of a contingent Arrow Debreu equilibrium (Dana and

Jeanblanc (2003), sect. 7.1). As a by product w̄1(ST ), ..., w̄m(ST ) are Pareto optimum too, i.e. there are

no w1(ST ), ..., wm(ST ) with U i {wi (ST )} ∏U i {w̄i (ST )} for every i and such that U i {wi (ST )} >U i {w̄i (ST )}

for at least one i . By Negeishi method cf. Dana and Jeanblanc (2003) we may find nonnegative weight

vector Æ s.t. the aggregate preferences have extended expected utility representation

[uÆ {ST , w̄(ST )}] ,

for the aggregate state dependent utility uÆ :R2
+ !R[ {°1,1} defined by

uÆ(x, y)
def= sup

{yi }m
i=1

(
mX

i=1
Æi ui (x, yi ) | y1, ..., ym ∏ 0,

mX

i=1
yi ∑ y

)

.

These can be concluded from Lemma B.1, B.2 (cf. Appendix B). We impose a further condition on

the asymptotic elasticity of the utilities that represents a minimal requirement to describe the optimal

investment in terms of the marginal utilities and a pricing kernel.

limsup
y!1

dui (x, ·)
d y

ØØ
y< 1 for any x ∏ 0 and every i 2 {1, . . . ,m}. (10)

The condition follows the guidelines of Kramkov and Schachermayer (1999); a similar condition ap-

pears in Dana and Jeanblanc (2003), Duffie (1996), Karatzas and Shreve (1998). We find this formula-

tion more convenient to establish the following theorem.

Theorem 3.1 In addition to (4) – (10) let u1(x, ·), ...,um(x, ·) be twice continuously differentiable for x ∏

0. Then uÆ(x, ·) is continuously differentiable for every realization sT of ST . Furthermore for any Æi > 0

there exists some Øi > 0 such that

duÆ(sT , ·)
d y

ØØ
y=w̄(ST ) =Æi

dui (sT , ·)
d y

ØØ
y=w̄i (ST ) =ÆiØi Kº(sT ) =ØKº(sT )

for every realization sT .
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The proof of Theorem 3.1 is delegated to the end of Appendix A.

Theorem 3.1 is the corner stone for linking aggregated individual preferences to the market pricing

kernel with its potential nonmonotonicities. If we assume that the initial aggregate wealth sums up

to zero it is reasonable to conclude that market final wealth specializes to w̄(ST ) = ST if the bond is

in zero net supply. Let RT = ST

S0
be the return at maturity. Theorem 3.1 reads as follows in terms of

relative price.

Corollary 3.2 Let w̄(RT ) = RT and let u1(x, ·), ...,um(x, ·) be twice continuously differentiable for x ∏ 0.

Then under (4) – (10), uÆ(x, ·) is continuously differentiable for every realization rT , of RT and for any

Æi > 0 there exists some Øi > 0 such that

duÆ(rT , ·)
d y

ØØ
y=rT

=Æi
dui (rT , ·)

d y

ØØ
y=w̄i (rT ) =ØKº(rT )

def= fKº(rT ),

for w̄(RT ) = RT . Without loss of generality we can assume that Ø= 1.

3.2 Reference Dependent Preferences

The framework of state dependent utilities of the investors allows us to describe a switching behavior

of them when facing a threshold or a reference. We will consider a simple case when the reference

is with respect to the future realization of the market return RT . In more detail, let us assume that

each investor i is disposed of two basic continuous, strictly increasing and strictly concave utility in-

dices u0
i ,u1

i : [0,1[! R[ {°1} with u0
i (y),u1

i (y) 2 R for y > 0. She is changing between these indices

dependent on a threshold xi > 0 in the space of future returns i.e.

ui {rT , wi (rT )} = u0
i {wi (rT )}I {rT 2 [0, xi ]}+u1

i {wi (rT )}I {rT 2 (xi ,1)} (11)

for every realization rT of RT . The reader may think of u0
i ,u1

i as utility indices representing bearish

and bullish risk attitudes of investor i , and that her revealed attitudes are adapted to the prices of the

financial market.

In order to simplify notations, let us assume that the thresholds are ordered by x1 ∑ ... ∑ xm . There

exist different competing potential representative agent groups in the market with representations of

aggregate utility indices defined by
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u j
Æ {w̄ (RT )} =

mX

k=1
Æk u0

k {w̄k (RT )}I

©
k ∏ j

™
+

mX

k=1
Æk u1

k {w̄k (RT )}I

©
k < j

™
(12)

In view of Lemma B.1, B.2 in Appendix B they have expected utility representations

h
u j
Æ{w̄ (RT )}

i
,

j = 1, . . . ,m +1. It is now a routine exercise to verify that

uÆ(x, y) = u1
Æ(y)I {x 2 [0, x1]}+

m°1X

i=1
u j+1
Æ (y)I

©
x 2 (x j , x j+1]

™
+um+1

Æ (y)I {x 2 ( xm ,1) } for x, y ∏ 0.

As a consequence the aggregate utility index might be interpreted as expressing the hegemony of dif-

ferent potential representative agents. Moreover, via Corollary 3.2 we obtain for some Ø > 0 and any

realisation rT of RT the expresion for fKº(rT ) is

du1
Æ(y)

d y

ØØ
y=rT

I {rT 2 [0, x1]}+
m°1X

i=1

du j+1
Æ (y)
d y

ØØ
y=rT

I

©
rT 2 (x j , x j+1]

™
+

dum+1
Æ (y)

d y

ØØ
y=rT

I {rT 2 ( xm ,1) }

From this observation it becomes clear that the pricing kernel is nonincreasing separately on the in-

tervals [0, x1[, ]x1, x2[, ..., ]xm ,1[, but it might fail to be monotone just at the switching points x1, ..., xm .

3.3 Reference Points and Pricing Kernel

To illustrate this point let us assume that the distribution of RT has [0,1[ as support, and that the

investors have an identical switching point say x1; the market pricing kernel has the following repre-

sentation
du1

Æ(y)

d y

ØØ
y=rT

I {rT 2 [0, x1]}+
dum+1

Æ (y)

d y

ØØ
y=rT

I {rT 2 ( x1,1) } = fKº(rT ) (13)

for every realization rT of RT .

From (12) one can show that u j
Æ inherits the properties of utility indices u0

i and u0
i : it is continuous,

strictly increasing and strictly concave and fulfills the Inada conditions. Its first derivative has an in-

verse F j
Æ that is continuously differentiable and strictly decreasing. The application of Lemma B.1 and

Proposition B.3 in Appendix B yields

rT = F 1
µ

du1
Æ(y)

d y

ØØ
y=rT

∂
= F m+1

µ
dum+1

Æ (y)

d y

ØØ
y=rT

∂

11



for any positive realization rT ,.

For example, let us suppose that each investor i switches between CRRA utilities u j
i (y) = y

1°∞ j
i

1°∞ j
i

with

y > 0 and Arrow-Pratt coefficients of relative risk aversion ∞
j
i ( j = 0,1;1 > ∞0

i > ∞1
i > 0). It follows that

u0
1, ...,u0

m represent more risk averse attitudes than u1
1, ...,u1

m . In particular for stock returns lower or

equal x1 we have a bullish market, whereas we obtain a bearish market when stock returns exceed x1.

For this parametrization of the utility indices, the mappings F j : [0,1) ! [0,1) are defined

F j (z) =
m+1X

i=1
Æi >0

µ
z

Æi

∂
1

∞
j
i ( j = 0,1)

If x1 is larger than the intersection of F 1 and F m+1 then

F 1
µ

du1
Æ(y)

d y

ØØ
y=x1

∂
= x1 = F m+1

µ
dum+1

Æ (y)

d y

ØØ
y=x1

∂
> F 1

µ
dum+1

Æ (y)

d y

ØØ
y=x1

∂
.

for any realization rT ∏ x1. Therefore

dum+1
Æ (y)

d y

ØØ
y=x1

>
du1

Æ(y)

d y

ØØ
y=x1

That means that fKº is not monotone at x1.

We illustrate the case of a single reference point for the following cases.

Example 1. Market utility indexes have u1
Æ and um+1

Æ have power representation with different aggre-

gate constant coefficients of relative risk aversion ∞0
Æ and ∞1

Æ.

r
°∞0

Æ
T I {rT 2 [0, x1]}+ r

°∞1
Æ

T I {rT 2 ( x1,1) } = fKº(rT )

Example 2. Market utility indexes u1
Æ and um+1

Æ have power representation with equal aggregate con-

stant coefficients of relative risk aversion ∞Æ but differ by a multiplicative constant b > 1.

r°∞Æ
T I {rT 2 [0, x1]}+br°∞Æ

T I {rT 2 ( x1,1) } = fKº(rT )
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Figure 1: duÆ(rT )
drT

(solid), du
j
Æ(rT )

drT
(dotted), du1

Æ(rT )
drT

(dashed-dotted) and dum+1
Æ (rT )
drT

(dashed)
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A graphical illustration for these example is in figure 1: left panel top for ∞0
Æ = 0.75 and ∞1

Æ = 0.25 and

x1 = 1.2; a jump of similar size is depicted in the right upper panel of the same figure for the case when

utilities differ just by a constant u1
i = bu0

i with b = 1.2 and ∞Æ = 0.75.

Next, we exemplify the case of investors with heterogeneous reference points xi . For exposition pur-

poses we will assume that the investors are equally important, that is Æ1 =Æ2 = ·· · =Æm =Æ. In a sim-

ple case, we assume that all agents switch between the same two utility indices u j
i (y) = u j (y), ( j = 0,1)

for all i = 1, · · · ,m. Let us denote

F (rT ) = 1
m

mX

i=1
I {rT 2 (0, xi ]}

the cumulative distribution function of the reference points; F is basically the share of agents that have

preferences described by u1 at the realization rT . The interpretation of the ordered reference points is

the following: for x1 < x2 we will say the investor 1 is more optimistic than the agent 2. The degree of

heterogeneity of the agents with respect to their reference points is an indicator for market uncertainty.

This point will be extended upon in section 6.

Example 3. We exemplify with the individual utility functions u j , j = 0,1.

u j (y) =

8
>><

>>:

b j
y1°∞

1°∞ if ∞> 0 and ∞ 6= 1

b j log(y) if ∞= 1

The positive constants b0 < b1 retain the relationship between u0 and u1 in the previous example; in

that sense b1 represent bullish attitudes. Given our parametric specifications for the utility indices and

F we can rewrite the formulas for fKº(rT ) developed in section 3.2 as

fKº(rT ) =

2

64
rT

{1°F (rT )}b
1
∞

0 +F (rT )b
1
∞

1

3

75

°∞

, (14)
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for every possible realization rT of RT . We illustrate the results in Figure 1 for ∞0 = ∞1 = 0.5, b0 = 1,

b1 = 1.2 and m = 2 (lower panel left) and m = 5 respectively (lower panel right).

Example 4. If agents have homogeneous, state dependent CRRA preferences

u j (y) =

8
>><

>>:

y1°∞ j

1°∞ j
if ∞ j > 0 and ∞ j 6= 1

log(y) if ∞ j = 1

the market pricing kernel can be written as a power function

fKº(rT ) = b(rt )r°∞Æ(rT )
T (15)

with non-constant coefficient of relative risk aversion ∞Æ(rT )

∞Æ(rT ) = rT

∑
{1°F (rT )}

w̄ 0

∞1 +F (rT )
w̄ 1

∞0

∏°1

and

b(rT ) =
∑Ω

1°F (rT )b
1
∞0
0

æ
w̄ 0

rT
+F (rT )b

1
∞1
1

w̄ 1

rT
)
∏∞Æ(rT )

for w̄ j the optimal wealth path in state j , j = 0,1.

Example 5. Introducing state dependence in both b and ∞ results in a pricing kernel of the form (15)

with b(rT ) =
h

{1°F (rT )} w̄0

rT
+F (rT ) w̄1

rT
)
i∞Æ(rT )

.

A further generalization of the previous examples is possible if we consider heterogeneity of agents in

CRRA, ∞ j
i and/or constants b j

i . However, then the link to F is lost. We will use notations Kµ,F = fKº(rT )

for the models described in Examples 3 through 5, for µ = (b,∞)> a parameters vector describing pref-

erences.
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4 Investors’ Portfolio Choice

From Corrolary 3.2 and Appendix A we can establish the relationship between the optimal terminal

wealth of investor i and the market pricing kernel

w̄i (rT ) = Ii {rT ,
1
Æi

fKº(rT )} for i = 1, . . . ,m (16)

More explicitly, given the reference dependent utility specification in equation (11)

Ii {rT ,
1
Æi

fKº(rT )} = w̄ 0
i (rT )I {rT 2 [0, xi ]}+ w̄ 1

i (rT )I {rT 2 (xi ,1)} (17)

where w̄ j
i (rT ) = I j

i { 1
Æi

fKº(rT )}, for I j
i (·) continuously differentiable, strictly decreasing on ]0,1[, the

inverse functions of
du j

i (y)

d y
, j = 0,1.

At the same time, the optimal wealth w̄i (rT ) also satisfies

w̄i (rT ) = wi 0 +±i (rT °1)+1. (18)

for every realization rT of RT . Equating the right hand side of equations (16) and (18), and taking

expectations we can derive the optimal weight invested in the risky asset

±§i =
£
w̄ 0

i (rT )I {rT 2 [0, xi ]}
§
+

£
w̄ 1

i (rT )I {rT 2 (xi ,1)}
§
°wi 0 °1

(rT )°1
(19)

For u0
i denoting bearish and u1

i bullish attitudes, in the sense that there exists a threshold x so that for

du1
i (y)

d y
>

du0
i (y)

d y
for y ∏ x,

the investors invest a higher fraction of wealth in the risky assets when xi ∏ x is small.

This is because w̄ 1
i (rT ) > w̄ 0

i (rT ) for rT ∏ x. The risk attitudes induced by a relatively smaller reference

point xi we will call ’optimism’. Obviously, the higher ±§i is the higher is investors’s expected wealth

[w̄i (rT )]. These are typically the agents that will take a long position in the risky assets, while short

selling might occur for agents that have their reference points further to the right. Bakshi et al. (2010)
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Figure 2: Market pricing kernel and (scaled) final wealth of three type of agents: mixed agent (upper

right); optimistic agent (lower left) and pessimistic agents (lower right); mw̄i (rT ) (solid), mw̄ 0
i (rT ) and

mw̄ 1
i (rT ) (dotted)
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suggest that investors shorting equities possibly generate a positively sloped region in the pricing ker-

nel.

Terminal wealth for three types of agents is illustrated in figure 2. The 45 degree line depicts the wealth

of the aggregate agent contrasting to the optimal wealth allocated to the individual investors. The port-

folio of an ’optimistic’ investor ’beats’ the market for realizations of rT at the right of its reference point

for the increasing region of the pricing kernel, whereas the portfolio of a pessimistic agents underper-

forms compared to the benchmark at the left of the reference points for the mixed and pessimistic

type.

5 Simulation Study

5.1 Comparative Statics

According to section 2, the price of the risky asset at t = 0 is given by

S0 =
Z1

0
sT fKº(sT ) psT (sT ) d sT . (20)

For a fixed probability density function pST the pricing kernel Kº has a direct effect on the price at

t = 0 through the way it weights the possible realizations of sT . For Kµ,F = fKº we analyze the effects

that the model’s F and µ have on the price S0. The baseline model given by equation (14) for b = b1/b0

and b0 = 1 is marked with solid line in figure (3).

We parametrize F to be N(1,0.05) and we investigate the effect that the change in the mean and vari-

ance of the distribution has on the price in the upper panels of figure (3). A decrease in the mean results

in higher weights associated with higher realizations for nonzero values of dF (·), while a decrease in

the variance makes the hump more pronounced by simultaneously lowering the weights of lower re-

alizations and increasing those of higher realizations around the nonzero values of dF (·). In the first

case this is due to the prevalence of optimistic investors that tilt their portfolios towards the risky asset,

triggering an increase in price S0; in the second case, the heterogeneity of investors’reference points
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Figure 3: Impact of model parameters on the shape of PK: baseline model (solid): ∞= 0.5, b = 1.2, F =

N(1,0.05); comparative models (dashed) left panel up F = N(1.2,0.05); right panel up F = N(1,0.15);
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F = 1/2N(1,0.05)
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xi -s is lower; this increases the slope of the upward region without significant effects on the price. We

also observe that for small mean and large variance of F the humped feature disappears.

The next two panels depict the shape of the pricing kernel under various b-s and ∞-s. We notice that

for higher b the weights associated with higher returns are higher and hence large price S0. In this

example, varying ∞ makes pricing kernel ’rotate’ around the value of rT corresponding to the mean of

F . Lower CRRA results in higher weights for higher returns and lower rates for lower returns realiza-

tions, over all domain of rT . The overall effect is an increase in the price in a similar fashion it produces

in state independent preferences case, by reducing the price per unit of probability of bad states and

conversely for the good states. If we let CRRA to vary between the two states and apply pricing kernel

specification in equation (15) we can see how the divergence between ∞1 and ∞2 affect the shape of the

pricing kernel and consequently the price S0.

Finally, in the lower panel right, we allow for a ratio of investors to have state independent preferences

of type u0(as specified in the baseline model). These influence the price S0 in a negative and this effect

is more pronounced the higher the ratio of agents with preferences u0 is. Obviously, the predictions

for the change in S0 will be in the opposite direction for state independent preferences of type u1.

5.2 Identifiability

In this subsection, we discuss some aspects related to the applicability of the model proposed in the

previous section in practice, when we try to fit it to empirical pricing kernel cK . If we denote cK (s j ) = y j

the estimates of the pricing kernel at observation points s j , for j = 1, . . . ,n and assume that

y j =Kµ,F +" j , with " j ª (0,æ2) (21)

the fitting problem involves finding µ§ and F§ that minimize

nX

j=1

©
y j °Kµ,F

°
s j

¢™2, (22)

or a weighted version of it. We demonstrate the inverse problem in a simulation exercise, for Kµ,F
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given by (14) and zero error term. The pricing kernel in figure 4 was generated for parameters ∞0 =

∞1 = 0.5, b = 1.2 and F a ed f of 400 random reference points from a normal distribution N(1,1.2). The

two panels on the left depict the pricing kernel and F; the dashed line marks the regions where F takes

values 0 or 1. These are the regions that allow us to identify parameters b and ∞, and consequently

F . However, if the probability density function associated with F doesn’t have compact support on

the observed domain, these components can not be identified without further restrictions. The right

panel up in figure 4 zooms in the pricing kernel at its left side so that the dashed lines are no more

visible. This allows us to illustrate the case of non-identifiably of the model; underneath this panel

we plot different combinations for ∞, b and F that give a perfect fit of the PK above. For instance, the

top fascicle of dotted curves depicts F for b = 1.2 and ∞ = (0.46,0.47,0.48,0.49,0.50,0.52), and for the

next two bundles of curves we vary b to 1.3 and 1.5 respectively. Obviously, these combinations of

parameters will determine the shape of the pricing kernel in the tails, where they diverge from the true

pricing kernel in various degrees.

This exercise is relevant in practice;in particular, observations in the tails are sparse and the pointwise

confidence intervals (or confidence bands) for the EPK are wider in the tails regions. This means that

when trying to fit the model to the real data there will be a set of possible solutions that minimize the

objective function (22). The characterization of these solutions are beyond the scope of this paper and

constitutes the object of future work.

6 Real Data Analysis

Due to the identification problems explained in section 5.2, a quantitative analysis in terms of µ and

F over time is not feasible due to the multiplicity of solutions. The authors are investigating possible

solutions under suitable constraints in a concurring study. However, the comparative statics analysis

in subsection 5.1 allows us to make a qualitative evaluation of the model for dynamically estimated PK.

Further on, we refer to the results of Grith et al. (2012), GHP as of now. Their EPK estimates relate to

the European call and put options written on the German DAX 30 index, between June 2003 and May
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of F on the observed domain

22



2006, at a monthly frequency. The authors assume that the conditional physical density is stationary,

that is, pSt evolves slowly and most of the variation in the pricing kernel is due to qSt . If we extend the

equation 20 to the contingent claims, we can explain the time variable patterns of the option prices

through the changes in the pricing kernel. GHP relate the time variability of the pricing kernel hump

to the economic conditions; in table 4 they report significant correlations between the changes in the

shape of the EPK and the business indicators.

The changes in the height of the hump varies positively with the return on the index. The increase in

the ’peak’ in our model can be induced either via F or through a larger b (b1) or lower ∞ (∞1). The later

causes an increase in the hump’s spread, which is at odds with another finding of the GHP paper that

suggests that the spread and the height of the peak are negatively related. It means, that in terms of our

model, the mechanism that triggers an increase in the peak works through b and/or F . This suggestion

is supported in the model proposed by Basak and Pavlova (2012), who add to the utility function of

their institutional investors a state dependent component that is directly related to the performance of

the index; while the retail investors have standard preferences. The fraction of institutional investors is

a key parameter in their model and its increase exercises pressure on the stock index pushing it up; the

same effect is present in our model by increasing the number of agents that have u1 type of preferences

(or have reference dependent preferences).

The hight of the EPK hump might respond to the business conditions as well, as suggested by the

correlations with the credit spread - the difference between the yield on the corporate bond, based on

the German CORPTOP Bond maturing in 3-5 years, and the government bond maturing in 5 years. Its

countercyclical relation to the economic conditions and the negative relation to the height of the peak

imply that its decrease pushes up the level of the peak. It is not yet clear how co-movements between b

and F happen in the dynamics but the evidence so far seems to suggest that b may be interpreted as a

magnitude parameter, that is increasing in St over time, while the overall economic conditions impact

F .

The scale and shape parameters that modify the PK in the horizontal direction respond to changes in

the yield term slope. The slope, computed as the difference between the 30-year government bond
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yield and three-month interbank rate, has been shown to be pro-cyclical in Estrella and Hardouvelis

(1991). A smaller slope shifts the increasing region of the PK to the right and widens its spread. These

effects become effective in our model through the positive changes in the first two moments of F ,

meaning an increase in the pessimism and diversion of investors’ reference points on the domain of

future returns.

The arguments above suggest that our model delivers sensible mechanisms of PK’s dynamics. We ob-

serve that at least what the changes in the EPK shape are concerned, they do not necessarily involve ∞.

It is possible that through this parameter, models that mimic other features of the pricing kernels, that

are not consistent with the PK puzzle - e.g. generalized disappointment aversion model in Routledge

and Zin (2010) - be reproduced; such generalizations necessitate further efforts and constitute material

for new studies. On the other hand, it is possible that the mechanism that we suggest only manifests in

certain circumstances while agents have permanent structural biases; explanation of inverse S-shaped

weighting function Polkovnichenko and Zhao (2012) may practically hold for all periods but cease to

capture some features in the data during some economic conditions. We do not rule out the possibility

that the asset prices depend on investors’ subjective beliefs regarding future realizations of ST and our

model can incorporate such extensions. Based on our analysis, we find that the investors incorporate

information from the other part of the economy when making investment decisions. Our explanation

of reference dependent preferences seems a plausible explanation for the time varying shape of the

EPK.

7 Conclusions

Based on our specification for the marginal investors’ preferences, the v. Neumann-Morgenstern util-

ity index of the aggregate agent might switch between different ’regimes’, meaning possible jumps in

the pricing kernel. We empirically investigate its switching behavior in a simulation study and inter-

pret the time varying patterns of real data in connection to our model. The theoretical model encom-

passes a fixed investment horizon, since we are only taking a snapshot of the market and try to explain
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the observed shape in the pricing kernel. The natural extension for building a dynamic equilibrium

model, starting from the static approach is to endogenize the formation of reference points. ’Keep-

ing up with the Joneses’ or status concerns Hong et al. (2012), the history of previous gains and losses

Barberis et al. (2001), learning Benzoni et al. (2011), performance relative to a benchmark Basak and

Pavlova (2012); Tang and Xiong (2012) are further possible explanations and extensions that need to

be investigated and that come close to our approach. The model can be extended to other markets:

commodities, interest rate and credit derivatives, in order to investigate if similar behavior occurs.

A Appendix

The aim of this section is to provide a proof for Theorem 3.1. We continue with the model of sec-

tion 3, retaking all assumptions and notations. Firstly, we characterize the optimal terminal wealth

w̄1(ST ), ..., w̄m(ST ) of the individual investor.

The Inada conditions together with (5) imply that for any i 2 {1, ...,m} and every x ∏ 0 the mapping
dui (x, ·)

d y

ØØ]0,1[ is injective onto ]0,1[ with continuously differentiable, strictly decreasing inverse say

Ii (x, ·). This enables us to apply the dominated convergence theorem to show

(A1) continuity of mappings

g i
st

:]0,1[!R, y 7! Ii {sT , yKº(sT )}Kº(sT ) (sT ∏ 0, i 2 {1, ...,m}).

(A2) lim
y!0

g i
sT

(y) =1 and lim
y!1

g i
sT

(y) = 0.

We are now ready to extend the classical characterization of the optimal terminal wealth to the case of

extended expected utility preferences.

Theorem A.1 Assuming (4) – (10), there exists yi > 0 such that

w̄i (ST ) = Ii {ST , yi Kº(ST )} for every i = 1, . . . ,m
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Proof:

Let us fix i 2 {1, ...,m} and denote zi
def= w i

0 + [ei (ST )Kº(ST )]. Since zi > 0 we may find in view of (A1),

(A2) some yi > 0 with g (yi ) = xi .

Let w(ST ) be a nonnegative random variable with [w(St )Kº(ST )] ∑ zi . Then

[u{ST , w(ST )}]+ yi {zi ° [w(ST )Kº(ST )]} = yi zi + [u{ST , w(ST )}° yi w(ST )Kº(ST )] ∑

yi zi + sup
x∏0

[u(ST , x)° yi xKº(ST )] =

yi zi + [u[ST , Ii {ST , yi Kº(ST )}]° yi Ii {ST , yi Kº(ST )}Kº(ST )] = [u{ST , Ii (ST , yi Kº(ST ))}].

Therefore Ii (ST , yi Kº(ST )) solves the optimization problem of investor i . Moreover, the numerical

representation Ui of investor’s i preferences is strictly concave in view of strict concavity of ui (x, ·) for

every x ∏ 0. In particular Ii (ST , yi Kº(ST )) is the unique solution, hence being identical with w̄i (ST ). ⇤

Before starting with the proof of Theorem 3.1 let us consider for purposes of reference the classical

case of the investor being expected utility maximizer. Indeed as an additional corollary of Theorem

3.1, we may retain the folk result concerning the risk neutral price valuation and the v. Neumann-

Morgenstern utility index of the representative agent. More precisely, let us assume that there exist

mappings u1, ...,ur from R+ into R[ {°1} satisfying u1(x, ·) = u1, ...,um(x, ·) = um for x ∏ 0, and

(A3) u1(y), ...,um(y) 2R for y > 0,

(A4) u1, ...,um are continuous, strictly increasing as well as strictly concave.

Then

u(y)
def= sup

(
mX

i=1
Æi ui (yi ) | y1, ..., ym ∏ 0,

mX

i=1
yi ∑ y

)

= uÆ(x, y) for x, y ∏ 0.

We shall impose the so called Inada conditions on the state independent utility indices u1, ...,um , i.e.

(A5) u1|]0,1[, ...,um |]0,1[ are assumed to be continuously differentiable satisfying

lim
e!0

dui

d y

ØØ
y=e =1, lim

e!1
dui

d y

ØØ
y=e = 0 (i = 1, ...,m).
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(A6) [I1(yKº(ST ))], . . . , [Im(yKº(ST ))] < 1 for any y > 0, where I1, ..., Ir denote the inverses of
du1

d y
, ...,

dum

d y
respectively.

We may conclude immediately from Theorem 3.1 the announced result.

Proof of Theorem 3.1:

Without loss of generality let us set {1, ...,r }
def=

©
i 2 {1, ...,m} |Æi > 0}. Then, defining gi

def= Æi ui , we have

uÆ =
rP

i=1
gi , and we may apply Lemma B.1, B.2 and Proposition B.3 (cf. Appendix B). Then, in view of

Lemma B.1, B.2 and B.3, we obtain

uÆ {sT , w̄(sT )} =
rX

i=1
Æi ui

≥
sT , w̄ i (sT )

¥

for every realization sT of ST .

On one hand by Theorem A.1, there exist y1, ..., ym > 0 such that

w̄i (ST ) = Ii (ST , yi Kº(ST )) > 0 for i = 1, ...,r.

On the other hand, due to Proposition B.3, uÆ(sT , ·)|]0,1[ is differentiable for every realization sT ,

satisfying

Æi
dui (sT , ·)

d y

ØØ
y=w̄ i (sT )=

duÆ(sT , ·)
d y

ØØ
y=w̄(sT )

for i 2 {1, ...,r } and any realization sT . Notice that by construction the random variable w̄(ST ) has

strictly positive outcomes only. Now, the statement of Theorem 3.1 is clear.

B Appendix

Throughout this section let the mappings g1, ...gr :R2
+ !R[ {°1} satisfy the following conditions:

(B0) g1(x, y), ..., gr (x, y) 2R for x ∏ 0, y > 0;

(B1) g1(x, ·), ..., gr (x, ·) are continuous, strictly increasing and strictly concave for x ∏ 0;

(B2) g1(·, y), ..., gr (·, y) are Borel-measurable for y ∏ 0.
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Furthermore, let g :R2
+ !R[ {°1,1} be defined by

g (x, y) = sup

(
rX

i=1
gi (x, yi ) | y1, ..., yr ∏ 0,

rX

i=1
yi ∑ y

)

.

Indeed g (x,0) =
rP

i=1
gi (x,0) 2R[ {°1} for x ∏ 0, and

°1<
rX

i=1
gi (x,

y

r
) ∑ g (x, y) ∑

rX

i=1
gi (x, y) <1

for x ∏ 0, y > 0 due to (B0), (B1).

Lemma B.1 For any x, y ∏ 0 there is some unique¡(x, y) = (¡1(x, y), ...,¡r (x, y)) 2Rr
+ such that

rP
i=1

¡i (x, y) ∑

y and
rX

i=1
gi

©
x,¡i (x, y)

™
= g (x, y).

Furthermore,
rP

i=1
¡i (x, y) = y.

Proof:

Let x, y ∏ 0. For y = 0 the statement of Lemma B.1 is obvious. So let y > 0, which means g (x, y) 2 R.

Due to (B1), the mapping

f :

(

(y1, ..., yr ) 2Rr
+

ØØØ
rX

i=1
yi ∑ y,

rX

i=1
gi (x, yi ) ∏ g (x, y)°1

)

!R, (y1, ..., yr ) 7!
rX

i=1
gi (x, yi )

is continuous, strictly concave, and defined on a nonvoid convex compact set. Therefore f attains it

maximum at a unique ¡(x, y). Obviously,
rP

i=1
¡i (x, y) = y because f is strictly increasing too by (B1).

The proof is complete.

Lemma B.1 defines a mapping ¡= (¡1, ...,¡r ) :R2
+ !Rr

+. It is Borel-measurable as will be shown now.

Lemma B.2 ¡ is Borel-measurable.

Proof:

It suffices to show that¡°1
≥

i=1

r
[0, ai ]

¥
is a Borel-subset ofR2

+. For this purpose define for any (a1, ..., ar )

from Rr
+ the mapping ga1...ar :R+£R+ !R[ {°1} by

ga1...ar (x, y) = sup

(
rX

i=1
gi (x, yi ) | (y1, ..., yr ) 2

i=1

r
[0, ai ],

rX

i=1
yi ∑ y

)

.

28



Notice that ga1...ar (x, y) 2 R for x ∏ 0, y > 0, analogously to g (x, y) 2 R for x ∏ 0, y > 0. Furthermore

g1(x, ·), ..., gr (x, ·) are continuous for any x ∏ 0. Hence, setting Ra1...ar = i=1

r
[0, ai ] £ Qm ,

g°1
a1...ar

(]z,1[) =
[

(y1,...,yr )2Ra1...ar

√
rX

i=1
Æi gi (·, yi )

!°1 ≥
]z,1[

¥
£

"
rX

i=1
yi ,1

"

(z 2R).

Thus g°1
a1...ar

(]z,1[) is a Borel-subset of R2
+ for every z 2R by assumption (B2). Then we may conclude

that

¡°1
≥

i=1

r
[0, ai ]

¥
=

√

sup
(b1,...,br )2Qr

+

gb1...br ° ga1...ar

!°1

({0})

is a Borel subset of R2
+ for any (a1, ..., ar ) 2Rr

+, which completes the proof.

In order to characterize the mapping ¡ in terms of derivatives of the functions g1(x, ·), ..., gr (x, ·), it is

customary to impose the Inada conditions, i.e.

(B3) for any x ∏ 0 the mappings g1(x, ·)|]0,1[, ..., gr (x, ·)|]0,1[ are assumed to be continuously differ-

entiable satisfying

lim
≤!0

@g i (x, ·)
@y

ØØ
y=≤ =1, lim

≤!1
@gi (x, ·)
@y

ØØ
y=e = 0, i = 1, . . . ,r.

The Inada conditions together with condition (B1) imply that for any i 2 {1, ...,r } and every x ∏ 0 the

mapping
@gi (x, ·)
@y

ØØ]0,1[ is injective onto ]0,1[ with continuously differentiable, strictly decreasing

inverse say Ii (x, ·).

Proposition B.3 Let the assumptions (B0) - (B3) be fulfilled, and let g1(x, ·)|]0,1[, ..., gr (x, ·)|]0,1[ be

twice continuously differentiable.

Then for any x ∏ 0 the mapping g (x, ·)
ØØ]0,1[ is differentiable satisfying

¡(x, y) =
∑

I1

Ω
x,
@g (x, ·)
@y

ØØ
y

æ
, . . . , Ir

Ω
x,
@g (x, ·)
@y

ØØ
y

æ∏
for y > 0.

Proof:

Let for x ∏ 0 the mapping Fx : ]0,1[£]0,1[!R be defined by Fx(y, z) =
rP

i=1
Ii (x, z)° y.

Since the mappings g1(x, ·)|]0,1[, ..., gr (x, ·)|]0,1[ are assumed to be strictly concave and twice con-

tinuously differentiable, their second derivatives are strictly negative. Then by local inverse theorem
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the mappings I1(x, ·), ..., Ir (x, ·) are continuously differentiable, having strictly negative derivatives. In

particular Fx is continuously differentiable, satisfying

@Fx

@z

ØØ
(y,z) 6= 0 for y, z > 0.

Furthermore, since I1(x, ·), ..., Ir (x, ·) are continuous and strictly decreasing mappings onto ]0,1[, we

may find for any y > 0 a unique'(y) > 0 with F (y,'(y)) = 0. Drawing on the implicit function theorem,

y 7!'(y) defines a differentiable mapping ' :]0,1[!]0,1[.

Moreover, for y > 0 and y1, ..., yr ∏ 0 with
rP

i=1
yi ∑ y, we may conclude

rX

i=1
gi (x, yi )+'(y)(y °

rX

i=1
yi ) = '(y)y +

rX

i=1

©
gi (x, yi )+'(y)yi

™
∑

'(y)y +
rX

i=1
sup
z∏0

©
gi (x, z)+'(y)z

™
=

'(y)y +
rX

i=1
[gi {x, Ii (x,'(y))}+'(y)Ii {x,'(y)}] =

rX

i=1
gi [x, Ii {x,'(y)}]°Fx{y,'(y)} =

rX

i=1
gi [x, Ii {x,'(y)}].

This means

g (x, y) =
rX

i=1
gi [x, Ii {x,'(y)}],

and hence by Lemma B.1

(*) ¡(x, y) = (I1[x,'(y)], ..., Ir [x,'(y)]).

As a further consequence g (x, ·)|]0,1[ is differentiable satisfying

d g (x, ·)
d y

ØØ
y=

rX

i=1
'(y)

d Ii (x, ·)±'
d y

ØØ
y='(y)

d

µ
rP

i=1
Ii (x, ·)±'

∂

d y

ØØ
y='(y).

For the last equation notice that
rP

i=1
Ii (x, ·) ±' is just the identity on ]0,1[. In view of (*) the proof is

complete.
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1 Introduction

Generalized additive model (GAM) has gained popularity on addressing the
curse of dimensionality in multivariate nonparametric regressions with non-
Gaussian responses. GAM was developed by Hastie and Tibshirani (1990)
for blending generalized linear model with nonparametric additive regression,
which stipulates that a data set

{
Yi,XT

i

}n

i=1
consists of iid copies of

{
Y,XT

}

that satisfies

E(Y |X) = b′ {m (X)} , var(Y |X) = a (φ) b′′ {m (X)} , (1)

m (X) = c+
∑d

l=1
ml(Xl),

Y = b′ {m (X)}+ σ (X) ε,σ (X) = {var(Y |X)}1/2

where the response Y is one of certain types, such as Bernoulli, Poisson
and so forth, the vector X = (X1, X2, ..., Xd)

T consists of the predictors,
ml(·), 1 ≤ l ≤ d are unknown smooth functions, the white noise ε satisfies
that E (ε |X ) = 0 and E

(
ε2 |X

)
= 1, while c is an unknown constant, a (φ) is a

nuisance parameter that quantifies overdispersion, and the known inverse link
function b′ satisfies that b′ ∈ C2 (R) , b′′ (θ) > 0, θ ∈ R, see Assumption (A2)
in the Appendix. In particular, if one takes the identity/trivial link, model (1)
becomes a common additive model, see Huang and Yang (2004).

The joint density f (x) of (X1, ..., Xd) is assumed to be continuous and

0 < cf ≤ infx∈[0,1]d f (x) ≤ supx∈[0,1]d f (x) ≤ Cf < ∞,

see Assumption (A4) in the Appendix. Furthermore, for each 1 ≤ l ≤ d, the
marginal density function fl (xl) of Xl has continuous derivatives on [0, 1] and
the same uniform bounds Cf and cf . There exists a σ-finite measure λ on R
such that the distribution of Yi conditional on Xi has a probability density
function fY |X (y; b′ {m (x)}) relative to λ whose support for y is a common Ω,

and is continuous in both y ∈ Ω and x ∈ [0, 1]d.
It is often the case that in model (1) the probability density function of Yi

conditional onXi with respect to a fixed σ-finite measure forms an exponential
family:

f (Yi |Xi,φ ) = exp [{Yim (Xi)− b {m (Xi)}} /a (φ) + h (Yi,φ)] . (2)

Nonetheless, such an assumption is not necessary in this paper. Instead, we
only stipulate that the conditional variance and conditional mean are linked
by

var (Y |X = x) = a (φ) b′′
[
(b′)

−1 {E (Y |X = x)}
]
.
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For identifiability, one needs

E {ml (Xl)} = 0, 1 ≤ l ≤ d

that leads to unique additive representations of m (x) = c +
∑d

l=1 ml (xl).

Without loss of generality, x take values in χ = [0, 1]d.
Model (1) has numerous applications. In corporate credit rating, for in-

stance, one is interested in modelling how the default or non-default of a given
corporate or company depends on the additive effects of the covariates in
financial statements, i.e., the response Y = 0, 1 with 1 indicating default, 0 in-
dicating non-default, and the predictors are selected from financial statements
with a logit-link (b′)−1 (x) = log {x/ (1− x)}. Our method has been applied
to 3, 472 companies in Japan within a 5-year default horizon (2005-2010), and
it has been discovered that the current liabilities and stock market returns of
current, 3 months and 6 months prior to default are very significant as rating
factors, and the default impact of the selected factors are examined via the
simultaneous confidence corridors (SCCs) in Figure 1 (a)-(c). More details of
this example are contained in Section 6.

The smooth functions {ml(xl)}dl=1 in (1) can be estimated by, for instance,
kernel methods in Linton and Härdle (1996), Linton (1997) and Yang, Sper-
lich and Härdle (2003), B-spline methods in Stone (1986) and Xue and Liang
(2010), and two-stage methods in Horowitz and Mammen (2004). To make
statistical inference on these functions individually and collectively, however,
the proper tools are nonparametric simultaneous confidence corridors (SCC-
s) and consistent variable selection criteria, both of which are absent in the
literature.

Nonparametric SCCs methodology has become increasingly important in
statistical literature, see Xia (1998), Fan and Zhang (2000), Wu and Zhao
(2007), Zhao and Wu (2008), Ma, Yang and Carroll (2012), Wang et al. (2014),
Zheng, Yang and Härdle (2014), Gu et al. (2014), Cai and Yang (2015) and Gu
and Yang (2015) for recent theoretical works on nonparametric SCCs. Cap-

turing global shape properties by SCCs of the functions {ml(xl)}dl=1 in GAM
(1) is of prime importance. A nonparametric component can be replaced by a
parametric one covered entirely within the SCCs, significantly decreasing the
estimation variance, see He, Zhu and Fung (2002), He, Fung and Zhu (2005)
for discussions. As far as we know, SCCs has not been established for functions
{ml(xl)}dl=1 in GAM (1) due to the lack of estimators that fit in Gaussian pro-
cess extreme value theory. Using the spline-backfitted kernel (SBK) smoothing
of Liu, Yang and Härdle (2013), we extend the SCCs works of univariate non-
parametric regression in Bickel and Rosenblatt (1973) and Härdle (1989) to
those of GAM. The SBK smoothing has been well developed in Wang and
Yang (2007), Wang and Yang (2009), Liu and Yang (2010) and Ma and Yang
(2011) for the much simpler additive model (i.e., GAM with b′ (x) ≡ x) in-
cluding the construction of SCCs, but ours is the first work on SCCs on GAM
with nonlinear link.

While variable selection for nonparametric additive model has been in-
vestigated under different settings, see Wang, Li and Huang (2008), there is
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Fig. 1 Plots of the rating factors in (a)-(c): SBK estimators (thin), 95% CIs (dashed) and
95% SCCs (thick). Plot of the CAPs defined as (24) in (d): Perfect (dashed), GAM (thick
solid), GLM(thin solid), noninformative(dotted).

lack of theoretically-reliable variable selection approach for GAM. To the best
of our knowledge, only Zhang and Lin (2006) proposed a sounding method
named “COSSO”, which stands for components (CO) LASSO using penalized
likelihood method, for selecting components in nonparametric regression with
exponential families, but it leaves the asymptotic distributions and variable
selection consistency to be desired. Instead, we tackle this issue by building
a BIC type criterion based on spline pre-smoothing (first stage in the SBK),
which is asymptotically consistent and easy to compute. Our work extends the
BIC criterion for additive models (trivial link) in Huang and Yang (2004). Such
an extension is challenging since a much more complicated quasi-likelihood is
used in GAM with possibly nonlinear link instead of the log mean squared
error for trivial link, see the Appendix for details.

The rest of paper is organized as follows. The SBK estimator and its o-
racle property are briefly described in Section 2. Asymptotic extreme value
distribution of the SBK estimator is investigated in Section 3, which is used
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to construct the SCCs of component functions. Section 4 introduces a BIC
criterion in the GAM setting and provides results on consistent component se-
lection as well as the implementation, followed by the Monte Carlo simulations
in Section 5. Section 6 illustrates the application of our SCCs and BIC meth-
ods to predict default of nearly 3, 500 listed companies in Japan. Technical
assumptions and proofs are presented in the Appendix.

2 Spline-backfitted kernel smoothing in GAM

In this section we briefly describe the spline-backfitted kernel (SBK) estimator
for GAM (1) and its oracle properties obtained in Liu, Yang and Härdle (2013).
Let {Xi, Yi}ni=1 be i.i.d. observations following model (1). Without loss of

generality, one denotes x 1 = (x2, ..., xd) and m 1 (x 1) = c+
∑d

l=2 ml (xl) and
estimates m1 (x1).

As a benchmark of efficiency, we introduce the “oracle smoother” by treat-
ing the constant c and the last d − 1 components {ml (xl)}dl=2 as known,
then the only unknown component m1 (x1) may be estimated by the follow-
ing procedure. Although the exponential family Equation (2) does not nec-
essarily hold, one still defines, as in Severini and Staniswalis (1994), for each
x1 ∈ [h, 1− h] a local log-likelihood function l̃ (a) = l̃ (a, x1) as

l̃ (a, x1) = n−1
n∑

i=1

[Yi {a+m 1 (Xi, 1)}− b {a+m 1 (Xi, 1)}]Kh (Xi1 − x1) ,

(3)
where a ∈ A, a set whose interior contains m1 ([0, 1]). The oracle smoother of
m1 (x1) is

m̃K,1 (x1) = argmaxa∈A l̃ (a, x1) .

Although m̃K,1 (x1) is not a statistic since c and {ml (xl)}dl=2 are actually
unknown, its asymptotic properties serve as a benchmark for estimators of
m1 (x1) to achieve.

To define the SBK, we introduce the linear B spline basis for smoothing:
bJ (x) = (1− |x− ξJ | /H)+ , 0 ≤ J ≤ N + 1 where 0 = ξ0 < ξ1 < · · · <
ξN < ξN+1 = 1 are a sequence of equally spaced points, called interior knots,

on interval [0, 1]. Denote by H = (N + 1)−1 the width of each subinterval[
ξJ , ξJ+1

]
, 0 ≤ J ≤ N and the degenerate knots by ξ−1 = 0, ξN+2 = 1. The

space of l-empirically centered linear spline functions on [0, 1] is

G0
n,l =

{
gl : gl (xl) ≡

∑N+1

J=0
λJlbJ (xl) ,En {gl (Xl)} = 0

}
, 1 ≤ l ≤ d, (4)

with empirical expectation En {gl (Xl)} = n−1
∑n

i=1 gl (Xli). The space of

additive spline functions on χ = [0, 1]d is

G0
n =

{
g (x) = c+

∑d

l=1
gl (xl) ; c ∈ R, gl ∈ G0

n,l

}
.
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The SBK method is defined in two steps. One first pre-estimates the un-
known functions {ml (xl)}dl=2 and constants c by linear spline smoothing. We

define the log-likelihood function L̂ (g) as

L̂ (g) = n−1
∑n

i=1
[Yig (Xi)− b {g (Xi)}] , g ∈ G0

n. (5)

According to Lemma 14 of Stone (1986), (5) has a unique maximizer with
probability approaching 1. Therefore, the multivariate function m (x) can be
estimated by an additive spline function:

m̂ (x) = argmaxg∈G0
n
L̂ (g) . (6)

The spline estimator is asymptotically consistent, and can be solved efficiently
via generalized linear models. However, as stated in Wang and Yang (2007) and
Liu, Yang and Härdle (2013), spline methods only provide convergence rates
but no asymptotic distributions, so no measures of confidence can be assigned
to the estimators. To overcome this problem, we adapt the SBK estimator,
which combines the strength of kernel smoothing with regression spline. One
then rewrites m̂ (x) = ĉ +

∑d
l=1 m̂l (xl) for ĉ ∈ R and m̂l (xl) ∈ G0

n,l and

defines a univariate quasi-likelihood function similar to l̃ (a, x1) in (3) as

l̂ (a, x1) = n−1
∑n

i=1
[Yi {a+ m̂ 1 (Xi, 1)}− b {a+ m̂ 1 (Xi, 1)}]Kh (Xi1 − x1)

with m̂ 1 (x 1) = ĉ+
∑d

l=2 m̂l (xl) being the pilot spline estimator of m 1 (x 1).
Consequently, the spline-backfitted kernel (SBK) estimator of m1 (x1) is

m̂SBK,1 (x1) = argmaxa∈A l̂ (a, x1) . (7)

We now introduce some useful results and definitions from Liu, Yang and
Härdle (2013), under Assumptions (A1)-(A7) in appendix, as n → ∞,

sup
x1∈[0,1]

|m̂SBK,1 (x1)− m̃K,1 (x1)| = Oa.s.

(
n−1/2 log n

)
, (8)

m̃K,1 (x1)−m1 (x1) = bias1 (x1)h
2/D1 (x1)

+n−1
∑n

i=1
Kh (Xi1 − x1)σ (Xi) εi/D1 (x1) + rK,1 (x1) (9)

in which the higher order remainder rK,1 (x1) satisfies

sup
x1∈[h,1−h]

|rK,1 (x1)| = Oa.s.

(
n−1/2h1/2 logn

)
. (10)

The scale function D1 (x1) and bias function bias1 (x1) are defined in Liu,
Yang and Härdle (2013) as:

σ2
b (x1) = E [b′′ {m (X)} |X1 = x1] , σ2 (x1) = E

{
σ2 (X) |X1 = x1

}

D1 (x1) = f1 (x1)σ
2
b (x1) , v

2
1 (x1) = ∥K∥22 f1 (x1)σ

2 (x1) . (11)
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bias1 (x1) = µ2 (K)×
{
m′′

1 (x1)D1 (x1) +m′
1 (x1) f (x1)σ

2
b (x1)

′

− {m′
1 (x1)}

2
f (x1) E [b′′′ {m (X)} |X1 = x1]

}

where ∥K∥22 =
∫
K2 (u) du, µ2 (K) =

∫
K (u)u2du. The above equations (8),

(9) and (10) lead one to a simplifying decomposition of the estimation error
m̂SBK,1 (x1)−m1 (x1)

sup
x1∈[h,1−h]

∣∣∣m̂SBK,1 (x1)−m1 (x1)− n−1
∑n

i=1
Kh (Xi1 − x1)σ (Xi) εi/D1 (x1)

∣∣∣

= Oa.s.

(
n−1/2h1/2 log n+ n−1/2 log n+ h2

)
. (12)

The decomposition in (12) is fundamental for constructing SCCs in section 3,
and it follows from Theorems 1 and 4 of Liu, Yang and Härdle (2013), which
were proved under weak dependence. A similar Theorem 2 in Horowitz and
Mammen (2004) for the two-stage estimator was established only for a fixed
x1, not uniformly for x1 in the growing interval [h, 1− h], and exclusively for
iid data, not dependent data, see detailed discussion on page 621 of Liu, Yang
and Härdle (2013).

3 GAM inference via simultaneous confidence corridor

In this section, we propose SCCs for GAM components based on the SBK
smoothing, extending the works for univariate nonparametric function esti-
mation in Bickel and Rosenblatt (1973) and Härdle (1989).

3.1 Main Results

Denote ah =
√
−2 log h,C (K) = ∥K ′∥22 ∥K∥−2

2 and for any α ∈ (0, 1), the
quantile

Qh(α) = ah + a−1
h

[
log

{√
C (K)/ (2π)

}
− log

{
− log

√
1− α

}]
. (13)

Also with D1 (x1) and v21 (x1) given in (11), we define

σn (x1) = n−1/2h−1/2v1 (x1)D
−1
1 (x1) . (14)

Theorem 1 Under Assumptions (A1)-(A7), as n → ∞

lim
n→∞

P
{
supx1∈[h,1−h] |m̂SBK,1 (x1)−m1 (x1)| /σn (x1) ≤ Qh (α)

}
= 1− α.

A 100 (1− α)% simultaneous confidence corridor for m1 (x1) is

m̂SBK,1 (x1)± σn (x1)Qh (α) . (15)

The above SCC for component function m1 (x1) resembles the SCCs in
Bickel and Rosenblatt (1973) and Härdle (1989) for estimating unknown uni-
variate nonparametric function, although it is for multivariate nonparametric
regression.
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3.2 Implementation

To satisfy Assumption (A4), one could use the transformed Uil = Fnl (Xil)
instead of Xil as predictors for each l = 1, ..., d and i = 1, ..., n, where Fnl is
the empirical distribution of (X1l, ..., Xnl). We still use symbol X instead of
U to avoid involving new symbols, but the X variates have been transformed
in simulation study and applications.

To construct the SCC form1 (x1) in (15), one needs to select the bandwidth
h and the number of knots N to evaluate mSBK,1 (x1) , Qh (α) and σn (x1)
given in (7), (13) and (14).

Assumption (A6) requires that the bandwidth for SCCs be different from
the mean square optimal bandwidth hopt ∼ n−1/5 (minimizing AMISE) in
Liu, Yang and Härdle (2013). This is due to the two conflicting goals in SCCs
construction: coverage of the true curve and narrowness of the corridor, are
not quantifiable in a single measure to minimize, such as the mean integrated
squared error. We therefore take h = hopt(log n)−1/4, as a data-driven under-
smoothing bandwidth for SCCs construction to fulfill Assumption (A6), where
hopt is computed as in Liu, Yang and Härdle (2013), page 623-624. Recent ar-
ticles on SCCs for time series, such as Wu and Zhao (2007), Zhao and Wu
(2008), have used similar undersmoothing bandwidths.

For a given l and a chosen bandwidth h, one can easily estimatemSBK,1 (x1)
and Qh (α) as in (7), (13). To evaluate σn (x1), one needs to estimate v1 (x1)
and D−1

1 (x1) given in (11), i.e., estimating f (x1) ,σ2
b (x1) and σ2 (x1). The

density function f (x1) is estimated by f̂ (x1) = n−1
∑n

i=1 KhROT (Xi1 − x1),
where hROT is the rule-of-thumb bandwidth in equation (5.8), page 200 of Fan

and Yao (2003), namely hROT = (8
√
π/3)

1/5
µ2 (K) ∥K∥2/52 n−1/5σ̂, in which

σ̂ is the sample standard deviation of {Xi1}ni=1. We further illustrate the spline
estimates of σ2

b (x1) and σ2 (x1) below:
One partitions mini Xi1 = t1,0 < · · · < t1,N+1 = maxi Xi1 where to satisfy

Assumption (A7) in the Appendix, the number of spline interior knots equals

max
(
1,min

(⌊
n1/4 log n+ 1

⌋
, ⌊n/4d− 1/d⌋ − 1

))
, (16)

which ensures that the number of parameters in equation (6), 1 + d (N + 2),

does not exceed n. An estimator for σ2
b (x1) is

∑3
k=0 â1,kx

k
1+

∑N+3
k=4 â1,k (x1 − tl,k−3)

3
+

where {â1,k}N+3
k=0 minimize

n∑

i=1

[
b′′ {m̂ (Xi)}−

{∑3

k=0
a1,kX

k
i1 +

∑N+3

k=4
a1,k (Xi1 − tk−3)

3
+

}]2
, (17)

and σ2 (x1) can be estimated as
∑3

k=0 â1,kx
k
1+

∑N+3
k=4 â1,k (x1 − tl,k−3)

3
+ where

{â1,k}N+3
k=0 minimize

n∑

i=1

[
[Yi − b′ {m̂ (Xi)}]

2 −
{

3∑

k=0

al,kX
k
i1 +

N+3∑

k=4

al,k (Xi1 − tk−3)
3
+

}]2

. (18)
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The resulted estimate σ̂n (x1) of σn (x1), using (17) and (18) satisfies
supx1∈[h,1−h] |σ̂n (x1)− σn (x1)| = Op (n−γ) for some γ > 0, see Liu, Yang
and Härdle (2013) Section 5 for details. This consistency and Slutsky’s theo-
rem ensure that

P
{
supx1∈[h,1−h] |m̂SBK,1 (x1)−m1 (x1)| /σ̂n (x1) ≤ Qh (α)

}
→ 1− α

as n → ∞, and therefore m̂SBK,1 (x1) ± σ̂n (x1)Qh (α) is a 100 (1− α)% si-
multaneous confidence corridor for m1 (x1). The SCCs constructions of other
components m2 (x2) , ...,md (xd) are similar. It is worth while to emphasize
that, based on extensive simulation experiments, the estimators m̂SBK,1 (x1) ,

Q̂h (α) , f̂ (x1) and σ̂n (x1) remain stable if h and N slightly vary.

4 Variable selection in GAM

In this section, we propose a Bayesian Information Criterion (BIC) for com-
ponent function selection based on spline smoothing in step one of the SBK
estimation for GAM and an efficient implementation follows.

4.1 Main Results

According to Stone (1985), p.693, the space of l-centered square integrable
functions on [0, 1] is defined as

H0
l =

{
g : E {g (Xl)} = 0,E

{
g2 {Xl}

}
< ∞, 1 ≤ l ≤ d

}
, (19)

and the model space M is

M =

{
g (x) = c+

∑d

l=1
gl (xl) ; c ∈ R, gl ∈ H0

l , 1 ≤ l ≤ d

}
. (20)

To introduce the proposed BIC, let {1, . . . , d} denote the complete set of
indices of d tuning variables (X1, ..., Xd). For each subset S ⊂ {1, . . . , d}, define
a corresponding model space MS for S as

MS =
{
g (x) = c+

∑
l∈S

gl (xl) ; c ∈ R, gl ∈ H0
l , l ∈ S

}
,

with H0
l given in (19), and the space of the additive spline functions as

G0
n,S =

{
g (x) = c+

∑
l∈S

gl (xl) ; c ∈ R, gl ∈ G0
n,l, l ∈ S

}
,

with G0
n,l given in (4). Following Definition 1 of Huang and Yang (2004), the

set S0 of significant variables is defined as the minimal set S ⊂ {1, . . . , d}
such that m ∈ MS . According to Lemma 1 of Huang and Yang (2004), the
set S0 is uniquely defined. Standard theory of Hilbert space and subspace
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projection implies that the set S0 is also the minimal set S ⊂ {1, . . . , d} such
that E{m (X)−mS (X)}2 = 0 in which the least squares projection of function
m in MS is

mS = argmin
g∈MS

E {m (X)− g (X)}2 . (21)

To identify S0, one computes for an index set S the BIC as

BICS = −2L̂ (m̂S) +
NS

n
(log n)3 (22)

where L̂ (·) is given in (5), m̂S (x) ∈ G0
n,S is the pilot spline estimator as in

(6), NS = 1 + (N + 1)# (S) with N the number of interior knots as defined
in (16), # (S) the cardinality of S.

Our variable selection rule takes the subset Ŝ ⊂ {1, . . . , d} that minimizes
BICS .

Theorem 2 Under Assumptions (A1)-(A5), (A7), limn→∞ P
(
Ŝ = S0

)
= 1.

According to Theorem 2, the variable selection rule based on the BIC in
(22) is consistent. The nonparametric version BIC was firstly established in
Huang and Yang (2004) for additive autoregression model, and adapted to
additive coefficient model by Xue and Yang (2006), to single index model by
Wang and Yang (2009). Our proposed BIC differs from all of the above as
it is based on quasi-likelihood rather than mean squared error, which makes
the technical proof of consistency much more challenging. To the best of our
knowledge, it is the first theoretically reliable information criterion in this
setting.

4.2 Implementation

We have not implemented the BIC variable selection by a greedy search
through all possible subsets. Instead, a forward stepwise procedure is used
with minimizing BIC as the criterion since it is more common that only a few
variables are significant among many variables. We have also experimented
with backward as well as forward-backward stepwise procedures which have
yielded similar outcomes in simulation examples.

5 Simulation

This section studies under simulated setting the performance of the proposed
procedures including the computational cost of the SBK, the consistency of
selecting variables via BIC and the coverage frequency of the SCCs. The data
are generated from

P(Y = 1|X = x) = b′
{
c+

∑d

l=1
ml (Xl)

}
, b′ (x) =

ex

1 + ex
(23)
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Computing Time Accuracy
d r n BIC COSSO ratio BIC COSSO

250 0.17 1.85 10.9 25 441 34 98 327 75
0 500 0.41 4.33 10.6 6 476 28 42 414 44

1000 0.66 20.14 30.5 2 491 7 26 455 19
10

250 0.18 1.91 10.6 165 298 37 204 221 75
0.5 500 0.42 4.43 10.5 11 452 37 89 359 52

1000 0.67 20.64 30.8 1 493 6 67 401 32
250 1.00 − − 312 78 110 − − −

0 500 1.43 59.77 41.8 106 327 67 124 207 169
1000 3.32 268.24 80.8 2 465 33 20 426 54

50
250 1.04 − − 319 65 116 − − −

0.5 500 1.55 60.87 39.2 297 174 29 203 145 152
1000 3.48 274.25 78.8 47 428 25 52 356 92

Table 1 Simulation comparison of the proposed BIC method and COSSO with d = 10, 50.
Computing Time is in seconds and the ratio is the computing time of COSSO over that of
BIC. For d = 50 and n = 250, COSSO becomes unstable to the point of crashing. Accuracy
(the last 6 columns) gives for BIC and COSSO the numbers of underfitting, correct fitting,
and overfitting out of 500 replications.

with d = 10, c = 0,m3 (x) = sin (4πx) ,m4 (x) = m5 (x) = sin (πx) , m6 (x) =
x,m7 (x) = ex − (e − e−1) and ml (x) = 0 for l = 1, 2, 8, 9, 10. The predictors
are generated by

Xil = 2Φ (Zil)− 1, Zi = (Zi1, ..., Zid) ∼ N(0,Σ) , 1 ≤ i ≤ n, 1 ≤ l ≤ d,

where Φ is the standard normal c.d.f. and Σ = (1− r) Id×d + r1d1T
d . The

parameter r (0 ≤ r < 1) controls the correlation between Zil,1 ≤ l ≤ d. To
examine the computing advantage of BIC for large d, we have also includ-
ed results for d = 50 with m3, ...,m7 as above and all the other component
functions are 0.

COSSO is a penalized likelihood method proposed in Zhang and Lin (2006)
for LASSO type component selection and nonparametric regression in expo-
nential families. In what follows, the performance of BIC and COSSO is firstly
compared, followed by a computational comparison between the SBK and a
kernel method in GAM, and it ends with a report on the SCCs coverage fre-
quency for components function (the frequency that SCCs covering the entire
curve on the domain). We have tried numbers of knots different from the one
in (16) with similar results, so our conclusion is that the performance of BIC
is rather insensitive to the number of knots.

Table 1 shows the simulation results from 500 replications, where the out-
come is defined in accuracy as correct fitting, if Ŝ = S0; overfitting, if S0 ⊂ Ŝ;
and underfitting, if S0 ! Ŝ. It is clear that the performance of BIC on selecting
5 significant variables ml (Xl) , l = 3, ..., 7, is quite satisfactory. The selection
accuracy becomes higher as the sample size increases and/or the correlation
decreases; it is poorer with higher dimension d (= 50) but still high when sam-
ple size n = 1000. The accuracy and computing time of COSSO are also listed



12 Shuzhuan Zheng et al.

r n l
1 2 3 4 5 6 7

0.0 250 0.9305 0.9250 0.9235 0.9250 0.9235 0.9240 0.9230
500 0.9455 0.9475 0.9430 0.9405 0.9425 0.9440 0.9530
1000 0.9515 0.9520 0.9475 0.9455 0.9480 0.9510 0.9485

0.5 250 0.9215 0.9185 0.9120 0.9145 0.9205 0.9210 0.9185
500 0.9420 0.9405 0.9330 0.9325 0.9375 0.9385 0.9415
1000 0.9485 0.9505 0.9420 0.9475 0.9455 0.9430 0.9445

Table 2 The 95% SCCs coverage frequency for ml (x) , l = 1, 2, ..., 7 from 2000 replications

for comparison (Platform: R; PC: Intel 3.1 GHz processor and 8 GB RAM).
It is shown in Table 1 that the BIC significantly outperforms the COSSO in
terms of accuracy and computing time, and the advantage in computing time
widens significantly for d = 50.

In addition to the above comparison for model selection, we have also con-
ducted numerical comparison between COSSO and our proposed SBK estima-
tion method in terms of probability prediction. The proposed SBK method
has higher prediction accuracy in almost all cases, see Table 4 in the Supple-
ment. Comparison regarding SCC has not been made against COSSO because
it does not produce one.

The SCCs coverage frequency for ml (xl) , l = 1, ..., 7 is reported in Table
2. Among the zero functions, we have omitted the results for m8,m9 and m10

because the results are very similar to m1 and m2. The empirical coverage
approaches the nominal confidence levels as n increases, and better coverage
occurs when the correlation is lower. The coverage frequencies vary slightly
when d increases, the numerical results of which have not been included for
brevity. We have also compared the coverage frequency of SCC and method
VOT (Volume of Tube) in the same setup of the simulation 1 in Wiesenfarth et
al. (2012), which considered only the case of trivial link function. The perfor-
mance of our proposed SCC is quite similar to the VOT method Wiesenfarth
et al. (2012), see Table 3 in the Supplement.

The above studies evidently indicate the reliability of our methodology,
such as high selection accuracy of the BIC and desired coverage frequency
of the SCCs. It ensures their applications for credit rating modelling in the
following section.

6 Application

We now return to forecast default probabilities of the listed companies in
Japan. The data taken from the Risk Management Institute, National Univer-
sity of Singapore include the comprehensive financial statements and the credit
events (default or bankruptcy) from 2005 to 2010 of 3583 Japanese firms.

Berg (2007) found that the liability status was important to indicate the
creditworthiness of a company, while Bernhardsen (2001) and Ryser and Den-
zler (2009) proposed to consider the “leverage effect” expressed by the financial
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statement ratios. Therefore, we have pooled two situations by considering X1:
Current liability, X2: Current stock return, X3: Long term borrow, X4: Short
term borrow, X5: Total asset, X6: Non-current liability, X7: 3 months earlier
(stock) return, X8: 6 months earlier (stock) return, X9: Current ratio, X10:
Net liability to shareholder equity, X11: Shareholder equity to total liability
and equity, X12: TCE ratio, X13: Total debt to total asset, X14: Quick ratio.

Selecting the rating factors via the BIC given in (22), we have found that
X1: Current liabilities, X7: 3 months earlier return, X8: 6 months earlier re-
turn are significant. Similar rating covariates were also discovered in Shina
and Moore (2003), Berg (2007) and Ryser and Denzler (2009). However, Berg
(2007) selected 23 variables which led to a non-parsimonious GAM. In contrast,
Ryser and Denzler (2009) had found that 3 financial ratios (capital turnover,
long-term debt ratio, return on total capital) were significant based on the
blockwise cross-validation (CV) method which is nonetheless extremely time
consuming in comparison to the proposed BIC.

Figure 1 (a)-(c) depicts the SBK estimator of the factor’s default impact
curve on domain, while a shoal of 95% CIs and the 95% SCCs present re-
spectively the pointwise and global uncertainty of the whole curve. The SBK
estimators indicate overall monotonicities of each rating factors, and the SCCs
turn out to be fairly narrow to warrant the global nonlinearities of the factors’
curves which reveal the underlying nonlinear features in different segments of
domain.

As for the model evaluations, the Cumulative Accuracy Profile (CAP) is
plotted in Figure 1 (d). For any score function S, one defines its alarm rate
F (s) = P (S ≤ s) and the hit rate FD (s) = P (S ≤ s |D) where D represents
the conditioning event of “default”. One then defines the CAP curve as

CAP (u) = FD

(
F−1 (u)

)
, u ∈ (0, 1) , (24)

which is the percentage of default-infected obligators that are found among
the first (according to their scores) 100u% of all obligators. A satisfactory
model’s CAP would be expected to approach to that of the perfect model
(i.e., CAPP (u) = min (u/p, 1) , u ∈ (0, 1) where p is the unconditional default
probability) and always better than the noinformative. In contrast, a nonin-
formative rating method with zero discriminatory power displays a diagonal
line CAPN (u) ≡ u, u ∈ (0, 1). See details of the CAP in Engelmann, Hayden
and Tasche (2003).

The AR is the ratio of two areas aR and aP . The area between the given
CAP curve and the noninformative diagonal CAPN (u) ≡ u is aR, whereas aP
is the area between the perfect CAP curve CAPP (u) and the noninformative
diagonal CAPN (u). Thus

AR =
aR
aP

=
2
∫ 1
0 CAP (u) du− 1

1− p
, (25)

where CAP (u) is given in (24). The AR takes value in [0, 1], with value 0
corresponding to the noninformative scoring, and 1 the perfect scoring method,
a higher AR indicates an overall higher discriminatory power of a method.
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Using both GAM and GLM obtained from first 2000 companies to predict
the default rate of the rest 1583 companies, the accuracy ratio is 97.56% for
GAM, much higher than the 89.76% for GLM. We have also applied the COS-
SO method to the same data, and the following error message has appeared
“Error in solve.QP(GH$H, GH$H %*% old.theta - GH$G, t(Amat), bvec):
matrix D in quadratic function is not positive definite!”, which once again
has illustrated the advantage of the proposed BIC procedure over the existing
method.
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Appendix

In what follows, we take ∥·∥ and ∥·∥∞ as the Euclidean and supremum norms,

respectively, i.e., for any x = (x1, x2, ..., xd) T ∈ Rd, ∥x∥ =
(∑d

l=1 x
2
l

)1/2

and ∥x∥∞ = max
1≤l≤d

|xl|. For any interval [a, b], denote the space of p-th order

smooth function by C(p)[a, b] =
{
g
∣∣g(p) ∈ C [a, b]

}
, and the class of Lipschitz

continuous functions by

Lip ([a, b] , C) = {g ||g (x)− g (x′)| ≤ C |x− x′| , ∀x, x′ ∈ [a, b]}

for constant C > 0. Lastly, define the following latent regression errors

ξi = Yi − b′ {m (Xi)} = σ (Xi) εi, 1 ≤ i ≤ n. (26)

A.1 Technical assumptions

We need the following technical assumptions:

(A1) The additive component functions ml ∈ C(1) [0, 1] , 1 ≤ l ≤ d: m1 ∈
C(2) [0, 1], m′

l ∈ Lip ([0, 1] , Cm) , 2 ≤ l ≤ d for some constant Cm > 0.
(A2) The inverse link function b′ satisfies that b′ ∈ C2 (R) , b′′ (θ) > 0, θ ∈

R. For a compact interval Θ whose interior contains m
(
[0, 1]d

)
, Cb >

maxθ∈Θ b′′ (θ) ≥ minθ∈Θ b′′ (θ) > cb for constants 0 < cb < Cb < ∞.
(A3) The conditional variance function σ2 (x) is continuous and positive for

x ∈ [0, 1]d. The errors {εi}ni=1 satisfy that E (εi |Xi ) = 0, E
(
|εi|2+η

)
≤ Cη

for some η ∈ (1/2, 1].
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(A4) The joint density f (x) of (X1, ..., Xd) is continuous and

0 < cf ≤ infx∈[0,1]d f (x) ≤ supx∈[0,1]d f (x) ≤ Cf < ∞.

For each 1 ≤ l ≤ d, the marginal density function fl (xl) of Xl has contin-
uous derivatives on [0, 1] and the same uniform bounds Cf and cf . There
exists a σ-finite measure λ on R such that the distribution of Yi condition-
al on Xi has a probability density function fY |X (y; b′ {m (x)}) relative to
λ whose support for y is a common Ω, and is continuous in both y ∈ Ω
and x ∈ [0, 1]d.

(A5)
{
Zi =

(
XT

i , εi
)}n

i=1
are independent and identically distributed.

(A6) The kernel function K (x) is a symmetric probability density function sup-
ported on [−1, 1] and ∈ C1[−1, 1]. The bandwidth h = hn satisfies that h =

o
(
n−1/5(log n)−1/5

)
, h−1 = O

(
n1/5 (log n)δ

)
for some constant δ > 1/5.

(A7) The number of interior knots N satisfies cNn1/4 log n ≤ N ≤ CNn1/4 log n
for some constants cN ,CN > 0.

Assumptions (A1)-(A7) are standard in GAM, see Stone (1986), Xue and
Yang (2006). The i.i.d. feature is technically acceptable if the data are collect-
ed across a large number of sections, for instance, our real example in Section
6. Assumptions (A5), (A6) are more restrictive than in Liu, Yang and Härdle
(2013) for the purpose of constructing simultaneous confidence corridor, but
are unnecessary for Theorem 2 on the consistency of BIC. All these assump-
tions are satisfied by the simulation example in Section 5.

A.2 Preliminaries

Throughout this section, C denotes some generic positive constant unless s-
tated otherwise. Define

Mh (t) = h−1/2

∫ 1

0
K {(x− t) /h} dW (x) (27)

where W (x) is a Wiener process defined on (0,∞) and denote

dh = (−2 log h)1/2 + (−2 log h)−1/2
{√

C (K)/ (2π)
}

with C (K) given in (13).

Lemma 1 Under Assumption (A6). for any x ∈ R

lim
n→∞

P
[
(−2 log h)1/2

{
supt∈[h,1−h] |Mh (t)| / ∥K∥22 − dh

}
< x

]
= e−2e−x

.

Proof One simply applies the same steps in proving Lemma 2.2 of Härdle
(1989).

Denote by Ti the random variable b′ {m (Xi)}, and the Lebesgue measure
on Rd as µ(d). By Assumption (A4), Xi has pdf wrt the Lebesgue measure
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µ(d), and Assumptions (A1) and (A2) ensure that functions b′ and m are at
least C1, thus the random vector (Ti, Xi1) has a joint pdf wrt the Lebesgue
measure µ(2), which one denotes as fT,X1 (t, x1).

Lemma 2 Under Assumptions (A1)-(A5), for ξi in (26), the distribution of
(ξi, Xi1) has joint pdf wrt µ(2) as

fξ,X1 (z, x1) =

∫

Ω
fY |X (y; y − z) fT,X1 (y − z, x1) dλ (y) .

Proof The joint pdf of (Yi, Ti, Xi1) wrt λ× µ(2) is fY |X (y; t) fT,X1 (t, x1). For
any (z, x1) ∈ R× [0, 1], and △z,△x1 > 0, one has

P [(ξi, Xi1) ∈ (z −△z, z +△z)× (x1 −△x1, x1 +△x1)] =

P [(Yi − Ti, Xi1) ∈ (z −△z, z +△z)× (x1 −△x1, x1 +△x1)] =∫

Ω
dλ (y)

∫

y−τ∈(z−△z,z+△z)
dτ

∫

χ1∈(x1−△x1,x1+△x1)
fY |X (y; τ) fT,X1 (τ ,χ1) dχ1.

Applying dominated convergence theorem, one has as max (△z,△x1) → 0,

P [(ξi, Xi1) ∈ (z −△z, z +△z)× (x1 −△x1, x1 +△x1)]

=

{∫

Ω
fY |X (y; y − z) fT,X1 (y − z, x1) dλ (y)

}
×

µ(2) [(z −△z, z +△z)× {(x1 −△x1, x1 +△x1) ∩ [0, 1]}] + o (△z△x1)

hence the joint pdf of (ξi, Xi1) wrt µ(2) is
∫
Ω fY |X (y; y − z) fT,X1 (y − z, x1) dλ (y).

For theoretical analysis, we write cJ,l = E bJ (Xl) =
∫
bJ (xl) fl (xl) dxl and

define the centered B spline basis bJ,l (xl) and the standardized B spline basis
BJ,l (xl) respectively as

bJ,l (xl) = bJ (xl)−
cJ,l

cJ−1,l
bJ−1 (xl) ,

BJ,l (xl) =
bJ,l (xl)

{∫
b2J,l (xl) fl (xl) dxl

}1/2
, 1 ≤ J ≤ N + 1, (28)

so that EBJ,l (Xl) ≡ 0, EB2
J,l (Xl) ≡ 1.

With slight abuse of notations the log-likelihood L̂ (g) in (5) is

L̂ (g) = L̂ (λ) = n−1
∑n

i=1

[
Yiλ

TB (Xi)− b
{
λTB (Xi)

}]
,

with g (Xi) = λTB (Xi) ∈ G0
n, λ =(λ0,λJ,l)

T
1≤J≤N+1,1≤l≤d ∈ RNd with Nd =

(N + 1) d + 1, B (x) = {1, B1,1 (x1) , ..., BN+1,d (xd)}T and BJ,l (xl) as given

in (28). It is straightforward to verify that the gradient and Hessian of L̂ (λ)
are

∇L̂ (λ) = n−1
∑n

i=1

[
YiB (Xi)− b′

{
λTB (Xi)

}
B (Xi)

]
, (29)

∇2L̂ (λ) = −n−1
∑n

i=1
b′′

{
λTB (Xi)

}
B (Xi)B (Xi)

T .
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Proposition 1 Under Assumptions (A1)-(A5) and (A7), for m ∈ M with
M given in (20) and m̂ as in (6), as n → ∞, ∥m− m̂∥2,n + ∥m− m̂∥2 =

Oa.s.

(
N1/2n−1/2 log n

)
and ∥m− m̂∥∞ = Oa.s.

(
Nn−1/2 log n

)
. With prob-

ability approaching 1, the Hessian matrix ∇2L̂ (λ) satisfies that ∇2L̂ (λ) <
0, ∀λ and ∇2L̂ (λ) ≤ −cbcV I if λTB (Xi) ∈ Θ, 1 ≤ i ≤ n.

Proof See Lemma A.13 of Liu, Yang and Härdle (2013), Assumption (A2),
equation (29) and Lemma A.11 of Liu, Yang and Härdle (2013).

A.3 Proof of Theorem 1

Define a stochastic process ε̂n (x1) = n−1
∑n

i=1 Kh (Xi1 − x1) ξi, x1 ∈ [0, 1]
with ξi given in (26), then (9) and (10) show that

sup
x1∈[h,1−h]

∣∣m̃K,1 (x1)−m1 (x1)−D−1
1 (x1) ε̂n (x1)

∣∣ = Oa.s.

(
h2 + n−1/2h1/2 log n

)
,

which, together with (8), lead to

supx1∈[h,1−h]

∣∣m̂SBK,1 (x1)−m1 (x1)−D−1
1 (x1) ε̂n (x1)

∣∣ (30)

= Oa.s.

(
h2 + n−1/2h1/2 log n+ n−1/2 log n

)
= Oa.s.

(
h2 + n−1/2 log n

)
.

Using v1 (x1) given in (11), one can standardize ε̂n (x1) to obtain

ζ̂n (x1) = (nh)1/2 v−1
1 (x1) ε̂n (x1)

= (nh)1/2 v−1
1 (x1)

{
n−1

∑n

i=1
Kh (Xi1 − x1) ξi

}
. (31)

Assumptions (A5), (A8) imply that the following Rosenblatt transforma-
tion to the 2-dimensional sequence {Xi1, ξi}

n
i=1 produces

{
X ′

i1, ξ
′
i

}n

i=1
with(

X ′
i1, ξ

′
i

)
uniformly distributed on [0, 1]2:

(
X ′

i1, ξ
′
i

)
= T (Xi1, ξi) =

{
FX1 (Xi1) , Fξ|X1

(ξi|Xi1)
}
.

Denote Zn (x1, ξ) =
√
n {Fn (x1, ξ)− F (x1, ξ)} where Fn (x1, ξ) is the empir-

ical distribution of {Xi1, ξi}
n
i=1, one can rewrite ζ̂n (x1) as

ζ̂n (x1) = h−1/2v−1
1 (x1)

∫ ∫
K {(u− x1) /h} ξdZn (u, ξ) .

By the strong approximation theorem in Tusnady (1977), there exists a
version of the 2-dimensional Brownian Bridge Bn

(
x′
1, ξ

′) such that

sup
x1,ξ

|Zn (x1, ξ)−Bn {T (x1, ξ)}| = Oa.s.

(
n−1/2 log2 n

)
.
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Applying standard techniques used in Bickel and Rosenblatt (1973), Härdle
(1989), one can show that

sup
t∈[h,1−h]

∣∣∣ζ̂n (t)−Mh (t) / ∥K∥22
∣∣∣ = op

{
(log n)−1/2

}
, (32)

for a version of the Mh (t) given in (27). Similar result can be found in Xia
(1998). Furthermore, (30) and (31) imply that

supx1∈[h,1−h]

∣∣∣σ−1
n (x1) {m̂SBK,1 (x1)−m1 (x1)}− ζ̂n (x1)

∣∣∣

= Oa.s.

(
n1/2h5/2 + h1/2 log n

)
, (33)

with σn (x) given in (14). Under Assumption (A6), which entails that (−2 log h)1/2

is of the same order as (log n)1/2, (32) and (33) can show that

supx1∈[h,1−h] (−2 log h)1/2
∣∣∣σ−1

n (x1) |m̂SBK,1 (x1)−m1 (x1)|− |Mh (x1)| / ∥K∥22
∣∣∣

= Oa.s

{
(log n)1/2 ×

(
n1/2h5/2 + h1/2 log n

)}
+ op (1) = op (1) .

Finally, Theorem 1 follows from Lemma 1 and Slutsky’s Theorem.

A.4 Proof of Theorem 2

See the Supplement.
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1. Introduction

Mean regression analysis is a widely used tool in statistical inference for curves. It focuses

on the center of the conditional distribution, given d-dimensional covariates with d ≥ 1. In a

variety of applications though the interest is more in tail events, or even tail event curves such as

the conditional quantile function. Applications with a specific demand in tail event curve analysis

include finance, climate analysis, labor economics and systemic risk management.

Tail event curves have one thing in common: they describe the likeliness of extreme events

conditional on the covariate X. A traditional way of defining such a tail event curve is by trans-

lating ”likeliness” with ”probability” leading to conditional quantile curves. Extreme events may

alternatively be defined through conditional moment behaviour leading to more general tail de-

scriptions as studied by Newey and Powell (1987) and Jones (1994). We employ this more general

definition of generalized quantile regression (GQR), which includes, for instance, expectile curves

and study statistical inference of GQR curves through confidence corridors.

In applications parametric forms are frequently used because of practical numerical reasons.

Efficient algorithms are available for estimating the corresponding curves. However, the ”monocu-

lar view” of parametric inference has turned out to be too restrictive. This observation prompts the

necessity of checking the functional form of GQR curves. Such a check may be based on testing

different kinds of variation between a hypothesized (parametric) model and a smooth alternative

GQR. This approach though involves either an explicit estimate of the bias or a pre-smoothing of

the ”null model”. In this paper we pursue the Kolmogorov-Smirnov type of approach, that is, em-

ploying the maximal deviation between the null and the smooth GQR curve as a test statistic. Such

a model check has the advantage that it may be displayed graphically as confidence corridors (CC;

also called ”simultaneous confidence band” or ”uniform confidence band/region”) but has been

considered so far only for univariate covariates. The basic technique for constructing CC of this

type is extreme value theory for the sup-norm of an appropriately centered nonparametric estimate
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of the quantile curve.

Confidence corridors with one-dimensional predictor were developed under various settings.

Classical one-dimensional results are confidence bands constructed for histogram estimators by

Smirnov (1950) or more general one-dimensional kernel density estimators by Bickel and Rosen-

blatt (1973). The results were extended to a univariate nonparametric mean regression setting

by Johnston (1982), followed by Härdle (1989) who derived CCs for one-dimensional kernel M-

estimators. Claeskens and Van Keilegom (2003) proposed uniform confidence bands and a boot-

strap procedure for regression curves and their derivatives.

In recent years, the growth of the literature body shows no sign of decelerating. In the same

spirit of Härdle (1989), Härdle and Song (2010) and Guo and Härdle (2012) constructed uniform

confidence bands for local constant quantile and expectile curves. Fan and Liu (2013) proposed an

integrated approach for building simultaneous confidence band that covers semiparametric models.

Giné and Nickl (2010) investigated adaptive density estimation based on linear wavelet and kernel

density estimators and Lounici and Nickl (2011) extended the framework of Bissantz et al. (2007)

to adaptive deconvolution density estimation. Bootstrap procedures are proposed as a remedy for

the poor coverage performance of asymptotic confidence corridors. For example, the bootstrap for

the density estimator is proposed in Hall (1991) and Mojirsheibani (2012), and for local constant

quantile estimators in Song et al. (2012).

However, only recently progress has been achieved in the construction of confidence bands for

regression estimates with a multivariate predictor. Hall and Horowitz (2013) derived an expansion

for the bootstrap bias and established a somewhat different way to construct confidence bands

without the use of extreme value theory. Their bands are uniform with respect to a fixed but

unspecified portion (smaller than one) of points in a possibly multidimensional set in contrast to

the classical approach where uniformity is achieved on the complete set considered. Proksch et al.

(2015) proposed multivariate confidence bands for convolution type inverse regression models with

fixed design.
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To the best of our knowledge, the classical Smirnov-Bickel-Rosenblatt type confidence corri-

dors are not available for multivariate GQR or mean regression with random design.

In this work we go beyond the earlier studies in three aspects. First, we extend the applicability

of the CC to d-dimensional covariates with d > 1. Second, we present a more general approach

covering not only quantile or mean curves but also GQR curves that are defined via a minimum

contrast principle. Third, we propose a bootstrap procedure and we show numerically its improve-

ment in the coverage accuracy as compared to the asymptotic approach.

Our asymptotic results, which describe the maximal absolute deviation of generalized quantile

estimators, can not only be used to derive a goodness-of-fit test in quantile and expectile regres-

sion, but they are also applicable in testing the quantile treatment effect and stochastic dominance.

We apply the new method to test the quantile treatment effect of the National Supported Work

Demonstration program, which is a randomized employment enhancement program launched in

the 1970s. The data associated with the participants of the program have been widely applied

in the field of treatment effect research since the pioneering study of LaLonde (1986). More re-

cently, Delgado and Escanciano (2013) found that the program is beneficial for individuals of over

21 years of age. In our study, we find that the treatment tends to do better at raising the upper

bounds of the earnings growth than raising the lower bounds. In other words, the program tends

to increase the potential for high earnings growth but does not reduce the risk of negative earnings

growth. The finding is particularly evident for those individuals who are older and spent more

years at school. We should note that the tests based on the unconditional distribution cannot unveil

the heterogeneity in the earnings growth quantiles in treatment effects.

The remaining part of this paper is organized as follows. In Section 2 we present our model,

describe the estimators and state our asymptotic results. Section 3 is devoted to the bootstrap and

we discuss its theoretical and practical aspects. The finite sample properties of both methods are

investigated by means of a simulation study in Section 4, where we also compare the numerical

performance of our method with the method proposed in Hall and Horowitz (2013) via simula-
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tions. The application of our new method is illustrated by a real data example in Section 5. The

assumptions for our asymptotic theory are listed and discussed after the references. All detailed

proofs are available in the supplement material.

2. Asymptotic confidence corridors

In Section 2.1 we present the prerequisites such as the precise definition of the model and a

suitable estimate. The results on constructing confidence corridors (CCs) based on the distribution

of the maximal absolute deviation are given in Section 2.2. In Section 2.3 we describe how to

estimate the scaling factors, which appear in the limit theorems, using residual based estimators.

Section 3.1 introduce a new bootstrap method for constructing CCs, while Section 3.2 is devoted

to specific issues related to bootstrap CCs for quantile regression. Assumptions are listed and

discussed after the references.

2.1. Prerequisites

Let (X1,Y1), ..., (Xn,Yn) be a sequence of independent identically distributed random vectors in

Rd+1 and consider the nonparametric regression model

Yi = θ0(Xi) + εi, i = 1, ..., n, (1)

where θ0 is an aspect of Y conditional on X, such as the τ-quantile, the τ-expectile or the mean

regression curve, and the model errors ε1, . . . , εn are i.i.d. with τ-quantile, τ-expectile or mean

equal to 0, respectively, depending on which θ0 is in the model. The function θ(x) can be estimated

by:

θ̂(x) = argmin
θ∈R

1
n

n∑

i=1
Kh(x − Xi)ρ(Yi − θ), (2)
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where Kh(u) = h−dK (u/h) for some kernel function K : Rd → R, and a loss function ρτ : R → R.

In this paper we are concerned with the construction of uniform confidence corridors for quantile

as well as expectile regression curves when the predictor is multivariate, that is, we focus on the

loss functions

ρτ(u) =
∣∣∣1(u < 0) − τ

∣∣∣|u|k,

for k = 1 and 2 associated with quantile and expectile regression. We derive the asymptotic

distribution of the properly scaled maximal deviation supx∈D |θ̂n(x) − θ0(x)| for both cases, where

D ⊂ Rd is a compact subset. We use strong approximations of the empirical process, concentration

inequalities for general Gaussian random fields and results from extreme value theory. To be

precise, we show that

P
[
(2δ log n)1/2

{
sup
x∈D

∣∣∣rn(x)
[
θ̂n(x) − θ0(x)

]∣∣∣/∥K∥2 − dn
}
< a
]
→ exp

{ − 2 exp(−a)}, (3)

as n → ∞, where rn(x) is a scaling factor which depends on x, n and the loss function under

consideration.

2.2. Asymptotic results

In this section we present our main theoretical results on the distribution of the uniform max-

imal deviation of the quantile and expectile estimator. The proofs of the theorems at their full

lengths are deferred to the appendix. Here we only give a brief sketch of proof of Theorem 2.1

which is the limit theorem for the case of quantile regression.

THEOREM 2.1. Let θ̂n(x) and θ0(x) be the local constant quantile estimator and the true quan-

tile function, respectively and suppose that assumptions (A1)-(A6) in Section A hold. Let further
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vol(D) = 1 and

dn = (2d · κ log n)1/2 +
{
2dκ(log n)

}−1/2
[
1
2
(d − 1) log log nκ + log {(2π)−1/2H2(2d)(d−1)/2

}
]
,

where d is the dimension of covariate X, h ≍ n−κ, H2 =
(
2π∥K∥22

)−d/2 det(Σ)1/2, Σ =
(
Σi j
)
1≤i, j≤d =

(∫
∂K(u)
∂ui

∂K(u)
∂u j

du
)
1≤i, j≤d

,

rn(x) =

√
nhd fX(x)
τ(1 − τ) fY |X

{
θ0(x)|x

}
,

Then the limit theorem (3) holds.

Sketch of proof. A major technical difficulty is imposed by the fact that the loss function ρτ is

not smooth which means that standard arguments such as those based on Taylor’s theorem do not

apply. As a consequence the use of a different, extended methodology becomes necessary. In this

context Kong et al. (2010) derived a uniform Bahadur representation for an M-regression function

in a multivariate setting (see appendix). It holds uniformly for x ∈ D, whereD is a compact subset

of Rd:

θ̂n(x) − θ0(x) =
1

nS n,0,0(x)

n∑

i=1
Kh(x − Xi)ψτ

{
Yi − θ0(x)

}
+ O
{( log n

nhd
) 3
4

}
, a.s. (4)

Here S n,0,0(x) =
∫
K(u)g(x + hu) fX(x + hu)du, ψτ(u) = 1(u < 0) − τ is the piecewise derivative of

the loss function ρτ and

g(x) = ∂
∂t
E[ψτ(Y − t)|X = x]

∣∣∣∣∣
t=θ0(x)

.

Notice that the error term of the Bahadur expansion does not depend on the design X and it

converges to 0 with rate
(
log n/nhd

) 3
4 which is much faster than the convergence rate (nhd)− 12 of

the stochastic term.
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Rearranging (4), we obtain

S n,0,0(x){θ̂n(x) − θ0(x)} =
1
n

n∑

i=1
Kh(x − Xi)ψτ

{
Yi − θ0(x)

}
+ O
{( log n

nhd
) 3
4

}
. (5)

Now we express the leading term on the right hand side of (5) by means of the centered empirical

process

Zn(y,u) = n1/2{Fn(y,u) − F(y,u)}, (6)

where Fn(y, x) = n−1
∑n
i=1 1(Yi ≤ y, Xi1 ≤ x1, ..., Xid ≤ xd). This yields, by Fubini’s theorem,

S n,0,0(x){θ̂n(x) − θ0(x)} − b(x) = n−1/2
∫ ∫

Kh(x − u)ψτ
{
y − θ0(x)

}
dZn(y,u) + O

{( log n
nhd
) 3
4

}
,

(7)

where

b(x) = −E
⎡
⎢⎢⎢⎢⎢⎣
1
n

n∑

i=1
Kh(x − Xi)ψ

{
Yi − θ0(x)

}
⎤
⎥⎥⎥⎥⎥⎦

denotes the bias which is of order O(hs) by Assumption (A3) in the Appendix. The variance of the

first term of the right hand side of (7) can be estimated via a change of variables and Assumption

(A5), which gives

(nhd)−2nE
[
K2
{
(x − Xi)/h

}
ψ2
{
Yi − θ0(x)

}]

= (nhd)−2nhd
∫ ∫

K2(v)ψ2
{
y − θ0(x)

}
fY |X(y|x − hv) fX(x − hv)dydv

= (nhd)−1
∫ ∫

K2(v)ψ2{y − θ0(x)
}
fY |X(y|x) fX(x)dydv + O

(
(nhd−1)−1

)

= (nhd)−1 fX(x)σ2(x)∥K∥22 + O
{
(nhd)−1h

}
,

where σ2(x) = E[ψ2
{
Y − θ0(x)

}|X = x]. The standardized version of (5) can therefore be approxi-
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mated by

√
nhd

√
fX(x)σ(x)∥K∥2

S n,0,0(x){θ̂n(x) − θ0(x)}

=
1

√
hd fX(x)σ(x)∥K∥2

∫ ∫
K
(x − u

h

)
ψ
{
Yi − θ0(x)

}
dZn(y,u) + O

(√
nhdhs

)
+ O
{( log n

nhd
) 3
4

}
.

(8)

The dominating term is defined by

Yn(x)
def
=

1
√
hd fX(x)σ(x)

∫ ∫
K
(x − u

h

)
ψ
{
y − θ0(x)

}
dZn(y,u). (9)

Involving strong Gaussian approximation and Bernstein-type concentration inequalities, this pro-

cess can be approximated by a stationary Gaussian field:

Y5,n(x) =
1√
hd

∫
K
(x − u

h

)
dW
(u), (10)

where W denotes a Brownian sheet. The supremum of this process is asymptotically Gumbel

distributed, which follows, e.g., by Theorem 2 of Rosenblatt (1976). Since the kernel is symmetric

and of order s, we can estimate the term

S n,0,0 = fY |X(θ0(x)|x) fX(x) + O(hs)

if (A5) holds. On the other hand, σ2(x) = τ(1−τ) in quantile regression. Therefore, the statements

of the theorem hold.

!

Corollary 2.2 (CC for multivariate quantile regression). Under the assumptions and notations of

9
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Theorem 2.1, an approximate (1 − α) × 100% confidence corridor is given by

θ̂n(t) ± (nhd)−1/2
{
τ(1 − τ)∥K∥2/ f̂X(t)

}1/2 f̂ε|X
{
0|t}−1

{
dn + c(α)(2κd log n)−1/2

}
,

where α ∈ (0, 1) and c(α) = log 2 − log
∣∣∣ log(1 − α)

∣∣∣ and f̂X(t), f̂ε|X
{
0|t} are consistent estimates for

fX(t), fε|X
{
0|t} with convergence rate in sup-norm faster than Op

(
(log n)−1/2

)
.

Remark 2.3. Note that under the conditions of Corollary 2.2 we find

sup
x∈D

∣∣∣rn(x)
(
θ̂n(x) − θ0(x)

)∣∣∣ = OP
( √
log n
)
,

where

rn(x) =

√
nhd fX(x)
τ(1 − τ) fY |X

{
θ0(x)|x

}
.

For kernel estimators f̂ε|X(0, ·) and f̂X(·) converging in sup-norm with rate OP
(
log(n)−1/2

)
to fε|X(0, ·)

and fX(·), respectively, the quantity r̂n(x), defined by

r̂n(x) =

√
nhd f̂X(x)
τ(1 − τ) f̂ε|X(0, x),

inherits this rate. Furthermore, since we consider an additive error model, the conditional density

fY |X
{
θ0(x)|x

}
can be replaced by fε|X(0, x) (see Section 2.3 below for more details and the definition

of suitable estimators). This yields

sup
x∈D

∣∣∣r̂n(x)
(
θ̂n(x) − θ0(x)

)∣∣∣ = OP(1) + sup
x∈D

∣∣∣rn(x)
(
θ̂n(x) − θ0(x)

)∣∣∣.

Hence, by Slutsky’s Lemma, the quantities supx∈D
∣∣∣r̂n(x)

(
θ̂n(x) − θ0(x)

)∣∣∣ and supx∈D
∣∣∣rn(x)

(
θ̂n(x) −

θ0(x)
)∣∣∣ have the same asymptotic distribution.

10
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The expectile confidence corridor can be constructed in an analogous manner as the quantile

confidence corridor. The two cases differ in the form and hence the properties of the loss function.

Therefore we find for expectile regression:

S n,0,0(x) = −2
[
FY |X
(
θ0(x
)|x)(2τ − 1) − τ] fX(x) + O(hs).

Through similar approximation steps as the quantile regression, we derive the following theorem.

THEOREM 2.4. Let θ̂n(x) be the the local constant expectile estimator and θ0(x) the true expectile

function. If Assumptions (A1), (A3)-(A6) and (EA2) of Section A hold with a constant b1 satisfying

n−1/6h−d/2−3d/(b1−2) = O(n−ν), ν > 0.

Then the limit theorem (3) holds with a scaling factor

rn(x) =
√
nhd fX(x)σ−1(x)

{
2
[
τ − FY |X(θ0(x)|x)(2τ − 1)

]}

with quantities d, h ≍ n−κ, H2 and dn as defined in Theorem 2.1, where σ2(x) = E[ψ2τ(Y−θ0(x))|X =

x] and ψτ(u) = 2(1(u ≤ 0) − τ)|u| is the derivative of the expectile loss function ρτ(u) =
∣∣∣τ − 1(u <

0)
∣∣∣|u|2.

The proof of this result is deferred to the appendix. In the next corollary, the explicit form of

the CCs for expectiles is given.

Corollary 2.5 (CC for multivariate expectile regression). Under the same assumptions of Theorem

2.4, an approximate (1 − α) × 100% confidence corridor is given by

θ̂n(t) ± (nhd)−1/2
{
σ̂2(t)∥K∥2/ f̂X(t)

}1/2{ − 2[F̂ε|X
{
0|t}(2τ − 1) − τ]

}−1{
dn + c(α)(2κd log n)−1/2

}
,

11
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where α ∈ (0, 1) c(α) = log 2 − log
∣∣∣ log(1 − α)

∣∣∣ and f̂X(t), σ̂2(t) and F̂ε|X(0|x) are consistent esti-

mates for fX(t), σ2(t) and Fε|X(0|x) with convergence rate in sup-norm faster than Op
(
(log n)−1/2

)
.

A further immediate consequence of Theorem 2.4 is a similar limit theorem in the context of

local least squares estimation of the regression curve in classical mean regression.

Corollary 2.6 (CC for multivariate mean regression). Consider the loss function ρ(u) = u2 cor-

responding to ψ(u) = 2u. Under the assumptions and notations of Theorem 2.4, with the same

constants H2 and dn, (3) holds for the local constant estimator θ̂ and the regression function

θ(x) = E[Y | X = x] with scaling factor r(x) =
√
nhd fX(x)σ−1(x) and σ2(x) =Var[Y | X = x].

Remark 2.7. We would like to stress that our purely nonparametric approach offers flexibility

and reasonable results in moderate dimensions d = 2, d = 3, but it is not suitable for inference

in high dimensional models due to the curse of dimensionality. The case of high dimensional

regressors may be handled via a semi-parametric specification of the regression curve, such as,

for instance, a partial linear model. Such a model was considered in Song et al. (2012) with a

one-dimensional nonparametric component. Our approach allows to adapt their ideas and, as an

extension, to consider a nonparametric component which is multivariate. Hence, our approach

then offers higher flexibility in semi-parametric modeling. This semi-parametric approach is not

pursued further in this paper but it clearly deserves future research.

2.3. Estimating the scaling factors

The performance of the confidence bands is greatly influenced by the scaling factors f̂ε|X(v|x),

Fε|X(v|x) and σ̂(x)2. The purpose of this subsection is thus to propose a way to estimate these

factors and investigate their asymptotic properties.

As pointed out by our referee, estimating fε|X(0) is not a trivial task. The application of a

rank test described in Chapter 3.5 of Koenker (2005) is an alternative to avoid estimating fε|X(0)

in parametric quantile regression. However, it is a challenging task to apply this technique to

12
ACCEPTED MANUSCRIPT

D
ow

nl
oa

de
d 

by
 [H

um
bo

ld
t-U

ni
ve

rs
it&

au
m

l;t
 z

u 
Be

rli
n 

U
ni

ve
rs

it&
au

m
l;t

sb
ib

lio
th

ek
] a

t 0
0:

40
 0

8 
Fe

br
ua

ry
 2

01
6 



ACCEPTED MANUSCRIPT

kernel smoothing quantile regression. For pointwise nonparametric inference, it may be possible

to construct a test by adding weights (given by h−1K((x−Xi)/h), where h is the bandwidth and K is

the kernel function) in the linear programing problem and therefore its dual can also be computed.

However, a global shape test like the one investigated in this paper cannot be derived from the rank

test. Hence, it seems inevitable to estimate the nuisance parameters and plug them into the test

statistics.

Since we consider the additive error model (1), the conditional distribution function FY |X(θ0(x)|x)

and the conditional density fY |X(θ0(x)|x) can be replaced by Fε|X(0|x) and fε|X(0|x), respectively,

where Fε|X and fε|X are the conditional distribution and density functions of ε. Similarly, we have

σ2(x) = E
[
ψτ
(
Y − θ0(x)

)2∣∣∣X = x] = E
[
ψτ(ε)2

∣∣∣X = x]

where ε may depend on X due to heterogeneity. It should be noted that the kernel estimators for

fε|X(0|x) and fY |X(θ0(x)|x) are asymptotically equivalent, but show different finite sample behavior.

We explore this issue further in the following section.

Introducing the residuals ε̂i = Yi − θ̂n(Xi), we propose to estimate Fε|X, fε|X and σ2(x) by

F̂ε|X(v|x) = n−1
n∑

i=1
G
(
v − ε̂i
h0

)
Lh̄(x − Xi)/ f̂X(x), (11)

f̂ε|X(v|x) = n−1
n∑

i=1
gh0 (v − ε̂i) Lh̄(x − Xi)/ f̂X(x), (12)

σ̂2(x) = n−1
n∑

i=1
ψ2(ε̂i)Lh̄(x − Xi)/ f̂X(x), (13)

where f̂X(x) = n−1
∑n
i=1 Lh̄(x−Xi),G is a given continuously differentiable cumulative distribution

function and g is its derivative. The construction of estimators in (11) and (12) follows from the

estimator for general conditional distribution and density functions discussed in Chapter 5 and 6

of Li and Racine (2007). The same bandwidth h̄ is applied to the three estimators, but the choice

13
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of h̄ will make the convergence rate of (13) sub-optimal. More details on the choice of h̄ are given

in section 3.2 below. Nevertheless, the rate of convergence of (13) is of polynomial order in n.

The theory developed in this subsection can be generalized to the case of different bandwidth for

different direction without much difficulty.

The estimators (11) and (12) belong to the family of residual-based estimators. The consistency

of residual-based density estimators for errors in a regression model are explored in the literature

in various settings. It is possible to obtain an expression for the residual based kernel density

estimator as the sum of the estimator with the true residuals, the partial sum of the true residuals and

a term for the bias of the nonparametrically estimated function, as shown in Muhsal and Neumeyer

(2010), among others. The residual based conditional kernel density case is less considered in the

literature. Kiwitt and Neumeyer (2012) consider the residual based kernel estimator for conditional

distribution function conditioning on a one-dimensional variable.

Below we give consistency results for the estimators defined in (11), (12) and (13). The proof

can be found in the appendix.

Lemma 2.8. Under conditions (A1), (A3)-(A5), (B1)-(B3) in Section A, we have

1) supv∈I supx∈D
∣∣∣F̂ε|X(v|x) − Fε|X(v|x)

∣∣∣ = Op
(
tn
)
,

2) supv∈I supx∈D
∣∣∣ f̂ε|X(v|x) − fε|X(v|x)

∣∣∣ = Op
(
tn
)
,

3) supx∈D
∣∣∣σ̂2(x) − σ2(x)

∣∣∣ = Op
(
un
)
,

where tn = O
{
hs′0 + h

s + h̄s′ + (nh̄d)−1/2 log n + (nhd)−1/2 log n
}
= O(n−λ), and un = O

{
hs + h̄s′ +

(nh̄d)−1/2 log n + (nhd)−1/2 log n
}
= O(n−λ1) for some constants λ, λ1 > 0.

The factor log n shown in the convergence rate is the price which we pay for the sup norm

deviation. Since these estimators uniformly converge in a polynomial rate in n, the asymptotic

distributions in Theorem 2.1 and 2.4 remain the same if we plug these estimators into the formulae.

14
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3. Bootstrap confidence corridors

3.1. Asymptotic theory

In the case of the suitably normed maximum of independent standard normal variables, it is

shown in Hall (1979) that the speed of convergence in limit theorems of the form (3) is of order

1/ log n, that is, the coverage error of the asymptotic CC decays only logarithmically. This leads to

unsatisfactory finite sample performance of the asymptotic methods, especially for small sample

sizes and dimensions d > 1. However, Hall (1991) suggests that the use of a bootstrap method,

based on a proper way of resampling, can increase the speed of shrinking of coverage error to

a polynomial rate of n. In this section we therefore propose a specific bootstrap technique and

construct a confidence corridor for the objects to be analysed.

Given the residuals ε̂i = Yi − θ̂n(Xi), the bootstrap observations (X∗i , ε∗i ) are sampled from

f̂ε,X(v, x) =
1
n

n∑

i=1
gh0 (ε̂i − v) Lh̄(x − Xi), (14)

where g and L are kernel functions with bandwidths h0, h̄ satisfying assumptions (B1)-(B3). In

particular, in our simulation study, we choose L to be a product Gaussian kernel. In the following

discussion P∗ and E∗ stand for the probability and expectation conditional on the data (Xi,Yi),

i = 1, ..., n.

We introduce the notation

A∗n(x) =
1
n

n∑

i=1
Kh(x − X∗i )ψτ(ε∗i ),

15
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and define the so-called ”one-step estimator” θ∗(x) from the bootstrap sample by

θ̂∗(x) − θ̂n(x) = Ŝ −1n,0,0(x)
{
A∗n(x) − E∗[A∗n(x)]

}
, (15)

where

Ŝ n,0,0(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f̂ε|X
(
0|x) f̂X(x), quantile case;

2
{
τ − F̂ε|X

(
0|x)(2τ − 1)} f̂X(x), expectile case.

(16)

note that E∗[θ̂∗(x) − θ̂n(x)] = 0, so θ̂∗(x) is unbiased for θ̂n(x) under E∗. As a remark, we note that

undersmoothing is applied in our procedure for two reasons: first, the theory we developed so far

is based on undersmoothing; secondly, it is suggested in Hall (1992) that undersmoothing is more

effective than oversmoothing given that the goal is to achieve coverage accuracy.

Note that the bootstrap estimate (15) is motivated by the smoothed bootstrap procedure pro-

posed in Claeskens and Van Keilegom (2003). In contrast to these authors we make use of the

leading term of the Bahadur representation. Mammen et al. (2013) also use the leading term of

a Bahadur representation proposed in Guerre and Sabbah (2012) to construct bootstrap samples.

Song et al. (2012) propose a bootstrap for quantile regression based on oversmoothing, which has

the drawback that it requires iterative estimation, and oversmoothing is in general less effective in

terms of coverage accuracy.

For the following discussion define

Y∗n(x) =
1

√
hd f̂X(x)σ∗(x)

∫ ∫
K
(x − u

h

)
ψτ
(
v
)
dZ∗n(v,u) (17)

as the bootstrap analogue of the process (9), where

Z∗n(y,u) = n1/2
{
F∗n(v,u) − F̂(v,u)

}
, σ∗(x) =

√
E∗
[
ψτ(ε∗i )2|x

]
(18)

16
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and

F∗n(v,u) =
1
n

n∑

i=1
1
{
ε∗i ≤ v, X∗1 ≤ u1, ..., X∗d ≤ ud

}
.

The process Y∗n serves as an approximation of a standardized version of θ̂∗n − θ̂n, and similar to the

previous sections the process Y∗n is approximated by a stationary Gaussian field Y∗n,5 under P
∗ with

probability one, that is,

Y∗5,n(x) =
1√
hd

∫
K
(x − u

h

)
dW∗(u).

Finally, supx∈D
∣∣∣Y∗5,n(x)

∣∣∣ is asymptotically Gumbel distributed conditional on samples.

THEOREM 3.1. Suppose that assumptions (A1)-(A6), (C1) in Section A hold, and vol(D) = 1,

let

r∗n(x) =

√
nhd

f̂X(x)σ2∗(x)
Ŝ n,0,0(x),

where Ŝ n,0,0(x) is defined in (16) and σ2∗(x) is defined in (18). Then

P∗
{
(2d · κ log n)1/2

(
sup
x∈D

[
r∗n(x)|θ̂∗(x) − θ̂n(x)|

]
/∥K∥2 − dn

)
< a
}
→ exp

{ − 2 exp(−a)}, a.s. (19)

as n→ ∞ for the local constant quantile regression estimate, with quantities d, h ≍ n−κ, H2 and dn
as defined in Theorem 2.1. If (A1)-(A6) and (EC1) hold with a constant b ≥ 4 satisfying

n−
1
6+

4
b2
− 1b h−

d
2− 6db = O(n−ν), ν > 0,

then (19) also holds for expectile regression with corresponding σ2∗(x).

The proof can be found in the appendix. The following lemma suggests that we can replace

σ∗(x) in the limiting theorem by σ̂(x).

17
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Lemma 3.2. If assumptions (B1)-(B3), and (EC1) in Section A are satisfied with b > 2(2s′ + d +

1)/(2s′ + 3), then

∥σ2∗(x) − σ̂2(x)∥ = O∗p
(
(log n)−1/2

)
, a.s.

The following corollary is a consequence of Theorem 3.1.

Corollary 3.3. Under the same conditions as stated in Theorem 3.1, the (asymptotic) bootstrap

confidence set of level 1 − α is given by

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
θ : sup

x∈D

∣∣∣∣∣∣∣∣∣

Ŝ n,0,0(x)√
f̂X(x)σ̂2(x)

[
θ̂n(x) − θ(x)

]
∣∣∣∣∣∣∣∣∣
≤ ξ∗α

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
, (20)

where ξ∗α satisfies

lim
n→∞

P∗

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
sup
x∈D

∣∣∣∣∣∣∣∣∣

Ŝ n,0,0(x)√
f̂X(x)σ̂2(x)

[
θ̂∗(x) − θ̂n(x)

]
∣∣∣∣∣∣∣∣∣
≤ ξ∗α

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 1 − α, a.s. (21)

where Ŝ n,0,0 is defined in (16).

Note that it does not create much difference to standardize the θ̂n(x)− θ0(x) in (19) with f̂X and

σ̂2(x) constructed from original samples or f̂X and σ̂2(x) from the bootstrap samples. The simula-

tion results of Claeskens and Van Keilegom (2003) show that the two ways of standardization give

similar coverage probabilities for confidence corridors of kernel ML estimators.

3.2. Implementation

In this section, we discuss issues related to the implementation of the bootstrap for quantile

regression.

Note that the width of the CC is determined by the variance and the location is affected by

the bias of the quantile function estimator, and both depend on the bandwidth used for estimation.

18
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Hence, the choice of bandwidth needs to balance the bias (location) and the variance (size). It is

chosen such that the bias is only just negligible after normalization, that is, slightly smaller than

the L2-optimal bandwidth. Therefore, it is enough to take an undersmoothed h = O(n−1/(2s+d)−δ),

given that s > d and δ > 0, where s is the order of Hölder continuity of the function θ0 and δ

is the degree of undersmoothing. We may use the methods proposed by Yu and Jones (1998) for

nonparametric quantile regression to choose the bandwidth before undersmoothing, namely

hτ, j = h1, j{τ(1 − τ)/φ(Φ−1(τ))2}1/5, j = 1, 2, (22)

where h1, j is chosen by common methods like the rule-of-thumb or cross-validation for mean re-

gression or density estimation and Φ is the CDF of the standard Gaussian distribution. In our

simulation study, we select h1, j in (22) by the rule-of-thumb, implemented with the np package in

R. In our application analysis, h1, j in (22) is chosen by the cross-validated bandwidth for the con-

ditional distribution smoother of Y given X, implemented with the np package in R. This package

is based on the paper of Li et al. (2013).

For expectile regression, we use the rule-of-thumb bandwidth for the conditional distribution

smoother of Y given X, chosen with the np package in R.

The choice of h0 and h̄ for estimating the scaling factors in Section 2.3 should minimize the

uniform convergence rate of the residual based estimators. Hence, observing that the terms related

to h0 and h̄ are similar to those in usual (d + 1)-dimensional density estimators, it is reasonable

to choose h0 ∼ h̄ ∼ n−1/(5+d), given that L, g are second order kernels. We choose the rule-of-

thumb bandwidths for conditional densities with the R package np in our simulation and application

studies.

The one-step estimator for quantile regression defined in (15) depends sensitively on the esti-

mator of Ŝ n,0,0(x). Unlike in the expectile case, the function ψ(·) in the quantile case is bounded,

and, as a result, the bootstrapped density based on (20) is very easily influenced by the factor

19
ACCEPTED MANUSCRIPT

D
ow

nl
oa

de
d 

by
 [H

um
bo

ld
t-U

ni
ve

rs
it&

au
m

l;t
 z

u 
Be

rli
n 

U
ni

ve
rs

it&
au

m
l;t

sb
ib

lio
th

ek
] a

t 0
0:

40
 0

8 
Fe

br
ua

ry
 2

01
6 



ACCEPTED MANUSCRIPT

Ŝ n,0,0(x); in particular, f̂ε|X(0|x). As pointed out by Feng et al. (2011), the residual of quantile

regression tends to be less dispersed than the model error; thus f̂ε|X(0|x) tends to over-estimate the

true fε|X(0|x) for each x.

The way of getting around this problem is based on the following observation: An additive

error model implies the equality fY |X
{
v + θ0(x)|x

}
= fε|X

(
v|x), but this property does not hold for

the kernel estimators

f̂ε|X(0|x) = n−1
n∑

i=1
gh0 (ε̂i) Lh̄(x − Xi)/ f̂X(x), (23)

f̂Y |X(θ̂n(x)|x) = n−1
n∑

i=1
gh1
(
Yi − θ̂n(x)

)
Lh̃(x − Xi)/ f̂X(x), (24)

of the conditional density functions. In general f̂ε|X(0|x) ! f̂Y |X(θ̂n(x)|x) in x although both esti-

mates are asymptotically equivalent. In applications the two estimators can differ substantially due

to the bandwidth selection because we usually have h0 ! h1 when they are chosen based on data.

For example, if a common method for bandwidth selection such as a rule-of-thumb is used, h1 will

tend to be larger than h0 since the sample variance of Yi tends to be larger than that of ε̂i. Given

that the same kernels are applied, it happens often that f̂Y |X(θ̂n(x)|x) > fY |X(θ0(x)|x), even if θ̂n(x)

is usually very close to θ0(x). To correct such abnormality, we are motivated to set h1 = h0 which

is the rule-of-thumb bandwidth of f̂ε|x(v|x) in (24). As the result, it leads to a more rough estimate

for f̂Y |X(θ̂n(x)|x).

In order to exploit the roughness of f̂Y |X(θ̂n(x)|x) while making the CC as narrow as possible,

we develop a trick depending on

f̂Y |X
{
θ̂n(x)|x

}

f̂ε|X(0|x)
=
h0
h1

∑n
i=1 gh1

({
Yi − θ̂n(x)

}
/h1
)
Lh̃(x − Xi)

∑n
i=1 gh0 (ε̂i/h0) Lh̄(x − Xi)

. (25)

As n → ∞, (25) converges to 1. If we impose h0 = h1, as the multiple h0/h1 vanishes, (25)

captures the deviation of the two estimators without the difference of the bandwidth in the way.
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In particular, the bandwidth h0 = h1 is selected as the rule-of-thumb bandwidth for f̂ε|X(y|x). This

makes f̂ε|X(y|x) larger and thus leads to a narrower CC, as will be more clear below.

We propose the alternative bootstrap confidence corridor for quantile estimator:

{
θ : sup

x∈D

∣∣∣
√
f̂X(x) f̂Y |X

{
θ̂n(x)|x

}[
θ̂n(x) − θ(x)

]∣∣∣ ≤ ξ†α
}
,

where ξ†α satisfies

P∗
⎛
⎜⎜⎜⎜⎝sup
x∈D

∣∣∣∣∣∣ f̂X(x)
−1/2 f̂Y |X

{
θ̂n(x)|x

}

f̂ε|X(0|x)
[
A∗n(x) − E∗A∗n(x)

]
∣∣∣∣∣∣ ≤ ξ

†
α

⎞
⎟⎟⎟⎟⎠ = 1 − α. (26)

Note that the probability on the left-hand side of (26) can again be approximated by a Gumbel

distribution function asymptotically, which follows by Theorem 3.1.

4. A simulation study

In this section we investigate the methods described in the previous sections by means of a

simulation study. We construct confidence corridors for quantiles and expectiles for different lev-

els τ and use the quartic (product) kernel. The performance of our methods is compared to the

performance of the method proposed by Hall and Horowitz (2013) at the end of this section. For

the confidence based on asymptotic distribution theory, we use the rule of thumb bandwidth chosen

from the R package np, and then rescale it as described in Yu and Jones (1998), finally multiply

it by n−0.05 for undersmoothing. The sample sizes are given by n = 100, 300 and 500, so the un-

dersmoothing multiples are 0.794, 0.752 and 0.733 respectively. We take 20 × 20 equally distant

grids in the square [0.1, 0.9]2 and estimate quantile or expectile functions pointwisely on this set

of grids. In the quantile regression bootstrap CC, the bandwidth h1 used for estimating f̂Y |X(y|x)

is chosen to be the rule-of-thumb bandwidth of f̂ε|X(0|x) and multiplied by a multiple 1.5. This

would give slightly wider CCs.
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The data are generated from the normal regression model

Yi = f (X1,i, X2,i) + σ(X1,i, X2,i)εi, i = 1, . . . , n (27)

where the independent variables (X1, X2) follow a joint uniform distribution taking values on [0, 1]2,

Cov(X1, X2) = 0.2876, f (X1, X2) = sin(2πX1) + X2, and εi are independent standard Gaussian

random variables. For both quantile and expectile, we look at three quantiles of the distribution,

namely τ = 0.2, 0.5, 0.8. The set of grid point is H × H where H is the set of 20 equidistant grids

on univariate interval [0.1, 0.9]. Thus, the grid size is |H × H| = 400.

In the homogeneous model, we take σ(X1, X2) = σ0, for σ0 = 0.2, 0.5, 0.7. In the heteroge-

neous model, we take σ(X1, X2) = σ0 + 0.8X1(1 − X1)X2(1 − X2). 2000 simulation runs are carried

out to estimate the coverage probability.

The upper part of Table 1 shows the coverage probability of the asymptotic CC for nonpara-

metric quantile regression functions. It can be immediately seen that the asymptotic CC performs

very poorly, especially when n is small. A comparison of the results with those of one-dimensional

asymptotic simultaneous confidence bands derived in Claeskens and Van Keilegom (2003) or Fan

and Liu (2013), shows that the accuracy in the two-dimensional case is much worse. Much to our

surprise, the asymptotic CC performs better in the case of τ = 0.2, 0.8 than in the case of τ = 0.5.

On the other hand, it is perhaps not so amazing to see that asymptotic CCs behave similarly under

both homogeneous and heterogeneous models. As a final remark about the asymptotic CC we

mention that it is highly sensitive with respect to σ0. Increasing values of σ0 yields larger CC, and

this may lead to greater coverage probability.

The lower part of Table 1 shows that the bootstrap CCs for nonparametric quantile regression

functions yield a remarkable improvement in comparison to the asymptotic CC. For the bootstrap

CC, the coverage probabilities are in general close to the nominal coverage of 95%. The boot-

strap CCs are usually wider, and getting narrower when n increases. Such phenomenon can also
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be found in the simulation study of Claeskens and Van Keilegom (2003). Bootstrap CCs are less

sensitive than asymptotic CCs with respect to the choice σ0, which is also considered as an advan-

tage. Finally, we note that the performance of bootstrap CCs does not depend on which variance

specification is used too.

The upper part of Table 2 shows the coverage probabiltiy of the CC for nonparametric expectile

regression functions. The results are similar to the case of quantile regression. The asymptotic CCs

do not give accurate coverage probabilities. For example in some cases like τ = 0.2 and σ0 = 0.2,

not a single simulation in the 2000 iterations yields a case where surface is completely covered by

the asymptotic CC.

The lower part of Table 2 shows that bootstrap CCs for expectile regression give more accurate

approximates to the nominal coverage than the asymptotic CCs. One can see in the parenthesis

that the volumes of the bootstrap CCs are significantly larger than those of the asymptotic CCs,

especially for small n.

Table 3 presents the proportion in the 2000 iterations which covers 95% of the 400 grid points,

using the bootstrap method proposed in Hall and Horowitz (2013)(abbreviated as HH) for nonpara-

metric mean regression at d = 2. HH derived an expansion for the bootstrap bias and established

a somewhat different way to construct confidence bands without the use of extreme value theory.

It is worth noting that their bands are uniform with respect to a fixed but unspecified portion of

(1− ξ) ·100% (smaller than 100%) of grid points, while in our approach the uniformity is achieved

on the whole set of grids.

The simulation model is (27) with the same homogeneous and heterogeneous variance specifi-

cations as before. We choose three levels ξ = 0.005, 0.05 and 0.1. It is suggested in HH that ξ = 0.1

is usually sufficient in univariate nonparametric mean regression d = 1. Note that ξ = 0.005 cor-

responds to the second smallest pointwise quantile β̂(x, 0.05) in the notation of HH, given that our

grid size is 400. This is close to the uniform CC in our sense. The simulation model associated

with the Table 3 is the same with that of the case τ = 0.5 in the bootstrap part of Table 1 and Table
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2, because in case of the normal distribution the median equals the mean and τ = 0.5 expectile is

exactly the mean. However, one should be aware that our coverage probabilities are more stringent

because we check the coverage at every point in the set of grids, rather than only 95% of the points

(we refer it as complete coverage). Hence, the complete coverage probability of HH will be lower

than the proportion of 95% coverage shown in Table 3. The proportion of 95% coverage should

therefore be viewed as an upper bound for the complete coverage.

We summarize our findings as follows. Firstly the proportion of 95% coverage in general

present similar patterns as shown in Table 1 and 2. The coverage improves when n and σ0 get

larger, and the volume of the band decreases as n increases and increases when σ0 increases. The

homogeneous and heterogeneous model yield similar performance. Comparing with the univariate

result in HH, it is found that the proportion of coverage tends to perform worse than that in HH

under the same sample size. This is due to the curse of dimensionality, the estimation of a bivariate

function is less accurate than that of an univariate function. As the result, a more conservative ξ

has to be applied. If we compare Table 3 to the bootstrap part of Table 1 with τ = 0.5, it can be

seen that our complete coverage probabilities are comparable to the proportion of 95% coverage at

the case ξ = 0.005, though in the case of σ0 = 0.2 our CC does not perform very well. However,

the volumes of our CC are much less than that of HH in the cases of small n and moderate and

large σ0. This suggests that our CC is more efficient. Finally, the proportion of 95% coverage at

ξ = 0.005 in Table 3 is similar to the complete coverage probability in bootstrap part of Table 2

with τ = 0.5, but when sample size is small, the volume of our CC is smaller.

5. Application: a treatment effect study

The classical application of the proposed method is testing the hypothetical functional form

of the regression function. Nevertheless, the proposed method can also be applied to test for a

quantile treatment effect (see Koenker; 2005) or to test for conditional stochastic dominance (CSD)
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as investigated in Delgado and Escanciano (2013). In this section we shall apply the new method

to test these hypotheses for data collected from a real government intervention.

The estimation of the quantile treatment effect (QTE) recovers the heterogeneous impact of

intervention on various points of the response distribution. To define QTE, given vector-valued

exogenous variables X ∈ X where X ⊂ Rd, suppose Y0 and Y1 are response variables associated

with the control group and treatment group, and let F0|X and F1|X be the conditional distribution

for Y0 and Y1, the QTE at level τ is defined by

∆τ(x)
def
= Q1|X(τ|x) − Q0|X(τ|x), x ∈ X, (28)

where Q0|X(y|x) and Q1|X(y|x) are the conditional quantile of Y0 given X and Y1 given X, respec-

tively. This definition corresponds to the idea of horizontal distance between the treatment and

control distribution functions appearing in Doksum (1974) and Lehmann (1975).

A related concept in measuring the efficiency of a treatment is the so called ”conditional

stochastic dominance”. Y1 conditionally stochastically dominates Y0 if

F1|X(y|x) ≤ F0|X(y|x) a.s. for all (y, x) ∈ (Y,X), (29)

whereY, X are domains of Y and X. For example, if Y0 and Y1 stand for the income of two groups

of people G0 and G1, (29) means that the distribution of Y1 lies on the right of that of Y0, which is

equivalent to saying that at a given 0 < τ < 1, the τ-quantile of Y1 is greater than that of Y0. Hence,

we could replace the testing problem (29) by

Q1|X(τ|x) ≥ Q0|X(τ|x) for all 0 < τ < 1 and x ∈ X. (30)

Comparing (30) and (28), one would find that (30) is just a uniform version of the test ∆τ(x) ≥ 0

over 0 < τ < 1.
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The method that we introduced in this paper is suitable for testing a hypothesis like ∆τ(x) = 0

where ∆τ(x) is defined in (28). One can construct CCs for Q1|X(τ|x) and Q0|X(τ|x) respectively, and

then check if there is overlap between the two confidence regions. One can also extend this idea to

test (30) by building CCs for several selected levels τ.

We use our method to test the effectiveness of the National Supported Work (NSW) demon-

stration program, which was a randomized, temporary employment program initiated in 1975 with

the goal to provide work experience for individuals who face economic and social problems prior

to entering the program. The data have been widely applied to examine techniques which estimate

the treatment effect in a nonexperimental setting. In a pioneer study, LaLonde (1986) compares

the treatment effect estimated from the experimental NSW data with that implied by nonexper-

imental techniques. Dehejia and Wahba (1999) analyse a subset of Lalonde’s data and propose

a new estimation procedure for nonexperimental treatment effect giving more accurate estimates

than Lalonde’s estimates. The paper that is most related to our study is Delgado and Escanciano

(2013). These authors propose a test for hypothesis (29) and apply it to Lalonde’s data, in which

they choose ”age” as the only conditional covariate and the response variable being the increment

of earnings from 1975 to 1978. They cannot reject the null hypothesis of nonnegative treatment

effect on the earnings growth.

The previous literature, however, has not addressed an important question. We shall depict this

question by two pictures. In Figure 1, it is obvious that Y1 stochastically dominates Y0 in both

pictures, but significant differences can be seen between the two scenarios. For the left one, the

0.1 quantile improves more dramatically than the 0.9 quantile, as the distance between A and A′ is

greater than that between B and B′. In usual words, the gain of the 90% lower bound of the earnings

growth is more than that of the 90% upper bound of the earnings growth after the treatment. ”90%

lower bound of the earnings growth” means the probability that the earnings growth is above the

bound is 90%. This suggests that the treatment induces greater reduction in downside risk but less

increase in the upside potential in the earnings growth. For the right picture the interpretation is
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just the opposite.

To see which type of stochastic dominance the NSW demonstration program belongs to, we ap-

ply the same data as Delgado and Escanciano (2013) for testing the hypothesis of positive quantile

treatment effect for several quantile levels τ. The data consist of 297 treatment group observa-

tions and 423 control group observations. The response variable Y0 (Y1) denotes the difference

in earnings of control (treatment) group between 1978 (year of postintervention) and 1975 (year

of preintervention). We first apply common statistical procedures to describe the distribution of

these two variables. Figure 2 shows the unconditional densities and distribution function. The

cross-validated bandwidth for f̂0(y) is 2.273 and 2.935 for f̂1(y). The left figure of Figure 2 shows

the unconditional densities of the income difference for treatment group and control group. The

density of the treatment group has heavier tails while the density of the control group is more con-

centrated around zero. The right figure shows that the two unconditional distribution functions are

very close on the left of the 50% percentile, and slight deviation appears when the two distribu-

tions are getting closer to 1. Table 4 shows that, though the differences are small, but the quantiles

of the unconditional cdf of treatment group are mildly greater than that of the control group for

each chosen τ. The two-sample Kolmogorov-Smirnov and Cramér-von Mises tests, however, yield

results shown in the Table 5 which cannot reject the null hypothesis that the empirical cdfs for the

two groups are the same with confidence levels 1% or 5%.

Next we apply our test on quantile regression to evaluate the treatment effect. In order to

compare with Delgado and Escanciano (2013), we first focus on the case of a one-dimensional

covariate. The first covariate X1i is the age. The second covariate X2i is the number of years of

schooling. The sample values of schooling years lie in the range of [3, 16] and age lies between

[17, 55]. In order to avoid boundary effect and sparsity of the samples, we look at the ranges

[7,13] for schooling years and [19,31] for age. We apply the bootstrap CC method for quantiles

τ = 0.1, 0.2, 0.3, 0.5, 0.7, 0.8 and 0.9. We apply the quartic kernel. The cross-validated bandwidths

are chosen in the same way as for conditional densities with the R package np. The resulting band-
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widths are (2.2691,2.5016) for the treatment group and (2.7204, 5.9408) for the control group. In

particular, for smoothing the data of the treatment group, for τ = 0.1 and 0.9, we enlarge the cross-

validated bandwidths by a constant of 1.7; for τ = 0.2, 0.3, 0.7, 0.8, the cross-validated bandwidths

are enlarged by constant factor 1.3. These inflated bandwidths are used to handle violent roughness

in extreme quantile levels. The bootstrap CCs are computed with 10,000 repetitions. The level of

the test is α = 5%.

The results of the two quantile regressions with one-dimensional covariate, and their CCs for

various quantile levels are presented in Figure 3 and 4. We observe that for all chosen quantile

levels the quantile estimates associated to the treatment group lie above that of the control group

when age is over certain levels, and particularly for τ = 10%, 50%, 80% and 90%, the quantile

estimates for treatment group exceeds the upper CCs for the quantile estimates of the control

group. On the other hand, at τ = 10%, the quantile estimates for the control group drop below the

CC for treatment group for age greater than 27. Hence, the results here show a tendency that both

the downside risk reduction and the upside potential enhancement of earnings growth are achieved,

as the older individuals benefit the most from the treatment. Note that we observe a heterogeneous

treatment effect in age and the weak dominance of the conditional quantiles of the treatment group

with respect to those of the control group, i.e., (30) holds for the chosen quantile levels, which are

in line with the findings of Delgado and Escanciano (2013).

We now turn to Figure 4, where the covariate is the years of schooling. The treatment effect

is not significant for conditional quantiles at levels τ = 10%, 20% and 30%. This suggests that

the treatment does little to reduce the downside risk of the earnings growth for individuals with

various degrees of education. Nonetheless, we constantly observe that the regression curves of the

treatment group rise above that of the control group after a certain level of the years of schooling

for quantile levels τ = 50%, 70%, 80% and 90%. Notice that for τ = 50% and 80% the regression

curves associated to the treatment group reach the upper boundary of the CC of the control group.

This suggests that the treatment effect tends to raise the upside potential of the earnings growth, in
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particular for those individuals who spent more years in the school. It is worth noting that we also

see a heterogeneous treatment effect in schooling years, although the heterogeneity in education is

less strong than the heterogeneity in age.

The previous regression analyses separately conditioning on covariates age and schooling years

only give a limited view on the performance of the program, we now proceed to the analysis

conditioning on the two covariates (X1i, X2i) jointly. The estimation settings are similar to the case

of univariate covariate. Figure 5 shows the quantile regression CCs. From a first glance of the

pictures, the τ-quantile CC of the treatment group and that of the control group overlap extensively

for all τ. We could not find sufficient evidence to reject the null hypothesis that the conditional

distribution of treatment group and control group are equivalent.

The second observation obtained from comparing subfigures in Figure 6, we find that the treat-

ment has larger impact in raising the upper bound of the earnings growth than improving the lower

bound. For lower quantile levels τ = 10%, 20% and 30% the solid surfaces uniformly lie inside

the CC of the control group, while for τ = 50%, 70%, 80% and 90%, we see several positive ex-

ceedances over the upper boundary of the CC of the control group. Hence, the program tends to

do better at raising the upper bound of the earnings growth but does worse at improving the lower

bound of the earnings growth. In other words, the program tends to increase the potential for high

earnings growth but does little in reducing the risk of negative earnings growth.

Our last conclusion comes from inspecting the shape of the surfaces: conditioning on dif-

ferent levels of years of schooling (age), the treatment effect is heterogeneous in age (years of

schooling). The most interesting cases occur when conditioning on high age and high years of

schooling. Indeed, when considering the cases of τ = 80% and 90%, when conditioning on the

years of schooling at 12 (corresponding to finishing the high school), the earnings increment of

the treatment group rises above the upper boundary of the CC of the control group. This suggests

that the individuals who are older and have more years of schooling tend to benefit more from the

treatment.
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Supplementary Materials

Section A contains the detailed proofs of Theorems 2.1, 2.3, 3.1 and Lemmas 2.6 and 3.2, as

well as intermediate results. Section B contains some results obtained by other authors, which we

use in our study. We incorporate them here for the sake of completeness.
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Song, S., Ritov, Y. and Härdle, W. (2012). Partial linear quantile regression and bootstrap confi-

dence bands, Journal of Multivariate Analysis 107: 244–262.

Yu, K. and Jones, M. C. (1998). Local linear quantile regression, Journal of the American Statisti-

cal Association 93(441): 228–237.

Appendices

A. Assumptions

(A1) K is of order s − 1 (see (A3)), has bounded support [−A, A]d for A > 0 a positive real scalar,

and is continuously differentiable up to order d with bounded derivatives, i.e. ∂αK ∈ L1(Rd)

exists and is continuous for all multi-indices α ∈ {0, 1}d

(A2) Let an be an increasing sequence, an → ∞ as n → ∞, and the marginal density fY be such
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that

(log n)h−3d
∫

|y|>an
fY(y)dy = O(1) (31)

and

(log n)h−d
∫

|y|>an
fY |X(y|x)dy = O(1), for all x ∈ D

as n→ ∞ hold.

(A3) The function θ0(x) is continuously differentiable and is in Hölder class with order s > d.

(A4) fX(x) is bounded, continuously differentiable and its gradient is uniformly bounded. More-

over, infx∈D fX(x) > 0.

(A5) The joint probability density function f (y,u) is bounded, positive and continuously differen-

tiable up to sth order (needed for Rosenblatt transform). The conditional density fY |X(y|x) ex-

ists and is boudned and continuouly differentiable with respect to x. Moreover, infx∈D fY |X
(
θ0(x)|x

)
>

0.

(A6) h satisfies
√
nhdhs

√
log n→ 0 (undersmoothing), and nh3d(log n)−2 → ∞.

(EA2) supx∈D
∣∣∣
∫
vb1 fε|X(v|x)dv

∣∣∣ < ∞, for some b1 > 0.

(B1) L is a Lipschitz, bounded, symmetric kernel. G is Lipschitz continuous cdf, and g is the

derivative ofG and is also a density, which is Lipschitz continuous, bounded, symmetric and

five times continuously differentiable kernel.

(B2) Fε|X(v|x) is in s′ + 1 order Hölder class with respect to v and continuous in x, s′ > max{2, d}.

fX(x) is in second order Hölder class with respect to x and v. E[ψ2(εi)|x] is second order

continuously differentiable with respect to x ∈ D.

(B3) nh0h̄d → ∞, h0, h̄ = O(n−ν), where ν > 0.
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(C1) There exist an increasing sequence cn, cn → ∞ as n→ ∞ such that

(log n)3(nh6d)−1
∫

|v|>cn/2
fε(v)dv = O(1), (32)

as n→ ∞.

(EC1) supx∈D
∣∣∣
∫
vb fε|X(v|x)dv

∣∣∣ < ∞, for some b > 0.

The assumptions (A1)-(A5) are assumptions frequently seen in the papers of confidence corridors,

such as Härdle (1989), Härdle and Song (2010) and Guo and Härdle (2012). (EA2) and (EC1) es-

sentially give the uniform bound on the 2nd order tail variation, which is crucial in the sequence of

approximations for expectile regression. (B1)-(B3) are similar to the assumptions listed in chapter

6.1 of Li and Racine (2007). (A6) characterizes the two conflicting conditions: the undersmooth-

ing of our estimator and the convergence of the strong approximation. To make the condition hold

for large d, sometimes we need large s, which is the smoothness of the true function. (C1) and

(EC1) are relevant to the theory of bootstrap, where we need bounds on the tail probability and 2nd

order variation.
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Homogeneous Heterogeneous
Method n τ = 0.5 τ = 0.2 τ = 0.8 τ = 0.5 τ = 0.2 τ = 0.8

σ0 = 0.2
100 .000(0.366) .109(0.720) .104(0.718) .000(0.403) .120(0.739) .122(0.744)
300 .000(0.304) .130(0.518) .133(0.519) .002(0.349) .136(0.535) .153(0.537)
500 .000(0.262) .117(0.437) .142(0.437) .008(0.296) .156(0.450) .138(0.450)

σ0 = 0.5
100 .070(0.890) .269(1.155) .281(1.155) .078(0.932) .300(1.193) .302(1.192)

Asympt. 300 .276(0.735) .369(0.837) .361(0.835) .325(0.782) .380(0.876) .394(0.877)
500 .364(0.636) .392(0.711) .412(0.712) .381(0.669) .418(0.743) .417(0.742)

σ0 = 0.7
100 .160(1.260) .381(1.522) .373(1.519) .155(1.295) .364(1.561) .373(1.566)
300 .438(1.026) .450(1.109) .448(1.110) .481(1.073) .457(1.155) .472(1.152)
500 .533(0.888) .470(0.950) .480(0.949) .564(0.924) .490(0.984) .502(0.986)

σ0 = 0.2
100 .325(0.676) .784(0.954) .783(0.954) .409(0.717) .779(0.983) .778(0.985)
300 .442(0.457) .896(0.609) .894(0.610) .580(0.504) .929(0.650) .922(0.649)
500 .743(0.411) .922(0.502) .921(0.502) .839(0.451) .950(0.535) .952(0.536)

σ0 = 0.5
100 .929(1.341) .804(1.591) .818(1.589) .938(1.387) .799(1.645) .773(1.640)

Bootst. 300 .950(0.920) .918(1.093) .923(1.091) .958(0.973) .919(1.155) .923(1.153)
500 .988(0.861) .968(0.943) .962(0.942) .990(0.902) .962(0.986) .969(0.987)

σ0 = 0.7
100 .976(1.811) .817(2.112) .808(2.116) .981(1.866) .826(2.178) .809(2.176)
300 .986(1.253) .919(1.478) .934(1.474) .983(1.308) .930(1.537) .920(1.535)
500 .996(1.181) .973(1.280) .968(1.278) .997(1.225) .969(1.325) .962(1.325)

Table 1: Nonparametric quantile model coverage probabilities. The nominal coverage is 95%. The
number in the parentheses is the volume of the confidence corridor. The asymptotic method cor-
responds to the asymptotic quantile regression CC and bootstrap method corresponds to quantile
regression bootstrap CC.
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Homogeneous Heterogeneous
Method n τ = 0.5 τ = 0.2 τ = 0.8 τ = 0.5 τ = 0.2 τ = 0.8

σ0 = 0.2
100 .000(0.428) .000(0.333) .000(0.333) .000(0.463) .000(0.362) .000(0.361)
300 .049(0.341) .000(0.273) .000(0.273) .079(0.389) .001(0.316) .002(0.316)
500 .168(0.297) .000(0.243) .000(0.243) .238(0.336) .003(0.278) .002(0.278)

σ0 = 0.5
100 .007(0.953) .000(0.776) .000(0.781) .007(0.997) .000(0.818) .000(0.818)

Asympt. 300 .341(0.814) .019(0.708) .017(0.709) .355(0.862) .017(0.755) .018(0.754)
500 .647(0.721) .067(0.645) .065(0.647) .654(0.759) .061(0.684) .068(0.684)

σ0 = 0.7
100 .012(1.324) .000(1.107) .000(1.107) .010(1.367) .000(1.145) .000(1.145)
300 .445(1.134) .021(1.013) .013(1.016) .445(1.182) .017(1.062) .016(1.060)
500 .730(1.006) .062(0.928) .078(0.929) .728(1.045) .068(0.966) .066(0.968)

σ0 = 0.2
100 .686(2.191) .781(2.608) .787(2.546) .706(2.513) .810(2.986) .801(2.943)
300 .762(0.584) .860(0.716) .876(0.722) .788(0.654) .877(0.807) .887(0.805)
500 .771(0.430) .870(0.533) .875(0.531) .825(0.516) .907(0.609) .904(0.615)

σ0 = 0.5
100 .886(5.666) .906(6.425) .915(6.722) .899(5.882) .927(6.667) .913(6.571)

Bootst. 300 .956(1.508) .958(1.847) .967(1.913) .965(1.512) .962(1.866) .969(1.877)
500 .968(1.063) .972(1.322) .972(1.332) .972(1.115) .971(1.397) .974(1.391)

σ0 = 0.7
100 .913(7.629) .922(8.846) .935(8.643) .929(8.039) .935(9.057) .932(9.152)
300 .969(2.095) .969(2.589) .971(2.612) .974(2.061) .972(2.566) .979(2.604)
500 .978(1.525) .976(1.881) .967(1.937) .981(1.654) .978(1.979) .974(2.089)

Table 2: Nonparametric expectile model coverage probability. The nominal coverage is 95%. The
number in the parentheses is the volume of the confidence corridor. The asymptotic method corre-
sponds to the asymptotic expectile regression CC and bootstrap method corresponds to expectile
regression bootstrap CC.
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Homogeneous Heterogeneous
n ξ = 0.005 ξ = 0.05 ξ = 0.1 ξ = 0.005 ξ = 0.05 ξ = 0.1

σ0 = 0.2
100 .693(3.027) .529(1.740) .319(1.040) .680(3.452) .546(2.051) .332(1.224)
300 .891(0.580) .748(0.365) .642(0.323) .907(0.667) .798(0.414) .698(0.364)
500 .886(0.335) .770(0.265) .678(0.244) .896(0.379) .789(0.298) .699(0.274)

σ0 = 0.5
100 .720(7.264) .611(4.489) .394(2.686) .729(7.594) .616(4.676) .414(2.829)
300 .945(1.423) .849(0.859) .755(0.746) .940(1.511) .854(0.912) .760(0.791)
500 .944(0.795) .846(0.600) .750(0.548) .937(0.833) .839(0.632) .751(0.577)

σ0 = 0.7
100 .730(10.183) .634(6.411) .430(3.853) .752(10.657) .658(6.577) .441(3.923)
300 .936(1.995) .854(1.197) .751(1.037) .951(2.091) .875(1.256) .772(1.086)
500 .933(1.098) .854(0.831) .774(0.758) .938(1.145) .853(0.865) .770(0.789)

Table 3: Proportion in 2000 iteration that the coverage of ≥ 95% grid points for nonparametric
mean model, using the bootstrap method of Hall and Horowitz (2013). The nominal coverage is
95%. The number in the parentheses is the volume of the confidence corridor.

τ(%) 10 20 30 50 70 80 90
Treatment -4.38 -1.55 0.00 1.40 5.48 8.50 11.15
Control -4.91 -1.73 -0.17 0.74 4.44 7.16 10.56

Table 4: The unconditional sample quantiles of treatment and control groups.

Type of test Statistics p-value
Kolmogorov-Smirnov 0.0686 0.3835
Cramér-von Mises 0.2236 0.7739

Table 5: The two sample empirical cdf tests results for treatment and control groups.
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Type I: Risk reduction CSD
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Figure 1: The illustrations for the two possible types of stochastic dominance. In the left figure, the
0.1 quantile improves (downside risk reduction) more dramatically than the 0.9 quantile (upside
potential increase), as the distance between A and A′ is greater than that between B and B′. For the
right picture the interpretation is just the opposite.
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Figure 2: Unconditional empirical density function (left) and distribution function (right) of the
difference of earnings from 1975 to 1978. The dashed line is associated with the control group and
the solid line is associated with the treatment group.
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Figure 3: Nonparametric quantile regression estimates and CCs for the changes in earnings be-
tween 1975-1978 as a function of age. The solid dark lines correspond to the conditional quantile
of the treatment group and the solid light lines sandwich its CC, and the dashed dark lines cor-
respond to the conditional quantiles of the control group and the solid light lines sandwich its
CC.
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Figure 4: Nonparametric quantile regression estimates and CCs for the changes in earnings be-
tween 1975-1978 as a function of years of schooling. The solid dark lines correspond to the condi-
tional quantile of the treatment group and the solid light lines sandwich its CC, and the dashed dark
lines correspond to the conditional quantiles of the control group and the solid light lines sandwich
its CC.
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Figure 5: The CCs for the treatment group and the control group. The net surface corresponds to
the control group quantile CC and the solid surface corresponds to the treatment group quantile
CC.
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Figure 6: The conditional quantiles (solid surfaces) for the treatment group and the CCs (net
surfaces) for the control group.
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SUMMARY
We propose a local adaptive multiplicative error model (MEM) accommodating time-varying parameters. MEM
parameters are adaptively estimated based on a sequential testing procedure. A data-driven optimal length of local
windows is selected, yielding adaptive forecasts at each point in time. Analysing 1-minute cumulative trading
volumes of five large NASDAQ stocks in 2008, we show that local windows of approximately 3 to 4 hours
are reasonable to capture parameter variations while balancing modelling bias and estimation (in)efficiency. In
forecasting, the proposed adaptive approach significantly outperforms a MEM where local estimation windows
are fixed on an ad hoc basis. Copyright © 2014 John Wiley & Sons, Ltd.

1. INTRODUCTION

Recent research in econometrics and statistics shows that modelling and forecasting of high-frequency
financial data is a challenging task. Researchers strive to understand the dynamics of processes when
all single events are recorded while accounting for external shocks as well as structural shifts on
financial markets. The fact that high-frequency dynamics are not stable over time but are subject to
regime shifts is hard to capture by standard time series models. This is particularly true whenever it
is unclear where the time-varying nature of the data actually comes from and how many underlying
regimes there might be.

This paper addresses the phenomenon of time-varying dynamics in high-frequency data, such as
(cumulative) trading volumes, trade durations, market depth or bid–ask spreads. The aim is to adapt
and to implement a local parametric framework for multiplicative error processes and to illustrate
its usefulness when it comes to out-of-sample forecasting under possibly non-stable market condi-
tions. We propose a flexible statistical approach allowing adaptive selection of a data window over
which a local constant-parameter model is estimated and forecasts are computed. The procedure
requires (re-)estimating models on windows of evolving lengths and yields an optimal local estima-
tion window. As a result, we provide insights into the time-varying nature of parameters and of local
window lengths.

The so-called multiplicative error model (MEM), introduced by Engle (2002), serves as a workhorse
for the modelling of positive-valued, serially dependent high-frequency data. It is successfully applied
to financial duration data, where it was originally introduced by Engle and Russell (1998) in the con-
text of an autoregressive conditional duration (ACD) model. Likewise, it is applied to model intra-day
trading volumes, see, among others, Manganelli (2005); Brownlees et al. (2011); Hautsch et al. (2014).
MEM parameters are typically estimated over long estimation windows in order to increase estimation
efficiency. However, empirical evidence makes parameter constancy in high-frequency models over
long time intervals questionable. Possible structural breaks in MEM parameters have been addressed,
for instance, by Zhang et al. (2001), who identify regime shifts in trade durations and suggest a thresh-

* Correspondence to: Andrija Mihoci, CASE—Center for Applied Statistics and Economics, Humboldt-Universität zu Berlin,
Spandauer Str. 1, 10178 Berlin, Germany. E-mail: mihociax@cms.hu-berlin.de
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old ACD (TACD) specification in the spirit of threshold ARMA models, see, for example, Tong (1990).
To capture smooth transitions of parameters between different states, Meitz and Teräsvirta (2006) pro-
pose a smooth transition ACD (STACD) model. Whereas in STACD models parameter transitions are
driven by observable variables, Hujer et al. (2002) allow for an underlying (hidden) Markov process
governing the underlying state of the process.

Regime-switching MEM approaches have the advantage of allowing for changing parameters on
possibly high frequencies (in the extreme case from observation to observation) but require imposition
of a priori structures on the form of the transition, the number of underlying regimes and (in the case
of transition models) on the type of the transition variable. Moreover, beyond short-term fluctuations,
parameters might also reveal transitions on lower frequencies governed by the general (unobservable)
state of the market. Such regime changes might be captured by adaptively estimating a MEM based
on a window of varying length and thus providing updated parameter estimates at each point in time.
The main challenge of the latter approach, however, is the selection of the estimation window. From a
theoretical perspective, the length of the window should, on the one hand, be maximal to increase the
precision of parameter estimates and, on the other, sufficiently short to capture structural changes. This
observation is also reflected in the well-known result that aggregations over structural breaks (caused
by too long estimation windows) can induce spurious persistence and long range dependence.

This paper suggests a data-driven length of (local) estimation windows. The key idea is to implement
a sequential testing procedure to search for the longest time interval with given right end for which
constancy of model parameters cannot be rejected. This mechanism is carried out by re-estimating
(local) MEMs based on data windows of increasing lengths and sequentially testing for a change in
parameter estimates. By controlling the risk of false alarm, the algorithm selects the longest possible
window for which parameter constancy cannot be rejected at a given significance level. Based on this
data interval, forecasts for the next period are computed. By repeating these steps in every period,
variations in parameters are thus automatically captured.

The proposed framework builds on the local parametric approach (LPA) originally proposed by
Spokoiny (1998). The presented methodology has been gradually introduced into the time series liter-
ature; see, for example, Mercurio and Spokoiny (2004) for an application to daily exchange rates and
Čížek et al. (2009) for an adaptation of the approach to generalized autoregressive conditional het-
eroskedasticity (GARCH) models. In realized volatility analysis, LPA has been applied by Chen et al.
(2010) to daily stock index returns.

The contributions of this paper are to introduce local adaptive calibration techniques into the class
of multiplicative error models, to provide valuable empirical insights into the (non-)homogeneity of
high-frequency processes and to show the usefulness of the approach in the context of out-of-sample
forecasting. Though we specifically focus on 1-minute cumulative trading volumes of five highly
liquid stocks traded at NASDAQ, our findings may be carried over to other high-frequency series, as
the stochastic properties of high-frequency volumes are quite similar to those of, e.g., trade counts,
squared midquote returns, market depth or bid–ask spreads.

We aim at answering the following research questions: (i) How strong is the variation of MEM
parameters over time? (ii) What are typical interval lengths of parameter homogeneity implied by
the adaptive approach? (iii) How good are out-of-sample short-term forecasts compared to adaptive
procedures where the length of the estimation windows is fixed on an ad hoc basis?

Implementing the proposed framework requires re-estimating and re-evaluating the model based
on rolling windows of different lengths which are moved forward from minute to minute. This pro-
ceeding yields extensive insights into the time-varying nature of high-frequency trading processes.
Based on NASDAQ trading volumes, we show that parameter estimates and estimation quality clearly
change over time and provide researchers valuable rule of thumbs for the choice of local intervals.
In particular, we show that, on average, precise adaptive estimates require local estimation win-
dows of approximately 3 to 4 hours. Moreover, it turns out that the proposed adaptive method yields

Copyright © 2014 John Wiley & Sons, Ltd. J. Appl. Econ. 30: 529–550 (2015)
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significantly better short-term forecasts than competing approaches using fixed-length rolling windows
of comparable sizes. Hence it is not only important to use local windows but also to adaptively adjust
their length in accordance with prevailing (market) conditions. This is particularly true in periods of
market distress where forecasts utilizing too much historical information perform clearly worse.

The remainder of the paper is structured as follows. After the data description in Section 2, the
multiplicative error model and the local parametric approach are introduced in Sections 3 and 4,
respectively. Empirical results on forecasts of trading volumes are provided in Section 5. Section 6
concludes.

2. DATA

We use transaction data of five large companies traded at NASDAQ—Apple Inc. (AAPL), Cisco Sys-
tems, Inc. (CSCO), Intel Corporation (INTC), Microsoft Corporation (MSFT) and Oracle Corporation
(ORCL)—which account for approximately one third of the market capitalization within the technol-
ogy sector. Our variable of interest is the 1-minute cumulative trading volume covering the period
from 2 January to 31 December 2008. To remove effects due to market opening, the first 30 minutes of
each trading session are discarded. Hence, at each trading day, we analyse data from 10:00 to 16:00.

Descriptive statistics (not shown in the paper) indicate right-skewed distributions, whereas the
Ljung–Box test statistics show a strong serial dependence as the null hypothesis of no autocorrelation
(among the first 10 lags) is clearly rejected. Autocorrelation functions indicate that high-frequency
volumes are strongly and persistently clustered over time.

Denote the 1-minute cumulative trading volume at time point i by Myi . Assuming a multiplicative
impact of intra-day periodicity effects, we compute seasonally adjusted volumes by

yi D Myis!1i (1)

with si representing the intra-day periodicity component at time point i . Seasonality components are
typically assumed to be constant over time. However, to capture slowly moving (‘long-term’) com-
ponents in the spirit of Engle and Rangel (2008), we estimate the periodicity effects on the basis of
30-day rolling windows. Alternatively, seasonal effects could be captured directly within the local
adaptive framework presented below. As our focus is on (pure stochastic) short-term variations in
parameters rather than on deterministic periodicity effects, we decide to remove the former before-
hand. This leaves us with non-homogeneity in the processes, which is not straightforwardly taken into
account and allows us evaluating the potential of a local parametric approach even more convincingly.
The intra-day component si is specified via a flexible Fourier series approximation as proposed by
Gallant (1981):

si D ı ! N{ C
MX
mD1
¹ıc;m cos .N{ ! 2!m/C ıs;m sin .N{ ! 2!m/º (2)

Here, ı, ıc;m and ıs;m are coefficients to be estimated, and N{ 2 .0; 1" denotes a normalized intra-day
time trend defined as the number of minutes from opening until i divided by the length of the trading
day, i.e. N{ D i=360. The orderM is selected according to the Bayes information criterion (BIC) within
each 30-day rolling window. To avoid forward-looking biases, the periodicity component is estimated
using previous data only. The sample of seasonally standardized cumulative 1-minute trading volumes
thus covers the period from 14 February to 31 December 2008. The estimated daily seasonality factors
change mildly in their level, reflecting slight long-term movements.

Figure 1 displays the intra-day periodicity components associated with the lowest and largest
monthly volumes, respectively, observed through the sample period. We observe the well-known

Copyright © 2014 John Wiley & Sons, Ltd. J. Appl. Econ. 30: 529–550 (2015)
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Figure 1. Estimated intra-day periodicity components for cumulative one-minute trading volumes (in units of
100,000 and plotted against the time of the day) of selected companies at NASDAQ on 2 September (lower, lowest

30-day trading volume) and 30 October 2008 (upper, highest 30-day volume)

(asymmetric) U-shaped intra-day pattern with high volumes at the opening and before market clo-
sure. Particularly before closure, it is evident that traders intend to close their positions, creating high
market activity.

3. LOCAL MULTIPLICATIVE ERROR MODELS

The multiplicative error model (MEM), as discussed by Engle (2002), has become a workhorse
for analysing and forecasting positive valued financial time series, such as trading volumes, trade
durations, bid–ask spreads, price volatilities, market depth or trading costs. The idea of a multiplica-
tive error structure originates from the structure of the autoregressive conditional heteroskedasticity
(ARCH) model introduced by Engle (1982). In high-frequency financial data analysis, a MEM was
first proposed by Engle and Russell (1998) to model the dynamic behaviour of the time between trades
and has been referred to as autoregressive conditional duration (ACD) model. The ACD model is thus
a special type of MEM applied to financial durations. During the remainder of the paper, we use both
labels as synonyms. For a comprehensive literature overview, see Hautsch (2012).

3.1. Model Structure

The principle of a MEM is to model a non-negative valued process y D ¹yiºniD1, e.g., the trading
volume time series in our context, in terms of the product of its conditional mean process #i and a
positive valued error term "i with unit mean:

yi D #i"i ; E Œ"i j Fi!1" D 1 (3)

conditional on the information set Fi up to observation i . The conditional mean process of order .p; q/
is given by an ARMA-type specification:

#i D #i .$/ D ! C
pX
jD1

˛jyi!j C
qX
jD1

ˇj#i!j (4)

with parameters !, ˛ D
!
˛1; : : : ; ˛p

"> and ˇ D
!
ˇ1; : : : ; ˇq

">. The model structure resembles
the conditional variance equation of a GARCH.p; q/ model, as soon as yi denotes the squared
(de-meaned) log return at observation i .

Natural choices for the distribution of "i are the (standard) exponential distribution and the Weibull
distribution. The former distribution allows for quasi maximum likelihood estimation and consistent
estimates of EACD parameters even in the case of distributional misspecification. The latter is a simple
but powerful generalization being sufficiently flexible in most applications. Define I D Œi0 # n; i0"
as a (right-end) fixed interval of .nC 1/ observations at observation i0. Then, local ACD models are
given as follows:

Copyright © 2014 John Wiley & Sons, Ltd. J. Appl. Econ. 30: 529–550 (2015)
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(i) Exponential-ACD model (EACD): "i $ exp.1/, $E D
!
!; ˛>; ˇ>

">
, with (quasi) log-likelihood

function over I D Œi0 # n; i0" given i0:

`I .yI $E / D
nX

iDmax.p;q/C1

#
# log#i #

yi

#i

$
I.i 2 I / (5)

(ii) Weibull-ACD model (WACD): "i $ G.s; 1/, $W D
!
!; ˛>; ˇ>; s

">
, with log-likelihood function

over I D Œi0 # n; i0" given i0:

`I .yI $W / D
nX

iDmax.p;q/C1

%
log

s

yi
C s log

%.1C 1=s/yi
#i

#
²
%.1C 1=s/yi

#i

³s(
I.i 2 I / (6)

Correspondingly, the (quasi-)maximum likelihood estimates ((Q)MLEs) of $E and $W over the data
interval I are given by

e$I D arg max
!2‚

`I .yI $/ (7)

3.2. Local Parameter Dynamics

The idea behind the local parametric approach (LPA) is to select at each time point an optimal length
of data window over which a constant parametric model cannot be rejected by a test to be described
below. The resulting interval of homogeneity is used to locally estimate the model and to compute
out-of-sample predictions. Since the approach is implemented on a rolling window basis, it naturally
captures time-varying parameters and allows identifying breakpoints where the length of the locally
optimal estimation window has to be adjusted.

The implementation of the LPA requires estimating the model at each point in time using estima-
tion windows with sequentially varying lengths. We consider data windows with lengths of 1 hour, 2
hours, 3 hours, 1 trading day (6 hours), 2 trading days (12 hours) and 1 trading week (30 hours). As
non-trading periods (i.e. overnight periods, weekends or holidays) are removed, the estimation win-
dows contain data potentially covering several days. Applying (local) EACD.1; 1/ and WACD.1; 1/
models based on five stocks, we estimate in total 4,644,000 parameter vectors. It turns out that esti-
mated MEM parameters substantially change over time, with the variations depending on the lengths
of underlying local (rolling) windows. As an illustration, Figure 2 shows EACD parameters employ-
ing 1-day (6 trading hours) and 1-week (30 trading hours) estimation windows for Intel Corporation
(INTC). Note that the first 30 days are used for the estimation of intra-day periodicity effects, whereas
an additional 5 days are required to obtain the first ‘weekly’ estimate (i.e. an estimate using 1 trading
week of data).

We observe that estimated parameters
)
e!; ę and ě

*
and persistence levels

)
ęC ě

*
clearly vary

over time. As expected, estimates are less volatile if longer estimation windows (such as 1 week of
data) are used. Conversely, estimates based on local windows of 6 hours are less stable. This might be
induced either by high (true) local variations which are smoothed away if the data window becomes
larger, or by an obvious loss of estimation efficiency as fewer data points are employed. These dif-
ferences in estimates’ variations are also reflected in the empirical time series distributions of MEM
parameters. Table I provides quartiles of the estimated persistence

)
ęC ě

*
(pooled across all five

stocks) in dependence of the length of the underlying data window. We associate the first quartile (25%
quantile) with a ‘low’ persistence level, whereas the second quartile (50% quantile) and third quartile
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Figure 2. Time series of estimated ‘weekly’ (left panel, rolling windows covering 1800 observations) and ‘daily’
(right panel, rolling windows covering 360 observations) EACD.1; 1/ parameters and functions thereof based on
seasonally adjusted 1-minute trading volumes for Intel Corporation (INTC) at each minute from 22 February to

31 December 2008

(75% quantile) are associated with ‘moderate’ and ‘high’ persistence levels, respectively. It is shown
that the estimated persistence increases with the length of the estimation window. Again, this result
might reflect that the ‘true’ persistence of the process can only be reliably estimated over sufficiently
long sampling windows. Alternatively, it might indicate that the revealed persistence is just a spurious
effect caused by aggregations over underlying structural changes.

Summarizing these first pieces of empirical evidence on local variations of MEM parameters, we
can conclude: (i) MEM parameters, their variability and their distribution properties change over time
and are obviously dependent on the length of the underlying estimation window; (ii) longer local
estimation windows increase the estimation precision but also enlarge the risk of misspecifications
(due to averaging over structural breaks) and thus increase the modelling bias. Standard time series
approaches would strive to obtain precise estimates by selecting large estimation windows, inflating,
however, at the same time the bias. Conversely, the LPA aims at finding a balance between parameter
variability and modelling bias. By controlling estimation risk, the procedure accounts for the possible

Copyright © 2014 John Wiley & Sons, Ltd. J. Appl. Econ. 30: 529–550 (2015)
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Table I. Quartiles of estimated persistence levels
)
Q̨ C Q̌

*
for all five

stocks at each minute from 22 February to 31 December 2008 (215 trad-
ing days) and six lengths of local estimation windows based on EACD
and WACD specifications. We label the first quartile as ‘low’, the second

quartile as ‘moderate’ and the third quartile as ‘high’

Estimation window EACD(1,1) WACD(1,1)

Low Moderate High Low Moderate High

1 week 0.85 0.89 0.93 0.82 0.88 0.92
2 days 0.77 0.86 0.92 0.74 0.84 0.91
1 day 0.68 0.82 0.90 0.63 0.79 0.89
3 hours 0.54 0.75 0.88 0.50 0.72 0.87
2 hours 0.45 0.70 0.86 0.42 0.67 0.85
1 hour 0.33 0.58 0.80 0.31 0.57 0.80

Table II. Quartiles of 774,000 estimated ratios Q̌=
)
Q̨ C Q̌

*
(based on estimation

windows covering 1800 observations) for all five stocks at each minute from 22
February to 31 December 2008 (215 trading days) and both model specifications
(EACD and WACD) conditional on the persistence level (low, moderate or high).
We label the first quartile as ‘low’, the second quartile as ‘mid’ and the third

quartile as ‘high’

Model Low persistence Moderate persistence High persistence

Low Mid High Low Mid High Low Mid High

EACD, Q̨ 0.28 0.22 0.18 0.30 0.23 0.19 0.31 0.24 0.20
EACD, Q̌ 0.56 0.62 0.67 0.59 0.66 0.71 0.62 0.68 0.73
WACD, Q̨ 0.28 0.21 0.17 0.30 0.23 0.18 0.32 0.24 0.19
WACD, Q̌ 0.54 0.60 0.65 0.58 0.65 0.70 0.60 0.68 0.74

trade-off between (in)efficiency and the coverage of local variations by finding the longest possible
interval over which parameter homogeneity cannot be rejected.

An important ingredient of the sequential testing procedure in the LPA is a set of critical values.
The critical values have to be calculated for reasonable parameter constellations. Therefore, we aim
at parameters which are most likely to be estimated from the data. As a first criterion we distinguish
between different levels of persistence, ęC ě. This is performed by classifying the estimates into
three persistence groups (low, medium or high persistence) according to the first row of Table I. Then,
within each persistence group, we distinguish between different magnitudes of ę relative to ě. This
naturally results into groups according to the quartiles of the ratio ě=

)
ęC ě

*
, yielding again three

categories (low, mid or high ratio). As a result, we obtain nine groups of parameter constellations, see
Table II, which are used below to simulate critical values for the sequential testing procedure.

3.3. Estimation Quality

Addressing the inherent trade-off between estimation (in)efficiency and local flexibility requires con-
trolling the estimation quality. In the proposed LPA framework, the so-called pseudo true parameter
changes over time (see, for example, Spokoiny, 2009). The key idea is to approximate this process by
a model with parameters which are constant over an interval with optimized length. Denote the pseudo
true (time-varying) parameter vector by $" associated with a fixed interval I , where, for convenience,
we omit the time subscript and only keep an asterisk ."/ through the text. The quality of the (Q)MLE
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e$I of the pseudo true $" is assessed by the Kullback–Leibler (KL) divergence. In particular, for a fixed
interval I , we consider the (positive) difference `I

)e$I
*
# `I .$"/ with log-likelihood expressions for

the EACD and WACD models given by equations (5) and (6), respectively. Denote the corresponding
loss function by LI

)e$I ; $"
*
D
ˇ̌
ˇ`I

)e$I
*
# `I .$"/

ˇ̌
ˇ.

By introducing the r th power of the loss function, i.e. for any r > 0, there is a constant Rr .$
"/

satisfying

E!!
ˇ̌
ˇLI .e$I ; $"/

ˇ̌
ˇr % Rr .$

"/ (8)

and denoting the (parametric) risk bound depending on r > 0 and $" (see, for example, Spokoiny
(2009); Čížek et al. (2009)). The risk bound (8) allows the construction of non-asymptotic confidence
sets and testing the validity of the (local) parametric model. For the construction of critical values, we
exploit equation (8) to show that the random set SI .´˛/ D

°
$ W LI

)e$I ; $"
*
% ´˛

±
is an ˛-confidence

set in the sense that P!! .$" … SI .´˛// % ˛.
The parameter r drives the tightness of the risk bound. Accordingly, different values of r lead to

different risk bounds, critical values and thus adaptive estimates. Higher values of r lead to, ceteris
paribus, a selection of longer intervals of homogeneity and more precise estimates, however, increase
the modelling bias. It might be chosen in a data-driven way, e.g. by minimizing forecasting errors.
Here, we follow Čížek et al. (2009) and consider r D 0:5 and r D 1, a ‘modest risk case’ and a
‘conservative risk case’, respectively.

4. LOCAL PARAMETRIC MODELLING

The local parametric approach requires a time series to be locally, i.e. over short periods of time,
approximated by a parametric model. Though local approximations are obviously more accurate than
global ones, this proceeding raises the question of the optimal size of the local interval.

4.1. Statistical Framework

Including more observations in an estimation window reduces the variability, but obviously enlarges
the bias. The algorithm presented below strikes a balance between bias and parameter variability and
yields an interval of homogeneity. Our goal is to well approximate the ‘true’ model over an interval
Ik by the parametric model with constant parameter $ . The quality of approximation is measured by
the KL divergence. Consider the KL divergence K.v; v0/ between probability distributions induced
by v and v0. Then, define &Ik .$/ D

P
i2Ik K ¹#i ;#i .$/º, where #i .$/ denotes the model described

by equation (4) and #i is the true (unknown) data-generating process. The entity &Ik .$/ measures
the distance between the underlying process and the assumed parametric model and thus allows us to
control the modelling bias.

Let, for some $ 2 ‚,

E Œ&Ik .$/" % & (9)

where & & 0 denotes the small modelling bias (SMB) for an interval Ik . The SMB condition implies
that, for some parameter $ , the random quantity &Ik .$/ is bounded by a small constant with a high
probability. Therefore, on the interval Ik , the ‘true’ model can be well approximated by the parametric
model with parameter $ while keeping the modelling bias ‘small’ according to equation (9). The best
parametric fit (4) on Ik is obtained by minimizing E Œ&Ik .$/" over $ 2 ‚. Here, the KL concept is
used for theoretical underpinning, but we do not estimate it in practice.
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Čížek et al. (2009) show that under the SMB condition (9), estimation loss scaled by the parametric
risk bound Rr .$

"/ is stochastically bounded. In particular, in the case of (Q)ML estimation with loss
function LI

)e$I ; $"
*

, the SMB condition implies

E
h
log

°
1C

ˇ̌
ˇLI

)e$I ; $"
*ˇ̌
ˇr =Rr .$

"/
±i
% 1C& (10)

The proposed framework captures dependent data given a linear specification of the conditional
mean process. The methodology, however, can be generalized to nonlinear structures, assuming that,
locally, a nonlinear model approximates the ‘true’ (unknown) conditional mean process. Then the KL
divergence considers the probability measures induced by the ‘true’ model and that of the nonlinear
data structure, yielding, however, different (and more complex) risk bounds.

Consider .K C 1/ nested intervals (with fixed right-end point i0) Ik D Œi0 # nk ; i0" of length nk ,
I0 ' I1 ' : : : ' IK . Then, the ‘oracle’ (i.e. theoretically optimal) choice Ik! of the interval sequence
is defined as the largest interval for which the SMB condition holds:

E
+
&Ik! .$/

,
% & (11)

This ‘oracle’ choice provides the ’best’ local fit but not necessarily the best out-of-sample forecast.
Optimizing the procedure in terms of out-of-sample forecasting performance, however, is beyond the
scope of this paper. This task may appear infeasible in the case of high-frequency data modelling due to
the increased computational burden, unless very restrictive assumptions are imposed. It is therefore our
major research question to what extent an ‘optimal’ local fit is beneficial for out-of-sample forecasts.

So far, there has been limited attention devoted to the selection of optimal window lengths in the
econometric forecasting literature. As stressed by Čížek et al. (2009), time-varying coefficients are
typically assumed as smooth functions (of time) or, alternatively, as piecewise constant functions. For
instance, Pesaran and Timmermann (2007) consider a linear regression framework subject to struc-
tural breaks under the assumption of the presence of sudden jumps in the parameter values. Clark
and McCracken (2009) extend this work and allow for conditional heteroskedasticity and serial cor-
relation in the regression error terms. The LPA approach, however, includes both scenarios as special
cases: parameters can vary over time as the interval changes with i and, at the same time, can reveal
discontinuities and jumps as a function of time. In both cases, the observed data are described by an
unobserved process which, at each point i , can be described by a historical interval in which the pro-
cess (approximately) follows a parametric specification. This local assumption enables us to apply
well-developed parametric methods to estimate the underlying parameter.

In practice, &Ik is unknown and therefore the oracle choice k" cannot be implemented. Conse-
quently, the aim is to mimic the oracle choice using a sequential testing procedure for the different
intervals k D 1; : : : ; K. The resulting interval Ibk is then used to construct the local estimator. Čížek
et al. (2009) and Spokoiny (2009) show that the estimation errors induced by the adaptive estimation
during steps k % k" are not larger than those induced by (Q)ML estimation directly using k". Hence
the sequential estimation and testing procedure does not incur a larger estimation error compared to
the situation where k" is known; see equation (10).

In applications, the lengths of the underlying intervals evolve on a geometric grid with initial length
n0 and a multiplier c > 1, nk D

+
n0c

k
,
. In the present study, we select n0 D 60 observations (i.e.

minutes) and consider two schemes with c D 1:50 and c D 1:25 andK D 8 andK D 13, respectively:

(i) n0 D 60 min, n1 D 90 min, : : :, n8 D 1 week (9 estimation windows, K D 8); and
(ii) n0 D 60 min, n1 D 75 min, : : :, n13 D 1 week (14 estimation windows, K D 13).

The latter scheme bears a slightly finer granulation than the first one.
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Figure 3. Graphical illustration of sequential testing for parameter homogeneity in interval Ik with length nk D
jIk j ending at fixed time point i0. Suppose we have not rejected homogeneity in interval Ik"1, we search within
the interval Jk D Ik n Ik"1 for a possible change point ' . In the top figure, the dotted region marks interval Ak;!
and the blue region marks interval Bk;! splitting the interval IkC1 into two parts depending upon the position of

the unknown change point '

4.2. Local Change Point (LCP) Detection Test

Selecting the optimal length of the interval builds on a sequential testing procedure where at each
interval Ik one tests the null hypothesis on parameter homogeneity against the alternative of a change
point at unknown location ' within Ik .

The test statistic is given by

Tk!1;k D sup
"2Jk

°
`Ak;!

)e$Ak;!
*
C `Bk;!

)e$Bk;!
*
# `IkC1

)e$IkC1
*±

(12)

where Jk and Bk denote intervals Jk D Ik n Ik!1, Ak;" D Œi0 # nkC1; '" and Bk;" D .'; i0" utilizing
only a part of the observations within IkC1. As the location of the change point is unknown, the test
statistic considers the supremum of the corresponding likelihood ratio statistics over all ' 2 Ik .

Figure 3 illustrates the underlying idea graphically: assume that, for a given time point i0, parameter
homogeneity in interval Ik!1 has been established. Then, homogeneity in interval Ik is tested by
considering any possible breakpoint ' in the interval Jk D Ik n Ik!1. This is performed by computing
the log-likelihood values over the intervals Ak;" D Œi0 # nkC1; '" dotted area and Bk;" D .'; i0" solid
are in the top figure for given ' . Computing the supremum of these two likelihood values for any ' 2
Jk and relating it to the log-likelihood associated with IkC1 ranging from i0 to i0#nkC1 results in the
test statistic (12). For instance, in our setting based on .KC1/ D 14 intervals, we test for a breakpoint,
e.g. in interval I1 D 75min, by searching only within the interval J1 D I1nI0, containing observations
from yi0!75 up to yi0!60. Then, for any observation within this interval, we sum equations (5) and (6)
for the EACD and WACD model, respectively, over A1;" and B1;" and subtract the likelihood over I2.
Then, the test statistic (12) corresponds to the largest obtained likelihood ratio.

Comparing the test statistic (12) for given i0 at every step k with the corresponding (simulated)
critical value, we search for the longest interval of homogeneity Ibk for which the null is not rejected.

Then, the adaptive estimateb$ is the (Q)MLE at the interval of homogeneity, i.e.b$ De$bk . If the null is

already rejected at the first step, thenb$ equals the (Q)MLE at the shortest interval I0. Conversely, if
no breakpoint can be detected within IK , thenb$ equals the (Q)MLE of the longest window IK .

Copyright © 2014 John Wiley & Sons, Ltd. J. Appl. Econ. 30: 529–550 (2015)
DOI: 10.1002/jae



LOCAL ADAPTIVE MULTIPLICATIVE ERROR MODELS 539

4.3. Critical Values

Under the null hypothesis of parameter homogeneity, the correct choice in the pure parametric situa-
tion is the largest considered interval IK . In the case of selecting k < K and thus choosingb$ D e$Ik
instead ofe$IK , the loss is LIK

)e$IK ;b$
*
D `IK

)e$IK
*
# `IK .b$/ and is stochastically bounded:

E!!
ˇ̌
ˇLIK

)e$IK ;b$
*ˇ̌
ˇr % (Rr .$

"/ (13)

Critical values must ensure that the loss associated with ‘false alarm’ (i.e. selecting k < K) is
at most a (-fraction of the parametric risk bound of the ‘oracle’ estimate e$IK . For r ! 0, ( can
be interpreted as the false alarm probability. We select the minimal critical values ensuring a small
probability of such a false alarm.

Accordingly, an estimateb$Ik , k D 1; : : : ; K, should satisfy

E!!
ˇ̌
ˇLIk

)e$Ik ;b$Ik
*ˇ̌
ˇr % (kRr .$

"/ (14)

with (k D (k=K % (. Condition (14) is fulfilled with the choice

´k D a0r log
!
(!1

"
C a1r log .nK=nk!1/C a2 log .nk/ ; k D 1; : : : ; K (15)

with constants a0, a1 and a2. Since the number of selected intervals ¹IkºKkD1 and their corresponding
lengths ¹nkºKkD1 are fixed, Čížek et al. (2009) show that the critical values are of the form ´k D
C CD log .nk/ for k D 1; : : : ; K with some constants C and D. A relevant choice of these constants
has to be selected by Monte Carlo simulation on the basis of the assumed data-generating process
(4) and the assumption of parameter homogeneity over the interval sequence ¹IkºKkD1. The procedure
is run for fixed values C and D using simulated data, allowing to evaluate its performance and to
monitor if the condition (14) is fulfilled. Then, for a fixed value of C , one finds the minimal value
D.C/ < 0 ensuring a decreasing pattern (with k) of the critical values. Therefore, a false alarm at an
early stage is more crucial since it is associated with a comparably variable estimate. After fixing the
false alarm probability at the first step, one determines the constant C (see, for example, Čížek et al.,
(2009). The authors note that, alternatively, the constants C and D could be found by minimizing the
related prediction errors.

To simulate the data-generating process, we use the parameter constellations underlying the nine
groups described in Section 3.2. and shown in Table II for nine different parameters $". The Weibull
parameter s is set to its median valuees D 1:57 in all cases. Moreover, we consider two risk levels
(r D 0:5 and r D 1), two interval granulation schemes (K D 8 and K D 13) and two significance
levels (( D 0:25 and ( D 0:50) underlying the test.

The resulting critical values satisfying equation (14) for the nine possibilities of ‘true’ parameter
constellations of the EACD.1; 1/ model for K D 13, r D 0:5 (‘moderate risk case’) and ( D 0:25
are displayed in Figure 4. We observe that the critical values are virtually invariable with respect to
$" across the nine scenarios. The largest difference between all cases appears for interval lengths up
to 90 minutes. Beyond that, the critical values are robust across the range of parameters also for the
conservative risk case (r D 1), other significance levels and interval selection schemes.

In the sequential testing procedure, we employ parameter-specific critical values. In particular, at
each minute i0, we estimate a local MEM over a given interval length and choose the critical values
(for given levels of ( and r) simulated for those parameter constellations (according to Table II) which
are closest to our local estimates. For instance, suppose that at some point i0 we have ę D 0:32 and
ě D 0:53. Then, we select the curve associated with the low persistence

)
ęC ě

*
and the low ratio
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Figure 4. Simulated critical values of an EACD.1; 1/ model for the ‘moderate risk case’ (r D 0:5), ( D 0:25,
K D 13 and chosen parameter constellations according to Table II. The low (solid), middle (dashed) and upper

(dotted) curves are associated with the corresponding ratio levels Q̌=. Q̨ C Q̌/

Table III. Summary of the local change point (LCP) detection test and adaptive estimation at fixed observation
i0. Here ' denotes the unknown change point and nk represents the length of the interval Ik

LCP: step 1
# Select intervals: I2, I1, J1 D I1 n I0, A1;! D Œi0 ! n2; "# and B1;! D ."; i0#
# Compute the test statistic (12) at step 1: T0;1 D sup

!2J1

°
`A1;!

)e!A1;!
*
C `B1;!

)e!B1;!
*
! `I2

)e!I2
*±

LCP: step k
# Select intervals: IkC1, Ik , Jk D Ik n Ik"1, Ak;! D Œi0 ! nkC1; "# and Bk;! D ."; i0#
# Compute the test statistic (12) at step k: Tk"1;k Tk;k"1 D sup

!2Jk

°
`Ak;!

)e!Ak;!
*
C `Bk;!

)e!Bk;!
*
! `IkC1

)e!IkC1
*±

Testing procedure
# Select the set of critical values ¹zkºKkD1 according to the ‘persistence’ level)ęCě* and ‘smoothness’ level ě= )ęC ě* of the ‘weekly’ estimatee!K and the desired tuning parameter constellation
# Compare Tk"1;k with the simulated critical value zk at step k
# Decision: reject the null of parameter homogeneity if Tk"1;k > zk

Adaptive estimation
# Interval of homogeneity Ibk : the null has been first rejected at stepbkC 1
# Adaptive estimate:b! D e!bk (i.e. (Q)MLE at the interval of homogeneity)

ě=
)
ęC ě

*
. The key steps of the LCP detection test and the adaptive estimation are for convenience

summarized in Table III.
For illustration, the resulting adaptive choice of intervals at each minute on 22 February 2002 is

shown by Figure 5. Adopting the EACD specification (for ( D 0:25 and K D 13) in the modest
risk case (r D 0:5, solid curve), one would select the length of the adaptive estimation interval lying
between 1.5 and 3.5 hours over the course of the selected day. Likewise, in the conservative risk case
(r D 1, dashed curve), the approach would select longer time windows with smaller variability and
thus larger modelling bias.

The time series of the chosen length of the intervals of homogeneity for Intel Corporation is shown
in Figure 6. The length of intervals ranges between 1 and 4 hours in the modest risk case (r D 0:5) and
between 2.5 and 5 hours in the conservative risk case (r D 1). The results indicate a larger variability
over shorter interval lengths in the modest risk case.

4.4. Empirical Findings

We apply the LPA to seasonally adjusted 1-minute aggregated trading volumes for all five stocks at
each minute from 22 February to 31 December 2008 (215 trading days; 77,400 trading minutes). We
use the EACD and WACD models as the two (local) specifications, two risk levels (modest, r D 0:5;
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Figure 5. Estimated length of intervals of homogeneity n Ok (in hours) for seasonally adjusted 1-minute cumulative
trading volumes of selected companies in the case of a modest (r D 0:5, solid line) and conservative (r D 1,
dashed line) modelling risk level. We use the interval scheme with K D 13 and ( D 0:25. Underlying model:

EACD.1; 1/. NASDAQ trading on 22 February 2008
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Figure 6. Estimated length of intervals of homogeneity n Ok (in hours) for seasonally adjusted 1-minute cumulative
trading volumes for Intel Corporation (INTC) in case of a modest (r D 0:5, upper panel) and conservative
(r D 1, lower panel) modelling risk level. We use the interval scheme with K D 13 and ( D 0:25. Underlying
models: EACD.1; 1/ (left) and WACD.1; 1/ (right). NASDAQ trading from 22 February to 22 December 2008

(210 trading days)

and conservative, r D 1) and two significance levels (( D 0:25 and ( D 0:50). Furthermore, interval
length schemes with (i) K D 8 and (ii) K D 13 are employed.

Figure 7 depicts the time series distributions of selected oracle interval lengths. First, as expected,
the chosen intervals are shorter in the modest risk case (r D 0:5) than in the conservative case (r D 1).
Practically, if a trader aims at obtaining more precise volume estimates, it is advisable to select longer
estimation periods, such as 4–5 hours. By doing so, the trader increases the modelling bias, but can
still control it according to equation (8). Hence this risk level allows for more controlled flexibility
in modelling the data. Conversely, setting r D 1 implies a smaller modelling bias and thus lower
estimation precision. Consequently, it yields smaller local intervals ranging between 2 and 3 hours in
most cases.

Secondly, our results provide guidance on how (a priori) to choose the length of a local window
in practice. Interestingly, the procedure never selects the longest possible interval according to our
interval scheme (1 week of data), but chooses a maximum length of 6 hours. This finding suggests
that even a week of data is clearly too long to capture parameter inhomogeneity in high-frequency
variables. As a rough rule of thumb, a horizon of up to 1 trading day seems to be reasonable. This
result is remarkably robust across the individual stocks, suggesting that the stochastic properties of
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Figure 7. Distribution of estimated interval length n Ok (in hours) for seasonally adjusted trading volumes of
selected companies in the case of modest (r D 0:5, dashed) and conservative modelling risk (r D 1, solid), using
an EACD (upper panel) and a WACD model (lower panel) from 22 February to 31 December 2008 (215 trading

days). We select 13 estimation windows based on significance level ( D 0:25

Table IV. Average daily number of changes of the adaptively selected interval of homogeneity for five stocks
at NASDAQ from 22 February to 22 December 2008 (210 trading days) across different tuning parameter

constellations

EACD WACD

AAPL CSCO INTC MSFT ORCL AAPL CSCO INTC MSFT ORCL

r D 0:5, $ D 0:25 17.8 27.2 27.2 26.7 29.2 39.1 36.4 35.8 37.1 34.5
r D 0:5, $ D 0:50 18.1 26.7 27.2 26.6 29.3 39.1 36.4 36.2 37.2 34.7
r D 1:0, $ D 0:25 8.4 9.6 10.3 11.0 9.8 17.5 18.1 17.6 17.1 17.1
r D 1:0, $ D 0:50 8.7 9.7 10.4 10.9 9.7 18.3 17.8 18.0 16.9 17.0

high-frequency trading volumes are quite similar, at least across (heavily traded) blue chip stocks.
Nevertheless, as also illustrated in Figure 5, our findings show that the selected interval lengths clearly
vary across time. Hence a priori fixing the length of a rolling window can be still problematic and
suboptimal—even over the course of a day.

Thirdly, the optimal length of local windows does obviously also depend on the complexity of the
underlying (local) model. In fact, we observe that local EACD specifications seem to better approxi-
mate the data over longer estimation windows than in the case of WACD specifications. This is true
for nearly all stocks. Furthermore, from the average daily number of changes of the ‘optimal’ window,
as reported in Table IV, one observes that the WACD results in roughly twice as many changes as the
EACD model. Hence more complex (local) modelling specifications obviously yield more changes of
the ‘optimal’ window. Interestingly, this (distributional) effect is more pronounced in the conservative
risk approach (r D 1), where one expects around 10 (EACD) or 20 (WACD) changes per day. In the
modest risk case (r D 0:5) we observe more changes with a moderate difference between the underly-
ing models, i.e. between 30 (EACD) and 40 (WACD) changes per day. All stocks reveal quite similar
patterns across the scenarios.

Finally, in Figure 8, we show time series averages of selected interval lengths in dependence of the
time of the day. Even after removing the intra-day seasonality component, we observe slightly shorter
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Figure 8. Average estimated interval length n Ok (in hours) over the course of a trading day for seasonally adjusted
trading volumes of selected companies in the case of modest (r D 0:5, upper panel) and conservative modelling
risk (r D 1, lower panel), using an EACD model from 22 February to 31 December 2008 (215 trading days). We

select K D 13 windows and set the significance level to ( D 0:25

intervals after opening and before closure. This is obviously induced by the fact that the local esti-
mation window during the morning still includes significant information from the previous day. This
effect is strongest at the opening, where estimates are naturally based on previous-day information
solely and becomes weaker as time moves on and the proportion of current-day information is increas-
ing. Consequently, we observe the longest intervals around mid-day, where most information in the
local window stems from the current day. Hence the LPA automatically accounts for the effects aris-
ing from concatenated time series omitting non-trading periods. During the afternoon, interval lengths
further shrink as trading becomes more active (and obviously less time homogeneous) before closure.

4.5. Drivers of the ‘Optimal’ Window Length

To identify potential (observable) determinants influencing the stability of parameter estimates, we
analyse the impact of key market variables on the selected length of the interval of homogeneity. In
particular, we study to what extent the locally selected window length is predictable based on variables
potentially causing inhomogeneity in trading processes, namely market volatility, the occurrence of
outliers and of news announcements.

Analysing the impact of market volatility on the average daily selected ‘optimal’ window length, we
distinguish between three regimes (low, moderate and high) of the daily volatility index (VIX). The
low (high) is defined in terms of VIX realizations lower (higher) than the corresponding first (third)
quartile. We report the correlation between the average daily length of the local estimation window
and the daily VIX series in the different regimes in Table V.

The strongest dependence is observed in the high-volatility regime. Here, abrupt increases of market
volatility significantly change the length of the selected intervals. Focusing on significant coefficients
only, the EACD model reveals positive correlations between the volatility and length of intervals. In
contrast, the WACD specification mostly induces a negative relationship. The results are quite robust
across all five stocks and surprisingly stable for different risk (power) levels. Hence, in summary, we
can conclude that market volatility has some impact on parameter homogeneity in trading volume
models but the direction of this dependence is not clearly identifiable and obviously depends on the
flexibility of the underlying local approximation.

Moreover, we analyse the effect of the occurrence of an outlier on the window length selection.
The latter is defined as a realization of cumulative trading volumes exceeding the 99% percentile. We
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Table V. Correlation coefficients between the average daily length of the interval of homogeneity and the daily
VIX for five stocks at NASDAQ from 22 February to 22 December 2008 (210 trading days) across different tuning
parameter constellations and three volatility regimes (low, moderate and high). The low (high) regime considers
positive changes of the VIX that are lower (higher) than the corresponding first (third) quartile. We set ( D 0:25

EACD WACD

AAPL CSCO INTC MSFT ORCL AAPL CSCO INTC MSFT ORCL

r D 0:5
Low 0.10 !0.02 0.03 0.01 !0.02 !0.03 !0.07 0.10 0.01 !0.11
Moderate !0.02 0.03 !0.03 !0.03 0.03 !0.03 !0.01 !0.09 !0.02 !0.02
High 0.26* 0.31* 0.23* 0.25* 0.30* 0.19* !0.02 !0.07 !0.17* !0.12

r D 1
Low 0.19* !0.07 !0.03 0.01 !0.12 0.04 0.00 0.08 0.01 !0.11
Moderate !0.02 0.11 0.03 0.01 0.04 !0.08 0.05 !0.01 !0.02 !0.05
High 0.22* 0.26* 0.26* 0.19* 0.31* 0.19* !0.11 0.09 !0.20* !0.22*

Note: *5% significance.

Table VI. Percentage change of the average length of the interval of
homogeneity after a large outlier has been observed for five stocks at
NASDAQ from 22 February to 22 December 2008 (210 trading days)

across different tuning parameter constellations. We set ( D 0:25

AAPL CSCO INTC MSFT ORCL

EACD, r D 0:5 !1.55 !3.06* !2.78* !2.45* !2.09
EACD, r D 1:0 !0.37 !1.12 !1.42* !1.04 !0.94
WACD, r D 0:5 !4.98* !4.59* !3.04* !4.54* !3.62*
WACD, r D 1:0 !1.88* !1.60 !1.96* !2.09* !1.92*

Note: *5% significance.

compute the average length of intervals of homogeneity at the time point of an outlier’s appearance
and 5 minutes thereafter.

As shown in Table VI, the selected interval of homogeneity becomes smaller after observing a large
outlier. On average, the estimation window becomes on average shorter by 1% and 5% across all
stocks as well as across the different modelling frameworks. In most cases, the effect is statistically
significant at the 5% level. Interestingly, the changes are more pronounced based on a WACD spec-
ification and based on a modest risk level (r D 0:5). These results confirm our finding that a more
complex modelling approach or less conservative risk level yields a higher variability in ‘optimal’
window lengths.

Finally, we analyse to what extent daily news arrivals cause structural instability and thus changes
of local window lengths. For this purpose we utilize pre-processed company-relevant news data from
a news analytics tool of Reuters: the Reuters NewsScope Sentiment Engine. Here, firm-specific news
is processed based on an automated linguistic analysis of news stories and is classified according to
news direction and relevance; for details, see, for example, Groß-Klußmann and Hautsch (2011). As
reported in Table VII, the number of ‘relevant’ company-specific news per day has only a minor impact
on the lengths of local intervals of parameter homogeneity. In fact, the corresponding correlations
are not significantly different from zero. Only for one stock (Microsoft) we find significant (negative)
relationship in the modest risk case .r D 0:5/. Here, the length of the interval of homogeneity varies
stronger if news arrive.
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Table VII. Correlation coefficients between the average daily length of the interval of homogeneity and
the daily number of relevant company-specific news for five stocks at NASDAQ from 22 February to 22
December 2008 (210 trading days). We consider the modest (r D 0:5) and the conservative risk case

r D 1 and set ( D 0:25

EACD WACD

AAPL CSCO INTC MSFT ORCL AAPL CSCO INTC MSFT ORCL

r D 0:5 0.01 0.00 0.01 !0.12** 0.03 !0.03 0.01 !0.10 !0.13* !0.06
r D 1:0 0.02 0.06 0.03 !0.03 0.00 !0.05 0.08 0.02 !0.01 !0.06

Note: *10% significance; **5% significance.

5. FORECASTING TRADING VOLUMES

Besides providing empirical evidence on the time (in)homogeneity of high-frequency data, our aim
is to analyse the potential of the LPA when it comes to out-of-sample forecasts. The most important
question is whether the proposed adaptive approach yields better predictions than a (rolling window)
approach where the length of the estimation window is fixed on an a priori basis. To set up the fore-
casting framework as realistic as possible, at each trading minute from 22 February to 22 December
2008, we predict the trading volume over all horizons h D 1; 2; : : : ; 60 minutes during the next hour.
The predictions are computed using multi-step-ahead forecasts using the currently prevailing MEM
parameters and initialized based on the data from the current local window.

The local window is selected according to the LPA approach using r 2 ¹0:5; 1º and ( 2 ¹0:25; 0:5º.
Denoting the corresponding h-step prediction by byiCh, the resulting prediction error is b"iCh D
MyiCh #byiCh, with MyiCh denoting the observed trading volume. As a competing approach, we con-
sider predictions based on a fixed estimation window covering 1 hour (i.e. 60 observations), 2 hours
(i.e. 120 observations), 1 day (i.e. 360 observations) and, alternatively, 1 week (i.e. 1800 observations)
yielding predictionseyiCh and prediction errorse"iCh D MyiCh#eyiCh. To account for the multiplicative
impact of intra-day periodicities according to equation (1), we multiply the corresponding forecasts
by the estimated seasonality component associated with the previous 30 days.

To test for the significance of forecasting superiority, we apply the Diebold and Mariano (1995)
test. Define the loss differential dh between the squared prediction errors stemming from both meth-
ods given horizon h and n observations as dh D ¹diChºniD1, with diCh Db"2iCh #e"2iCh. Then, testing
whether one forecasting model yields qualitatively lower prediction errors is performed based on
the statistic

TST;h D
´

nX
iD1

I.diCh > 0/ # 0:5n
µ
=
p
0:25n (16)

which is approximately N.0; 1/ distributed. Our sample covers n D 75; 600 trading minutes (cor-
responding to 210 trading days). To test for quantitative forecasting superiority, we test the null
hypothesis H0 W E Œdh" D 0 using the test statistic

TDM;h D Ndh=
q
2!bf dh.0/=n L! N.0; 1/ (17)

Here, Ndh denotes the average loss differential Ndh D n!1
Pn
iD1 diCh and bf dh.0/ is a consistent

estimate of the spectral density of the loss differential at frequency zero. As shown by Diebold and
Mariano (1995), the latter can be computed by
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bf dh.0/ D .2!/!1
n!1X

mD!.n!1/
I
)ˇ̌
ˇ m

h # 1
ˇ̌
ˇ % 1

*
b)dh.m/ (18)

b)dh.m/ D n!1
nX

iDjmjC1

!
diCh # Ndh

" !
diCh!jmj # Ndh

"
(19)

Figures 9 and 10 display the Diebold–Mariano test statistics TDM;h against the forecasting horizon
h. The underlying LPA is based on the EACD model with significance level ( D 0:25. Negative
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Figure 9. Test statistic TDM;h across all 60 forecasting horizons for five large companies traded at NASDAQ from
22 February to 22 December 2008 (210 trading days). The dotted curve depicts the statistic based on a test of the
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statistics indicate that the LPA provides smaller forecasting errors. We observe that, in all cases, the
fixed-window based forecast is worse than the LPA. The fixed-window approach performs particularly
poorly if it utilizes windows covering 1 week or even 1 day of data. These windows seem to be
clearly too long to cover local variations in parameters and thus yield estimates which are too strongly
smoothed. Our results show that these misspecifications of (local) dynamics result in qualitatively
significantly worse predictions. Conversely, shorter (fixed) windows provide clearly better forecasts.
Nevertheless, even in this case, the LPA significantly outperforms the fixed-window setting, reflecting
the importance of time-varying window lengths.

Analysing the prediction performance in dependence of the forecasting horizon, we observe that
LPA-based predictions are particularly powerful over short horizons. The highest LPA overperfor-
mance is achieved at horizons of approximately 3–4 minutes. This is not surprising as the local
adaptive estimates and thus corresponding forecasts are most appropriate in periods close to the local
interval. Conversely, over longer prediction horizons, the advantage of local modelling vanishes as
the occurrence of further breakpoints is more likely. We show that the best forecasting accuracy is
achieved over horizons of up to 20 minutes. Finally, an important finding is that the results are quite
robust with respect to the choice of the modelling risk level r . This makes the method quite general
and not critically dependent on the selection of tuning parameters.

Table VIII summarizes the test statistics TST;h. The table reports the correspondingly largest (i.e.
least negative) statistics across 30 forecasting horizons. These results clearly confirm the findings
reported in Figure 9: the LPA produces significantly smaller (squared) forecasting errors in almost
all cases. Moreover, Table VIII confirms the findings above that the forecasting accuracy is widely
unaffected by the selection of LPA tuning parameters.

Table VIII. Largest (in absolute terms) test statistic TST;h across 30 forecasting horizons as well as EACD and
WACD specifications for five companies traded at NASDAQ from 22 February to 22 December 2008 (210 trading
days). We compare LPA-implied forecasts with those based on rolling windows using a priori fixed lengths of 1
week, 1 day, 2 hours and 1 hour, respectively. Negative values indicate lower squared prediction errors resulting
from the LPA. According to the Diebold–Mariano test (17), the average loss differential is significantly negative

in almost all cases (significance level 5%)

EACD WACD

AAPL CSCO INTC MSFT ORCL AAPL CSCO INTC MSFT ORCL

1 week
r D 0:5, $ D 0:25 !38.9 !28.6 !24.1 !33.8 !31.4 !22.6 !25.7 !20.2 !26.7 !26.6
r D 0:5, $ D 0:50 !38.7 !28.7 !24.2 !33.8 !31.4 !22.7 !25.5 !20.3 !26.7 !26.6
r D 1:0, $ D 0:25 !40.5 !31.4 !23.3 !39.1 !32.8 !27.9 !30.8 !21.5 !31.3 !29.8
r D 1:0, $ D 0:50 !40.4 !31.3 !23.3 !39.0 !32.9 !28.1 !30.8 !21.5 !31.5 !29.7

1 day
r D 0:5, $ D 0:25 !10.8 !6.0 !13.1 !5.7 !15.1 !6.4 !3.5 !6.1 !4.9 !12.6
r D 0:5, $ D 0:50 !10.6 !6.0 !12.8 !5.5 !15.0 !6.3 !3.2 !6.2 !4.8 !12.7
r D 1:0, $ D 0:25 !6.9 !8.6 !8.7 !4.4 !12.9 !4.1 !5.1 !6.5 !4.2 !11.5
r D 1:0, $ D 0:50 !7.1 !8.6 !8.8 !4.4 !13.0 !3.9 !5.2 !6.5 !4.1 !11.4

2 hours
r D 0:5, $ D 0:25 !11.3 !3.4 !14.1 !11.8 !24.0 !5.6 !5.9 !11.5 !11.2 !20.3
r D 0:5, $ D 0:50 !11.2 !3.5 !14.1 !11.7 !23.9 !5.6 !5.8 !11.4 !11.2 !20.4
r D 1:0, $ D 0:25 !5.9 2.0 !13.4 !5.0 !22.4 !5.0 !1.1 !12.5 !7.6 !20.6
r D 1:0, $ D 0:50 !5.9 2.1 !13.5 !5.0 !22.4 !5.1 !1.1 !12.5 !7.6 !20.5

1 hour
r D 0:5, $ D 0:25 !9.3 !6.6 !10.5 !2.0 !27.2 !4.9 !8.5 !10.4 !0.5 !24.7
r D 0:5, $ D 0:50 !9.2 !6.6 !10.4 !2.0 !27.1 !4.8 !8.6 !10.4 !0.4 !24.7
r D 1:0, $ D 0:25 !3.3 !0.9 !8.7 4.5 !27.7 !3.4 !3.0 !9.4 4.7 !25.1
r D 1:0, $ D 0:50 !3.3 !0.7 !8.7 4.5 !27.7 !3.4 !2.9 !9.7 4.9 !25.0
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By depicting the ratio of root mean squared errors
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e"2iCh

In Figure 11, we provide deeper insights into the forecasting performance of the two competing
approaches over time and over the sample. In most cases, the ratio is clearly below one and thus also
indicates a better forecasting performance of the LPA method. This is particularly true during the last
months and thus the height of the financial crisis in 2008. During this period, market uncertainty has
been high and trading activity has been subject to various information shocks. Our results show that
the flexibility offered by the LPA is particularly beneficial in such periods, whereas fixed-window
approaches tend to perform poorly.

Figure 12 shows the ratio of root mean squared errors in dependence of the length of the forecasting
horizon (in minutes). It turns out that the LPA’s overperformance is strongest over horizons between
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Figure 11. Ratio between the RMSPEs of the LPA and of a fixed-window approach (covering 6 trading hours)
over the sample from 22 February to 22 December 2008 (210 trading days). Upper panel: results for the underlying

(local) EACD model; lower panel: results for the underlying (local) WACD model
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2 and 4 minutes. Over these intervals, the effects of superior (local) estimates of MEM parameters
fully pay out. Over longer horizons, differences in prediction performance naturally shrink as forecasts
converge to unconditional averages.

6. CONCLUSIONS

We propose a local adaptive multiplicative error model for financial high-frequency variables. The
approach addresses the inherent inhomogeneity of parameters over time and is based on local window
estimates of MEM parameters. Adapting the local parametric approach (LPA) by Spokoiny (1998)
and Mercurio and Spokoiny (2004), the length of local estimation intervals is chosen by a sequential
testing procedure. Balancing modelling bias and estimation (in)efficiency, the approach provides the
longest interval of parameter homogeneity which is used for modelling and forecasting.

Applying the proposed approach to the high-frequency series of 1-minute cumulative trading vol-
umes based on several NASDAQ blue chip stocks, we can conclude as follows. First, MEM parameters
reveal substantial variations over time. Second, the optimal length of local intervals varies between
1 and 6 hours. Nevertheless, as a rule of thumb, local intervals of around 4 hours are suggested.
Third, the local adaptive approach provides significantly better out-of-sample forecasts than competing
approaches using a priori fixed lengths of estimation intervals. This result demonstrates the impor-
tance of an adaptive approach. Finally, we show that the findings are robust with respect to the choice
of LPA steering parameters controlling modelling risk.

As the stochastic properties of cumulative trading volumes are similar to those of other (persistent)
high-frequency series, our findings are likely to be carried over to, for instance, the time between
trades, trade counts, volatilities, bid–ask spreads and market depth. Adaptive techniques thus constitute
a powerful device to improve high-frequency forecasts and to gain deeper insights into local variations
of model parameters.
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a b s t r a c t

A State Price Density (SPD) is the density function of a risk neutral equivalent martingale measure for
option pricing, and is indispensable for exotic option pricing and portfolio risk management. Many ap-
proaches have been proposed in the last two decades to calibrate a SPD using financial options from the
bond and equity markets. Among these, non and semiparametric methods were preferred because they
can avoidmodelmis-specification of the underlying. However, thesemethods usually require a large data
set to achieve desired convergence properties. One faces the problem in estimation by e.g., kernel tech-
niques that there are not enough observations locally available. For this situation, we employ a Bayesian
quadrature method because it allows us to incorporate prior assumptions on the model parameters and
hence avoids problems with data sparsity. It is able to compute the SPD of both call and put options si-
multaneously, and is particularly robust when the market faces the data sparsity issue. As illustration, we
calibrate the SPD for weather derivatives, a classical example of incomplete markets with financial con-
tracts payoffs linked to non-tradable assets, namely, weather indices. Finally, we study related weather
derivatives data and the dynamics of the implied SPDs.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

A State Price Density (SPD) is the density function of a Risk
Neutral (RN) equivalent martingale measure for option pricing,
and it is a measure more tied to uncertainty than to volatility and
it is indispensable for (exotic) option pricing and portfolio risk
management. It does not only reflect a risk-adaptive behavior of
investors based on historical assessment of the futuresmarket, but
it also gives insights about the preferences and risk aversion of a
representative agent, see for example Aït-Sahalia and Lo (2000),
Jackwerth and Rubinstein (1996) and Rosenberg and Engle (2002).

Consider a European call option withmaturity date T and strike
price K . Under the non-arbitrage principle, its price at t can be
given as:

C(K) = e�r⌧
Z

max(x � K , 0)f (x)dx (1)

where r is the risk-free interest rate, ⌧ time to maturity and f (x)
is the defined SPD. The advantage of extracting the SPD directly
frommarket prices is that volatility and other moments can easily

⇤ Corresponding author.
E-mail address: venteng@gmail.com (H.-W. Teng).

be calculated using this SPD independent of any particular pricing
model.

There are many approaches to calibrate the SPD using financial
options from the bond and equity markets. Assuming a Black and
Scholes (B&S) model implies that the RN measure is a lognormal
distribution which may result in severe bias of the SPD estimation
since certain volatility properties are not correctly reflected. As
observed by Breeden and Litzenberger (1978), the SPD of any risky
asset can be derived as the second derivative with respect to the
strike price of an estimate of the pricing function C . A number
of econometric techniques have been developed to address this
calibration issue. Themost notable examples include the stochastic
volatility models and the GARCHmodels. Derman and Kani (1994),
Dupire (1994) and Rubinstein (1994) implied SPDs using binomial
trees, hence avoiding too strong stochasticity assumption like
e.g., Geometric Brownianmotion. Others like Abadir and Rockinger
(2003) use hypergeometric distributions. Although useful in a
variety of contexts, these (parametric) models are still susceptible
to model specification.

Various non-parametric models have been employed to over-
come this problem. Aït-Sahalia and Lo (1998) introduce a semi-
parametric alternative where the volatility of the B&S formulation
ismodeled non-parametrically. From a statistical point of view, es-
timating the SPD becomes estimating the second derivative of a

http://dx.doi.org/10.1016/j.insmatheco.2015.05.001
0167-6687/© 2015 Elsevier B.V. All rights reserved.
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regression function, but the SPD needs to be a proper density func-
tion (non negative and integrates to one). This dictates that the
price is decreasing and convex in terms of the strike price. How
to impose these constraints presents the main difficulties of direct
applications of nonparametric regression. Aït-Sahalia and Duarte
(2003), Yatchew and Härdle (2006) and Härdle and Hlávka (2009)
stress the importance of enforcing such shape constraints. Fan and
Mancini (2009) use a non-parametric technique to estimate the
state price distribution but not the density because the former is
easier to estimate. Giacomini et al. (2008) use mixtures of scales
and shifted t-distributions, while Yuan (2009) uses a mixture of
lognormals. Curve fitting method have been presented in Rubin-
stein (1994) and Jackwerth and Rubinstein (1996). Liechty and
Teng (2009) introduce the Bayesian quadraturemodel, where both
the locations and weights of the support points for approximating
the SPD are random variables. Most nonparametric methods re-
quire a rich body of data to achieve desired convergence proper-
ties. The main goal of this paper is to infer the SPD from markets,
where trading activities are less frequently occurred.

For this purpose, we employ a Bayesian quadrature method
as a calibration method for the SPD from option prices, because
it allows us to incorporate prior assumptions on the model
parameters and hence avoids problems with data sparsity. This
approach takes a prior distribution which can be parametric
(e.g. lognormal) or a uniform density. The posterior distribution
of the SPD is calibrated to market data. This method is a special
case of a mixture model, where the component densities are point
measures.

The novelty of the Bayesian quadrature approach relies on the
fact that it uses unequal weights and is in a Bayesian framework.
Approximating the state price density with weighted sum of �-
functions produces good model fitting by using a parsimonious
model. Bayesian inference gives a straightforward probabilistic
framework and provides reasonable credible regions for the
implied state price density, which can be further used for various
purposes such as hedging and pricing.

We show that the proposed method has some advantages over
other nonparametric methods: (1) it considers the locations and
weights of the support points in the finite representation of the SPD
as randomvariables, (2) it is parsimonious and allows for statistical
inference, it enables us to construct credible regions for the current
value of the SPD (3) it is computationally efficient in the sense that
a Markov chain Monte Carlo algorithm with Gibbs sampler can be
adopted, so that no additional tuning procedures are required for
exploring the posterior distribution and (4) it is robust even if the
market faces data sparsity issues. (5) These classes of Risk Neutral
probabilities do not stem from market-risk-price assumptions.

We conduct our empirical analysis based on weather deriva-
tive (WD) data traded at the Chicago Mercantile Exchange (CME).
WDs are newly developed financial instruments. Key features of
weather derivatives are that the underlying process, i.e., temper-
ature or rainfall index is not tradable and cannot be replicated by
other risk factors (Benth et al., 2007; Härdle and López-Cabrera,
2012; López-Cabrera et al., 2013). Consequently, the Black–Scholes
formula is unsuitable since an essential element of it is the tradabil-
ity of the underlying. In addition, the temperature index shows ap-
parent seasonality and it is determined by physical phenomena. An
interesting feature is that weather futures and options are rarely
traded and traded only at a few strike prices compared with other
more frequently traded equity markets. The CME (the official WD
platform) provides closing prices, which are however not the real
trading prices negotiated by the market participants. The SPD en-
ables to price options with complicated payoff functions simply
by numerical integration of the payoff with respect to this den-
sity. However, data sparsity makes the SPD estimation a statisti-
cal challenge. In addition, we study the dynamics of the SPDwhich

provides useful insight into the economic behavior of agents sen-
sitive to weather conditions and the time inhomogeneity of the
market.

This paper is structured as follows. Section 2 describes the
quadrature approach and its comparison to other popular SPD den-
sity estimationmethods. Section 3 conducts the empirical analysis
of SPDs from CME weather option data, studies the dynamics of
the SPDweather type, and gives economic interpretations from the
implied SPD. In Section 4, we address the data sparsity issue by ad-
dressing why other nonparametric methods fail particularly when
options with only a few strike prices are traded. Section 5 con-
cludes the paper. All quotations of currency in this paper will be in
USD and therefore wewill omit the explicit notion of the currency.
All the SPDs computations were carried out in Matlab version 7.6.
The option data on temperature indices were obtained from CME
and are also available from the research data center of the CRC 649
‘‘Economic Risk’’.

2. The Bayesian quadrature method

Options are contingent claims on an underlying asset. Plain
vanilla option is of either put or call type with a fixed maturity,
i.e., the value of the underlying is compared to a strike price K at
maturity T . Let x denote the underlying asset’s price atmaturity (in
our application this will be equivalent to futures prices onweather
indexes). For a call option, one has the payoff max(x � K , 0) and
for a put max(K � x, 0). If we denote a put as i = 1 and a call with
i = 2, and observed strike prices Eij for i = 1, 2 and j = 1, . . . ,Ni
indexing all possible strike prices on any given day t , then the
payoff function at maturity, denoted by }ij(x), can be represented
by one formula,

}ij(x) = (�1)i(x � Eij)I
�
(�1)i(x � Eij) > 0

 
(x),

where I

{A} is an indicator function for a set A. Let t be the current
time. The fair option price is given as (1) as the discounted value of
the expected payoff function:

Cij = exp (�r⌧ ) EQ [}ij(x)],
where ⌧ = T�t is the time tomaturity and E

Q [·] is the expectation
operator taken under the risk-neutral measure. The density f (x)
under this risk-neutral measure is the defined SPD. When the SPD
f (x) exists, this equals:

Cij = exp (�r⌧ )

Z
}ij(x)f (x)dx. (2)

The left hand side of (2) is observed on the market for different
payoff types depending on put/call (i = 1, 2), strike price Eij, and
time to maturity ⌧ . The interest of statistical calibration is to infer
the SPD f (x) from a set of observed option prices.

2.1. The quadrature method

The word ‘‘quadrature’’ means a numerical method to approx-
imate an integral either analytically or numerically, see Ueberhu-
ber (1997) for example. In this research, we work the adverse way,
since the interest is to infer the unknown density from the ob-
served integrals (option prices). Define the �-function �$ (·) as a
unit point measure at the location s by

�s(x) = I

{s = x} .

The basic idea of the quadrature method is to approximate the
SPD f (x) by fN(x|w, ✓), a weighted sum of �-functions:

fN(x|w, ✓) = w1�✓1(x) + · · · + wN�✓N (x), (3)

with unknown locations ✓ = (✓1, . . . , ✓N)> and weights w =
(w1, . . . , wN)>. Here, N is a non-negative integer (smoothing)
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parameter. To produce a legitimate probability density, the
locations ✓ are constrained to be non-negative quantities, and the
weights w are constrained to be nonnegative quantities and sum
up to one. Fromamodeling perspective, the quadraturemethod (3)
can be seen as a finite mixture distribution with the point measure
as the component density. Fig. 1 illustrates (3) for N = 5.

The option price (2) under fN(x|w, ✓) is:

CN
ij (w, ✓) = exp (�r⌧ )

NX

n=1

wn}ij(✓n). (4)

Note that (4) is an approximation to (2) and the aim of calibration
is to extract (w, ✓) by matching CN

ij (w, ✓) to the observed option
prices. More specifically, a call option price calculated with (3) is:

CN
2j(w, ✓) = exp {�r⌧ }

NX

n=1

wn max(✓n � Eij, 0), (5)

whereas a put option price under the quadrature method is:

CN
1j(w, ✓) = exp {�r⌧ }

NX

n=1

wn max(Eij � ✓n, 0). (6)

2.2. Bayesian modeling and computation

Empirical observations show that options having higher prices
usually have higher price variation, see Ghysels et al. (1995) and
Ghysels et al. (1997). Hence for the calibration task as a variance
stabilizing transformation, we consider the logarithm of option
prices. The observations yijk are perturbations of the model option
price CN

ij (w, ✓):

log yijk = log CN
ij (w, ✓) + "ijk (7)

for i = 1, 2, j = 1, . . . ,Ni, k = 1, . . . ,Nij, where the error
"ijk ⇠ N(0, � 2). "ijk is attributed to market friction and the
approximation discrepancy (Garcia et al., 2010; Renault, 1997). In
Section 3, residual analysis of our empirical studies will support
this error assumption.

These parameters, w, ✓ , and � 2, are estimated in a Bayesian
framework instead of a maximum likelihood method. Following
(7), the likelihood is

L(y|w, ✓ , � 2) =
2Y

i=1

NiY

j=1

NijY

k=1

(2⇡� 2)�
1
2

⇥ exp

"

�
�
log yijk � log CN

ij (w, ✓)
 2

2� 2

#

. (8)

A natural prior distribution for the weights w is the Dirichlet
distribution, which ensures w being positive and summing up to
one. The Dirichlet distribution with parameter � = (�1, . . . , �N)>
has the density function,

f (w|� ) = 1
B(� )

NY

n=1

w�n�1
n (9)

forwn > 0, n = 1, . . . ,N , andw1+· · ·+wN = 1. The normalizing
constant B(� ) is defined as

B(� ) =

NQ
n=1

0(�n)

0

✓
NP

n=1
�n

◆

where 0(·) is the gamma function (Chen and Shao, 1997).
Let Kmin and Kmax denote the minimum and maximum of the

observed strike prices Eij, respectively. To avoid label switching

t5 t4 t3 t2 t1

w5

w4

w3

w2

w1

Fig. 1. The SPD fN (x|w, ✓) from (3) for N = 5.

problems for ✓ , we assume that the locations are ordered, i.e.,
✓1  · · ·  ✓N . Moreover, to avoid model option prices in (4)
being zeros, assume a priori that the smallest location, ✓1, is less
than theminimumof the observed strike price, and that the largest
location, ✓N , is larger than the maximum of the observed strike
prices. Therefore, we assume that the distribution of the locations
✓ is uniformly distributed over the set {✓1  ✓2  · · ·  ✓N , ✓1 <
Kmin, ✓N > Kmax}:
f (✓ |Kmin, Kmax) / I{✓1  · · ·  ✓N , ✓1 < Kmin, ✓N > Kmax}(✓).

(10)

For simplicity, we consider an inverse-gamma distributionwith
shape parameter↵ and scale parameter� as a prior distribution for
� 2, denoted by � 2 ⇠ IG(↵, �). The prior density of � 2 is

f (� 2|↵, �) = �↵

0(↵)
(� 2)�↵�1 exp

✓
� �

� 2

◆
. (11)

Putting things together allows a conjugate prior for � 2, as
described in Casella and Berger (2001).

Note that (9)–(11) can be changed in cases where appropriate
information is available. Bayesian inference for the parameters of
interest is based on the posterior distribution of w, ✓ , and � 2:

f (w, ✓ , � 2|y, ↵,�, � , Kmin, Kmax)

/ L(y|w, ✓ , � 2)f (w|� )f (✓ |Kmin, Kmax)f (� 2|↵, �). (12)

Because of the complexity of (12), it is difficult to derive a
closed-form formula for the posterior distribution (Liechty and
Teng, 2009). The Markov chain Monte Carlo (MCMC) simulation is
therefore used to samplew, ✓ , and � 2. Because of themonotonicity
of parameters w and ✓ in (4), an MCMC algorithm with slice
samplers can be used to avoid manual tuning procedures in the
MCMC simulation. In the following, we summarize major steps to
run theMCMC algorithm. LetU(A) denote the uniform distribution
on the set A.

1. Start w, ✓ , and � 2 randomly.
2. At each iteration, repeat the following steps until the samples

appear to converge.
(a) Sample wn ⇠ U(Tn) for n = 1, . . . ,N � 1, where Tn is a

properly derived open interval. Set wN = 1 � w1 � · · · �
wN�1.

(b) Sample ✓n ⇠ U(Sn) for n = 1, . . . ,N , where Sn is a properly
derived open interval.
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Table 1

The volume for HDD–CDD monthly, seasonal strips and average temperature products in each US city.

Index City Future Option
HDD
monthly

CDD
monthly

HDD
strips

CDD
strips

Avg HDD
monthly

CDD
monthly

HDD
strips

CDD
strips

Avg MS (%) Rank

1 Atlanta 49621 35567 14400 2150 50 56431 11647 117165 71950 0 9.44 3
2 Baltimore 6633 3545 600 700 0 2600 100 12500 1100 0 0.73 16
3 Boston 24178 19066 2200 1150 0 11029 550 42174 19450 0 3.15 13
4 Chicago 90585 54950 3975 2800 0 39676 19300 107616 67725 0 10.17 2
5 Cincinnati 50155 38035 2967 1700 455 29280 28910 73255 74975 0 7.89 4
6 Colorado Springs 1936 1450 0 0 0 15025 8750 0 0 0 0.71 17
7 Dallas 27206 55540 3700 1961 200 13085 39775 47450 94850 0 7.47 5
8 Des Moines 40929 30510 3190 1450 50 38631 4460 64790 60900 0 6.44 6
9 Detroit 2 185 351 50 50 0 0 0 0 0 0 0.07 23

10 Houston 16901 18229 1400 1700 0 3700 5000 52950 33950 0 3.52 12
11 Jacksonville 100 1600 0 0 0 0 16575 0 0 0 0.48 19
12 Kansas City 36513 23145 1325 1350 1100 11025 7200 45050 33750 0 4.22 10
13 Las Vegas 12680 26635 325 1650 0 3100 14200 34600 76650 0 4.47 9
14 Little Rock 120 105 0 0 0 0 12250 0 0 0 0.33 20
15 Los Angeles 100 400 0 0 0 0 50 0 0 0 0.01 24
16 Minneapolis 50085 27955 2150 1500 0 18206 3850 63350 34000 0 5.29 8
17 New York 187264 154605 6700 4860 0 90620 35175 141850 136350 0 19.93 1
18 Philadelphia 16441 34449 2300 2250 150 6408 18210 56000 76150 0 5.59 7
19 Portland 10329 10855 725 450 0 1720 450 48200 76450 0 3.92 11
20 Raleigh Durham 550 1500 0 0 0 23700 0 0 0 0 0.68 18
21 Sacramento 6383 23401 550 750 0 2850 1675 16200 48000 0 2.63 14
22 Salt Lake City 739 504 150 0 0 0 0 4500 3500 0 0.25 22
23 Tucson 7283 16965 350 750 0 2700 3010 28750 27800 0 2.30 15
24 Washington 550 25 250 0 0 650 1500 6650 2000 0 0.31 21

(c) Sample

� 2 ⇠ IG

 
2X

i=1

NiX

j=1

↵ + M/2, �

+
2X

i=1

NiX

j=1

NijX

k=1

(log yijk � log CN
ij (w, ✓))2

!�
2,

where M = P2
i=1
PNi

j=1
PNij

k=1 1 is the number of observed
options.

The derivations of open intervals Tn and Sn are rather lengthy and
are hence omitted here for brevity. Please refer to Liechty and Teng
(2009) for details.

2.3. Kernel smoothing density estimate of the quadrature method

The density f̂N(x|w, ✓) from (3) is a weighted sum of � functions
and hence is not a continuous density. However, inmany cases, it is
interesting to visualize the SPD as a smoothed density. The kernel
density for a set ofM observed points # = (#1, . . . ,#M)> is:

f̂ (x|#) =
Z

ĝ(u)Kh(x � u)du = 1
M

MX

m=1

Kh(x � #m) (13)

where Kh(·) = h�1K(·/h) is a kernel function with a bandwidth h
and ĝ(u) the sum �-functions

ĝ(u) = M�1
MX

m=1

�#m(u)

with locations # . Obviously, different values of h will change
the appearance of f̂ (x|#). Silverman’s rule of thumb suggests a
bandwidth

hG = 1.06�̂M�1/5 (14)

where �̂ is the sample standard deviation of # and a normal kernel
K = ' the pdf of N(0, 1) (Silverman, 1986).

Note that each #m for m = 1, . . . ,M appears with equal
probability 1/M . However, in the Bayesian quadrature method, ✓n
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Fig. 2. The volume for US temperature futures (F) and options (O).

appears with probability wn, for n = 1, . . . ,N . Therefore, we need
to adjust the sample size and use ĝ(u) = PN

n=1 wn�✓n(u) instead.
The smoothed density version of (3) becomes

f sN(x|w, ✓) =
NX

n=1

wnKh(x � ✓n). (15)

To apply Silverman’s rule in the case of unequal weights in (15),
we round off each wn to the second decimal and adjust the sample
size to be 100. The smoothed SPD appears to be reasonable. Indeed,
it is possible to consider a more precise approximation: Round off
each wn to the q-th decimal, and set the sample size M to be 10q.
In the ith swipe of the MCMC algorithm, we obtain w(i) and ✓ (i)

and the smoothed SPD f sN(x|w(i), ✓ (i)). We then report the posterior
mean and 90% credible regions of the smoothed SPD based on
f̂ (x|w(i), ✓ (i)) point-wisely.



110 W. Karl Härdle et al. / Insurance: Mathematics and Economics 64 (2015) 106–125

Atlanta Baltimore Boston Chicago Cincinnati Colorado

Dallas Des–Moines Detroit Houston Jacksonville Kansas City

Las Vegas Little Rock Los Angeles Minneapolis New York Philadelphia

Portland Raleigh Durham Sacramento Salt Lake City Tucson Washington

US Futures

Atlanta Baltimore Boston Chicago Cincinnati Colorado

Dallas DesMoines Detroit Houston Jacksonville Kansas City

Las Vegas Little Rock Los Angeles Minneapolis New York Philadelphia

Portland Raleigh Durham Sacramento Salt Lake City Tucson Washington

US Options

Fig. 3. Star plots representing the volume for US temperature contracts (HDD–CDD monthly, HDD–CDD seasonal strips, and weekly average) futures (upper panel) and
options (lower panel) for each city. Each city is represented as a star whose ith spoke is proportional in length to the volume size of ith product (HDDMonthly, CDDMonthly,
HDD Strips, CDD strips, Average) of the observed city.

As a remark, the bandwidth can be adjusted to other kernels by
a canonical bandwidth, Härdle et al. (2004). For example for the
quartic kernel:

K(u) = 15
16

(1 � u2)2I {|u|  1} , (16)

Silverman’s rule of thumb hG transforms into:

hQUA = 2.62 · hG (17)

3. Empirical analysis

This section introduces the weather derivatives (WD) market
and presents an overview on WD data. One major feature of the
WD market is data sparsity, which makes most existing methods
for estimating the SPD challenging and difficult. We then apply the
described Bayesian quadrature technique to estimate the implied
SPD on WD data, conduct an out-of-sample analysis, and study its
dynamics.

3.1. Weather derivatives

WDs are financial contracts designed to hedgeweather risk. The
most common contracts traded at CME are based on temperature
indices linked to the temperature at time t , denoted by Tt . These are
the Heating Degree Days (HDD), the Cooling Degree Days (CDD),
and the cumulative average temperature (CAT):

HDD(⌧1, ⌧2) =
⌧2X

t=⌧1

max(c � Tt , 0)

CDD(⌧1, ⌧2) =
⌧2X

t=⌧1

max(Tt � c, 0)

CAT (⌧1, ⌧2) =
⌧2X

t=⌧1

Tt (18)

where c is a threshold (usually 65°F or 18 °C) and [⌧1, ⌧2] with
⌧1 < ⌧2 is the temperature measurement period. The standard is
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Fig. 4. Time series plots of New York, Atlanta, Chicago, Dallas HDD/CDD monthly and seasonal strips futures prices. HDD monthly futures with the measurement period of
January (Black), February (Blue),March (Cyan), September (Red), October (Magenta), November (Yellow) andDecember (Green). CDDmonthly futureswith themeasurement
period of May (Black), June (Blue), July (Cyan), August (Red), and September (Magenta). HDD seasonal strip with the measurement period in January (Blue), March(Cyan)
and December (Cyan). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

that [⌧1, ⌧2] denotes a month of the year or as seasonal strips. The
futures in question are delivering over a period [⌧1, ⌧2], and not at
a fixed delivery time ⌧ . The HDD index measures the demand for
heating, while the CDD index measures the demand for cooling.
Consequently, temperature indices are the underlying and not the
temperature by itself.

Financial mathematical tools given in Benth et al. (2007, 2011)
and Härdle and López-Cabrera (2012) allow the pricing of the

non-tradable underlying by risk adjusted conditional expectation.
Hereby, the futures temperature contract price on the sum of
temperature I(⌧1, ⌧2) = P⌧2

t=⌧1
Tt with accumulation period

[⌧1, ⌧2] is given by:

F(t, ⌧1, ⌧2) = E

Q ⇥I(T⌧1,⌧2)|Ft
⇤

(19)

where E

Q [·] is any equivalent martingale measure and Ft is a
filtration information set.
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Table 2

The number of transactions—trading days (TD) and volume (vol) of New York/Atlanta/Chicago/Dallas HDD and CDD monthly and HDD seasonal strip options with respect
to time to maturity (⌧ ) in month and the number of strike prices.

HDD—New York HDD—Atlanta HDD—Chicago

Number of strike prices

⌧ 1 2 3 4 Total 1 2 3 4 5 Total 1 2 3 4 Total

1 TD 71 23 7 1 102 56 12 4 1 1 74 50 10 – – 60
vol 17495 12650 9900 1400 41445 12861 4700 2950 700 1250 22461 10961 4975 – – 15936

(1, 2] TD 54 26 3 4 87 39 26 2 1 – 68 32 13 2 2 49
vol 12450 21700 1075 5400 40625 10245 19825 2800 1000 – 33870 50 2000 – – 2050

(2, 3] TD 3 1 – – 4 1 – – – – 1 2 – – – 2
vol 1 000 1000 – – 2000 100 – – – – 100 2000 – – – 2000

(3, 4] TD 2 1 – – 3 – – – – – – 1 – – – 1
vol 300 2000 – – 2300 – – – – – – 2000 – – – 2000

(4, 5] TD 1 1 – – 2 – – – – – 1 – – – 1
vol 250 2000 – – 2250 – – – – – – 2000 – – – 2000

(5, 6] TD – 1 – – 1 – – – – – 1 – – – 1
vol – 2000 – – 2000 – – – – – – 2000 – – – 2000

CDD—New York HDD strips—Atlanta CDD—Dallas

Number of strike prices

⌧ 1 2 3 4 Total 1 2 3 4 5 6 7 8 Total 1 2 3 4 Total

1 TD 43 3 1 – 47 1 6 – 6 – – – – 13 40 – 90 1 131
vol 17425 2000 600 – 20025 200 3100 – 2700 – – – – 6000 12400 9150 1250 –

(1, 2] TD 34 13 2 – 49 6 6 1 – – – – – 13 30 – 10 1 41
vol 8 200 5750 1200 – 15150 4700 6250 1875 – – – – – – 9125 5300 750 –

(2, 3] TD – – – – – 3 9 – 3 – – – – 15 – 1 – – 1
vol – – – – – 2240 7500 – 5500 – – – – – – 450 – – 450

(3, 4] TD – – – – – – 9 – – – – – 9 – 1 – – 1
vol – – – – – – 10400 – – – – – 10400 – 450 – – 450

(4, 5] TD – – – – – 1 11 1 4 – 1 1 – 19 – 1 – – 1
vol – – – – – 1750 10500 1000 9500 – 6500 6500 – – 450 – – 450

(5, 6] TD – – – – – 1 11 – 3 – – – 1– 16 – – – – –
vol – – – – – 250 11700 – 6750 – – – 4250 – – – – –

(6, 7] TD – – – – – 10 – – – – – – – 1 – – – – –
vol – – – – – 9000 – – – – – – – 9000 – – – – –

(7, 8] TD – – – – – 3 – – – – – – – 3 – – – – –
vol – – – – – 6000 – – – – – – – 6000 – – – – –

Consequently, the European temperature call option price
written on the futures price is defined as:

C(K) = exp {�r⌧ }
Z

max {F(t, ⌧1, ⌧2) � K , 0} f (x)dx. (20)

In order to compute (19), (20), it is necessary to know the stochastic
properties of the temperature process Tt under the ‘‘physical
measure’’ P and then adjust the risk measure Q, see Härdle and
López-Cabrera (2012). In other words, the temperature derivative
price is given by finding a model for the daily weather process
consisting of a trend, a seasonality, an autoregressive part, seasonal
variance and normally distributed residuals. Then one could
specify a class of probability measures using the Radon–Nikodym
derivative determinedby the Esscher transform, see López-Cabrera
et al. (2013). Another way is to model the index directly, see
Dorfleitner and Wimmer (2010).

Here we estimate the SPD, different to the afore mentioned
approach, directly under the risk neutral measure Q from real
option data. Note that (20) is exactly (5) for f = fN .

The options at CME are cash settled, i.e., the owner of a
future receives 20 times the Degree Day Index at the end of the
measurement period, in return for a fixed price. At time t , CME
trades contracts with different measurement periods t  ⌧1 < ⌧2
or different maturities ⌧ = ⌧2 � t . The measurement period for
CAT/HDD futures is typically during April–November, while CDD
futures are measured during November–April.

3.2. Overview on the WD data

TheWDdatawaspurchased fromCME for the studyperiod from
2002/01/02 to 2012/05/11. The reported price is the settlement

price for the future or option contract, and the volume is the
number of contracts traded.

Depending on the measurement period, temperature products
in the US market are further categorized into monthly, seasonal
strips, and average products. HDD monthly products have
seven contract months: October, November, December, January,
February, March, April, and CDD monthly products have seven
contract months: April, May, June, July, August, September, and
October. For HDD seasonal strips, the contract period covers from
October to April, and for CDD seasonal strips, the contract period
covers fromApril to October. Contract for weekly average products
covers all fiveweeks. Table 1 gives an overviewof the volumeof the
temperature market.

Fig. 2 illustrates the volume for US temperature futures and op-
tions in the study period. The trading activity increased dramat-
ically since 2002 but declined after the 2008 financial crisis. This
is surprising since one could expect that these markets are uncor-
related with financial markets. However we believe that the de-
cline is because the temperature market is not yet well known
as a intermediary for diversification of weather risk. Star plots in
Fig. 3 divide the volume into HDD–CDD monthly, HDD–CDD sea-
sonal strips, and weekly average for futures and options for each
US city. A star plot represents each city as a star whose ith spoke
is proportional in length to the volume size of ith product (HDD
Monthly, CDDMonthly, HDD Strips, CDD strips, Average) of the ob-
served city. Clearly, monthly products are the most popular traded
products, followed by seasonal strips. Nevertheless, no weekly av-
erage products are really traded in the US temperature market.

The volumes of HDD, CDD, Averagemonthly and seasonal strips
futures and options for all US cities are reported in Table 1. New
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Fig. 5. The 90% credible regions (in blue dashed lines) and posterior means (in red lines) of R2 when fitting New York/Atlanta/Chicago/Dallas HDD–CDD monthly options
using the Bayesian quadrature approach against different number of support pointsN . (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

York is to be the biggest temperature market and takes about
20% of the market volume, followed by Chicago (10%), Atlanta
(9%), Cincinnati (8%), and Dallas (7%). The market share of these
five cities exceeds 50% of the US temperature market. Following
this, we took these cities as the most representative cities. Fig. 4
gives time series plots for New York, Atlanta, Chicago and Dallas
monthly HDD, CDD monthly and seasonal strip future prices. The
futures market is more liquid but also more volatile than option
prices. In addition,most HDD and CDD futures are traded onlywith
time to maturities less than a year. These features of future prices
make the pricing mechanism for weather derivatives unique and
challenging.

We further divide the volume of HDD and CDD monthly and
HDD seasonal strip options with respect to strike prices and time

to maturities, as summarized in Table 2. It is shown that most
options are traded with only a few number of strike prices and of
a short time to maturity (within one month and less than a year).
Because of the fact that options are only traded with a few number
of strike prices, this data sparsity problem makes most existing
nonparametric methods (such as mixture of lognormal models or
kernel methods) very difficult.

3.3. Implementation of the technique

As depicted in Fig. 8, we calibrate the SPD for HDD–CDD
monthly and Seasonal strip options. These four plots present a
typical pattern of option prices of weather options: options were
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Fig. 6. Trace plots (in blue lines) and cumulative averages (in red lines) of the log-likelihood in the MCMC algorithm of different HDD/CDD monthly products. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

traded only with a very few number of strike prices, sometimes
only call options or put options were traded or the both of them.
The Bayesian quadrature method allows us to incorporate prior
assumptions on the model parameters and hence avoid problems
with data sparsity. It is able to compute the SPD of both call and
put options simultaneously, and is particularly robust.

There is a trade-off in the selection of N . When N is larger, one
produces better fit because there exist more free parameters in
themodel, but drawbacks of model complexity and computational
demanding come along with. We providemore information on the
sensitivity of the Bayesian quadrature approach with respect to N:
Fig. 5 depicts posterior means and 90% credible regions of R2 in
fitting HDD/CDD options using the Bayesian quadrature method
versus different number of support points N from three to ten.
As shown in Fig. 5 that all R2’s are close to one, we conclude
that the Bayesian quadrature approach provides good model fit
with small N . Based on Fig. 5, we select N = 5 in our following

analysis because it gives a simplemodel yet producing goodmodel
fit.

To calibrate (5) and (6), we implement an MCMC algorithm to
explore the posterior distribution in (12). Because of the employ-
ment of unequal weights and the adoption of a Bayesian frame-
work, inferring these parameters is computationally challenging.
For this reason, we use anMCMC algorithmwith slice samplers for
making statistical inference. In our analysis, we discard the first
500 iterates in the MCMC algorithm (the burn-in period), and use
the following 1000 iterates. Trace plots of the loglikelihood in Fig. 6
show that the MCMC algorithm appears to converge very fast, and
autocorrelation plots of the loglikelihood in Fig. 7 indicate that
samples in the MCMC algorithm are efficient.

Fig. 8 imposes model prices of the last swipe of the MCMC
algorithm and demonstrates the fit, becausemodel prices are close
to market prices.
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Fig. 7. Autocorrelation plots of the log-likelihood in the MCMC algorithm of different HDD/CDD monthly products.

For residual analysis, we calculate the residual at each swipe of
the MCMC algorithm by

rijk = log yijk � log CN
ij (w, ✓) (21)

and provide kernel smooth density plots of the posterior distribu-
tion of these residuals in Fig. 9. All these four panel plots demon-
strate that the residuals have mean zero, and are symmetric about
zero when comparing with the normal KDE. This visual presen-
tation supports our error assumption as a normal distribution
in (8).

The density (3) approximates the SPD by weighted sum of �
functions and is discontinuous by its nature. As described earlier, to
produce a smoothed SPD for visualization, we round off eachwn to
the second decimal, and set the adjusted sample size as 100. Then
we employ the kernel density estimation with a Gaussian kernel

K(·) = '(·) and a bandwidth selected using the rule of thumb
in (14) to calculate a smoothed SPD at each swipe in the MCMC
algorithm.

Thus, it is clear that the smootheddensity version (15) becomes:

f sN(x|w, ✓) =
NX

n=1

wnKh(x � ✓n)

=
NX

n=1

wn
1
h
'

✓
x � ✓n

h

◆

=
NX

n=1

wn'(x; ✓n, h)

where '(x; ✓n, h) is the pdf of N(✓n, h2) distribution.
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Fig. 8. Plots of market prices of New York/Atlanta/Chicago/Dallas HDD–CDDmonthly options and model prices of the last swipe in the MCMC algorithm using the Bayesian
quadraturemethodwithN = 5. For market prices, a call option is indicatedwith a blue plus and a put is indicatedwith a red cross. For model prices, a call option is indicated
with a blue diamond, and a put option is indicated with a red square. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Collecting these smoothed SPD, Fig. 10 gives the posterior
mean (red line) and 90% credible regions (blue dotted lines) of
the implied SPD. The right-upper and left-lower pictures show
that the 90% credible regions are tight to the posterior mean of
the smoothed SPD, whereas the other pictures depict that the
90% credible regions are wide. The cluster of star points in the
horizontal axis denotes the future prices.

In Bayesian analysis, the 90% credible region for the smoothed
SPDprovides a regionwhere 90%of the posterior distribution of the
smoothed SPD will fall into. In the case of HDD New York options
with maturity in 2 months traded at 20050121 and the case of
CDD Dallas Option one month to maturity traded at 20100604, the
left tail of 90% credible region appears to be extremely wide. This
feature is not surprising though, because the data set for calibration
consists of call optionswith only two strike prices, namely, 800 and
1000 and 600 and 625 respectively. Indeed, a call option price is

simply the expected future price larger than the strike price under
the SPD. Therefore, an option price only provides information for
the right tail of the SPD. Once a few quadrature points in the
right tail have achieved a high likelihood, points of the quadrature
in the left tail (in this case, smaller than 800) do not affect the
likelihood. As a result, these points are influenced only by its prior
distributions. The prior assumptions in (9) and (10) put simply
vague information for the weights and locations in the quadrature
method. Such an assumption allows points in the left tail of the
quadrature method moving freely, and causes a wider credible
region in the left tail, as demonstrated in the left-upper panel in
Fig. 10.

Similarly, for the right-lower panel, the 90% credible region
is wider around strike 1000 but is tight in two side tails. This
is because the data set consists of one call with strike 970 and
one put with strike 870. As a result, the call option price gives
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Fig. 9. Kernel density estimate (KDE) plots for the posterior distribution of residuals for HDDs and CDDs products (in blue lines) versus the normal KDE plots (in red lines).
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

information of the right tail of the SPD, whereas the put option
price gives information of the left tail of the SPD.When somepoints
of both right and left tails in the quadrature method have achieved
a high likelihood, points of the quadrature around 920 would not
affect the likelihood. These points are determined by their prior
assumptions again, and provide a wider credible region around
920.

Selecting prior distributions for the quadrature method is
critical. In this research, we choose vague prior assumptions for
the parameters and the analysis successfully reveals the fact that
the width of the 90% credible region depends highly on the
information provided by option prices and the prior assumptions
on the parameters in the quadrature method. One may adopt
more sophisticated prior distributions based on experience and
knowledge. This flexibility may be considered as a technical
advantage of the Bayesian quadrature method.

3.4. Out-of-sample analysis

In incompletemarkets, no uniquemartingalemeasure exists. As
a consequence, this may have a negative effect that the parameters

estimated fit well the in-sample data, but they are inaccurate with
out-of-sample data. In the following, we modify the quadrature
model to forecast out-of-sample data and provide an empirical
analysis confirming that our quadrature model preforms well for
the out-of-sample data.

Recall that t is the current time, ⌧ is the time to maturity, and
F(t, ⌧1, ⌧2) is the underlying temperature index future price at
time t with accumulation period [⌧1, ⌧2]. Let t̃ be the forecast time
and ⌧̃ be the time to maturity from time t̃ to maturity. Similar to
Dumas et al. (1998) and Fan andMancini (2009),we consider a one-
week-ahead forecast horizon. Both F(t, ⌧1, ⌧2) and F(t̃, ⌧1, ⌧2) are
known in our out-of-sample analysis.

To begin with, the option prices at time t are used to calibrate
the Bayesian quadrature model, where w and ✓ are parameters.
To provide a plausible yet simple quadrature model for forecast
at time t̃ with parameters w̃ and ✓̃ , we first set w̃ = w. Recall
that r is the risk-free interest rate. To adjust the current underlying
temperature index future price and the discounted factor, define
✓̄ = (✓̄1, . . . , ✓̄N)0 as the normalized location parameters extracted
from the quadrature model by

✓i = F(t, ⌧1, ⌧2)er⌧ ✓̄i,
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Fig. 10. Posterior means (in red solid lines) and the 90% credible regions (in blue dashed lines) of the smoothed SPD implied from New York HDD monthly options with
respect to trading dates and time to maturity. The cluster of star points in the horizontal axis denotes the future prices. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

for i = 1, . . . ,N . Likewise, ✓̃ is linked to ✓ via the normalized
location parameters by

✓̃i = F(t̃, ⌧1, ⌧2)er ⌧̃ ✓̄i = F(t̃, ⌧1, ⌧2)
F(t, ⌧1, ⌧2)

er(⌧̃�⌧ )✓i, (22)

for i = 1, . . . ,N . As a result, the forecast quadraturemodel at time
t1 is

w1�✓̃1
(x) + · · · + wN�✓̃N

(x),

where ✓̃ is given in (22), and can be used to calculate option prices
forecast at time t̃ directly.

In the Bayesian out-of-sample analysis, we report the 90%
Bayesian prediction intervals for option prices at time t̃ and
averaged R2 in the MCMC algorithm. Table 3 provides detailed

information on the data used for the out-of-sample analysis: For
each case of weather derivatives, Table 3 lists its current time
t , forecast time t̃ , maturity, underlying temperature index future
prices at time t and t̃ , and averaged R2 in the MCMC algorithm.
We remark that because the weather derivatives markets are less
frequently traded, given t , if there is no settlement prices in the
one-week-ahead horizon, we use options traded nearest to the
one-week-ahead horizon as the out-of-sample data.

Fig. 11 depicts the 90% Bayesian prediction intervals for the
forecast and realized market option prices traded at time t̃ . It is
shown that realized market option prices are within or close to
the 90% Bayesian prediction intervals. Togetherwith the numerical
results that the averaged R2 in Table 3 ranges from 0.82 to 0.99, we
conclude that our quadraturemethod empirically performswell in
this out-of-sample analysis.
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Table 3

Data and averaged R2 in the out-of-sample analysis. This table lists the type of weather derivatives, current time t , forecast time t̃ , maturity,
underlying temperature index future prices at times t and t̃ , and averaged R2 in the MCMC algorithm.

Product t t̃ Maturity F(t, ⌧1, ⌧2) F(t̃, ⌧1, ⌧2) Averaged R2

New York, HDD 20060202 20060207 Feb. 2006 875 778 0.91
New York, HDD 20071218 20071224 Jan. 2008 905 910 0.87
New York, HDD 20050121 20050126 Feb. 2005 805 845 0.89
Atlanta, HDD 20060315 20060322 Mar. 2006 320 342 0.82
Chicago, HDD 20081216 20081223 Dec. 2008 1290 1315 0.99
Dallas, CDD 20100604 20100611 Jun. 2010 600 617 0.94

Fig. 11. Out-of-sample analysis for different contracts. For realized market prices, a call option is indicated with a blue plus and a put is indicated with a red cross. The 90%
Bayesian prediction intervals of call and put option are in blue and red dashed lines, respectively. Averaged R2 is recorded in parentheses in the title of each panel plot. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

3.5. Dynamics of SPD

Table 4 records the number of trading days with respect to
the number of strike prices and trading months for the New York
HDD/CDD monthly options with time to maturity ⌧ less than one
month and Atlanta HDD Seasonal Strips with ⌧ = 6. Again, the

data sparsity remains an issue in the biggest weather market, the
New York market. For illustration, we implement (4) for every
trading day in March 2006. For other months, most of the number
of strike in each trading day is simply one, and such case makes
the SPD estimation very difficult in the sense that option price only
provides information for one side of the SPD.
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Table 4

Number of trading days with respect to the trading month and the number of strike prices for HDD/CDD monthly options with time to maturity less ⌧ than one month and
Atlanta HDD Seasonal Strips with ⌧ = 6 (time of measurement period of 5 months).

Year Type City Month Nr. of strike prices Year Type City Month Nr. of strike prices
⌧ 1 2 3 4 5 Total ⌧ 1 2 3 4 5 6 Total

2002 HDD NY 11 1 1 – – – – 1 2006 HDD-
Strip

Atlanta 10 6 – – 1 1

2004 HDD NY 1 1 2 – – – – 2 2007 HDD-
Strip

Atlanta 10 6 – – 3 1 2 1 1 8

2004 HDD NY 2 1 1 – – – – 1 2008 HDD-
Strip

Atlanta 10 6 – – 4 1 1 1 5

2004 HDD NY 3 1 1 – – – – 1 2009 HDD-
Strip

Atlanta 10 6 – –
1

1 1 3

2005 HDD NY 1 1 1 – – – – 1 2010 HDD-
Strip

Atlanta 10 6 – – 2 2

2005 HDD NY 2 1 2 – – – – 2 2002 HDD Chicago 11 1 1 – 1
2005 HDD NY 3 1 1 – – – – 1 2002 HDD Chicago 12 1 2 – 2
2005 HDD NY 12 1 1 1 – – – 2 2004 HDD Chicago 2 1 1 – 1
2006 HDD NY 1 1 2 – – – 2 2005 HDD Chicago 2 1 2 – 2
2006 HDD NY 2 1 5 3 1 – – 9 2005 HDD Chicago 12 1 4 – – 4
2006 HDD NY 3 1 3 5 4 1 – 13 2006 HDD Chicago 3 1 5 2 7
2006 HDD NY 10 1 1 1 – – – 2 2006 HDD Chicago 10 1 2 1 3
2006 HDD NY 11 1 1 2 – – – 3 2006 HDD Chicago 11 1 2 2
2006 HDD NY 12 1 1 – – – 1 2007 HDD Chicago 1 1 3 3
2007 HDD NY 1 1 2 – – – – 2 2007 HDD Chicago 2 1 1 1
2007 HDD NY 2 1 4 – – – – 4 2007 HDD Chicago 3 1 1 1
2007 HDD NY 3 1 1 – – – – 1 2007 HDD Chicago 12 1 1 1
2007 HDD NY 11 1 1 – – – – 1 2008 HDD Chicago 1 1 1 1
2007 HDD NY 12 1 1 2 – – – 3 2008 HDD Chicago 2 1 3 3
2008 HDD NY 1 1 6 1 2 – – 9 2008 HDD Chicago 3 1 2 1 3
2008 HDD NY 2 1 3 – – – – 3 2008 HDD Chicago 12 1 2 2 4
2008 HDD NY 12 1 2 1 – – – 3 2009 HDD Chicago 1 1 2 2
2009 HDD NY 1 1 4 – – – – 4 2009 HDD Chicago 12 1 1 1
2009 HDD NY 2 1 2 – – – 2 2010 HDD Chicago 3 1 1 1
2009 HDD NY 3 1 1 – – – 1 2010 HDD Chicago 11 1 1 1
2009 HDD NY 11 1 3 – – – – 3 2010 HDD Chicago 12 1 2 2
2009 HDD NY 12 1 1 – – – 1 2011 HDD Chicago 1 1 3 3
2010 HDD NY 3 1 1 – – – – 1 2011 HDD Chicago 2 1 2 2
2010 HDD NY 11 1 5 – – – – 5 2011 HDD Chicago 11 1 2 2
2010 HDD NY 12 1 2 – – – – 2 2011 HDD Chicago 12 1 2 2
2011 HDD NY 1 1 4 1 – – – 5 2004 CDD Dallas 9 1 1 1
2011 HDD NY 2 1 5 – – – – 5 2005 CDD Dallas 8 1 1 1
2011 HDD NY 3 1 1 1 – – – 2 2006 CDD Dallas 6 1 1 1
2011 HDD NY 11 1 1 – – – – 1 2006 CDD Dallas 9 1 1 1
2011 HDD NY 12 1 2 – – – – 2 2007 CDD Dallas 7 1 1 1
2012 HDD NY 2 1 1 – – – – 1 2008 CDD Dallas 5 1 6 6
2004 CDD NY 9 1 – 1 – – 1 2008 CDD Dallas 6 1 1 1
2005 CDD NY 5 1 1 – – – 1 2008 CDD Dallas 7 1 2 2
2005 CDD NY 6 1 8 1 – – 9 2008 CDD Dallas 8 1 1 1
2005 CDD NY 7 1 – – �1 1 2009 CDD Dallas 5 1 4 1 5
2005 CDD NY 8 1 4 – – – 4 2009 CDD Dallas 6 1 1 1 2
2006 CDD NY 6 1 4 – – – 4 2009 CDD Dallas 8 1 1 1
2006 CDD NY 7 1 1 – – – 1 2009 CDD Dallas 9 1 1 1
2006 CDD NY 8 1 3 – – – 3 2010 CDD Dallas 5 1 1 1
2006 CDD NY 9 1 3 – – – 2 2010 CDD Dallas 6 1 2 3 5
2007 CDD NY 7 1 1 – – – 1 2010 CDD Dallas 7 1 2 2
2007 CDD NY 8 1 1 – – – 1 2010 CDD Dallas 8 1 2 2
2007 CDD NY 9 1 1 – – – 1 2010 CDD Dallas 9 1 3 1 4
2008 CDD NY 6 1 5 – – – 5 2011 CDD Dallas 5 1 1 1
2008 CDD NY 7 1 1 – – – 1 2011 CDD Dallas 6 1 3 1 4
2008 CDD NY 8 1 1 – – – 1 2011 CDD Dallas 7 1 3 3
2009 CDD NY 8 1 2 – – – 2 2011 CDD Dallas 8 1 2 2
2010 CDD NY 5 1 2 – – – 2 2012 CDD Dallas 2 1 2 2
2010 CDD NY 5 1 2 – – – 2
2010 CDD NY 6 1 1 – – – 1
2010 CDD NY 7 1 1 – – – 1
2010 CDD NY 9 1 1 – – – 1
2011 CDD NY 9 1 1 – – – 1
2011 CDD NY 6 1 3 – – – 3

Fig. 12 plots give the evolution of New York-HDD, Atlanta HDD-
Seasonal and option prices with time to maturities in one and
six months respectively, against strike prices and trading days in
March 2006 and October 2007. It is clear that options were traded
with very few strike prices (from one to four strike prices) during
this month.We used five support points (N = 5) in the quadrature

method, and calculate R2 in a logarithmic scale:

R2 = 1 �

NiP
i=1

NiP
j=1

NijP
k=1

�
log yijk � log CN

ij (w, ✓)
 2

NiP
i=1

NiP
j=1

NijP
k=1

log y2ijk

.



W. Karl Härdle et al. / Insurance: Mathematics and Economics 64 (2015) 106–125 121

600

700

800

900 0

5

10

15

200

10

20

30

40

50

Trading Day

HDD–Call–NEW YORK

Strike price

O
pt

io
n 

P
ric

e

600

650

700 0

5

10

15

200

20

40

60

Trading Day

HDD–Put–NEW YORK

Strike price

O
pt

io
n 

P
ric

e

2200

2400

2600

2800 2.0071

2.0071

2.0071

2.0071

2.0071

x 107 x 107

0

50

100

150

Trading Day

HDD–Strip–Call–ATLANTA

Strike price

O
pt

io
n 

P
ric

e

1800

2000

2200 2.0071

2.0071

2.0071

2.0071

2.00710

10

20

30

40

50

Trading Day

HDD–Strip–Put–ATLANTA

Strike price

O
pt

io
n 

P
ric

e

Fig. 12. New York monthly HDD option prices with time to maturity in onemonth against strike prices and trading days in March 2006, HDD Atlanta Seasonal option prices
with time to maturity in 6 months and trading days in October 2007.

Recall that N1 and N2 are numbers of different strike prices for call
and put options, respectively. Ni relies on the given data set. Nij is
the number of repeated options given a strike price and a type of
option. In our empirical analysis, because we just take one daily
closing price, we set Nij = 1.

When R2 is close to one, model prices are close to market
prices and the model produces nice fit. In the Bayesian quadrature
method, we calculate R2 at each swipe of the Markov chain Monte
Carlo algorithm, and summarize its posterior mean and quantiles
for inference. Because all themean,median, and the 2.5% and 97.5%
quantiles of the R2 calculated in the MCMC algorithm are close to
one, we conclude that the Bayesian quadrature method produces
an almost perfect fit for all these trading days. Fig. 13 presents
dynamics of the smoothed implied SPD, all of which deviate from
lognormality.

A simple way to investigate the dynamics of the implied SPD at
each trading day is to calculate moments based on the quadrature
method. In each swipe of theMarkov chainMonte Carlo algorithm,
we calculate themean (µ), volatility (v), skewness (s), and kurtosis
() of the quadrature method, by the following formulas,

µ =
NX

n=1

wn✓n

⌫ =
vuut

NX

n=1

wn(✓n � µ)2

s =
NX

n=1

wn(✓n � µ)3/⌫3

 =
NX

n=1

wn(✓n � µ)4/⌫4.

Fig. 14 gives the dynamics of the posterior means of the SPDs.
Table 5 shows the posterior means of these four quantities of the
quadrature method. However, skewness and kurtosis of weather
options can be either positively or negatively skewed depending
on futures maturity.

WD-SPD’s tend to be positively skewed for short maturity
contracts indicating that the tail on the right side is longer or fatter
than the left side as the call-options only provide information in the
right tail of the SPD. Conversely, negative skew indicates that the
tail on the left side of the SPD, provided by put-options, is longer
or fatter than the right side.

The heterogeneity beliefs on investors (hedgers versus spec-
ulators), reflected by the weather sensitivity preferences among
agents, lead the SPD spread to the tails and even becomes bi-
modal. As shown in Jackwerth and Rubinstein (1996) and Rubin-
stein (1994), it is common to get in incomplete markets, like the
stock index options, multimodal risk neutral densities. The pres-
ence of severe modes might be caused due to nonlinear relation-
ship between the seasonal variance of the temperature process Tt
and the underlying temperature index futures in (19), see Här-
dle and López-Cabrera (2012), Benth et al. (2007). Temperature
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Table 5

Posterior mean of the mean (µ), volatility (v), skewness (s), and kurtosis () of the quadrature method at each trading day (TD) calibrated from New York HDD monthly
options in March 2006, Atlanta HDD seasonal strip options in October 2007 and Dallas CDD monthly options in June 2010.

TD 2 3 6 7 8 9 10 14 15 16 17 20

HDD µ 511.16 676.00 618.80 676.31 660.00 645.00 660.00 422.78 554.10 708.58 698.31 380.26
NY v 248.98 81.57 57.02 73.88 61.38 59.89 45.07 240.72 217.04 41.54 42.11 205.93

s 0.09 �0.92 0.25 4.30 0.48 0.21 0.38 0.43 �0.42 1.47 1.65 0.60
 1.54 2.70 2.79 56.28 2.26 3.28 2.98 2.16 1.70 5.66 7.59 2.90

TD 2 3 4 9 12 24 31

HDD µ 2225.54 1741.96 1865.99 1630.19 1470.13 2335.12 2340.70
Strips v 324.45 818.35 757.39 751.52 835.64 287.44 258.52
Atlanta s 0.58 �0.05 �0.33 0.21 0.59 0.64 0.07

 3.44 1.42 1.73 2.15 2.44 7.59 3.00

TD 4 10 14

CDD µ 489.96 390.42 596.63
Dallas v 175.79 195.06 155.40

s �0.83 0.18 �0.57
 2.72 1.98 2.76

Fig. 13. Quadrature method and smoothed SPDs implied from New York monthly
HDD option prices with time to maturity in one month against strike prices and
trading days in March 2006, HDD Atlanta Seasonal option prices with time to
maturity in 6months and trading days inOctober 2007, Dallasmonthly CDDoptions
with time to maturity in one month traded in June 2010.

tends to stay stable during periods with low seasonal variance.
Thus, SPDs are depending on the conditional volatility: the SPD
is wider when the conditional volatility is high. This is different
with what documented on index options market (unimodal den-
sities) (Bakshi et al., 2010), interest rate derivatives market (log-
normal densities) (Li and Zhao, 2007) and temperature markets
(unimodal normal densities) (Benth et al., 2007), but similar
to rainfall markets (skewed densities) (López-Cabrera et al.,
2013). This is also explained by the economic behavior of agents

sensitive to weather conditions. Investors expect that temperature
variations, that affect their cash flows, will occur with high prob-
ability in winter times than in summer times (conversely for WDs
in Australia). Hence some investors will use these option contracts
for hedging purposes in presence of negative expected payoffs to
eliminate their risk, while others will act as speculators from bear-
ing hedgers’ risk. The results show, as expected, that the option
temperature market offers a much greater premium than the fu-
tures temperature market (Härdle and López-Cabrera, 2012).

4. The infeasibility of other nonparametric methods

Here, we compare the feasibility of our method with other
known nonparametric approaches, which are popular tools
avoiding risk of misspecification. Some of these methods estimate
the SPD by differentiating an interpolation of smoothing of option
prices. In this context, data sparsity makes the estimation of the
SPD a statistical challenge. Let us now explain why the kernel
regression method and mixtures of lognormals do not work well
in the context of WD implied SPDs.

The cross-section of the call and put prices is given in Fig. 12.
Different grids correspond to different contracts with different
times to measurement periods and consequently one can argue
that option prices can be extrapolated as a smoothed function of
the strike.

4.1. Kernel regression

The kernel regression method (KRM) takes advantage of
differentiating twice (1):

f (K) = er⌧
@2

@K 2 C(K). (23)

In order to employ (23), one needsmore observations as the option
price function is treated as a continuous function of strikes and
therefore relies on the put–call parity to transfer put option prices
to call option prices. When the market is rarely traded, it is not
promising to employ the put–call parity though. In our empirical
data analysis most options are traded with only a few strike prices.
Very often, an optionwas traded onlywith one or two strike prices.
When the kernel method is applied to a data set of such a case, it
is even difficult to find an option function C(K), not to mention to
find its second derivatives and interpolated version, may not yield
a density estimate that guarantee to be positive and integrate to
one. Consequently, KRM is sensitive to data sparsity.
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Fig. 14. Dynamics of the parameter of the quadrature method implied from New York monthly HDD option prices with time to maturity in one month against strike prices
and trading days in March 2006, HDD Atlanta Seasonal option prices with time to maturity in 6 months and trading days in October 2007, Dallas monthly CDD options with
time to maturity in one month traded in June 2010.

4.2. Mixture of lognormals

When applying the mixture of lognormal methods, it is
necessary to specify the range of the variances of the lognormal
density. The selection is objective and influences the estimated SPD
dramatically. When the data set consists of a few data point, it is
possible to produce two totally different densities (particularly in
terms of variances) which produce the same quality of model fit.

We estimate the SPD using amixture of lognormal for NewYork
HDD monthly options, given in Fig. 8. For mixture of lognormals,
we will show that two different SPD using mixture of lognormal

produce the same model fit, but they have quite different higher
moments.

Yuan (2009) proposed a function class:

F =
⇢
f (·) : f (x) =

Z
f (x|µ, � 2)dG(µ, � ),

supp(g) ⇢ [�M,M] ⇥ [� , �̄ ]
�

where M < 1 and 0 < �  �̄ < 1, f (x|µ, � 2) is the
pdf of the lognormal distribution with location µ and scale � and
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Fig. 15. Estimated SPD using mixtures of lognormal. The left-upper and right-upper panels give estimated SPD using � equal to 0.01 and 0.001, respectively. The left-lower
and right-lower panels give market prices indicated by a blue cross and model prices indicated by a blue square. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

G determines the mixing distribution. The corresponding pricing
function in this case is similar to (2):

C(X; µ, � 2) = exp (�r⌧ )

Z 1

0
}ij(x)f (x)dx

C(X;G) =
Z

C(X; µ, � 2)dG(µ, � ) (24)

as the SPD f (x) is defined in the previous family F . The least
squares estimate of the pricing function can be written as:

Ĝ(·) = argmin
G2G

n�1
nX

i=1

�
yijk � C(X;G)

 2 (25)

where G is the collection of all probability measures on µ and � 2.
Note that theminimization is taken over a function space of infinite
dimensions, however the solution can be represented in a finite
dimensional space. In particular, all solutions can be expressed as
a convex combination of atmost n+1 Black–Scholes type of pricing
functions.

This model has several nice theoretical properties. For example,
as the sample size n increases, the pricing functions can be
recovered with squared error converging to zero at the rate of
log2 n/n, which is close to the parametric rate of convergence
1/n. However, practical difficulties arise when fitting mixtures of
lognormal distributions (or other mixtures models) to real data.
The feature that weather options are traded with a few number of

strike prices make mixture models inapplicable, because mixture
models need to select corresponding scale parameters and the
number of components. For example, when options are traded
with n different strike prices, maximum likelihood suggests to use
n/2 support points. When n is large, this leads a very complicated
model and possible over fitting problem. When n is small, the
resulting model may be inappropriate. In addition, numerical
procedure for searching the maximum likelihood estimate is
particularly difficult for large n.

We apply mixture of lognormals by Yuan (2009) to the New
York monthly HDD call options traded on 2006/02/02, with two
differentmanually selected variances. Fig. 15 shows that these two
estimated SPD are quite different in shapes, although they produce
similar quality of model fit. Therefore, this illustration shows that
the estimated SPD is very sensitive to the selection of� . In practical
implementation, Yuan (2009) suggests to determine � by cross-
validation. This however is very computationally demanding.

5. Conclusions

We estimate SPDs for WDs using the Bayesian quadrature
method. The WD market is characterized by its incompleteness
and less frequently traded activities. This makes the estimation of
the SPD a statistical challenge. However, the quadrature method,
in advantage to the parametric and other non-semiparametric
techniques, avoids model miss-specification and allows the
SPD estimation by a parsimonious model. The technique is
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computationally fast and robust. The obtained SPD do not stem
frommarket-risk-price assumptions. We present empirical results
on real CME temperature derivatives data, which help us to
understand the dynamics of SPD. The results suggest that the SPD
of weather derivatives exhibits a non-normal behavior type.
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Abstract

The gargantuan plethora of opinions, facts and tweets on financial business o↵ers
the opportunity to test and analyze the influence of such text sources on future direc-
tions of stocks. It also creates though the necessity to distill via statistical technology
the informative elements of this prodigious and indeed colossal data source. Using
mixed text sources from professional platforms, blog fora and stock message boards
we distill via di↵erent lexica sentiment variables. These are employed for an analysis
of stock reactions: volatility, volume and returns. An increased sentiment, especially
for those with negative prospection, will influence volatility as well as volume. This
influence is contingent on the lexical projection and di↵erent across Global Industry
Classification Standard (GICS) sectors. Based on review articles on 100 S&P 500
constituents for the period of October 20, 2009 to October 13, 2014, we project into
BL, MPQA, LM lexica and use the distilled sentiment variables to forecast individual
stock indicators in a panel context. Exploiting di↵erent lexical projections to test dif-
ferent stock reaction indicators we aim at answering the following research questions:
(i) Are the lexica consistent in their analytic ability?
(ii) To which degree is there an asymmetric response given the sentiment scales (pos-
itive v.s. negative)?
(iii) Are the news of high attention firms di↵using faster and result in more timely
and e�cient stock reaction?
(iv) Is there a sector specific reaction from the distilled sentiment measures?
We find there is significant incremental information in the distilled news flow and
the sentiment e↵ect is characterized as an asymmetric, attention-specific and sector-
specific response of stock reactions.

Keywords: Investor Sentiment, Attention Analysis, Sector Analysis, Volatility Simulation,
Trading Volume, Returns
JEL Classifications: C81, G14, G17
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1 Introduction

News are driving financial markets. News are nowadays massively available on a variety

of modern digital platforms with a wide spectrum of granularity scales. It is exactly this

combination of granularity and massiveness that makes it virtually impossible to process

all the news relevant to certain financial assets. How to distinguish between “noise” and

“signal” is also here the relevant question. With a few exceptions the majority of empirical

studies on news impact work has therefore been concentrated on specific identifiable events

like scheduled macroeconomic announcements, political decisions, or asset specific news.

Recent studies have looked at continuous news flow from an automated sentiment machine

and it has been discovered to be relevant to high frequency return, volatility and trading

volume. Both approaches have limitations since they concentrate on identifiable indicators

(events) or use specific automated linguistic algorithms.

This paper uses text data of di↵erent granularity from blog fora, news platforms and

stock message boards. Using several lexical projections, we define pessimistic (optimistic)

sentiment with specific meaning as the average proportions of negative (positive) words

in articles published in specific time windows before the focal trading day, and examine

their impacts on stock trading volume, volatility and return. We analyze those e↵ects in

a panel data context and study their influence on stock reactions. These reactions might

be interesting since large institutions, more sophisticated investors, usually express their

views on stock prospective or prediction through published analyst forecasts. However, an-

alysts’ recommendations may be contaminated by their career concerns and compensation

scheme; they may also be in alliance with other financial institutions such as investment

banks, brokerage houses or target companies (Hong and Kubik, 2003; Liu, 2012). Due to

the possible conflicts of interest from analysts and their powerful influence on naive small

investors, the opinions from individual small investors may be trustworthy since their per-

sonal opinions hardly create any manipulation that governs stock reactions. The advent

of social media such as Seeking Alpha enables small investors to share and express their

opinions frequently, real time and responsively.

We show that small investors’ opinions contribute to stock markets and create a “news-

driven” stock reaction. The conversation in the internet or social media is valuable since the
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introduction of conversation among a subset of market participants may have large e↵ects

on the stock price equilibrium (Cao et al., 2001). Other literature such as Antweiler and

Frank (2004), Das and Chen (2007), Chen et al. (2014) demonstrate the value of individual

opinions on financial market. They show that small investor opinions predict future stock

returns and earnings surprises even after controlling the financial analyst recommendation.

The projections (of a text into sentiment variables) we employ are based on three senti-

ment lexica: the BL, LM and MPQA lexica. They are used to construct sentiment variables

that feed into the stock reaction analysis. Exploiting di↵erent lexical projections, and using

di↵erent stock reaction indicators we aim at answering the following research questions:

(i) Are the lexica consistent in their analytic ability to produce stock reaction indicators,

including volatility, detrended log trading volume and return?

(ii) To which degree is there an asymmetric response given the sentiment scales (positive

v.s. negative)?

(iii) Are the news of high attention firms di↵using faster and result in more timely and

e�cient stock reaction?

(iv) Is there a sector specific reaction from the distilled sentiment measures?

Question (i) addresses the variation of news content across di↵erent granularity and

lexica. Whereas earlier literature focuses on numerisized input indices like ReutersNews-

Content or Google Search Volume Index, we would like to investigate the usefulness of

automated news inputs for e.g. statistical arbitrage algorithms. Question (ii) examines

the e↵ect of di↵erent sentiment scales on stock reactions like volatility, trading volume and

returns. Three lexica are employed that are producing di↵erent numerical values and thus

raise the concern of how much structure is captured in the resulting sentiment measure.

An answer to this question will give us insight into whether the well known asymmetric

response (bad vs. good news) is appropriately reflected in the lexical projections. Question

(iii) and (iv) finally analyze whether stylized facts play a role in our study. This is answered

via a panel data scheme using GICS sector indicators and attention ratios.

Groß-Klußmann and Hautsch (2011) analyze in a high frequency context market reac-

tions to the intraday stock specific “Reuters NewsScope Sentiment” engine. Their findings
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support the hypothesis of news influence on volatility and trading volume, but are in con-

trast to our study since they are based on a single news source and confined to a limited

number of assets for which high frequency data are available.

Antweiler and Frank (2004) analyze text contributions from stock message boards and

find that the amount and bullishness of messages have predictive value for trading volume

and volatility. On message boards, the self-disclosed sentiment to hold a stock position is

not bias free, as indicated in Zhang and Swanson (2010). Tetlock (2007) concludes that

negative sentiment in a Wall Street Journal column has explanatory power for downward

movement of the Dow Jones. Bollen et al. (2011) classify messages from the micro-blogging

platform Twitter in six di↵erent mood states and find that public mood helps to predict

changes in daily Dow Jones values. Zhang et al. (2012) extends this by filtering the Twitter

messages (tweets) for keywords indicating a financial context and they consider di↵erent

markets such as commodities and currencies. Si et al. (2013) use a refined filtering process

to obtain stock specific tweets and conclude that topic based Twitter sentiment improves

day-to-day stock forecast accuracy. Sprenger et al. (2014) also use tweets on stock level

and conclude that the number of retweets and followers may be used to assess the quality

of investment advice. Chen et al. (2014) use articles and corresponding comments on

Seeking Alpha, a social media platform for investment research, and show predictive value

of negative sentiment for stock returns and earnings surprises. According to Wang et al.

(2014), the correlation of Seeking Alpha sentiment and returns is higher than between

returns and sentiment in Stocktwits, messages from a micro-blogging platform specialized

in finance.

Using either individual lexical projections or a sentiment index comprising the com-

mon component of the three lexical projections, we find that the text sentiment shows

an incremental influence on the stocks collected from S&P 500 constituents. An asym-

metric response of the stock reaction indicators to the negative and positive sentiments is

confirmed and supports the leverage e↵ect, that is, the stocks react to negative sentiment

more. The reaction to the distilled sentiment measures is attention-specific and sector-

specific as well. Due to the advent of social media, the opinions of small traders that have

been ignored from past till now, do shed some light on stock market activity. The rest of
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the paper is organized as follows. Section 2 describes the data gathering process, summa-

rizes definitions of variables and introduces the di↵erent sentiment lexica. In Section 3, we

present the regression and simulation results using the entire sample and samples grouped

by attention ratio and sectors. The conclusion follows in Section 4.

2 Data

2.1 Text Sources and Stock Data

While there are many possible sources of financial articles on the web, there are also le-

gal and practical obstacles to clear before obtaining the data. The text source Seeking

Alpha, as used in Chen et al. (2014), prohibits any application of automatic programs to

download parts of the website (web scraper) in their Terms of Use (TOS). While the usage

of web scrapers for non-commerical academic research is principally legal, these TOS are

still binding as stated in Truyens and Eecke (2014). For messages on Yahoo! Finance,

another popular source of financial text data used in Antweiler and Frank (2004); Zhang

and Swanson (2010), the TOS are not a hindrance but only limited message history is pro-

vided. As of December 2014, only the last 10,000 messages are shown in each stock specific

message board and this roughly corresponds to a two-month-period for stocks that people

talk frequently about like Apple. In opposition to these two examples, NASDAQ o↵ers a

platform for financial articles by selected contributors including social media websites such

as Seeking Alpha and Motley Fool, investment research firms such as Zacks. Neither do the

TOS prohibit web scraping nor is the history of shown articles limited. We have collected

116,691 articles and corresponding stock symbols, spanning roughly five years from October

20, 2009 to October 13, 2014. The data is downloaded by using a self-written web scraper

to automate the downloading process.

The process of gathering and processing the article data and producing the sentiment

scores can be seen in Figure 1. Firstly, the URLs of all articles on NASDAQ are gath-

ered and every webpage containing an article is downloaded. Each URL can be used in

the next steps as unique identifier of individual articles to ensure that one article is not

used twice due to real-time updates of the NASDAQ webpage. In the pre-processing step,
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Figure 1: Flowchart of data gathering process

the page navigation and design elements of NASDAQ are removed. The specifics of each

article, namely contributor, publication date, mentioned stock symbols, title and article

text, are identified and read out. In case of the article text, the results are stored in in-

dividual text files. This database is available for research purposes at RDC, CRC 649,

Humboldt-Universität zu Berlin.

Furthermore, we collected stock specific financial data. Daily prices and trading volume,

defined as number of shares traded, of all stock symbols that are S&P 500 constituents are

collected from Datastream while Compustat is used to gather the GICS sector for these

stocks.

We consider three stock reaction indicators: log volatility, detrended log trading volume

and return. For stock symbol i and trading day t, we first compute the Garman and Klass

(1980) range-based measure of volatility defined as:

�

2
i,t = 0.511(u� d)2 � 0.019 {c(u+ d)� 2ud}� 0.383c2 (1)

with u = log(PH
i,t )� log(PO

i,t),

d = log(PL
i,t)� log(PO

i,t),

c = log(PC
i,t)� log(PO

i,t),
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with P

H
i,t , P

L
i,t, P

O
i,t, P

C
i,t as the daily highest, lowest, opening and closing stock prices,

respectively. Chen et al. (2006) and Shu and Zhang (2006) show that the Garman and Klass

range-based measure of volatility essentially provides equivalent results to high-frequency

realized volatility. For example, Shu and Zhang (2006) find that an empirical test with

S&P 500 index return data shows that the range-based variances are quite close to the

high-frequency realized variance computed using the sum of 15-minute squared returns.

Andersen and Bollerslev (1997) show that the high-frequency realized volatility is very

sensitive to the selected interval. In addition, it is also a↵ected by the bid/ask spread.

The range-based measure of volatility, on the other hand, avoids the problems caused by

microstructure e↵ects. However, Alizadeh et al. (2002) argue that range based measures

such as the Garman-Klass estimator do not make use of the log-normality of volatility. As

shown by Andersen et al. (2001), log realized volatility is less skewed and less leptokurtic in

comparison to raw realized volatility. Therefore, we use log �i,t instead, which also avoids

regressing on a strictly positive variable in the subsequent analysis.

Following Girard and Biswas (2007), we estimate the detrended log trading volume for

each stock by using a quadratic time trend equation:

V

⇤
i,t = ↵ + �1(t� t0) + �2(t� t0)

2 + Vi,t, (2)

where t0 is the starting point of the time window in consideration, V ⇤
i,t is the raw daily

log trading volume and the residual Vi,t is the detrended log trading volume. In order to

avoid imposing a look-ahead bias, for each trading day t, we use a rolling window of past

120 observations, V ⇤
i,t�120, . . . , V

⇤
i,t�1 with t0 = t� 120, to estimate the coe�cients and get a

one-step ahead out-of-sample forecast V̂ ⇤
i,t, and then calculate Vi,t = V

⇤
i,t� V̂

⇤
i,t. Furthermore,

we calculate the returns as Ri,t = logPC
i,t � logPC

i,t�1.

We focus on 100 stock symbols that are S&P 500 constituents on all 1,255 trading days

between October 20, 2009 and October 14, 2014, that belong to one of nine major GICS

sectors for stock symbols that are S&P 500 constituents on at least one trading day during

this period, and that have the most trading days with articles. The distribution of GICS

sectors among these 100 symbols are given in Table 1. Out of the 116,691 articles collected,

there are 43,459 articles associated with these 100 stock symbols; the number of articles

for these stocks range from 340 to 5,435, and the number of trading days with articles
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ranges from 271 to 1,039. Most of the articles are not about one single symbol but contain

references to several stocks.

GICS Sector No. Stocks

Consumer Discretionary 21

Consumer Staples 9

Energy 6

Financials 12

Health Care 15

Industrials 10

Information Technology 21

Materials 4

Telecommunication Services 2

Table 1: Distribution of GICS sectors among the 100 stock symbols

2.2 Sentiment Lexica and Sentiment Variables

To distill sentiment variables from each article, we use and compare three sentiment lexica.

The first lexicon (BL) is a list of 6,789 sentiment words (2,006 positive and 4,783 negative)

compiled over many years starting from Hu and Liu (2004) and maintained by Bing Liu

at University of Chicago, Illinois. We filter each article with this lexicon and calculate the

proportions of positive and negative words. The second lexicon (LM) is based on Loughran

and McDonald (2011) which is specifically designed for financial applications, and contains

354 positive words, 2,329 negative words, 297 uncertainty words, 886 litigious words, 19

strong modal words and 26 weak modal words. To be consistent with the usage of the

other lexica, we only consider the list of positive and negative words and calculate the

proportions of positive and negative words for each article.

The third lexicon is the MPQA (Multi-Perspective Question Answering) Subjectivity

Lexicon by Wilson et al. (2005) which we later refer to as the MPQA lexicon. This lexicon
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contains 8,222 entries. In order to show the rather tedious distillation process let us look

at six example entries:

type=weaksubj len=1 word1=abandoned pos1=adj stemmed1=n priorpolarity=negative

type=weaksubj len=1 word1=abandonment pos1=noun stemmed1=n priorpolarity=negative

type=weaksubj len=1 word1=abandon pos1=verb stemmed1=y priorpolarity=negative

type=strongsubj len=1 word1=abase pos1=verb stemmed1=y priorpolarity=negative

type=strongsubj len=1 word1=abasement pos1=anypos stemmed1=y priorpolarity=negative

type=strongsubj len=1 word1=abash pos1=verb stemmed1=y priorpolarity=negative

Here type refers to whether the word is classified as strongly subjective, indicating that the

word is subjective in most contexts, or weakly subjective, indicating that the word only has

certain subjective usages; len denotes the length of the word; word1 is the spelling of the

word; pos1 is part-of-speech tag of the word, which could take values adj (adjective), noun,

verb, adverb, or anypos (any part-of-speech tag); stemmed1 is an indicator for whether this

word is stemmed, where stemming refers to the process of reducing inflected (or sometimes

derived) words to their word stem, base or root form; and priorpolarity refers to polarity

of the word, which could take values negative, positive, neutral, or both (both negative and

positive). The MPQA lexicon contains 4913 entries with negative polarity, 2718 entries with

positive polarity, 570 entries with neutral polarity, and 21 entries with both polarity. To

be consistent with the usage of the other two lexica, we only consider positive and negative

polarity.

We first use the NLTK package in Python to tokenize sentences and (un-stemmed)

words in each article, and derive the part-of-speech tagging for each word. We filter each

tokenized article with the list of entries with stemmed1=n in the MPQA lexicon to count

the number of positive and negative word. We then use the Porter Stemmer in the NLTK

package to stem each word and filter each article with the list of entries with stemmed1=y

in the MPQA lexicon. If a word has been assigned polarity in the first filtering step, it will

no longer be counted in the second filtering step. For each article, we can thus count the

numbers of negative and positive words, and divide them by the length of the article to get

the proportions of negative and positive words.

Regardless of which lexicon is used, we use a variation of the approach in Hu and Liu

(2004) to account for sentiment negation. If the word distance between a negation word

(“not”, “never”, “no”, “neither”, “nor”, “none”, “n’t”) and the sentiment word is no larger
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than 5, the positive or negative polarity of the word is changed to be the opposite of its

original polarity.

Among the words that appear at least three times in our list of articles, there are 470

positive and 918 negative words that are unique to the BL lexicon, 267 positive and 916

negative words that are unique to the LM lexicon, and 512 positive and 181 negative words

that are unique to the MPQA lexicon. The LM lexicon contains less unique positive words

than the other two lexica, and the MPQA lexicon contains less unique negative words than

the other two lexica. Table 2 presents the lists of ten most frequent positive words and

ten most frequent negative words that are unique to these three lexica. Since the BL and

MPQA lexica are designed for general purpose and the LM lexicon is designed specifically

for financial applications, the unique words under the BL and MPQA lexica indeed look

more general.

Words in the general-purpose lexica may be misclassified for financial applications; for

example, the word “proprietary” in the negative list of the BL lexicon may refer to things

like “a secure proprietary operating system that no other competitor can breach” and hence

have a positive tone in financial applications, and the word “division” in the negative list

of the MPQA lexicon may only refer to divisions of companies. However, financial analysis

using textual information is unavoidably noisy, and words in the LM lexicon can also be

misclassified; for example, the word “closing” in the negative list of the LM lexicon may

actually refer to a positive event of closing a profitable deal. Also, the LM lexicon does not

take into account financial words such as “debt” and “risks” in the BL lexicon.

We next investigate the pairwise relationship among the above three lexica. Among

the words that appear at least three times in our list of articles, there are 131 positive and

322 negative words that are shared only by the BL and LM lexica, 971 positive and 1,164

negative words that are shared only by the BL and MPQA lexica, and 32 positive and 30

negative words that are shared only by the LM and MPQA lexica. It is not surprising

that the two general-purpose lexica, BL and MPQA, share the most positive and negative

words. Out of the two general-purpose lexica, BL lexicon shares more positive and negative

words with the special-purpose LM lexicon. Table 3 presents the lists of ten most frequent

positive words and ten most frequent negative words that are shared only by two of these
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BL LM MPQA

Positive (470) Negative (918) Positive (267) Negative (916) Positive (512) Negative (181)

Available Debt Opportunities Declined Just Low

(5,836) (12,540) (4,720) (9,809) (17,769) (12,739)

Led Fell Strength Dropped Help Division

(5,774) (9,274) (4,393) (4,894) (17,334) (5,594)

Lead Fool Profitability Late Profit Least

(4,711) (5,473) (4,174) (4,565) (15,253) (5,568)

Recovery Issues Highest Claims Even Stake

(4,357) (3,945) (3,409) (3,785) (13,780) (4,445)

Work Risks Greater Closing Deal Slightly

(3,808) (2,850) (3,321) (3,604) (13,032) (3,628)

Helped Issue Surpassed Closed Interest Close

(3,631) (2,821) (2,464) (3,378) (12,237) (3,105)

Enough Falling Enable Challenges Above Trial

(3,380) (2,768) (2,199) (2,574) (12,203) (2,544)

Pros Aggressive Strengthen Force Accord Decrease

(2,841) (1,796) (2,157) (2,157) (11,760) (2,205)

Integrated Hedge Alliance Unemployment Natural Disease

(2,652) (1,640) (1,842) (2,062) (10,135) (2,001)

Savings Proprietary Boosted Question Potential Little

(2,517) (1,560) (1,831) (1,891) (9,905) (1,775)

Table 2: Lists of ten most frequent positive words and ten most frequent negative words

that are unique to the BL, MPQA or LM lexica, along with their frequencies given in

parentheses.

three lexica. Words shared by the two general-purpose lexica (BL and MPQA) may be

misclassified for financial applications; for example, the word “gross” shared by the negative

lists of these two lexica may refer to “the annual gross domestic product” and have a neutral

tone. However, words shared by the LM lexicon and one of the general-purpose lexica may

also be misclassified; for example, the word “critical” shared by the negative lists of the

BL and LM lexica may appear in sentences such as “mobile devices are becoming critical

tools in the worlds of advertising and market research” and have a positive tone.

The above discussion shows that projections using the three lexica are all noisy, therefore

it is worthwhile to compare results from these projections. For each stock symbol i and
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BL and LM BL and MPQA LM and MPQA

Positive (131) Negative (322) Positive (971) Negative (1164) Positive (32) Negative (30)

Gains Losses Free Gross Despite Against

(7,604) (5,938) (133,395) (8,228) (7,413) (8,877)

Gained Missed Well Risk Able Cut

(7,493) (3,165) (3,0270) (7,471) (5,246) (3,401)

Improved Declining Like Limited Opportunity Challenge

(7,407) (3,053) (24,617) (5,884) (4,398) (1,042)

Improve Failed Top Motley Profitable Serious

(5,726) (2,421) (14,899) (5,165) (3,580) (1,022)

Restructuring Concerned Guidance Crude E�ciency Contrary

(3,210) (1,991) (11,715) (5,109) (2,615) (401)

Gaining Declines Significant Cloud Popularity Severely

(3,150) (1,654) (10,576) (4,906) (1,588) (348)

Enhance Su↵ered Worth Fall Exclusive Despite

(2,753) (1,435) (10,503) (4,732) (1,225) (342)

Outperform Weaker Gold Mar Tremendous Argument

(2,518) (1,288) (9,303) (3,190) (611) (324)

Stronger Critical Support Hard Dream Seriously

(1,657) (1,131) (9,120) (2,957) (581) (240)

Win Drag Recommendation Cancer Satisfaction Staggering

(1,491) (1,095) (8,993) (2,521) (410) (209)

Table 3: Lists of ten most frequent positive words and ten most frequent negative words

that are shared only by BL and LM lexica, only by BL and MPQA lexica, or only by LM

and MPQA lexica, along with their frequencies given in parentheses.

each trading day t, we derive the sentiment variables listed in Table 4 based on articles

associated with symbol i and published on or after trading day t and before trading day

t+ 1.
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Sentiment Variable Description

Ii,t Indicator for whether there is an article.

Posi,t (BL) The average proportion of positive words using the BL lexicon.

Negi,t (BL) The average proportion of negative words using the BL lexicon.

Posi,t (LM) The average proportion of positive words using the LM lexicon.

Negi,t (LM) The average proportion of negative words using the LM lexicon.

Posi,t (MPQA) The average proportion of positive words using the MPQA lexicon.

Negi,t (MPQA) The average proportion of negative words using the MPQA lexicon.

Table 4: Sentiment variables for articles published on or after trading day t and before

trading day t+ 1.

3 Empirical Results

3.1 Entire Sample Results

3.1.1 Descriptive Statistics and Comparison of the Lexical Projections

Table 5 presents summary statistics of the sentiment variables derived using the BL, LM

and MPQA lexical projections for 43,569 symbol-day combinations with Ii,t = 1, where

Ii,t is defined in Table 4 and indicates whether there is an article associated with symbol

i and published on or after trading day t and before trading day t + 1. This number

is slightly di↵erent from the number of articles associated with the 100 selected symbols

(43,459), since an article can be associated with multiple symbols. The positive proportion

is the largest under the MPQA projection, and the smallest under the LM projection. The

negative proportions under the three projections are similar. Polarity in Table 5 measures

the relative dominance between positive sentiment and negative sentiment. For example,

the situation, Posi,t (BL)> Negi,t (BL), accounts for 88.04% of the 43,569 observations.

Note that under each projection, there are a small percentage of the observations for which

Posi,t = Negi,t. Under both the BL and MPQA projections, positive sentiment is more

dominant and widespread than negative sentiment. The LM projection, however, results

in a relative balance between positive and negative sentiment.

To check whether the sentiment polarity actually reflects the sentiment of the articles,
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Variable bµ b� Max Q1 Q2 Q3 Polarity

Posi,t (BL) 0.033 0.012 0.134 0.025 0.032 0.040 88.04%

Negi,t (BL) 0.015 0.010 0.091 0.008 0.014 0.020 10.51%

Posi,t (LM) 0.014 0.007 0.074 0.009 0.013 0.018 55.70%

Negi,t (LM) 0.012 0.009 0.085 0.006 0.011 0.016 40.17%

Posi,t (MPQA) 0.038 0.012 0.134 0.031 0.038 0.045 96.26%

Negi,t (MPQA) 0.013 0.008 0.133 0.007 0.012 0.017 2.87%

Note: Sample mean, sample standard deviation, maximum value, 1st, 2nd and 3rd quartiles,

and polarity. These descriptive statistics are conditional on Ii,t = 1.

Table 5: Summary Statistics for Text Sentiment Variables

Manual BL Label LM Label MPQA Label

Label Pos Neg Neu Pos Neg Neu Pos Neg Neu Total

Pos 56 4 1 41 12 8 61 0 0 61

Neg 9 2 1 0 9 3 9 2 1 12

Neu 22 5 0 10 15 2 26 0 1 27

Total 87 11 2 51 36 13 96 2 2 100

Table 6: Sentiment Classification Results for 100 Randomly Selected Articles

we actually carefully checked and read the contents of 100 randomly selected articles and

manually classified their polarity (positive, negative and neutral), and also use the lexical

projections to automatically classify these articles as follows. If the proportion of positive

words for an article is larger than (or small than, or equal to) the proportion of negative

words for the same article, then this article is automatically classified as positive (or nega-

tive, or neutral). Table 6 reports the results. It appears that the BL and MPQA projections

put too much weight on positive sentiment, and are not powerful in detecting negative sen-

timent. In contrast, the LM sentiment is powerful in detecting negative sentiment, but is

not so good in detecting positive sentiment.

Figure 2 and 3 respectively show the monthly correlation between positive and negative

proportions under two of the three projections. In general, the negative proportions are
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more correlated than positive proportions. Also, the correlation between the BL and LM

projections and that between the BL and MPQA projections are larger than the correlation

between the LM and MPQA projections, which is consistent with the discussion about the

list of words shared by two of the three projections (see Table 3).
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Figure 2: Monthly Correlation between Positive Sentiment: BL and LM (solid), BL and

MPQA (dashed), LM and MPQA (dotted)
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Figure 3: Monthly Correlation between Negative Sentiment: BL and LM (solid), BL and

MPQA (dashed), LM and MPQA (dotted)
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3.1.2 Main Results

Recall from Section 2.1 that we focus on three stock reaction indicators: log volatility

log �i,t, where �

2
i,t is defined in (1), detrended log trading volume Vi,t as in (2) and returns

Ri,t. We first consider analyzing these three indicators with one trading day into the future,

and use the following (separate) panel regressions.

log �i,t+1 = ↵ + �1Ii,t + �2Posi,t + �3Negi,t + �

>
4 Xi,t + �i + "i,t, (3)

Vi,t+1 = ↵ + �1Ii,t + �2Posi,t + �3Negi,t + �

>
4 Xi,t + �i + "i,t, (4)

Ri,t+1 = ↵ + �1Ii,t + �2Posi,t + �3Negi,t + �

>
4 Xi,t + �i + "i,t. (5)

where �i is the fixed e↵ect for stock symbol i satisfying
P

i �i = 0. Xi,t is a vector of control

variables that includes a set of market variables to control for systematic risk such as (1)

S&P 500 index return (RM,t) to control for general market returns; (2) the CBOE VIX index

on date t to measure the generalized risk aversion (V IXt); and a set of firm idiosyncratic

variables such as (3) the lagged log volatility (log �i,t); (4) the lagged return (Ri,t); (5) the

lagged detrended log trading volume (Vi,t), where the lagged dependent variable is used to

capture the persistence and omitted variables. These three indicators essentially have a

triple dynamic correlation, and they have been modeled as a trivariate vector autoregressive

(VAR) model, see Chen et al. (2001) and Chen et al. (2002). Our indicators in Eqs.(4)

to (5) not only have themselves dynamic relationship with their lagged values, but also

are impacted by the other lagged indicators. We incorporate clustered standard errors by

Arellano (1987) as they allow for both time and cross-sectional dependence in the residuals.

Petersen (2009) concludes that standard errors clustered on both dimensions are unbiased

and achieve correctly sized confidence intervals while ordinary least squares standard errors

might be biased in a panel data setting.

To answer our research question (i), if the three lexica are not consistent in their an-

alytic ability to produce stock reaction indicators, we would expect that the value and

the significance of �1, �2 or �3 varies across three lexical projections. For question (ii), if

the positive and negative sentiments have asymmetric impacts, we would expect that �2

and �3 have di↵erent signs or significance. To address question (iii), we would expect that

the value and the significance of �1, �2 or �3 varies with di↵erent attention levels and in
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Variable BL LM MPQA PCA

Panel A: Future Log Volatility log �i,t+1

Ii,t �0.005 (0.009 ) �0.019⇤⇤⇤ (0.007 ) �0.004 (0.010 ) �0.014 (0.010 )

Posi,t �0.396⇤ (0.228 ) 0.156 (0.378 ) �0.517⇤⇤ (0.217 ) �0.210 (0.201 )

Negi,t 0.905⇤⇤⇤ (0.257 ) 0.942⇤⇤⇤ (0.271 ) 1.464⇤⇤⇤ (0.325 ) 1.041⇤⇤⇤ (0.247 )

RM,t �1.507⇤⇤⇤ (0.217 ) �1.501⇤⇤⇤ (0.216 ) �1.500⇤⇤⇤ (0.216 ) �1.505⇤⇤⇤ (0.216 )

V IXt 2.329⇤⇤⇤ (0.085 ) 2.335⇤⇤⇤ (0.085 ) 2.331⇤⇤⇤ (0.086 ) 2.330⇤⇤⇤ (0.085 )

log �i,t 0.242⇤⇤⇤ (0.010 ) 0.242⇤⇤⇤ (0.010 ) 0.242⇤⇤⇤ (0.010 ) 0.242⇤⇤⇤ (0.010 )

Ri,t 1.652⇤⇤⇤ (0.196 ) 1.653⇤⇤⇤ (0.196 ) 1.651⇤⇤⇤ (0.196 ) 1.653⇤⇤⇤ (0.196 )

Vi,t 0.065⇤⇤⇤ (0.006 ) 0.065⇤⇤⇤ (0.006 ) 0.065⇤⇤⇤ (0.006 ) 0.065⇤⇤⇤ (0.006 )

Panel B: Future Detrended Log Trading Volume Vi,t+1

Ii,t 0.040⇤⇤⇤ (0.008 ) 0.027⇤⇤⇤ (0.005 ) 0.046⇤⇤⇤ (0.009 ) 0.035⇤⇤⇤ (0.008 )

Posi,t �0.496⇤⇤⇤ (0.188 ) 0.051 (0.275 ) �0.483⇤⇤ (0.194 ) �0.274⇤ (0.166 )

Negi,t 0.726⇤⇤⇤ (0.257 ) 0.563⇤⇤ (0.251 ) 0.548⇤ (0.290 ) 0.590⇤⇤ (0.232 )

RM,t �3.625⇤⇤⇤ (0.181 ) �3.620⇤⇤⇤ (0.181 ) �3.617⇤⇤⇤ (0.181 ) �3.622⇤⇤⇤ (0.181 )

V IXt �0.492⇤⇤⇤ (0.027 ) �0.487⇤⇤⇤ (0.027 ) �0.487⇤⇤⇤ (0.027 ) �0.489⇤⇤⇤ (0.027 )

log �i,t 0.132⇤⇤⇤ (0.004 ) 0.132⇤⇤⇤ (0.004 ) 0.132⇤⇤⇤ (0.004 ) 0.132⇤⇤⇤ (0.004 )

Ri,t 1.164⇤⇤⇤ (0.126 ) 1.166⇤⇤⇤ (0.126 ) 1.164⇤⇤⇤ (0.126 ) 1.166⇤⇤⇤ (0.126 )

Panel C: Future Returns Ri,t+1

Ii,t 0.000 (0.000 ) 0.000 (0.000 ) 0.000 (0.000 ) �0.000 (0.000 )

Posi,t 0.019⇤⇤⇤ (0.007 ) 0.030⇤⇤⇤ (0.011 ) 0.014⇤ (0.008 ) 0.018⇤⇤⇤ (0.006 )

Negi,t �0.004 (0.008 ) �0.000 (0.010 ) �0.009 (0.010 ) �0.003 (0.008 )

RM,t �0.050⇤⇤⇤ (0.006 ) �0.050⇤⇤⇤ (0.006 ) �0.050⇤⇤⇤ (0.006 ) �0.050⇤⇤⇤ (0.006 )

V IXt 0.011⇤⇤⇤ (0.001 ) 0.011⇤⇤⇤ (0.001 ) 0.011⇤⇤⇤ (0.001 ) 0.011⇤⇤⇤ (0.001 )

log �i,t �0.001⇤⇤⇤ (0.000 ) �0.001⇤⇤⇤ (0.000 ) �0.001⇤⇤⇤ (0.000 ) �0.001⇤⇤⇤ (0.000 )

Ri,t �0.018⇤⇤⇤ (0.007 ) �0.018⇤⇤⇤ (0.007 ) �0.018⇤⇤⇤ (0.007 ) �0.018⇤⇤⇤ (0.007 )

Vi,t 0.000 (0.000 ) 0.000 (0.000 ) 0.000 (0.000 ) 0.000 (0.000 )

⇤⇤⇤ refers to a p value less than 0.01, ⇤⇤ refers to a p value more than or equal to 0.01 and smaller than 0.05, and

⇤ refers to a p value more than or equal to 0.05 and less than 0.1. Values in parentheses are clustered standard

errors.

Table 7: Entire Panel Regression Results

particular that the coe�cient size is larger for higher attention firms. As to question (iv),

we would expect that the coe�cients of sentiment variables are sector-specific.

We will discuss the analysis of di↵erent attention levels and di↵erent sectors respectively

in Sections 3.2 and 3.3, and focus now on the entire sample. The regression results are

given in Table 7. Results in Panel A indicate that the arrival of articles (Ii,t) distilled using

the LM method is strongly negatively related to future log volatility, and that contingent

on arriving articles, the negative sentiment distilled using the three methods is significantly
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positively related to future log volatility, whereas the positive sentiment distilled using the

BL and MPQA methods is significantly negatived related to future log volatility. Results in

Panel B show that contingent on arriving articles, the positive and negative sentiment have

asymmetric strong impacts on future detrended log trading volume: the negative sentiment

across three lexica strongly drives up future detrended log trading volume, whereas the

positive sentiment distilled using the BL and MPQA methods is strongly negatively related

to future detrended log trading volume. The arrival of articles also strongly drives up future

detrended log trading volume across three lexica. These findings support the mixture

of distribution hypothesis originated by Clark (1973). As to future returns in Panel C,

across three lexica and contingent on arriving articles, the positive sentiments are strongly

positively related to future returns whereas the negative sentiment is unrelated to future

returns. This finding sheds light on case against one unpleasant finding from Antweiler

and Frank (2004) in which bullishness is not statistically significant for future return. It is

interesting to note that the coe�cients for the control variables do not vary much across

lexical projections, which indicates that the sentiment measures are not so much correlated

with the control variables and indeed provide incremental information.

It is di�cult to diagnose a consensual performance from Table 7 because each lexicon

may not fully reflect the complete sentiment and may have its own idiosyncratic nature as

being evident from Table 2. To overcome this problem that none of the lexica is perfectly

complete, we design an artificial sentiment index: the first principal component, to capture

a common component of three lexica and to take into account the fact from Figures 2 and

3 that they reveal the shared sentiment. The positive (negative) sentiment index explains

94.14% (92.33%) of the total sample variance. As seen in the last column of Table 7, these

general positive and negative sentiment indices are beneficial to achieve more consistent

and interpretable results. The negative sentiment index spurs the future stock volatility

and trading volume. However, the positive sentiment index has very restrictive influence

on future volatility, and suppresses the trading volume but increases stock returns.
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3.1.3 Sentiment E↵ect with Larger Lags and Neutral Sentiment

Based on the sequential arrival of information hypothesis (hereafter SAIH, Copeland, 1976,

1977), information arrives to traders at di↵erent times and hence relationship with lags

larger than one can exist. Hence, we extend the length of lag under investigation to be two

to five trading days and run regressions using the entire sample. From Table 8, volatility

still reacts to the news in lagged two days but no more earlier than it: lagged two day

negative sentiment extracted by BL and LM are influential, indicating that the SAIH has

been observed here but lagged relationship is restricted to past one and two day while article

was posting. In this sense, the market seems e�cient to incorporate information no longer

than two days. Likewise, we find the negative sentiment in lagged two day still has an

influence on future return. The coe�cients across three lexicon projections are significant

but positive. The coe�cients of negative sentiment projected by the BL and LM methods

are significant but positive. The negative sign, even insignificant, in lagged one day turns

positive in lagged two day to reflect that stock returns revert to mean value, which is

consistent with Antweiler and Frank (2004). Although not significant, the coe�cients’ sign

for lag one indicates a slight negative influence on tomorrow’s stock returns, but return will

revert to its mean value in two days later shown by positive sign as negative news vanish.

The sooner reversion is the more e�cient market is. For the detrended log trading volume,

the lagged e↵ect is relatively insignificant.

Financial market is characterized by the clustering of information (news) arrival, so that

we will see the volatility clustering (Engle, 2004). The clustering of arrival of sentimental

information motivates us to accumulate the sentiment variables from past trading days.

Let Ii,t:(t+h�1), Posi,t:(t+h�1) and Negi,t:(t+h�1) denote the indicator of arrival of articles, the

average proportion of positive words and the average proportion of negative words based

on articles published on or after trading day t and before trading day t + h. Strikingly,

the accumulated sentiment e↵ect projected by BL and LM method on future volatility

shown in Table 9 is very clear and keeps asymmetric, that is, only reacts to negative not to

positive sentiment. Sometimes the sentiment news arrive consecutively and its accumulated

influence lasts up to five trading days (one week). The accumulative sentiment e↵ect can

be also observed on the detrended log trading volume while accumulating to lagged four
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and five days, and on the future return while accumulating to lagged two days.

We also tried to consider the proportion of neutral words and examine its impact. Based

on the neutral proportion defined by MPQA method, in general we find the neutral words

have no influence in stock indicators. The results can be provided upon the request.

BL LM MPQA

Lag h Ii,t Posi,t Negi,t Ii,t Posi,t Negi,t Ii,t Posi,t Negi,t

Panel A: Future Volatility log �i,t+h

h = 2 �0.000 0.000 0.005⇤ �0.000 0.001 0.005⇤ �0.000 0.001 0.004

(0.000 ) (0.002 ) (0.003 ) (0.000 ) (0.003 ) (0.003 ) (0.000 ) (0.002 ) (0.003 )

h = 3 �0.000 �0.001 0.003 �0.000 0.001 0.004 �0.000 0.000 0.003

(0.000 ) (0.002 ) (0.003 ) (0.000 ) (0.003 ) (0.003 ) (0.000 ) (0.002 ) (0.003 )

h = 4 �0.000 0.000 0.002 �0.000 0.002 0.004 �0.000 0.001 0.000

(0.000 ) (0.002 ) (0.003 ) (0.000 ) (0.003 ) (0.003 ) (0.000 ) (0.002 ) (0.003 )

h = 5 0.000 �0.002 0.002 0.000 �0.002 0.003 �0.000 �0.000 0.001

(0.000 ) (0.002 ) (0.003 ) (0.000 ) (0.003 ) (0.003 ) (0.000 ) (0.002 ) (0.003 )

Panel B: Future Detrended Log Trading Volume Vi,t+h

h = 2 0.003 0.112 �0.198 0.004 0.079 �0.158 0.003 0.006 �0.414

(0.006 ) (0.140 ) (0.174 ) (0.005 ) (0.227 ) (0.183 ) (0.007 ) (0.140 ) (0.219 )

h = 3 0.001 �0.011 �0.082 0.001 �0.003 �0.125 0.002 �0.170 �0.188

(0.006 ) (0.140 ) (0.174 ) (0.005 ) (0.227 ) (0.183 ) (0.007 ) (0.140 ) (0.219 )

h = 4 �0.001 0.064 �0.539 0.004 �0.324 �0.556 0.001 �0.020 �0.811

(0.006 ) (0.140 ) (0.488 ) (0.005 ) (0.227 ) (0.536 ) (0.007 ) (0.140 ) (0.479 )

h = 5 0.008 �0.208 �0.410 �0.004 �0.022 �0.096 0.001 �0.069 �0.416

(0.006 ) (0.140 ) (0.301 ) (0.005 ) (0.227 ) (0.183 ) (0.007 ) (0.140 ) (0.278 )

Panel C: Future Returns Ri,t+h

h = 2 �0.000 0.000 0.016⇤ �0.000 �0.003 0.024⇤⇤ �0.000 0.001 0.026⇤⇤

(0.000 ) (0.007 ) (0.009 ) (0.000 ) (0.012 ) (0.010 ) (0.000 ) (0.008 ) (0.012 )

h = 3 0.000 �0.001 �0.001 0.000 �0.010 0.005 0.001 �0.011 0.003

(0.000 ) (0.008 ) (0.009 ) (0.000 ) (0.012 ) (0.010 ) (0.000 ) (0.008 ) (0.012 )

h = 4 �0.000 0.001 0.016⇤ �0.000 0.010 0.006 �0.000 �0.003 0.011

(0.000 ) (0.007 ) (0.009 ) (0.000 ) (0.012 ) (0.010 ) (0.000 ) (0.008 ) (0.012 )

h = 5 0.000 �0.011 0.009 0.000 �0.018 0.002 0.000 �0.013 0.014

(0.000 ) (0.007 ) (0.009 ) (0.000 ) (0.012 ) (0.010 ) (0.000 ) (0.009 ) (0.012 )

⇤⇤⇤ refers to a p value less than 0.01, ⇤⇤ refers to a p value more than or equal to 0.01 and smaller than 0.05, and ⇤ refers to a p value

more than or equal to 0.05 and less than 0.1. Values in parentheses are standard errors.

Table 8: Entire Panel Regression Results with Larger Lags (Noncumulative Articles)
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BL LM MPQA

Lag h Ii,t:(t+h�1) Posi,t:(t+h�1) Negi,t:(t+h�1) Ii,t:(t+h�1) Posi,t:(t+h�1) Negi,t:(t+h�1) Ii,t:(t+h�1) Posi,t:(t+h�1) Negi,t:(t+h�1)

Panel A: Future Volatility log �i,t+h

h = 2 �0.000 �0.001 0.006⇤⇤ �0.000 �0.001 0.007⇤⇤ �0.000 �0.001 0.004

(0.000 ) (0.002 ) (0.002 ) (0.000 ) (0.003 ) (0.003 ) (0.000 ) (0.002 ) (0.003 )

h = 3 �0.000 �0.002 0.006⇤⇤⇤ �0.000⇤ �0.001 0.008⇤⇤⇤ �0.000 �0.001 0.005

(0.000 ) (0.002 ) (0.002 ) (0.000 ) (0.003 ) (0.003 ) (0.000 ) (0.002 ) (0.003 )

h = 4 �0.000 �0.001 0.006⇤⇤⇤ �0.000⇤⇤ �0.000 0.008⇤⇤⇤ �0.000 �0.001 0.003

(0.000 ) (0.002 ) (0.002 ) (0.000 ) (0.003 ) (0.003 ) (0.000 ) (0.002 ) (0.003 )

h = 5 0.000 �0.003 0.006⇤⇤ �0.000 �0.002 0.008⇤⇤⇤ �0.000 �0.002 0.003

(0.000 ) (0.002 ) (0.002 ) (0.000 ) (0.003 ) (0.003 ) (0.000 ) (0.002 ) (0.003 )

Panel B: Future Detrended Log Trading Volume Vi,t+h

h = 2 0.006 �0.016 �0.133 0.008⇤ �0.148 �0.187 0.002 0.006 �0.253

(0.006 ) (0.125 ) (0.156 ) (0.004 ) (0.203 ) (0.169 ) (0.006 ) (0.126 ) (0.198 )

h = 3 0.006 �0.072 �0.111 0.005 �0.189 �0.078 0.001 �0.063 �0.174

(0.005 ) (0.123 ) (0.153 ) (0.004 ) (0.198 ) (0.167 ) (0.006 ) (0.124 ) (0.193 )

h = 4 0.008 �0.310⇤⇤ �0.096 0.010⇤⇤ �0.486⇤⇤ �0.293⇤ 0.004 �0.138 �0.473

(0.005 ) (0.152 ) (0.124 ) (0.004 ) (0.200 ) (0.168 ) (0.006 ) (0.125 ) (0.327 )

h = 5 0.014⇤⇤ �0.242⇤ �0.408⇤ 0.008⇤ �0.428⇤⇤ �0.228 0.009 �0.193 �0.646

(0.006 ) (0.126 ) (0.246 ) (0.004 ) (0.202 ) (0.171 ) (0.007 ) (0.126 ) (0.493 )

Panel C: Future Returns Ri,t+h

h = 2 �0.001⇤ 0.013⇤⇤ 0.009 �0.000 0.019⇤ 0.010 �0.001⇤⇤ 0.013⇤ 0.009

(0.000 ) (0.007 ) (0.008 ) (0.000 ) (0.011 ) (0.009 ) (0.000 ) (0.007 ) (0.010 )

h = 3 �0.000 0.009 0.004 �0.000 0.013 0.007 �0.000 0.004 0.007

(0.000 ) (0.007 ) (0.008 ) (0.000 ) (0.011 ) (0.009 ) (0.000 ) (0.007 ) (0.010 )

h = 4 �0.000 0.008 0.012 �0.000 0.017 0.009 �0.001 0.005 0.016

(0.000 ) (0.007 ) (0.008 ) (0.000 ) (0.011 ) (0.009 ) (0.000 ) (0.007 ) (0.010 )

h = 5 �0.000 0.000 0.010 �0.000 0.004 0.006 �0.000 �0.003 0.019

(0.000 ) (0.007 ) (0.008 ) (0.000 ) (0.011 ) (0.009 ) (0.000 ) (0.007 ) (0.010 )

⇤⇤⇤ refers to a p value less than 0.01, ⇤⇤ refers to a p value more than or equal to 0.01 and smaller than 0.05, and ⇤ refers to a p value

more than or equal to 0.05 and less than 0.1. Values in parentheses are standard errors.

Table 9: Entire Panel Regression Results with Larger Lags (Cumulative Articles)

3.1.4 Monte Carlo Simulation based on Entire Sample Results

The text sentiment e↵ects, as reported in Table 7, allow us deeper insights and analysis.

More precisely we may address the important question of asymmetric reactions to the

given sentiment scales. In order to do so we employ Monte Carlo techniques to investigate

di↵erent facets of the sentiment e↵ects. The components of this Monte Carlo study are: (1)

to simulate the appearance of articles with presumed probabilities; (2) to provide a realistic

set of scenarios regarding the frequency and content (positive v.s. negative) of articles; (3)

to obtain volatility induced by the generated article (using Table 7); (4) to demonstrate

the impact of synthetic text on future volatility; (5) to visualize and test an asymmetry
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e↵ect as formulated in research question (ii).

The simulation scenarios (for each variable involved) are summarized briefly as follows.

We employ a Bernoulli random variable Ii,t indicating that articles arrive at a specific

frequency pi, where for each individual stock symbol i, pi is estimated by the fraction of days

with at least one relevant article. Given the outcome of this article indicator, we generate

the corresponding positive and negative proportions through a copula approach using the

conditional inversion method as described in Frees and Valdez (1998). We follow the two-

step approach that is widely mentioned in literature such as Patton (2006), Hotta et al.

(2006) and Di Clemente and Romano (2004). In the first step, the marginal distributions

are modeled by their corresponding empirical distribution function (edf) to avoid imposing

a parametric distribution; in the second step, a Gaussian copula is estimated to take

the inherent dependence among variables into account. For the sentiment variables, this

approach is applied to each firm separately since each firm has a di↵erent pi and only

days with at least one article relevant to the firm are included in the estimation. To

simulate market returns RM,t and individual returns Ri,t for all 100 symbols, we first filter

these variables by estimated MA(1)-GARCH(1,1) processes and standardize the residuals

by dividing them by estimated standard deviations. We then apply the copula approach

to the standardized residuals, and the simulated standardized residuals are transformed

into simulated values of RM,t or Ri,t by multiplying them by the median of the priorly

estimated standard deviations for the market or the specific firm i. The company specific

fixed e↵ects �i are not incorporated as the simulated volatility for di↵erent firms is otherwise

not graphically comparable. For the other control variables, CBOE VIX index V IXt is fixed

at its mean value over the sample period, and past log volatility and past detrended log

trading volume are not used in the simulation.

Figure 4 demonstrates, for one simulation, the association between the negative and

positive proportions as distilled via our three projection methods and their simulated fu-

ture volatility outcomes. We estimate a local linear regression model (solid line) and

corresponding 95% uniform confidence bands based on Sun and Loader (1994). Both are

estimated using Locfit by Loader (1999) in the R environment. Loader and Sun (1997)

discuss the robustness of this approach and conclude that the results are conservative but
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reasonable for heavy tailed error distributions. The bandwidth is automatically chosen

by using the plug-in selector according to Ruppert et al. (1995). We limit the the visible

area to sentiment values between 0 and 0.04 as well as volatility values between 1.45 and

1.65 to make the di↵erent lexica visually comparable. Nevertheless, all simulated values

are utilized in the estimation of the regression curve and confidence bands. The clustered

points lying on the vertical axis indicate that there is absence of articles. The range of this

cluster from 0.77 to 2.57 is caused by the impact from the simulated control variables as

well as the idiosyncratic impact captured by the residual term.

Apparently, an asymmetry e↵ect becomes visible. One observes that the slopes of the

volatility curves given negative sentiment is mainly positive while the curves for positive

sentiment seem to be rather flat and even go down in the case of BL and MPQA meth-

ods. One can also compare the confidence bands to address the question whether negative

sentiment has a significantly higher e↵ect on the volatility than positive sentiment. The

confidence bands of Pos and Neg do not overlap for sentiment values between 0.023 and

0.056 for BL, between 0.017 and 0.039 for LM and between 0.023 and 0.05 for MPQA.

This asymmetry e↵ect parallels the well known imbalance of future volatility given good

v.s. bad news. The leverage e↵ect depicts a negative relation between the lagged return and

the risk resulting from bad news that causes higher volatility. Black (1976) and Christie

(1982) find that bad news in the financial market produce such an asymmetric e↵ect on

future volatility relative to good news. This leverage e↵ect has also been shown by Bekaert

and Wu (2000) and Feunou and Tédongap (2012). In the same vein, Glosten et al. (1993)

introduce GARCH with di↵ering e↵ects of negative and positive shocks taking into account

the leverage e↵ect.

3.2 Does Attention Ratio matter?

While people post their text to express their opinions, or the comments to other articles,

they are undoubtedly paying attention to the firm mentioned by their articles. In this

respect article posting is a revealed attention measure. In fact, in our collected 43,459

articles across 100 stocks, it is obvious that not every firm shares the attention equivalently.

To reflect these di↵erences, we define the attention ratio for a symbol as the number of

24

D
ow

nl
oa

de
d 

by
 [H

um
bo

ld
t-U

ni
ve

rs
it&

au
m

l;t
 z

u 
Be

rli
n 

U
ni

ve
rs

it&
au

m
l;t

sb
ib

lio
th

ek
] a

t 0
0:

57
 0

8 
Fe

br
ua

ry
 2

01
6 



0.00 0.01 0.02 0.03 0.04

1.
45

1.
50

1.
55

1.
60

1.
65

BL Negative Proportion, h = 0.001

BL
 S

im
ul

at
ed

 V
ol

at
ilit

y

0.00 0.01 0.02 0.03 0.04

1.
45

1.
50

1.
55

1.
60

1.
65

LM Negative Proportion, h = 0.001
LM

 S
im

ul
at

ed
 V

ol
at

ilit
y

0.00 0.01 0.02 0.03 0.04

1.
45

1.
50

1.
55

1.
60

1.
65

MPQA Negative Proportion, h = 0.001

M
PQ

A 
Si

m
ul

at
ed

 V
ol

at
ilit

y

0.00 0.01 0.02 0.03 0.04

1.
45

1.
50

1.
55

1.
60

1.
65

BL Positive Proportion, h = 0.002

BL
 S

im
ul

at
ed

 V
ol

at
ilit

y

0.00 0.01 0.02 0.03 0.04

1.
45

1.
50

1.
55

1.
60

1.
65

LM Positive Proportion, h = 0.001

LM
 S

im
ul

at
ed

 V
ol

at
ilit

y

0.00 0.01 0.02 0.03 0.04

1.
45

1.
50

1.
55

1.
60

1.
65

MPQA Positive Proportion, h = 0.003
M

PQ
A 

Si
m

ul
at

ed
 V

ol
at

ilit
y

Figure 4: Monte Carlo Simulation based on Entire Sample Results

days with articles divided by the total number of days in the sample period, 1,255. The

symbol “AAPL” (Apple Computer Inc.) attracts the most attention with an attention

ratio of 0.818. Articles involving AAPL arrive in social media almost every day (81.8

days over 100 days). However, the symbol “TRV” (Travelers Companies, Inc.) has the

lowest attention ratio, 0.204, which means that one finds a related article every five trading

days, i.e. one week. Di↵erent from the “indirect” attention measures from stock indicators

such as trading volumes, extreme returns or price limits, this attention measure is a kind of

“direct” measure of investor attention, and shares the same idea as the Search Volume Index

(SVI) constructed by Google. Beyond the SVI, our attention can be further projected to

“Positive” or “Negative” attention. In our main research question (ii), we are interested in

whether the well known asymmetric response (bad vs. good news) is appropriately reflected

in the lexical projections. Assuming that investors are more risk-averse, they should be

more aware of negative articles and pay more attention to them.

Attention is one of the basic elements in traditional asset pricing models. The conven-

tional asset pricing models assume that information is instantaneously incorporated into
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asset prices when it arrives. The basic assumption behind this argument is that investors

pay “su�cient” attention to the asset. Under this condition, the market price of asset

should be very e�cient in incorporating any relevant news. In this aspect, the high atten-

tion firms should be more responsive to the text sentiment distilled from the articles, and

their market prices should reflect this e�ciency. As such, the high attention samples stand

on the side of the traditional asset pricing models, and the findings from them are expected

to support the e�cient market hypothesis. However, attention in reality is a scarce cog-

nitive resource, and investors have limited attention instead (Kahneman, 1973). Further

research on this topic from Merton (1987), Sims (2003) and Peng and Xiong (2006) con-

firms that the limited attention can a↵ect asset pricing. The low attention firms with very

limited attention may ine↵ectively or insu�ciently reflect the text sentiment information,

so that their corresponding stock reactions could be greatly bounded. This argument is in

accordance with the fact that the limited attention causes stock prices to deviate from the

fundamental values (Hong and Stein, 1999), implying a potential arbitrage opportunity.

3.2.1 Descriptive Statistics for the Firms with di↵erent Attention Ratios

Grouping the samples by their attention ratios and examining the responses from di↵erent

attention groups may o↵er a clue to the aforementioned conjectures. The criterion used

to group the sample firms is based on the quantiles of the attention ratio. Firms whose

attention ratios are above the 75% quantile (0.3693) are grouped as “extremely high”, be-

tween 50% (0.3026) and 75% quantiles as “high”, between 25% (0.2455) and 50% quantiles

as “median”, and lower than 25% quantile as “low”. For each attention group, Table 10

reports across lexical projections the mean values of positive (µPos) and negative (µNeg)

sentiment proportions, calculated by averaging Posi,t or Negi,t over all relevant symbol-day

combinations, the proportion of relevant symbol-day combinations with Negi,t > Posi,t, the

average attention ratio, and the average number of days with articles, calculated by averag-

ing the number of days with articles over all relevant symbols. The “extreme high” groups

receive an average attention ratio of 55.14%, indicating on average these firms have been

looked at every two days. By contrast, the low attention group with an average attention

ratio of 21.97% receives attention at weekly frequency (5 trading days). By comparing the

26

D
ow

nl
oa

de
d 

by
 [H

um
bo

ld
t-U

ni
ve

rs
it&

au
m

l;t
 z

u 
Be

rli
n 

U
ni

ve
rs

it&
au

m
l;t

sb
ib

lio
th

ek
] a

t 0
0:

57
 0

8 
Fe

br
ua

ry
 2

01
6 



magnitude of µNeg, one observes that investors are inclined to express negative sentiments

in the “extreme high” group. One may conclude therefore that higher attention is coming

with a “negative text”, or inversely speaking: the negative article creates higher attention.

This is evident for example in the case of the LM method, where the proportion of symbol-

day combinations with dominance of negative sentiment is 46% in the “extremely high”

group. For the constituents in this particular attention group, we find on average 691 days

with articles observed over a total of 1255 sample days (5 years), which is almost three

times the average number of days with articles for the low attention group.

BL LM MPQA Attention Number of Days

Attention µPos µNeg Neg > Pos µPos µNeg Neg > Pos µPos µNeg Neg > Pos Ratio with Articles

Extremely high 0.032 0.016 0.119 0.013 0.014 0.460 0.038 0.013 0.027 0.551 691

High 0.032 0.015 0.113 0.013 0.012 0.403 0.038 0.013 0.031 0.343 430

Median 0.035 0.014 0.083 0.014 0.011 0.339 0.039 0.012 0.027 0.273 356

Low 0.036 0.014 0.086 0.015 0.011 0.333 0.040 0.012 0.031 0.220 264

Table 10: The Summary Statistics for di↵erent Attention Ratio Groups

3.2.2 The Results of Attention Analysis

The central interest of this research focuses on understanding to which extent distilled news

flow and its derived parameters (like attention) impacts the relation between text sentiment

and stock reactions. We employ panel regression designed for the given attention groups,

and therefore each panel regression equally comprises of 25 sample firms. The results are

displayed in Table 11. For the “extremely high” group, the text sentiment carries a major

and highly significant influence on future volatility consistently across the three lexical

projections. As a caveat though please note that the sentiment e↵ect on volatility shown in

Panel A is exclusive for negative news contingent on arriving articles, the stock volatility

rarely reacts to positive or optimistic news. Panel B summarizes the attention analysis

on the detrended log trading volume. For the “extremely high” group, in the LM and

MPQA projection methods, arrival of articles (Ii,t) brings relevant information, and creates

a growing trading volume, especially when it comes with negative news. The corresponding

analysis for stock returns are also reasonable. The stock returns of “high” group react

clearly to the sentiments, contingent on arriving articles, they rise for optimistic news

27

D
ow

nl
oa

de
d 

by
 [H

um
bo

ld
t-U

ni
ve

rs
it&

au
m

l;t
 z

u 
Be

rli
n 

U
ni

ve
rs

it&
au

m
l;t

sb
ib

lio
th

ek
] a

t 0
0:

57
 0

8 
Fe

br
ua

ry
 2

01
6 



and decline for pessimistic consensus. In the case of LM method, the significant positive

coe�cient ofNegi,t for the “extremely high” group suggests that the market participants act

according to the uncertain market hypothesis developed by Brown et al. (1988) and based

on the overreaction hypothesis by Bondt and Thaler (1985). Here, the market participants

set new prices before the full range of the news content is resolved. In case of unfavorable

news, the investors set stock prices significantly below their conditional expected values

and thus, react risk-averse. On the subsequent day, the mispriced stock price will revert to

its true value.

The collected empirical evidence so far suggests that the distilled news of high attention

firms e↵ectively drive their stock volatilities, trading volumes and returns. They are highly

responsive to the sentiment across lexical projections.
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BL LM MPQA

Attention Ii,t Posi,t Negi,t Ii,t Posi,t Negi,t Ii,t Posi,t Negi,t

Panel A: Future Volatility log �i,t+1

Low 0.020 �0.736 �0.074 0.010 �1.027 �0.195 0.016 �0.655 0.275

(0.025 ) (0.666 ) (0.766 ) (0.016 ) (1.027 ) (0.788 ) (0.029 ) (0.633 ) (0.866 )

Median 0.004 �0.690 1.107⇤⇤ �0.012 �0.308 1.126⇤ 0.008 �0.872⇤ 1.767⇤⇤

(0.016 ) (0.449 ) (0.446 ) (0.016 ) (0.778 ) (0.630 ) (0.019 ) (0.515 ) (0.707 )

High �0.016 �0.460 1.324⇤⇤⇤ �0.046⇤⇤⇤ 0.967 1.806⇤⇤⇤ �0.019 �0.636⇤⇤ 2.548⇤⇤⇤

(0.017 ) (0.442 ) (0.475 ) (0.013 ) (0.724 ) (0.615 ) (0.016 ) (0.315 ) (0.662 )

Extremely �0.010 0.027 0.784⇤⇤ �0.013 0.483 0.747⇤⇤ �0.002 �0.182 0.909⇤⇤

High (0.014 ) (0.257 ) (0.371 ) (0.013 ) (0.457 ) (0.300 ) (0.017 ) (0.284 ) (0.433 )

Panel B: Future Detrended Log Trading Volume Vi,t+1

Low 0.054⇤⇤ �0.817 0.312 0.044⇤⇤⇤ �0.923 �0.109 0.049⇤ �0.433 �0.197

(0.024 ) (0.502 ) (0.665 ) (0.014 ) (0.657 ) (0.556 ) (0.029 ) (0.567 ) (0.796 )

Median 0.052⇤⇤⇤ �0.851⇤⇤ 1.116⇤ 0.032⇤⇤⇤ �0.199 0.861 0.062⇤⇤⇤ �0.754⇤⇤ 0.449

(0.014 ) (0.398 ) (0.600 ) (0.010 ) (0.535 ) (0.601 ) (0.013 ) (0.342 ) (0.689 )

High 0.036⇤⇤⇤ �0.198 0.554 0.021⇤ 0.815⇤ 0.447 0.046⇤⇤⇤ �0.358 0.419

(0.009 ) (0.299 ) (0.459 ) (0.011 ) (0.487 ) (0.451 ) (0.016 ) (0.385 ) (0.559 )

Extremely 0.023 �0.242 0.958⇤⇤ 0.017⇤ 0.299 0.796⇤ 0.032⇤⇤ �0.408 1.084⇤⇤

High (0.014 ) (0.336 ) (0.416 ) (0.008 ) (0.521 ) (0.429 ) (0.014 ) (0.299 ) (0.427 )

Panel C: Future Returns Ri,t+1

Low 0.000 0.012 0.009 0.000 0.021 �0.001 0.000 0.010 �0.016

(0.001 ) (0.022 ) (0.023 ) (0.000 ) (0.030 ) (0.023 ) (0.001 ) (0.021 ) (0.032 )

Median �0.001 0.024⇤ 0.009 0.000 0.035⇤ �0.022 �0.001 0.034⇤ 0.007

(0.001 ) (0.012 ) (0.018 ) (0.000 ) (0.019 ) (0.024 ) (0.001 ) (0.018 ) (0.024 )

High 0.000 0.028⇤⇤ �0.034⇤⇤⇤ 0.001⇤⇤ 0.038⇤ �0.046⇤⇤ 0.000 0.024⇤⇤ �0.044⇤⇤⇤

(0.000 ) (0.012 ) (0.011 ) (0.000 ) (0.022 ) (0.018 ) (0.001 ) (0.011 ) (0.016 )

Extremely 0.000 0.017 0.004 �0.000 0.031 0.033⇤⇤ 0.001⇤ �0.006 0.009

High (0.000 ) (0.012 ) (0.012 ) (0.000 ) (0.021 ) (0.013 ) (0.000 ) (0.011 ) (0.016 )

⇤⇤⇤ refers to a p value less than 0.01, ⇤⇤ refers to a p value more than or equal to 0.01 and smaller than 0.05, and ⇤ refers to a p value

more than or equal to 0.05 and less than 0.1. Values in parentheses are clustered standard errors.

Table 11: Attention Analysis: The Impact on future Volatility, Trading Volume and Re-

turns

Given the high attention received, any relevant information including the articles made

by individual traders has been fully incorporated into their asset prices and dynamics.

Due to their e�ciency, the article posting and discussing today can predict stock reactions

tomorrow. For lower attention firms, one cannot make such a strong claim. Investors may

think those firms are negligible and may therefore underreact to the available information.

The underreaction from limited attention is likely to cause stock prices to deviate from

the fundamental values, and an arbitrage opportunity may emerge. Our evidence is in line

with Da et al. (2011) in which they support the attention-induced price pressure hypothesis.
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By using the SVI from Google as attention measure, they find stronger attention-induced

price pressure among stocks in which individual investor attention matters most. Beyond

their study, we find that high attention is usually accompanied with negative articles, and

negative articles contribute more to attention and cause more stock reactions, supporting

an asymmetric response.

It is interesting to note that the coe�cients for the control variables do not vary much

across lexical projections in each attention group (results not shown here), which indicates

that for each attention group, the sentiment measures are not so much correlated with the

control variables and provide incremental information.

3.2.3 Monte Carlo Simulation based on Attention Analysis

Like Section 3.1.4, we present a realistic Monte Carlo scenario for di↵erent attention groups

using the results from Table 11. We keep the parameter settings of the data generation

and the calculation of confidence bands as before. Figure 5 summarizes the associations

between the negative proportions and the simulated future volatilities across di↵erent at-

tention groups. The scatter plots of the high attention panel are quite dense, whereas those

of the low attention group are sparser due to its lower frequency of articles. Interestingly,

the higher volatilities of high attention firms are prominently driven by negative text sen-

timent, but have an inverse relationship with positive sentiment. Through comparison of

the confidence bands we can conclude for all three lexica that the e↵ect of negative sen-

timent significantly di↵ers from that of positive sentiment. The regions where the bands

do not overlap are quite large for BL (0.022 - 0.056) and MPQA (0.020 - 0.053) but much

smaller for LM (0.019 - 0.024). The associations in the low attention panel are somewhat

ambiguous. Indeed, we can note that the confidence bands for positive and negative sen-

timent overlap over the whole range of sentiment value and across all three lexica. These

simulations support the estimations in Table 11 with a strong link found in the “extremely

high” and “high” attention groups and a preeminent asymmetric response. The firms that

have been paid high attentions are more sensitive to the text sentiment than negligible

firms. The sentiment e↵ect together with the observable asymmetry are highly influen-

tial on stock returns, volatilities and trading volumes. In this sense, their stock reactions
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are more responsive to the opinions in social media. In other words, they are also more

vulnerable to signals from small investors.

3.3 Sector Analysis

The stock reactions that we analyze in relation to text sentiment can be further segmented

into sector specific responses. Given a growing body of literature that has suggested that

industry plays a role in stock reactions (see Fama and French (1997), Chen et al. (2007),

Hong et al. (2007)), we investigate whether this relation is industry-specific in nature. A

detailed analysis of sector specific reactions would go far beyond the scope of this paper and

is in fact the subject of research by Chen et al. (2015). We therefore only highlight a few

insights from lexical sentiment for the business sectors. We ignore the “Telecommuication

Services” sector since it only contains two stock symbols. Descriptive statistics for the

other 8 sectors are displayed in Table 12 across the three lexical projections. It is of

interest to study the variation of the proportion of negative over positive sentiments across

the 8 sectors. One observes that consistently over all lexical projections the financial sector

has the highest average discrepancy in negative and positive proportion. By contrast the

health care sector has (except for MPQA) the lowest average discrepancy. Investors show

their discrepant opinions or disagreement in a very extreme case of Neg > Pos = 0.5,

implying that 50% of investors stand on one side and the rest of 50% stand on the opposite

side. Table 12 indicates that the financial sector related texts are more divergent in opinions

than others and that apparently the health care sector does not receive such adverse opinion

positions as the other sectors do. The investors who invest the stocks in health care sector

are more likely to reach their shared concensus or convergent agreement.
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Figure 5: Monte Carlo Simulation based on Attention Analysis Results
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BL LM MPQA Attention

Sector µPos µNeg Neg > Pos µPos µNeg Neg > Pos µPos µNeg Neg > Pos Ratio

Consumer Discretionary 0.034 0.014 0.088 0.014 0.011 0.346 0.038 0.012 0.030 0.332

Consumer Staples 0.034 0.014 0.099 0.014 0.012 0.365 0.037 0.013 0.025 0.324

Energy 0.028 0.015 0.152 0.011 0.011 0.467 0.038 0.014 0.033 0.370

Financials 0.032 0.019 0.195 0.013 0.018 0.594 0.038 0.015 0.045 0.413

Health Care 0.035 0.014 0.059 0.014 0.011 0.344 0.039 0.014 0.031 0.287

Industrials 0.035 0.012 0.069 0.013 0.011 0.355 0.041 0.011 0.018 0.336

Information Technology 0.033 0.015 0.101 0.014 0.012 0.373 0.038 0.023 0.012 0.364

Materials 0.034 0.014 0.097 0.013 0.013 0.498 0.039 0.031 0.013 0.287

Note: This table reports, for the BL, LM and MPQA methods, the mean values of positive (µPos) and (µNeg) negative

sentiment proportions as well as the proportion of relevant symbol-day combinations with dominance of negative sen-

timent. For each sector, an article is accumulated only if a firm appeared in this article belongs to this sector. The

attention ratio for each sector is calculated as the number of days with articles related to this sector divided by the total

number of days in the sample period.

Table 12: Summary statistics in each sector

The attention also vary with the sectors. The evidence that financials sector has at-

tracted the highest attention with an attention ratio of 0.413 may be attributed to (1) the

investors’ widespread involvement in this industry because we all need to keep a relation-

ship with banks to deposit our money, trade for securities or some financial reasons; (2) the

outbreak of the US subprime crisis and the European sovereign debt crisis have brought the

highest attention to this sector; (3) their sensitivity on changes in the economy, monetary

policy and regulatory policy. The health care sector, however, is much less attractive and

this could be explained by a stable demand and reduced sensitivity to economic cycles.

Given these observations we will now continue our analysis of stock reactions for these two

sectors only, and leave a bundle of interesting issues to further research.

To address the important question of whether there is a sector dependent stock reac-

tions, we further analyze how the text sentiment a↵ects, as reported in Table 13, the future

volatility, trading volume and return. In order to do so we employ the panel regression

(as described in (4)-(5)) and report the results in Table 13. The variable Ii,t was used to

indicate arrival of articles on this sector. Contingent on arriving articles, the three senti-

ment projections in financial sectors yielded significant and positive e↵ects on future log

volatility from negative proportions, meaning that increasing the negative text sentiments

will result in higher volatility. The exclusive response to negative sentiment in financial
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sector indeed is in line with our entire panel evidence. However, the finding in the health

care sector is too insignificant to claim it. Potentially, investor inattention for the health

care sector may cause a significant mispricing on the stocks. Investors possibly neglect the

news of this sector posted on social media, or this sector has a slow information di↵usion

that could lead to a delayed reaction.

BL LM MPQA

Sector Ii,t Posi,t Negi,t Ii,t Posi,t Negi,t Ii,t Posi,t Negi,t

Panel A: Future Volatility log �i,t+1

Financials �0.023 �0.052 1.075⇤⇤ �0.025 0.275 1.027⇤⇤⇤ �0.025 �0.143 1.816⇤⇤⇤

(0.026 ) (0.319 ) (0.435 ) (0.027 ) (0.924 ) (0.259 ) (0.029 ) (0.503 ) (0.586 )

Health Care 0.031 �0.426 �0.509 0.009 0.052 �0.130 0.001 �0.118 0.854

(0.026 ) (0.522 ) (0.891 ) (0.023 ) (1.138 ) (0.921 ) (0.024 ) (0.595 ) (0.783 )

Panel B: Future Detrended Log Trading Volume Vi,t+1

Financials 0.037⇤ �0.334 0.015 0.017 1.110 �0.313 0.054⇤⇤⇤ �0.747⇤⇤ 0.049

(0.020 ) (0.494 ) (0.527 ) (0.015 ) (0.766 ) (0.476 ) (0.015 ) (0.305 ) (0.536 )

Health Care 0.031 0.110 �0.314 0.022 0.603 �0.042 0.037 �0.104 �0.211

(0.023 ) (0.436 ) (0.846 ) (0.018 ) (0.863 ) (0.837 ) (0.025 ) (0.443 ) (0.873 )

Panel C: Future Returns Ri,t+1

Financials �0.001 0.034⇤ 0.028⇤⇤ �0.000 0.030 0.042⇤⇤ 0.001 0.003 0.013

(0.001 ) (0.017 ) (0.014 ) (0.001 ) (0.033 ) (0.016 ) (0.001 ) (0.020 ) (0.019 )

Health Care 0.000 �0.000 0.008 0.000 0.006 0.015 0.000 0.006 �0.011

(0.000 ) (0.008 ) (0.018 ) (0.000 ) (0.019 ) (0.018 ) (0.001 ) (0.012 ) (0.022 )

⇤⇤⇤ refers to a p value less than 0.01, ⇤⇤ refers to a p value more than or equal to 0.01 and smaller than 0.05, and ⇤ refers to a p value

more than or equal to 0.05 and less than 0.1. Values in parentheses are standard errors.

Table 13: Sector analysis: The Impact on future Volatility, Trading Volume and Returns

The trading volume is another stock reaction we may attribute to text sentiments. Us-

ing the BL and the MPQA projection method, we find that the arrival of article brings

relevant information and therefore stimulates the trading volume. It is interesting to note

that contingent on arriving articles, the negative sentiment distilled using the BL and LM

methods is significantly positively related to stock returns on the next trading day. To

investigate the reason for this, we also run a contemporaneous regression for the finan-

cials sector (results not shown) and found a significantly negative impact of the negative

sentiment distilled using the BL and MPQA methods on contemporaneous returns Ri,t,

and the size of the coe�cients is about twice of that in lagged regression in Table 13. This

might suggest that the market participants monitor financial companies quite carefully and

overreact in case of bad news. On the next day, the participants fully recognize the scope
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of the news and reverse part of their prior decisions, and hence the negative sentiment on

trading day t has positive impact on returns on trading day t+ 1. This is also in line with

the finding in Kuhnen (2015) which suggests that that being in a negative domain leads

people to form overly pessimistic beliefs about stocks. After the 2008 financial crisis and

the bankruptcy of some major financial companies, this might be the case for the financials

sector.

From these analysis, we know that investors indeed pay di↵erent attentions to sectors

they are of interest, and their attentions e↵ectively govern the equity’s variation. Attention

constraints in some sectors may a↵ect investors’ trading decisions and the speed of price

adjustments.

4 Conclusion

In this paper, to analyze the reaction of stocks’ future log volatility, future detrended log

trading volume and future returns to social media news, we distill sentiment measures

from news using two general-purpose lexica (BL and MPQA) and a lexicon specifically

designed for financial applications (LM). We demonstrate that these sentiment measures

carry incremental information for future stock reactions. Such information varies across

lexical projections, across groups of stocks that attract di↵erent level of attention, and

across di↵erent sectors. The positive and negative sentiments also have asymmetric impact

on future stock reaction indicators. A detailed summary of the results is given in Table 14

in the Supplementary Material. There is no definite picture for which lexicon is the best.

This is an important contribution of our paper to the line of research on textual analysis

for financial market. Besides, the advanced statistical tools that we have utilized, including

panel regression and confidence bands, are novel contributions to this line of research.
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5 Supplementary Material

Table 14 summarizes all the results from entire panel sample analysis, attention analysis

and sector analysis. Take the “BL” row in Panel A as an example. Arrival of articles (Ii,t)

and the positive sentiment distilled using the BL method (Posi,t) has no significant impact

on future volatility log �i,t+1 in entire sample analysis, attention analysis or sector analysis;

the negative sentiment distilled using the BL method (Negi,t) is significantly positively

related to future volatility in entire sample analysis and for the “Extremely High” group in

attention analysis, and is significantly negatively related to future volatility for the “Health

Care” sector in sector analysis.

Lexicon Type of Analysis Ii,t Posi,t Negi,t

Panel A: Future Volatility �i,t+1

BL

Entire Sample / Negative Positive

Attention Analysis / / Positive for “Median”, “High” and “Extremely High”

Sector Analysis / / Positive for “Financials”

LM

Entire Sample Negative / Positive

Attention Analysis Negative for “High” / Positive for “Median”, “High” and “Extremely High”

Sector Analysis / / Positive for “Financials”

MPQA

Entire Sample / Negative Positive

Attention Analysis / Negative for “Median” and “High” Positive for “Median”, “High” and “Extremely High”

Sector Analysis / / Positive for “Financials”

Panel B: Future Detrended Log Trading Volume Vi,t+1

BL

Entire Sample Positive Negative Positive

Attention Analysis Positive for “low”, “Median” and “High” Negative for “Median” Positive for “Median” and “Extremely High”

Sector Analysis Positive for “Financials” / /

LM

Entire Sample Positive / Positive

Attention Analysis Positive for all groups Positive for “High” Positive for “Extremely High”

Sector Analysis / / /

MPQA

Entire Sample Positive Negative Positive

Attention Analysis Positive for all groups Negative for “Median” Positive for “Extremely High”

Sector Analysis Positive for “Financials” Negative for “Financials” /

Panel C: Future Returns Ri,t+1

BL

Entire Sample / Positive /

Attention Analysis / Positive for “Median” and “High” Negative for “High”

Sector Analysis / Positive for “Financials” Positive for “Financials”

LM

Entire Sample / Positive /

Attention Analysis Positive for “High” Positive for “Median” and “High” Negative for “High”, positive for “Extremely High”

Sector Analysis / / Positive for “Financials”

MPQA

Entire Sample / Positive /

Attention Analysis Positive for “Extremely High” Positive for “Median” and “High” Negative for “High”

Sector Analysis / / /

The signs of the significant coe�cients are given, with a significance level of 0.1.

Table 14: Summary of the Results
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Abstract We examine what are the common factors that determine systematic credit
risk, and estimate and interpret these factors. We also compare the contributions of
common factors in explaining the changes of credit default swap spreads during the
pre-crisis, the crisis and the post-crisis period; there is evidence to suggest that the
eigenstructures across these three sub-periods are distinct. Furthermore, we examine
whether the observable economic variables are in fact the underlying latent factors
and analyze the predictability in the factors that capture the time-variation of credit
default swap spreads.
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been observed more recently. This raises the question whether there are common fac-
tors determining systematic credit risk across different entities, different credit ratings,
different countries and different maturities. In fact, an increase in systematic credit
risk will harm the benefit from a well-diversified bond portfolio. An examination into
common credit risk factors explores the nature of correlated defaults. Several illustra-
tions for correlated defaults were proposed by Das et al. (2007). Firstly, firms may be
exposed to common or correlated risk factors. Secondly, the event of default by one
firm may be contagious. Thirdly, learning from default may generate default corre-
lation. This study examines what are the common factors that determine systematic
credit risk, and estimates and interprets the common risk factors. In further steps, we
estimate the market prices of risk factors and test their significance. Based on factor
models, we propose various time series properties for common factors and idiosyn-
cratic components, and examine which one can produce the best forecasting to the
dynamics of credit default swap (CDS) spreads.

Understanding how corporate defaults are correlated is particularly important for
the risk management of corporate debt portfolio, since banks have to retain greater
capital to survive default losses if defaults are heavily clustered in time. An investiga-
tion of the sources and degree of default clustering is also crucial for the rating and risk
analysis of structured credit products, such as collateralized debt obligations (CDOs)
and options on portfolios of default swaps that are exposed to correlated default.
Several attempts have been made in the literature to address this issue. The first one
incorporates correlated default into the reduce-form credit risk modeling (Das et al.
2006, 2007). The second research stream assumes that default probabilities depend on
firm-specific and market-wide factors. Typically, portfolio loss distributions are based
on the correlating influence from such observable market-wide factors. A number of
potentially observable factors frommacroeconomic fundamentals have been proposed
to analyze correlated defaults (Collin-Dufresne et al. 2001; Benkert 2004; Ericsson
et al. 2009). The third research stream, however, extracts some latent/unobservable
factors mainly from the principal components analysis (PCA)method to avoid a possi-
ble downward bias from estimating tail loss (Duffie et al. 2009; Cesare andGuazzarotti
2010; Anderson 2008). Aswe know, not all relevant risk factors are potentially observ-
able by econometricians (Duffie et al. 2009).

Recent research claims that common latent factors increasingly and apparently
explain the time-variation of credit risk, especially during the financial crisis. Ander-
son (2008) finds that a very high fraction of weekly variations in the implied default
intensity is explained by a single common factor. Cesare and Guazzarotti (2010) found
that CDS spread changes were increasingly driven by a common factor during the US
subprime crisis. This paper goes beyond these two studies by additionally interpreting
the common latent factors and modelling their time-variation patterns. We demon-
strate this by using a very extensive CDS data set, encompassing different maturities,
different credit ratings, different entities and different countries, and produce robust
common factors with a convincing interpretation.

We compare the contributions of common factors in explaining the CDS spreads
changes during the pre-crisis, the crisis and the post-crisis period. We find that the
fraction of CDS variation explained by the first principal component increases from
58.7 to 72.3% during the crisis period, and then declines to 47% after the crisis. The
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results suggest that during the crisis, the changes of CDS spreads are increasingly
driven by common factors and less by idiosyncratic components. Furthermore, the
eigenstructures across three sub-periods are distinct based on the result of a likeli-
hood ratio test that compares the common principal components model against the
unrestricted model indicates. To interpret the estimated factors, we investigate the
association between the latent factors and the observed economic variables.

Having applied the factor model to CDS spreads, we model the time-variation of
common factors to examine the predictability of CDS spreads. This prediction will
certainly benefit investors to hedge, speculate and arbitrage in the credit markets. We
propose various factor models and compare their out-of-sample forecasting perfor-
mance. Testing their equal predictive ability is also required to showwhether relatively
outperformance is statistically significant.

The remainder of this research is organized as follows. The next section describes
the data we have used. Section 3 presents the factor models used in this study, and
provides an economic interpretation for the estimated factors. In Sect. 4, we propose
several factor specifications to predict the times-variation of CDS spreads; evaluating
their out-of-sample forecasting performances and testing their equal predicting ability
are both conducted in this section.

2 Data description

Credit default swap data are collectable from Markit, an aggregator of CDS pricing
data from the leading broker-dealers. In terms of our focus on the commonality of CDS
spreads, we are interested in the CDS indices rather than single name reference entity
CDS contracts tomitigate the idiosyncratic components and liquidity risk.Our concern
coincides with Driessen et al. (2003) in studying the common factors in international
bond returns. They suggest that bond portfolio data is the preferred method to clear
idiosyncratic risk embedded in individual bonds.Markit provides a detailedCDS index
series, for example, theMarkit CDX indices comprise themost liquid baskets of names
covering North American Investment Grade and High Yield single name credit default
swaps with various maturities, while the Markit iTraxx indices comprise of the most
liquid names in the rest of regions such as Europe, Asia, Australia and Japan. Each
index rolls biannually inMarch andSeptember. Credit events that trigger settlement for
individual components are bankruptcy and failure to pay, and are subsequently settled
via credit event auctions. For traders, trading CDS indices is more attractive since they
are allowed to trade large sizes and confirm all trades electronically. Stronger support
fromdealers and industry participants has prominently enhanced liquidity in allmarket
conditions. The transparency of CDSmarkets has gradually improved since the default
of Lehman (Avellaneda and Cont 2010). Central clearing and increased reporting of
CDS trades to data repositories are important steps towards increased transparency,
which regulators intend to use for monitoring and enhancing market stability. As such,
they are quite acceptable as a representative benchmark of the overall market credit
risk.

The indices quoted on a spread basis are selected by its regions: North Amer-
ican (CDX), Europe (iTraxx EU), by maturities: 5 and 10-year, by credit ratings:
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Table 1 Summary statistics for entire sample period, pre-, during and post-crisis period

Entire Pre-crisis Crisis Post-crisis

Mean SD Mean SD Mean SD Mean SD

CDX.IG.5Y 0.47 18.68 −0.21 2.51 1.71 16.65 −0.01 32.43

CDX.IG.10Y 0.17 7.02 −0.16 2.64 0.83 11.58 −0.15 2.98

CDX.HY.5Y 0.46 53.34 −1.06 10.62 3.54 83.20 −1.05 46.44

CDX.HY.10Y 0.56 60.96 −0.49 11.90 1.25 98.24 −0.60 44.91

EU.IG.5Y 0.17 10.21 −0.19 1.63 0.42 15.14 0.48 10.74

EU.IG.10Y 0.35 8.62 −0.11 2.06 1.02 13.22 0.24 7.86

EU.HY.5Y 0.86 38.60 −1.65 11.86 4.43 58.11 0.43 36.13

EU.HY.10Y 1.06 29.35 −1.08 13.15 4.93 43.30 −0.44 26.18

The entire sample period covers from Oct 2004 to June 2011. The indices are selected by its regions: North
American (CDX), Europe (iTraxx EU), by maturities: 5- and 10-year, by credit rating: investment-grade
(IG) and high-yield grade (HY). We have 134 weekly observations in the pre-crisis period (from Oct 2004
to May 2007), 104 observations in the crisis period (from June 2007 to July 2009) and 76 observations in
the post-crisis period (from Aug 2009 to June 2011). The changes of CDS indices are quoted as basis points
and their mean and standard deviation are reported

investment-grade (IG) and high-yield grade (HY). From October 2004 to June 2011,
these eight indices with different regions, maturities and credit ratings will be ana-
lyzed in the subsequent sections. The US subprime crisis period is emphasized since
the function of money markets in the U.S. was severely impaired in the summer of
2007, and then even further following the collapse of Bear Sterns in mid-March 2008
and the bankruptcy of Lehman Brother in September 2008. The turmoil from June
2007 to July 2009 is referred to a crisis period. After mapping the trading date among
eight CDS indices, each index has 315 weekly observations: 134 in the pre-crisis
period (from October 2004 to May 2007), 104 in the crisis period (from June 2007 to
July 2009) and 76 in the post-crisis period (from August 2009 to June 2011). Table 1
summarizes the descriptive statistics for the entire sample period, the pre-crisis, the
crisis and the post-crisis period. During the crisis period, the average changes of CDS
spreads are all apparently positive, and are extremely volatile.

The time-variations of CDS indices as displayed in Fig. 1 exhibit a changing
dynamic. One noticeable feature is a high level of comovement across various matu-
rities and credit ratings, which motivates the study of common factors. Specially, in
Fig. 1 the apparent spike during the outbreak of the U.S. subprime crisis shows an
inversion of the risk structure. For a given maturity, a high-yield (HY) index should
be higher than an investment-grade (IG) one to compensate for a higher default risk
taken by investors. The default risk premium between a HY and an IG may expand
during the financial crisis to reflect a shift in investor risk appetite. Due to this chang-
ing risk attitude in a distressed time, risk-averse investors require a higher default risk
premium. Pan and Singleton (2008) claimed that a comovement effect in the CDS
markets is partly caused by a shift in investor risk appetite, especially for the turbulent
period.
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Fig. 1 Time series plots of CDX index and iTraxx EU index

Figure 1 also shows the term structure of CDSmarkets. Normally, the slope of CDS
term structure is upward in which the longer-term CDS spreads are higher than the
respective shorter-term ones due to a greater risk-taking in longer maturity contracts.
In this regard, the term structure should never be inverted. But, the term structure did
occasionally invert, especially during the financial crisis (Pan and Singleton 2008). For
an upcoming crisis, the demand for short-term CDS contracts is appealing. To cover
a higher hedging cost faced by protection sellers, the bid-ask spreads of short-term
contracts should be comparable to those of longer-dated contracts. As shown in Fig. 1,
we have consistent evidence in the CDS term structure of an inverted slope in the crisis
period and an upward slope in the rest of periods.

3 Factor representation of CDS spreads change

3.1 Model specifications

Let Sit be the observed change of CDS spreads for the i th cross-section unit at time t ,
for i = 1, . . . , N , and t = 1, . . . , T . The factor model for given i th unit is:
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Sit = Ftλi + eit (1)

where Ft is a vector of common factors and is not observable, λi is a vector of factor
loadings associatedwith Ft , and eit is the idiosyncratic component of Sit . It is assumed
that factors and idiosyncratic disturbances are mutually uncorrelated, E (Ft , eit ) = 0.
Obviously, Eq. (1) is the static factor representation of the change of the CDS spreads.
For the forecasting exercise in subsequent sections, we will invoke the assumptions
about the cross-sectional and temporal dependence in the idiosyncratic components.

The asymptotic principal components technique established by Stock and Watson
(2002) andBai andNg (2002) can be used to consistently estimate the common factors.
One starts with an arbitrary number of factors k (k < min {N , T }) and estimates λk

and Fk by solving:

(
λk, Fk

)
= arg min

Λk ,Fk
(NT )−1

N∑

i=1

T∑

t=1

(
Sit − Fk

t λ
k
i

)2
(2)

subject to the normalization of either ΛkTΛk/N = Ik with Λk =
[
λk1 . . . λ

k
N

]T
or

FkTFk/T = Ik . One solution of this optimization is given by
(
Λ̂k, F̂k

)
, where Λ̂

k
is

√
N times the eigenvectors corresponding to the k largest eigenvalues of the N × N

matrix STS where S is a T by N dimension matrix comprising N units until time T ,

and F̂
k = SΛ̂

k
/N .

3.2 Common principal components in the different sub-periods

In Table 2 we present the results for the factor model using the CDS index data, and
find that a four-factor model in general explains up to 90.5% of the variance in the
changes of CDS spreads. The first factor explains 63% of the variance of the change
of CDS spreads, the explained variance of the second, third and fourth factors are 12.1,
8, and 7.4%. When turning to three sub-periods, the first factor explains 58.7% of the
variance in the pre-crisis period, 72.3% of the variance in the crisis period and 47% of
the variance in the post-crisis period. The fraction of CDS variation explained by the

Table 2 Explained variance by principal component analysis

% variance explained Total variance
explained (%)

Factor 1 (%) Factor 2 (%) Factor 3 (%) Factor 4 (%)

Entire 63.0 12.0 8.0 7.5 90.5

Pre-crisis 58.7 13.3 9.0 7.6 88.6

Crisis 72.3 12.4 5.4 4.0 94.1

Post-crisis 47.0 16.5 12.6 10.2 86.5

For entire sample period and three sub-periods, this table presents the proportion of the total variance of
the changes of CDS spreads explained by the variation of a given factor
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first principal component increases from 58.7% before the crisis to 72.3% during the
crisis period, but declines to 47% after the crisis. The CDS spreads during the crisis are
increasingly driven by common factors and less by idiosyncratic components, which
is evident by an increased explanatory power up to 94.1%.

To formally test whether the eigenstructures across three sub-periods are distinct,
we perform a likelihood ratio test comparing a restricted (the Common Principal Com-
ponents (CPC)model) against the unrestrictedmodel (themodel where all covariances
are treated separately). The likelihood ratio statistic is given by

T
(n1,n2,...,nh)=−2log L(Σ̂1,...,Σ̂h)

L(S1,...,Sh)

(3)

where Σi = $%i$
T, i = 1, . . . , h, is a positive definite N × N covariance matrix

for every i , $ = (γ1, . . . , γN ) is an orthogonal N × N transformation matrix and
Λi = diag (ϑi1, . . . ,ϑi N ) is the matrix of eigenvalues where all ϑi are assumed to
be distinct. The CPC is motivated by the similarity of the covariance matrices in the
h-sample problem. The basic assumption of CPC is that the space spanned by the
eigenvectors is identical across several groups, whereas variances associated with the
components are allowed to vary (Flury 1988).

Let S be the sample covariance matrix of an underlying N -variate normal distribu-
tion with sample size n. Then the distribution of nS has n − 1 degree of freedom and
is known as the Wishart distribution.

nS ∼ WN ((, n − 1)

Hence, for Wishart covariance matrices Si , i = 1, . . . , h with sample size ni , the
likelihood function can be expressed as

L (Σ1, . . . ,Σh) = C
h∏

i=1

exp
[
tr

{
−1
2
(ni − 1)Σ−1

i Si

}]
|Σi |−

1
2 (ni−1) (4)

where C is a constant independent of the parametersΣi . See Härdle and Simar (2011),
inserting (4) to (3), the likelihood ratio statistic is obtained and has a χ2 distribution
as min(ni ) tends to infinity with

h
{
1
2
N (N − 1)+ 1

}
−

{
1
2
N (N − 1)+ hN

}
= 1

2
(h − 1) N (N − 1)

degree of freedom. Using h = 3 sub-periods sample covariance matrix data, the
calculation yields 897.54 for the likelihood ratio statistic, which corresponds to a zero
p-value for the χ2 (56) distribution. Hence, the CPC model is rejected against the
unrestricted model, where the PCA model is applied to each sub-period separately.
The finding indicates that the eigenstructures across three sub-periods, pre-, during
and post-crisis, are dramatically distinct. There is no common eigenstructures (e.g. of
CPC type) for these periods. Indeed, the outbreak of subprime credit crisis has led to
a structure change in the commonality of CDS markets.
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3.3 Interpreting the factor loadings

To get a better feel from the estimated factor loadings in Table 3, we plot the estimated
factor loadings against credit rating andmaturity in Fig. 2. The characteristics of factors
seem intuitive and interpretable. For factor 1, the factor loadings all have the same sign
and same magnitude across maturities and ratings. It can therefore be interpreted as
a level effect. The CDS spreads, resembled in bond spreads, are sensitive to the level
and movement of the interest rate. As pointed out by Longstaff and Schwartz (1995),
the static effect of a higher spot rate increases the risk-neutral drift of the firm value
process, which reduces the probability of default and in turn, reduces the CDS spreads.
Further empirical evidence is supported by Duffie (1998) and the above references.

Factor 2 can be interpreted as a region effect. The factor loadings of CDX series
are higher than those of iTraxx Europe family. Since the PCA technology joins the
U.S. and European CDS indices, at least one factor should capture the fundamental

Table 3 Estimated factor loadings

Entire Crisis

PC1 PC2 PC3 PC4 PC1 PC2 PC3 PC4

CDX.IG5Y 0.337 0.921 0.353 −0.079 0.267 0.666 0.481 0.148

CDX.IG10Y 0.308 0.278 −0.697 0.431 0.305 0.518 −0.391 −0.581

CDX.HY5Y 0.379 −0.039 −0.178 −0.522 0.384 −0.127 −0.389 0.153

CDX.HY10Y 0.389 −0.066 0.002 0.221 0.376 −0.136 −0.454 0.118

EU.IG5Y 0.372 −0.025 −0.208 −0.585 0.377 0.032 −0.004 0.590

EU.IG10Y 0.401 −0.063 0.017 0.251 0.382 0.014 0.207 0.086

EU.HY5Y 0.385 −0.175 0.406 −0.003 0.362 −0.360 0.339 −0.148

EU.HY10Y 0.380 −0.184 0.387 0.285 0.351 −0.347 0.315 −0.475

This table reports the estimated factor loadings for the entire sample and for the crisis period
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Fig. 2 The association between factor loadings, credit ratings and maturities
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or economic differences between the regions. It is not so straightforward to interpret
factor 3 in the CDX case, but factor 3 in the iTraxx Europe case may be related to a
volatility effect. In Table 3 andFig. 2,wefind that for iTraxxEurope, the factor loadings
of HY are higher than those of IG. The evidence that the HY spreads aremore sensitive
to volatility than IG ones is well documented in the literature. The contingent–claims
approach implies that the debt claim has features similar to a short position in a put
option. Since option values increase with volatility, increased volatility increases the
probability of default. Finally, we interpret factor 4 as a term structure effect. This is
certainly clear because in Table 3 and Fig. 2, the sign of loading of 5-year CDS spreads
is always negative while that of 10-year CDS spreads is positive. This is in accordance
with Pan and Singleton (2008) who found that the term structure of CDS spreads is
associated with a default risk premium. An increase in the default risk premium pushes
up the long-term CDS spreads more than the short-term CDS spreads, leading to a
steeper term structure of CDS spreads.

We admit that the information from Fig. 2 is insufficient to label the latent factors,
therefore we have regressed the latent factors on the economic variables and find that
it’s not easy to label the factors by the chosen economic variables.1 The difficulty is
attributable to that the chosen economic variables such as the change of interest rate, the
change of yield curve, the credit spread change and the change of VIX level generally
exhibit the indistinguishable contributions or explanatory powers for the latent factors.
In our findings, the latent factors are linear combination of the economic variables.
These economic variables are highly correlated since they are governed by the same
latent factors. Applying them together into the regression may result in a collinearity
problem and bias our interpretation. For instance, in our case the change of VIX level
almost dominates across the four factors. Eichengreen et al. (2012) claim that the exact
association of a economic variable with any one of the latent factors is hard to define
due to non-uniqueness of the factor estimates. Although our interpretation for Fig. 2.
is not testable, the information from Fig. 2 helps to propose the observed economic
variables in the subsequent analysis.

3.4 Connecting latent factors with observed variables

To realize the degree of association between the unobservable factors and observable
economic variables, and to answer the question of interest; whether some of the observ-
ables are in fact underlying latent factors, we apply the method developed by Bai and
Ng (2006) to determine if the observed and the latent are identical. The observed indi-
cator with a stronger coherence with the latent factors is a good proxy. Two statistical
criteria, the R2 and the noise-to-signal ratio, are used to examine whether any of the
economic series yields the same information that is contained in the factors.

Let Gt be an J -dimensional vector of observed economic variables. The basic idea
behind the test developed by Bai and Ng (2006) is to investigate whether any of the
economic series can be represented as a linear combination of the latent factors by

1 We appreciate the suggestion from the reviewer and the editor.
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permitting a limited degree of noise in this association, thus

G j,t = βT
j Ft + ς j,t (5)

where β j is estimated by the OLS regression, and ς j,t is denoted as the error term.
The above equation yields the predicted value Ĝ j,t = β̂T

j F̂t . R
2 ( j) is designed to

measure the association between G j,t and Ĝ j,t , and defined as:

R2 ( j) =
v̂ar

(
Ĝ j

)

v̂ar
(
G j

) (6)

where v̂ar (·)denotes the sample variance and v̂ar
(
Ĝ

)
is computed byusing the sample

analog of the factors’ asymptotic covariance matrix. R2 ( j) is bounded between zero
and one. It is equal to one if they have a high association, and is close to zero in the
absence of correlation. A second measure NS(j), called the noise-to-signal ratio, is
constructed as:

NS ( j) = v̂ar
(
ς̂ j

)

v̂ar
(
G j

) (7)

A larger NS(j) thus indicates an important departure of G j from the latent factors.
Normally, the magnitude of R2 ( j) is reverse to that of NS ( j) since the sum of R2 ( j)
and NS ( j) should be equal to one.

As further observed economic variables in Eq. (5), one may include the change
of the interest rate level, change of the credit spread, change of the interest rate term
structure and the change of the stock index volatility. These variables are suggested by
Collin-Dufresne et al. (2001), Benkert (2004) and Ericsson et al. (2009) since they are
important determinants of credit assets. We limit our attention to the U.S. variables
because the corresponding European variables are highly correlated with the U.S.
series. The 1-year Treasury bond rate represents the level of the risk-free interest rate
in the U.S. The difference between the 10-year Treasury bond rate and the 1-year
Treasury bond rate is used to evaluate the slope of the yield curve in the U.S. The
credit spread in the U.S. is the difference between the average Moody’s Baa yield and
the average Moody’s Aaa yield of U.S. corporate bonds. We also employ the CBOE
VIX index to measure generalized risk aversion.

Table 4 shows the association of the first four factors with the chosen economic
variables. For the entire sample period, the R2 criterion gives a value of 0.3 and 0.375
on the credit spread and VIX index, respectively. The four factors are more correlated
with the credit spread andVIX, and less correlated with the level and the term structure
of the interest rate. This finding is accordance with Cao et al. (2010), Cremers et al.
(2008) and Collin-Dufresne et al. (2001). The implication is that perceptions of credit
risk were shaped by the common factors that are best summarized by credit spread
and a generalized risk aversion. In other words, the result suggests that a higher credit
spread or a higher generalized risk aversion does actually translate into systematic
credit risk. Analogically, the sub-period analysis reports that credit spread and VIX
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Table 4 The association between the latent factors and the economic variables

Entire Pre-crisis During crisis Post-crisis

Level 0.156 0.082 0.252 0.122

Credit spread 0.300 0.294 0.418 0.286

Yield curve 0.132 0.009 0.160 0.245

VIX 0.375 0.267 0.350 0.590

The R2 criterion defined in Eq. (5) is calculated and reported. The observed economic variables include
the 1-year Treasury bond rate that represents level of the risk-free interest rate in U.S., the credit spread
measured as the difference between the average Moody’s Baa yield and the average Moody’s Aaa yield of
U.S. corporate bonds, the slope of the yield curve as the difference between the 10-year treasury bond rate
and the 1-year treasury bond rate, CBOE VIX index to measure the generalized risk aversion

are relatively correlated with the latent factors prior to the crisis. During the crisis,
the R2 criterion even gives a value of 0.418 on credit spread, implying that the latent
factors are best summarized by credit spread. The post-crisis analysis reveals that
a generalized risk aversion with 0.59 R2 criterion is highly associated to common
factors.

3.5 Factor risk prices

How the market prices the factor risk inherent in the CDS spreads is of interest,
since one can deduce how the market compensates investors, often referred to as the
protection sellers, for bearing credit risk. If we fit the factor model into the framework
of the arbitrage pricing theory (Ross 1976), the factor model for an N -dimensional
returns on CDS indices of different credit ratings, maturities and regions, Rt , at time
t can be presented as

Rt = λΥ + λFt + et (8)

The arbitrage pricing theory states that the cross-section returns, Rt , are determined by
K common factors Ft through the N×K factor loadingmatrixλ. Given the assumption
that the unobservable common factor Ft and error term et are i.i.d. distributed, the
elements of the K -dimensional vector Υ can be interpreted as the market prices of
factor risk. Eq. (8) implies that the expected CDS returns satisfy

E (Rt ) = λΥ (9)

Given the estimated factor loadings λ, we can estimate the prices of factor riskΥ by the
generalized methods of moments (GMM) (Hansen 1982) on the moment restrictions
in Eq. (9). This is equivalent to a GLS regression of the average changes of CDS
indices on the factor loading matrix λ. Since we adopted a four-factor model in the
previous sections, the GMM method enables us to estimate the prices of factor risk
in this model and test their significance. As shown in Table 5, the market prices of a
four-factor model are all significant, and the first two factors exhibit a promising size

123



856 C. Y.-H. Chen, W. K. Härdle

Table 5 Estimation of factor risk prices

Four-factor model Five-factor model

Factor 1 −0.0521 (−3.873) −0.0498 (−4.957)

Factor 2 0.0121 (4.023) 0.0156 (4.940)

Factor 3 0.0055 (2.902) 0.0052 (4.393)

Factor 4 0.0009 (2.575) 0.0009 (4.240)

Factor 5 0.0005 (0.895)

J -statistic 1.206 (0.876) 1.445 (0.842)

R2 of GLS 95.42% 95.89%

The market price of factor risk is estimated using the GMM, and the value in parentheses is t-statistic. The
GMM J -statistics and the associated p values in parentheses are also presented to test the over identifying
restrictions. The R2 of GLS regression evaluates the goodness-of-fit of the factor models

in their risk prices. If we consider a five-factor model, the risk prices are significant
in the first four factors but insignificant in the fifth factor.

Table 5 also contains the GMM J -statistic, a test statistic for testing the over iden-
tifying restrictions in Eq. (9), and the corresponding p value. The J -statistic acts as
an omnibus test statistic for model miss-specification. In a well specified over identi-
fying model with valid moment conditions, the J -statistic behaves like a Chi-square
random variable with degrees of freedom equal to the number of over identifying
restrictions. Typically, a large J -statistic indicates a miss-specified model. In Table 5,
the J -statistics in the both four- and five-factor models cannot reject the null hypothe-
sis, implying that bothmodels arewell-specified. Furthermore, the four- andfive-factor
models provide a good fit, asmeasured by the R2 of theGLS regression, which is equal
to 95.42 and 95.89%, respectively. The results from J -statistic, R2 of the GLS and
the significance of factor prices suggest that the four-factor model is efficient enough
to measure the CDS returns.

4 Method of asymptotic principal components and forecast performance

4.1 Competing factor models

According to this study and previous literature, the common latent factors extracted
from factor models have proven their representative ability for systematic credit risk.
Thismotivates us to examinewhethermodelling the time series properties of the factors
can improve our ability to forecast the time-variation of CDS index changes. Acting
as the benchmark model, the static model in Eq. (1) is too restricted to accommodate
the realistic time-variation. The latent factors it produces can only follow one of
the few plausible, realistic patterns that do actually appear in the credit markets. The
generalizedmodels inwhich the factors could bedefined in a generalway are developed
to minimize the gap, and should entail less restrictions.

The dynamic factor model, a simple vector autoregressive (VAR) specification, is
the first shown to achieve a remarkable fit of the factors’ dynamics. By permitting a
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VAR specification in the factors with autoregressive parameters B, this model captures
the common dynamics in the cross-sectional analysis. Additionally, the error term,
ut , from a VAR equation in Eq. (10) is conditionally heteroscedastic and follows a
GARCH(p, q) process.

Sit = Ftλi t + eit(
I − B1L − · · · − Bh Lh

)
Ft = ut (10)

ut = H1/2
t ηt (11)

vech (Ht) = c+
q∑

j=1

A jvech
(
ut− juTt− j

)
+

p∑

j=1

D jvech
(
H t− j

)
(12)

where i = 1, . . . , N , t = 1, . . . , T, Ft is T × k and λi t is k × 1. ηt is white noise.
To take into account the possibility that the idiosyncratic errors in Eq. (1) may entail

serial and cross-section correlation, the dynamic factor with dependent error model is
built with additional assumptions on the idiosyncratic components shown in Eqs. (13),
(14) and (15).

Sit = Ftλi t + eit(
I − B1L − · · · − Bh Lh

)
Ft = ut

ut = H1/2
t ηt

vech (Ht) = c+
q∑

j=1

A jvech
(
ut− juTt− j

)
+

p∑

j=1

D jvech
(
H t− j

)

(1 − αL) eit = υi t + θ1υi+1,t + θ2υi−1,t (13)

υi t = σi tηi t (14)

σ 2
i t = δ0 + δ1σ

2
i,t−1 + δ2υ

2
i,t−1 (15)

The idiosyncratic components, eit , in Eq. (13) are serially correlated, with an AR(1)
coefficient α, and weakly cross-section correlated with the coefficients θ1 and θ2. The
innovations υi t are conditionally heteroscedastic and follow a GARCH(1,1) process
with parameters δ0, δ1, and δ2 in Eq. (15).

In practice,when factors are constructedover a longperiod, somedegree of temporal
instability is inevitable. Following Stock andWatson (2002), we model this instability
as stochastic drift in the factor loadings, and the factor loading evolves through time
with a serial correlation ρi shown in Eq. (16).

λi t = ρiλi,t−1 + (c/T ) ζi t (16)

where ζi t is white noise. Equation (16) implies that factor loadings for the i th variable
shift by an amount, (c/T ) ζi t , in time period t . In addition, it keeps a relationship
with its previous level which is measured by ρi . The time-varying factor loading
model ideally incorporates all of the features covering from Eqs. (10) to (16). Whether
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this model is more superior due to its abundant generalization will be examined with
respect to its predictive ability, and will be analyzed in the subsequent section.

4.2 Out-of-sample forecasting performance

Having proposed the competing models developed by more general ways, we take an
explicit out-of-sample forecasting approach to evaluate their predicting performance
regarding the CDS dynamics. Using the previous 1-year weekly data, we estimate
the parameters and produce a 1-week ahead forecast. After estimation, we find that
the dynamic of the CDS index captured by these factor models exhibits significant
time-variation and persistence, and we summarize their forecasting performance in
Table 6. The most outperformed one can be potentially applied to price credit risk
accurately and achieve a better credit risk management.

To assess an out-of-sample forecasting performance, for each proposed model we
compute each day t , the following four measures (a) mean squared error (MSE)
between the observed change of CDS spreads and the predicted change of CDS spreads
from the competing factor models; (b) mean absolute error (MAE); (c) mean correct
prediction (MCP) of the direction of change in CDS spreads. The MCP exhibits the
average numbers from N CDS indices are correctly forecast based on their signs of
changes; (d) the trace of R2 of the multivariate regression of Ŝ onto S,

R2
Ŝ,S

= Ê ∥ PS Ŝ ∥2
/
Ê ∥ Ŝ ∥2= Ê tr

(
Ŝ
T
PS Ŝ

)/
Ê tr

(
Ŝ
T
Ŝ
)
, (17)

where S is a T ×N matrix comprising N units until time T, Ê denotes the expectation
estimated by averaging the relevant statistic and PS = S

(
STS

)−1
ST. As shown in

Table 6, the time-varying factor loading model exhibits the best 1-week ahead point-
forecast performance with the lowest MSE, MAE and the highest MCP, trace of R2.
For each model, we measure the forecasting performances under different numbers
of factors that range from one to seven. Table 6 indicates that the dynamic factor
model and the time-varying factor loading model constitute a promising improvement
over the static factor model. A poorest forecast performance in the static factor model
implies that the factors exhibit persistency, predictability and temporal instability, and
these characteristics contribute to the prediction on the changes of CDS spreads. We
further conduct a test for their equal predictive ability against the static factor model
in Sect. 4.3.

Determining the number of factors can be regarded as a model selection problem,
which is a trade-off between goodness-of-fit and parsimony. Following Bai and Ng
(2002), the number of factors is estimated by an information criteria function (IC):

k = argmin0≤k≤kmax IC (k) (18)

where IC (k) = log
(
V

(
k, F̂

k))
+ kg (N , T ). V

(
k, F̂

k) = 1
NT

∑N
i=1

∑T
t=1 (Sit

−F̂
k
t λ

k
i

)2
is simply the average residual variance, and g (N , T ) is a penalty func-
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Table 6 Forecasting performance

MSE MAE MCP TraceR2 ICp1 ICp2 ICp3

A. Static factor model

k = 1 837.196 14.479 4.184 0.079 7.014 7.041 6.989

k = 2 935.015 15.225 4.113 0.090 7.409 7.464 7.360

k = 3 980.284 15.649 4.113 0.095 7.741 7.823 7.667

k = 4 994.165 15.797 4.067 0.096 8.040 8.149 7.941

k = 5 1011.411 15.915 4.166 0.098 8.341 8.478 8.218

k = 6 1011.353 16.002 4.083 0.098 8.626 8.790 8.478

k = 7 1014.162 16.074 4.067 0.098 8.913 9.105 8.741

B. Dynamic factor model

k = 1 512.226 11.061 4.127 0.123 6.523 6.550 6.498

k = 2 515.263 11.387 4.109 0.108 6.813 6.876 6.812

k = 3 521.053 11.530 4.072 0.106 7.109 7.191 7.035

k = 4 527.623 11.547 3.949 0.105 7.406 7.516 7.308

k = 5 518.325 11.604 4.040 0.109 7.673 7.810 7.550

k = 6 521.404 11.634 4.149 0.112 7.963 8.128 7.816

k = 7 521.863 11.618 4.189 0.110 8.249 8.440 8.076

C. Dynamic factor with dependent errors model

k = 1 725.655 13.458 4.069 0.082 6.871 6.898 6.847

k = 2 540.526 12.439 4.125 0.098 6.861 6.876 6.812

k = 3 534.201 11.844 4.127 0.110 7.134 7.721 7.060

k = 4 526.395 11.672 4.109 0.115 7.404 7.513 7.305

k = 5 524.747 11.628 4.021 0.113 7.685 7.822 7.562

k = 6 527.945 11.575 4.076 0.105 7.976 8.140 7.828

k = 7 521.499 11.568 4.123 0.110 8.248 8.440 8.076

D. Time-varying factor loading model

k = 1 784.773 13.293 3.985 0.036 6.949 6.977 6.925

k = 2 509.891 12.079 4.101 0.129 6.803 6.858 6.754

k = 3 493.244 11.744 4.090 0.114 7.054 7.136 6.980

k = 4 479.815 11.443 4.105 0.151 7.311 7.421 7.213

k = 5 479.944 11.415 4.061 0.155 7.596 7.733 7.473

k = 6 481.839 11.384 4.130 0.148 7.885 8.049 7.737

k = 7 479.683 11.383 4.185 0.156 8.165 8.356 7.992

The information criteria function IC p1, IC p2 and IC p3 can be referred to (20), (21) and (22) in the text

tion for overfitting. Bai and Ng (2002) have proposed three specific formulations of
g (N , T ) that depend on both N and T .

ICp1 (k) = log
(
V

(
k, F̂

k))
+ k

(
N + T
NT

)
log

(
NT

N + T

)
(19)
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ICp2 (k) = log
(
V

(
k, F̂

k))
+ k

(
N + T
NT

)
log (min {N , T }) (20)

ICp3 (k) = log
(
V

(
k, F̂

k))
+ k

(
log (min {N , T })

min {N , T }

)
(21)

Table 6 summarizes the results of the IC function and shows that for both the static
factor model and the dynamic factor model, the one-factor model with the minimized
information criteria is the best one to model the common factors in the changes of
CDS spreads. However, for both the dynamic factor with dependent errors model and
for the time-varying factor loading model, the two-factor model is relatively adequate.

4.3 Testing equal predictive ability

To formally assess the statistical significance of the superior out-of-sample perfor-
mance of the dynamic factor models over the static factor model, we employ the equal
predictive ability test of Diebold and Mariano (1995) and report the testing results in
Table 7.Diebold andMariano (1995) propose amethod formeasuring and assessing the
significance of divergences between two competing forecasts, and allow for forecast
errors that are potentially non-Gaussian, serially correlated and contemporaneously
correlated.

To be specific, let dt be the loss differential between two forecast errors. The null
hypothesis is no difference in the accuracy of two forecasts, that is Edt = 0. The
asymptotic distribution of the sample mean loss differential is:

√
T

(
d̄ − µ

)
∼ N (0, 2π fd (0)) (22)

where fd (0) is the spectral density of the loss differential at frequency 0.
The statistical significance of the difference in forecast errors between the models

is summarized in Table 7. The tabulated p values indicate that we can reject the null
hypothesis of equal forecasting ability between the static factor model and the time-
varying factor model. We also reject the equal predicting ability between the static
factor model and the dynamic factor with dependent errors model. With the exception
in CDX 5-year IG and 10-year HY indices, the equal predictive ability between the
static factor model and the dynamic factor model is rejected. Furthermore, to claim
that the time-varying factor model is the best one, we compare its forecast ability with
the dynamic factor model, and the dynamic factor with dependent errors model. We
find that significant differences exist in their predicting ability in both cases.

In summary, the results in Table 6 together with Table 7 indicate that the time-
varying factor model reveals a statistically significant outperformance for most of the
cases, suggesting that common factors drive the time-variation of CDS spreads and
that the dynamics in the factors exhibit moderate predictability in the short-run. As
evident, the temporal instability in the common factors is inevitable and contributes to
forecasting. However, the serial or cross correlation in the idiosyncratic components
only have little effect on the forecasts, implying that the common factors dominate the
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predicting performance. The predictability of CDS spreads changes, certainly benefits
the hedging, speculating and arbitraging activities in the credit markets.

5 Conclusion

The commonalities in CDS spreads and their factor loadings are analyzed in this study.
We collect CDS indices in North American and Europe with 5- and 10-year maturities,
and with different credit ratings (IG and HY) from October 2004 to June 2011. The
estimated risk factors can be interpreted as the level, the region, the volatility and the
term structure effect. By conducting a test if there are common principal components,
we find that the eigenstructures are distinct for the pre-, during and post-crisis periods.
The first factor explains 58.7% of the variance in the pre-crisis period, 72.3% of
the variance in the crisis period and 47% of the variance in the post-crisis period,
indicating that during the crisis, CDS spreads are increasingly driven by common
factors and less by idiosyncratic components. We also find that during the crisis the
latent factors are more correlated with the credit spread and VIX, and less correlated
with the level and the term structure of the interest rate.

The time-variation of CDS spreads changes is modelled via various dynamic fac-
tor models. We apply the asymptotic principal component technique to extract the
common factors, and then determine the number of factors by information criteria
functions. The out-of-sample forecasting performance and the results of equal predic-
tive ability indicate that the common factors drive the time-variation of CDS spreads
and the dynamics in the factors exhibit moderate predictability in the short-run. In
addition, the temporal instability in the common factors is inevitable and contributes
to forecasting, but the serial or cross correlation in the idiosyncratic components have
little effect on the forecasts.
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An Application of Principal Component Analysis on
Multivariate Time-stationary Spatio-temporal Data
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ABSTRACT Principal component analysis (PCA) denotes a popular algorithmic technique to
dimension reduction and factor extraction. Spatial variants have been proposed to account for the
particularities of spatial data, namely spatial heterogeneity and spatial autocorrelation, and we present a
novel approach which transfers PCA into the spatio-temporal realm. Our approach, named spatio-
temporal principal component analysis (stPCA), allows for dimension reduction in the attribute space
while striving to preserve much of the data’s variance and maintaining the data’s original structure in
the spatio-temporal domain. Additionally to spatial autocorrelation stPCA exploits any serial
correlation present in the data and consequently takes advantage of all particular features of spatial-
temporal data. A simulation study underlines the superior performance of stPCA if compared to the
original PCA or its spatial variants and an application on indicators of economic deprivation and
urbanism demonstrates its suitability for practical use.

Une application de l’Analyse de Composante principale sur des données spatio-
temporelles à temps stationnaire multivarié

RÉSUMÉ L’analyse en composante principale (ACP) dénote une technique algorithmique populaire
pour la réduction de dimensions et l’extraction de facteurs. Des variantes spatiales ont été proposées
pour tenir compte des particularités des données spatiales, à savoir l’hétérogénéité spatiale et
l’autocorrélation spatiale, et nous présentons une nouvelle méthode transférant l’analyse en composante
principale dans le contexte spatio-temporel. Notre méthode, dénommée ACPst, tient compte de la
réduction des dimensions dans l’attribut espace, tout en s’efforçant de conserver une grande partie de la
variance des données et en maintenant la structure originale des données dans le contexte spatio-
temporel. En plus de l’autocorrélation spatiale, l’ACPst exploite toute corrélation série présente dans
les données, et tient compte, en conséquence, de toutes les particularités des données spatio-temporelles.
Une étude de simulation souligne le rendement supérieur de l’ACPst lorsqu’on le compare à l’ACP
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original ou ses variantes spatiales, et une application sur les indicateurs du dénuement économique et de
l’urbanisme démontre sa convenance pour des applications pratiques.

Una aplicación del análisis de componentes principales sobre datos multivariables
espacio-temporales y estacionarios en el tiempo

RESUMEN el análisis de componentes principales indica una técnica algorítmica conocida para la
reducción dimensional y la extracción factorial. Se han propuesto variables espaciales para tener en
cuenta las particularidades de los datos espaciales, específicamente la heterogeneidad espacial y la
autocorrelación espacial, y presentamos un nuevo enfoque que transfiere el análisis de componentes
principales al dominio espaciotemporal. Nuestro enfoque, que se denomina stPCA, da cabida a la
reducción dimensional en el espacio de los atributos, además de preservar una gran parte de la varianza
de los datos y de mantener la estructura original de los datos en el dominio espaciotemporal. Además de
la autocorrelación espacial, el método stPCA explota cualquier correlación serial presente en los datos y,
en consecuencia, aprovecha todas las características particulares de los datos espaciotemporales. Un
estudio de simulación destaca el rendimiento superior del método stPCA si se compara con el PCA o
sus variantes espaciales y una aplicación sobre los indicadores de privación económica y urbanismo,
demuestra su idoneidad para el uso práctico.

关于多变量短时平稳时空数据的主成分分析应用

摘要

主成分分析法是指一种流行的降维和因素抽取算法技术。已有人提出用空
间变异来解释空间数据的特殊性，即空间异质性和空间自相关。我们则提出
了一种将主成分分析转移到时空境界的新的做法。 我们采用的名为 stPCA
的方法，可在属性空间降低维度，同时尽量保持更多数据的方差，并维护时
空域中数据的原始结构。除了空间自相关之外， stPCA 还利用存在于数据中
的序列相关性。因此，利用了所有时空数据的特殊功能。与原来的PCA或其
空间变异相比，模拟研究强调了 stPCA 的卓越性能，而经济贫困和城市化指
标的应用则表明了其实际应用的适用性。

KEYWORDS: dimension reduction; economic deprivation; factor extraction; PCA; spatio-temporal
analysis; urbanism

JEL CLASSIFICATION: C31; C33; R11

1. Introduction

Factor extraction refers to the process of concentrating several variables into a set of
factors with lower cardinality and has been applied in virtually any field of statistical
analysis. It denotes a dimension reduction technique, as well as a vehicle to disclose
latent factors. Because of the reduction factor, extraction relieves the computational
burden in any subsequent analysis, might help to avoid the curse of dimensionality
and most importantly presents measurements of theoretical interest which would
otherwise remain hidden due to incomplete knowledge on the subject matter or
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due to the latent nature of the variable of interest. Consequently, factor extraction
might be understood as an analysis tool, which helps to identify the relevant factors
of interest.

Principal component analysis (PCA; Pearson, 1901; Hotelling, 1933), which is
also known as discrete Karhunen–Loève transformation (Karhunen, 1947; Loève,
1948), Hotelling transformation (Hotelling, 1933) or the method of empirical
orthogonal functions (Lorenz, 1956) among others, is frequently applied to extract
factors from a set of variables (e.g. Jolliffe, 2002, chap. 4). It is in fact based on a
transformation of the data, in which the orthogonal coordinates are rotated in order
to load as much variance as possible on the first components and less and less variance
on subsequent components. Consequently the first components, formed by a linear
combination of the original variables, represent an essential information content of
the data and might be understood as factors. By contrast the final components,
presenting little residual variance, might be ignored in the analysis and allow thus for
dimension reduction. In a strict implementation without any additional rotation and
based on standardized variables, PCA resembles more an algorithm than a model and
restricts the researcher’s influence on choosing the appropriate number of latent
factors. This feature distinguishes PCA from other factor extraction techniques, most
notably the model-based factor analysis (Spearman, 1904).

However, the application of the PCA algorithm is not exclusively restricted to
the attribute subspace, but in case of spatio-temporal data might also be used on the
geographical or temporal subspace and consequently reduce either the geographical
or the temporal dimension. Demšar et al. (2013) review the application of PCA in
the context of spatial data and Richman (1986) proposes a classification of PCA for
spatio-temporal data into six modes, where each mode describes exclusive
combinations of two subspaces. For example, the application of PCA on multivariate
spatial entities is labelled R-mode and several spatial PCA variants have been proposed
(Wartenberg, 1985; Thioulouse et al., 1995; Fotheringham et al., 2002; Jombart
et al., 2008). Contrary to the original PCA, these techniques incorporate either
spatial autocorrelation or spatial heterogeneity into the PCA approach to factor
extraction and the authors demonstrate the superior performance of these spatial
PCA variants to disclose any spatial factor if compared to the original PCA.

On the other hand, these spatial PCA variants only address spatial cross-
sectional data and do not apply to spatio-temporal data. In order to allow for a
truly spatio-temporal analysis, we propose a novel PCA approach, that not only
accounts for the spatial peculiarities, but also incorporates serial correlation over
time. This spatio-temporal PCA variant (henceforth spatio-temporal principal
component analysis [stPCA]) allows for dimension reduction on the attribute space,
while preserving the geographical and temporal space, that is, it extracts spatio-
temporal factors from several spatio-temporal variables while maintaining the
geographical and temporal structure of the original variables.

In the framework of Richman (1986) stPCA can be understood as the
combined PR-mode of PCA on spatio-temporal data and the technique describes
a transfer of the original PCA to the spatio-temporal realm of geographical and
serial correlation. Consequently the proposed technique shares some features with
the three-mode PCA of Kroonenberg & de Leeuw (1980), which however relies
on independent and identically distributed (i.i.d.) observations and has not been
studied for correlated observations. Furthermore three-mode PCA includes a
dimension reduction in every subspace, whereas stPCA focuses exclusively on the
attribute subspace.
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The inclusion of latent factors in models for spatio-temporal data is also
facilitated by Bayesian hierarchical models (Gelman & Hill, 2006). Recent
examples include Tzala & Best (2007), Lawson et al. (2008) and Choi et al.
(2012) in public health studies and Hogan & Tchernis (2004) in economics. These
models rely on latent factors to regress some explanatory variables on a dependent
variable and the latent factors consequently serve as an intermediate step and are
not of particular interest in the respective analysis. stPCA consequently represents a
novel attempt to incorporate spatial and temporal correlation into a PCA
framework and hence facilitates the inclusion of latent factors into spatio-temporal
models.

In order to illustrate the performance of stPCA, we present a simulation study
and apply stPCA to a data-set of economic deprivation and urbanism indicators in
Germany. In the Monte Carlo simulation, stPCA improves the ordinary and spatial
PCA approaches if a non-negligible spatial structure is present in the spatio-
temporal data. The reported difference is substantial and significant. A large gain is
made on small n, high t samples, whereas the additional value for large n data seems
less pronounced.

The application of stPCA on the indicators of economic deprivation and
urbanism in Germany illustrates the additional value of a combined spatio-temporal
approach if compared with a cross-sectional spatial approach. Only stPCA allows
for time specific projections, which highlight the west–east and internal north–
south divide in economic deprivation and reliably indicates the big German
metropolitan areas.

The following Section 2 presents the proposed stPCA approach, which is
afterwards evaluated via a simulation in Section 3. An actual implementation of
stPCA is presented in Section 4 and Section 5 concludes with a discussion.

2. The stPCA

The original PCA of Pearson (1901) and Hotelling (1933) describes a rotation of
the p-dimensional coordinate system. The rotated coordinates present the best
orthogonal fit of the data, in which the first coordinate is aligned in the direction of
the data’s maximum variance. Any subsequent coordinate is afterwards orientated
to contain as much of the residual variance as possible conditioned on being
orthogonal to all former coordinates.

In this new coordinate system, the coordinates possessing much variance
contain most of the data’s information, whereas coordinates with a relative small
amount of variance contribute little additional information and consequently can
be ignored at little cost. This advantage of PCA is facilitated by the orthogonal
rotation and allows for dimension reduction in multivariate data while preserving
the general structure of the individual data points.

Upon obtaining the new coordinates the p-dimensional and centred random
variables X 2 Rp are projected onto this new coordinates system via a linear
combination. The projections ϕ onto the first coordinate are obtained via / ¼ Xu;
where u denotes a weight vector which can be identified via the aforementioned
variance characteristics of the rotated coordinates. In detail, PCA maximizes the
variance in the rotated coordinates, that is, the variance of the projected data
points ϕ:

maxu Varð/Þ ¼ maxu VarðXuÞ ¼ maxu u>n$1X>Xu ¼ maxu u>Ru ð1Þ
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where Σ denotes the covariance matrix of the centred X and the maximization is
subject to some identification restriction, like jjujj ¼ 1.

An eigendecomposition of Σ resolves the maximization requirement (1), as the
eigenvector corresponding to the largest eigenvalue constitutes the optimal u
(Härdle & Simar, 2012). Likewise the projection onto subordinate components is
conducted via the remaining eigenvectors, where the corresponding eigenvalues
describe the variance explained by this component, and consequently its rank.

The just described original PCA does not address the particularities of spatial
data, like spatial autocorrelation or spatial heterogeneity. Spatial extensions to PCA
have been proposed, which explicitly account for either heterogeneity (Fothering-
ham et al., 2002) or autocorrelation (Wartenberg, 1985; Thioulouse et al., 1995;
Jombart et al., 2008). In this paper we concentrate on the second type, but would
like to note that the suggested spatio-temporal approach might also be adapted to
the spatial heterogeneity case.

The suggested extensions amplify the maximization criterion by incorporating
the spatial autocorrelation of the projected data points ϕ. Consequently, the
proposed methods seek to project the observations onto a new coordinate system,
while preserving the spatial relation between the observations and this second
objective differentiates the spatial approaches from the ordinary PCA.

Moran’s I describes a frequently used statistic of spatial autocorrelation (Moran,
1950) which defines the spatial autocorrelation for some random variable X with
mean X as

IðXÞ ¼ N
PN

i¼1

PN

j¼1
wij

PN

i¼1

PN

j¼1
wij Xi $ Xð Þ Xj $ X

! "

PN

i¼1
Xi $ Xð Þ2

; ð2Þ

where wi;j, drawn from a spatial weight matrix W, describes the spatial weight
imposed by observation j onto observation i. Choosing an appropriate spatial
weight matrix for either point or areal data and a suitable standardization is up to
the subject-matter researcher and might simplify the computation (2).

Indeed the differences of the above-mentioned spatial PCA approaches can be
attributed to the particular spatial weight matrix and specific transformation of the
original variables X chosen by the authors. In detail, Multivariate Spatial
Correlation (MSC) (Wartenberg, 1985) standardizes the original variables and the
distance based spatial weight matrix, whereas the Global Structure by Thioulouse
et al. (1995) relies on a standardized binary connection matrix and transforms the
original data by a mean which is based on assigning weights according to the
number of individual neighbours. Finally, spatial principal component analysis
(sPCA) (Jombart et al., 2008) applies a row standardization on the binary
connection matrix and, because of its specific application to alleles does not
standardize the data, but subtracts only the mean.

All these spatial extensions to PCA seek to maximize the product of the
variance and spatial autocorrelation of ϕ:

maxv Varð/ÞIð/Þ ¼ maxv VarðXvÞIðXvÞ ¼ maxv v>n$1X>WXv ¼ maxv v>Xv

where X ¼ n$1X>WX denotes a spatial correlation matrix and the optimal v are
found via an eigendecomposition of . Wartenberg (1985) and Thioulouse et al.
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(1995) point out, that Ω might not be positive definite and state that the resulting
negative eigenvalues represent local structure. In case of a non-symmetrical spatial
weight matrix W, Jombart et al. (2008) observe, that the optimal v is given by the
eigenvector corresponding to the largest eigenvalue of ð2nÞ$1X>ðW þW>ÞX .

Spatio-temporal data add another subspace to the attribute and geographical
space of spatial data and present measurements of the same multivariate spatial
entities over time. Consequently, PCA or any spatial PCA variant could be applied
at every t, and T eigendecompositions of the time dependent (spatial) covariance
matrix could be computed. Hence any serial correlation over time would be
ignored and at every t we would have a separate cross-sectional analysis.

Contrarily, stPCA forms a truly spatio-temporal technique. Instead of
conducting an analysis at every t separately stPCA proposes to calculate a time
average of the spatial covariance matrix and apply an eigendecomposition on this
average. Consequently, stPCA exploits any serial correlation and makes use of the
fact that the repeated measurements on the time stable spatial entities represent the
same information content, whereas any additional noise might vary over time.
Hence the time-averaged spatial covariance matrix will include a higher signal-to-
noise ratio and present time stable eigenvectors.

This feature of stPCA, contrary to the repeated application of PCA or its spatial
variants, will result in consistent signs and order of the components across t and
consequently facilitates the interpretation and further use of the findings. Finally,
stPCA is faster, as a function of t, than any repeated application of its non-temporal
siblings, as the time-consuming eigendecomposition has to be conducted only
once instead of t times.

In detail stPCA maximizes the time average of the product between the
variance and spatial autocorrelation of the projected data points ϕ:

maxl T$1
XT

t¼1

Varð/tÞIð/tÞ ¼ maxlT$1
XT

t¼1

VarðXtlÞIðXtlÞ

¼ maxll> T$1n$1
XT

t¼1

X>
t WXt

 !

l ð3Þ

¼ maxll>Hl;

where H ¼ T$1n$1PT

t¼1
X>

t WXt denotes a time average of the spatial correlation
matrix. If W is symmetric, the optimal weight vector µ may be extracted as before
from a direct eigendecomposition of A. Otherwise, and along the reasoning of
Jombart et al. (2008), the optimal µ may be found by the eigendecomposition of

ð2TnÞ$1PT

t¼1
X>

t ðW þW>ÞXt. As in the ordinary PCA and its spatial variants the

projections /t of stPCA are obtained via multiplying the original data Xt with the
time stable principal eigenvectors µ.

3. Simulation

We present two simulations which compare the performance of the original PCA,
its spatial variants and the novel stPCA approach to detect spatio-temporal factors.
In a first step, we apply the distinct PCA variants to an artificial data-set of a single,
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hidden and stable spatio-temporal factor, which is observed via three noisy
variables and is obscured by three additional random noise variables. As in
Wartenberg (1985) a ratio between the first eigenvalue and the sum of the absolute
value of all eigenvalues is presented to reveal the sensitivity of these techniques in
detecting the spatio-temporal factor. Obviously, a high ratio indicates that the
respective PCA procedure correctly identifies the single predetermined factor
present in the simulated data.

In a second simulation we apply PCA, its spatial variants and the stPCA
approach to a data-set with two different spatio-temporal factors in order to learn
the accuracy of these principal component approaches. Each factor exhibits a
distinct and stable spatial-temporal pattern, which affects three noisy variables each
and is furthermore masked by six additional random noise variables. We check
whether the PCA variants identify the correct number of factors, how the PCA
variants weigh the original variables in the computation of the projections and
compare to what extent the diverse projections match the original factors.

We start the first simulation by generating a spatial structure Sð1Þ which takes
the form of a square grid of size

ffiffiffi
n

p
&

ffiffiffi
n

p
. The n observations Sð1Þi2f1;...;ng follow a

normal distribution with a mean depending on the grid’s column index c:

Sð1Þi;c ~ Nð0; 1Þ; for c ' C
2

Sð1Þi;c ~ Nðd; 1Þ; for c > C
2
;

where δ defines an increment and C ¼
ffiffiffi
n

p
denotes the number of columns.

Consequently we simulate a patch, which differentiates between the left and right

side of the grid by the expectation E Sð1Þi;c jc ' C
2

h i
¼ 0 and E Sð1Þi;c jc > C

2

h i
¼ d. This

spatial structure is standardized and subsequently introduced as a constant in the
AR(1) process of the spatio-temporal factor Fð1Þ

i;t . Switching to vector notation, the

factor Fð1Þ
t ¼ vecðFð1Þ1;t ; . . . ; F

ð1Þ
n;t Þis generated via

Fð1Þ
t ¼ Sð1Þ þ 0:5Fð1Þ

t$1 þ et; ð4Þ

where we define the error vector by et ~ Nð0n; 0:75InÞ. This simulated factor
produces n& t observations, which exhibit a stable spatial pattern over time
defined by the size of the increment δ. A high value of δ will result in a more
pronounced spatial pattern and, due to the standardization, will not automatically
increase the factor’s variance, which is instead defined by the coefficient and error
vector in the AR(1) process (4).

In our simulation the standardized spatial factor affects p1 ¼ 3 dependent
variables Xt;p12f1;...;3g, which are defined by the sum of the factor Fð1Þ

t and an
individual AR (1) noise process Zt;p1 :

Xt;p1 ¼ Fð1Þ
t þ Zt;p1 :

The noise process Zt;p1 differentiates the three variables Xt;p1 via its error
component:

Zt;p1 ¼ 0:5Zt$1;p1 þ eZ;t;

where eZ;t~Nð0n; 0:75InÞ denotes white noise. Consequently, we separate the
variables by their specific errors drawn from the same normal distribution.
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Apart from the dependent variables Xt;p1 , we also add p2 ¼ 3 random noise
variables Xt;p22f4;...;6g, which are independent of the factors and follow an ordinary
AR(1) process:

Xt;p2 ¼ 0:5Xt$1;p2 þ eX ;t ;

where eX ;t ~ Nð0n; 0:75InÞ denotes white noise. Hence these three variables possess
the same mean and variance as the spatio-temporal factor and interfere with its
disclosure.

We run this simulation in two settings to cover small and large n applications.
At first we set n1 ¼ 49 and t1 2 f5; 50; 100g. This specification allows for all
possible combinations of n and t: t < n, t ( n and t > n. The same holds for the
second setting, where n2=400 and t2 2 f40; 400; 800g. In order to observe the
impact of the variable scale in X and the specific weight matrix W, we apply three
different combinations of X and W which the authors of the spatial PCA variants
have proposed in their original paper described above. The spatial increment is
evaluated by increasing δ gradually via steps of 0.4 in the interval [0,8] for all
combinations of n and t. At δ=0 obviously no spatial factor is produced, as this
particular parametrization describes an i.i.d. scenario. Finally, we run each
combination of the parameters 1,000 times and present the respective mean ratio
between the first eigenvalue and the sum of all eigenvalues in Figure 1.
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Figure 1. Mean ratio (with standard deviation for temporal sPCA) of the first eigenvalue
to the sum of all eigenvalues as assigned by PCA (thick solid grey line), sPCA (solid grey
line), MSC (dashed grey line), Global Structure PCA (dotted grey line), temporal sPCA
(solid black line), temporal MSC (dashed black line) and temporal Global Structure PCA
(dotted black line) for n1=49 (first row) with t1=5 (left graph), t1=50 (middle graph) and
t1=100 (right graph), and n2=400 (second row) with t2=40 (left graph), t2=400 (middle

graph) and t2=800 (right graph).
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We observe that PCA present a constant ratio between the largest eigenvalue and
the sum of all eigenvalues. This ratio remains unaffected by an increase in the spatial
increment δ and hence PCA fails to clearly identify the increasingly pronounced
spatio-temporal factor. On the other hand all spatial PCA variants, and especially the
MSC approach, gain strongly from an increase in δ. The initial ratio at δ=0 is
increased more than twofold at δ=8 and the spatial PCA variants cause higher ratios
than the original PCA for d ) 1:2(n1 ¼ 49), respectively d ) 0:4(n2=400). Conse-
quently we can verify the results of Wartenberg (1985), Thioulouse et al. (1995) and
Jombart et al. (2008), and observe that extending PCA by a spatial component
improves the sensibility of the spatial PCA variants to identify a spatial factor.

However, as can be observed in Figure 1, the general stPCA approach is evenmore
responsive to an increase in δ than the spatial PCA variants. For example at
d ) 0:8(n1=49), respectively d ) 0:4(n2=400) the ratio reported by the temporal
sPCA variant is larger than the ratio of any other PCA variant including the purely
spatial PCA variants. In detail, all stPCA implementations not only reports larger ratios
for any given n and t than the spatial PCA variants at non-negligible levels of δ, but also
exploit an increase in nmuch stronger. Furthermore, only the stPCA implementations
makes use of the time dimension and reports higher ratios for an increase in t.
Unsurprisingly the solely spatial PCA variants do not gain on such an increase in t, but
only on an increase in n and this superior performance of the stPCA variants also holds
if the spatio-temporal factor consists of a spatial trend instead of a patch.

As stated before, any spatial principal component approach will also try to
identify local structure and report this structure as a negative eigenvalue. In the
current simulation, which does not explicitly include local structure, this feature
appears twice. At first, the stPCA and the purely spatial PCA variants perform
worse than the original PCA on non-spatial or only slightly spatial data, as can be
observed by ratio which correspond to δ=0. Second, this search for local structure
causes the stPCA approach to possess a pronounced standard deviation as depicted
in Figure 1, which however disappears as the spatial increment grows.

In a second simulation we apply PCA, its spatial and stPCA variants to a data-
set with two different spatio-temporal factors in order to learn the accuracy of these
principal component approaches. Hence, we extend the preceding simulation by
an additional spatio-temporal factor, which is based on the spatial structure Sð2Þ:

Sð2Þi;r ~ Nð0; 1Þ; for r ' R
2
Sð2Þi;r ~Nðd; 1Þ; for r > R

2
;

where δ describes the spatial increment, r denotes a row indicator and R ¼
ffiffiffi
n

p

indicates the number of rows. Consequently the spatial structure Sð2Þ describes a
spatial patch, which differentiates between the upper and lower half of the grid.

The resulting structure defines the spatial distribution of the second spatio-
temporal factor Fð2Þ

i;t by serving as a constant in the respective AR(1) process:

Fð2Þ
t ¼ Sð2Þ þ 0:5Fð2Þ

t$1 þ et ;

where et is defined as above. As in the preceding simulation, the hidden spatio-
temporal factor Fð2Þ

t is observed via three noisy variables, which differ, as before, in
their error components. In this context, we set the white noise of variables affected
by the first factor to eð1ÞZ;t~Nð0n; 0:375InÞ and the error vector of the variables

defined by the second factor to eð2ÞZ;t~Nð0n; 1:125InÞ.
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Furthermore, we add three additional i.i.d. noise processes and consequently
observe three variables affected by the spatio-temporal factor Fð1Þ

t , three variables
influenced by spatio-temporal factor Fð2Þ

t and six additional noise variables, which
complicate the disclosure of the two spatio-temporal factors.

As before we run this simulation in two settings to account for small (n1=49)
and large (n2=400) data-sets and allow for varying time dimensions: t1 2
f5; 50; 100g and t2 2 f40; 400; 800g. We increase the spatial increment gradually
in the interval [0,8] to observe its effect, make use of the aforementioned spatial
weight matrices and transformations of X, and run each combination of parameters
1,000 times.

We begin our inspection of the simulation results by assessing the power of the
diverse principal component approaches to identify the correct number of factors.
Figures 2 and 3 present modified scree plots for PCA, sPCA and temporal sPCA in
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Figure 2. Scree plots for PCA (first column), sPCA (second column) and temporal sPCA
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which the mean eigenvalues are interpolated to allow for several spatial increments
δ to be shown in the same graph.

At first, we observe that the distinct principal component approaches return
different eigenvalues. The original PCA does not react to an increase in δ, as this
non-spatial approach presents nearly the same eigenvalues for all levels of δ. On the
other hand, sPCA and the temporal sPCA do respond to an increase in the spatial
increment. Especially, the two largest and the smallest eigenvalues increase with δ
and their reaction is amplified by more observations.

At n1=49 the scree plot of PCA presents a slight decrease in the gradient
starting at the third eigenvalue and consequently indicates the presence of two
factors. These factors arise due to the constant in the simulation’s AR(1) process. At
n2=400, PCA presents three obvious changes in the gradient resulting in two or
more factors and consequently the scree plot does not clearly indicate the correct
number of factors.

In contrast sPCA and temporal sPCA react explicitly to an increase in δ. At
d ' 0:8, the eigenvalues returned by sPCA do not indicate any obvious change in
the gradient, but rather suggest a smooth curve. Only at d > 0:8 one can make out
a clear change in the curvature after the second eigenvalue and consequently sPCA
identifies the two spatio-temporal factors. This finding is even more apparent as δ
and n are increased. However, sPCA also returns large negative eigenvalues, which
erroneously indicate a high level of local structure.

The application of temporal sPCA results in eigenvalues, which possess a similar
structure as sPCA, but which is much more pronounced. At the low level of
d ' 0:8 the respective eigenvalues also suggest a smooth curve without any clear
indication of the number of factors. At d > 0:8 stPCA increasingly indicates the
presence of the two factors. However, the difference between the second and third
eigenvalue is much wider in the case of temporal sPCA than ordinary sPCA, e.g.
the ratio at δ=4, n2=400 and t2=400 for temporal sPCA (1:151.071) surpasses the
ratio of sPCA (1:7.163) more than 20-fold and consequently temporal sPCA
indicates the two factors more evidently than sPCA. Furthermore, temporal sPCA
indicates the presence of local structure only at very low levels of δ and the clarity
of its scree plot is not only amplified by an increase in the spatial increment δ and
the sample size n, but also by the time dimension t.

The scree plots of the spatial or spatio-temporal variants of MSC or Global
Structure present a very similar pattern in the respective eigenvalues and we
consequently do not present them here.

In a second evaluation step, we examine the eigenvectors which correspond to
the two largest eigenvalues. These specify the weights in the linear combination of
the variables to obtain the projections. In our simulated data the first spatio-
temporal factor affects only the first three variables, whereas the second spatio-
temporal factor defines the fourth, fifth and sixth variables. Consequently, we
would expect the first eigenvector to carry large weights on the first, second and
third variable and the second eigenvector to accentuate the fourth, fifth and sixth
variable. Furthermore, an optimal principal component approach would assign zero
weights to all the other variables, as these do not contain any information on the
two spatio-temporal factors.

Figure 4 presents the mean weight the two eigenvectors assign to the respective
variables, that is the mean of the weight assigned by the first eigenvector to the
first, second and third variable and the weight given by the second eigenvector to
the fourth, fifth and sixth variable. Obviously a high ratio indicates that the
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respective principal component approach does not erroneously highlight variables,
which do not incorporate any information on the spatio-temporal factors.

At first we observe, that the original PCA attributes substantial weights to the
respective variables, and the weights increase with n. However, PCA does not react
to an increase in either the spatial increment δ or the time dimension t and
produces constant weights in this respect. Contrary to this indifference the spatial
variants do react to an increase in δ and the corresponding weights surpass the
original PCA’s weights at d ) 3:2 for n1=50, respectively d ) 2:8 for n2=400. A
further increase in the spatial increment widens the margin between PCA and the
spatial PCA variants even more. But the spatial PCAs do not react to an increase in
t and due to their cross-sectional approach they fail to exploit the serial correlation
in order to improve the weights even further.

This is instead accomplished by the new stPCA procedure. The mean weights
presented by this spatio-temporal technique improve upon an increase of either the
spatial increment δ, the number of observations n and also upon an increase in the
time dimension t. The stPCA approach exceeds the weights of the alternative non-
temporal approaches at a spatial increment between d ) 2 (n1=49 and t1=5) and
d ) 0:8(n2=400 and t2=800), and this difference is amplified as t is increased. For
example, at a parametrization of n2=400, t2=400 and δ=4 the mean weight of the
eigenvectors presented by the stPCA approach exceeds the weights of second-best
procedure, namely the solely spatial PCA variants, by 19.5%.

In a third evaluation step, we directly compare the spatio-temporal factors with
its projections. In detail, we compute the mutual information MI(.,.) between the
artificially created factor values Fð1;2Þ

t and the projections bFð1;2Þ
t identified by the

diverse principal component approaches. The computation is based on the two
largest positive eigenvalues of every principal component approach. Figure 5
reports on the average mutual information over time, which we define as

1
2T

XT

t¼1

max MI bFð1Þ
t ;Fð1Þ

t

$ %
þMI bFð2Þ

t ;Fð2Þ
t

$ %
;MI bFð1Þ

t ;Fð2Þ
t

$ %
þMI bFð2Þ

t ;Fð1Þ
t

$ %n o

to address issues arising from factor switching.
It might first be noted from Figure 5, that all PCA approaches struggle with a

more and more pronounced spatial patch. All techniques report a decrease in the
mutual information, if the spatial increment δ is increased up to its maximum. This
observation can be accredited to the particular simulation setting in which the
spatial patch is obscured by normally distributed noise. Consequently this error
component prohibits a clearer identification of the increasing spatial structure, as
the diverse PCA procedures weight the key variables and hence their accompany-
ing noise stronger, as δ is increased. However, this effect is not observed if a spatial
trend is modelled instead of a patch and might ultimately be explained by the
particular spatial structure.

The original PCA approach explains nearly half of the entropy of the factor
values. It performs only marginally better if the number of observation n is
increased and does not react to the time dimension. As explained above its
performance worsens as the spatial increment δ is raised.

The spatial variants of PCA surpass its ordinary cousin at d ) 2:8, but its
performance depends on the level of the spatial increment. An increase in δ at low
levels will strengthen its performance up to a maximum and a further increase in δ
will afterwards worsen the mutual information between the factor values and its
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projections. The same observation holds for an increase in the number of
observations n and as before the spatial PCA approaches do not respond to an
increase in t.

In contrast to the ordinary and spatial PCA variants the stPCA approach
exploits an increase in the time dimension and the corresponding mutual
information exceeds the alternative ones at d ) 2(n1=49), respectively
d ) 1:6(n2=400). However, like the spatial PCA approaches its performance on
an increase in δ and n is mixed. On low levels of the spatial increments the mutual
information rises steeply, if either δ or n are increased, but on high levels of δ a
further increase of either the spatial increment or the number of observation
worsen the mutual information of the stPCA procedure.

However, the implementations of stPCA outperform the ordinary and spatial
PCA approaches on all parameter values apart from very low levels of δ and the
difference is significant. Obviously the largest gain is made on small n, high t
samples, whereas the additional value for large n data seems less pronounced.

In order to visualize the observed difference in the mutual information,
Figure 6 presents the simulated factor values and corresponding projections
returned by the distinct principal component approaches for n2=400, t2=40 and
δ=4 at an exemplary point in time. In order to get a better contrast in the graph,
we added, respectively subtracted, 1 from the original values and projections.
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Figure 5. Normalized mutual information (with standard deviation for temporal sPCA)
between the simulated factor values and the factor scores indicated by PCA (thick solid grey
line), sPCA (solid grey line), MSC (dashed grey line), Global Structure PCA (dotted grey
line), temporal sPCA (solid black line), temporal MSC (dashed black line) and temporal
Global Structure PCA (dotted black line) for n1=49 (first row) with t1=5 (left graph), t1=50
(middle graph) and t1=100 (right graph), and n2=400 (second row) with t2=40 (left graph),

t2=400 (middle graph) and t2=800 (right graph).
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The original factor values present the aforementioned patch between either the
left and right or upper and lower half of the grid. Whereas the single projections by
stPCA do not resemble the original factors perfectly, as a whole they clearly present
the same basic structure of two diverse spatial structures. This observation does not
hold for either the original PCA or its spatial variants, as both techniques present a
spatial structure which clearly discriminates between four disjunct parts in every
corner, but fail to present the original spatial structure of one north–south and one
west–east patch. Consequently and as noted above both techniques incorporate
lower mutual information values.

4. Application on Urbanism and Economic Deprivation

Apart from case-by-case specific impact factors, criminological theory and research
based on data for areal units have persistently and mainly in the USA identified two
broad dimensions of social structure that have proven to be robust predictors of
violent crime rates: (1) economic well-being/relative deprivation and (2) popula-
tion structure/urbanism (McCall et al., 2010). In a recent study, Messner et al.
(2013) have confirmed the explanatory power of these two factors with regard to
German assault and robbery rates collected in 413 geographic-administrative
districts called ‘Kreise’ (counties) and aggregated over the years 2005–2007.

In this study, the factor Urbanism was constructed via PCA performed on four
indicators: (1) the average population size across the 3-year period; (2) population
density, i.e. population per square kilometre; (3) the proportion of the workforce
employed in agriculture or forestry and (4) percent of the foreign-born population,
which tends to be concentrated in urban areas.

The factor economic well-being/deprivation was constructed via PCA
performed on five indicators: (1) the percentage of the civilian labour force that
is unemployed; (2) the percentage of those persons who receive social assistance;
(3) average monthly household income; (4) the proportion of households receiving
housing assistance and (5) a measure of high school dropouts.

Figure 6. Simulated factor values and projections by the respective principal component
approaches for n2=400, t2=40 and δ=4 for an exemplary point in time.
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In our own analysis, we have removed the fifth indicator from the economic
deprivation factor, since in a subsequent study using roughly the same database.
Thome & Stahlschmidt (2013) have presented theoretical arguments and empirical
evidence demonstrating that high school attendance should be included, together
with three additional indicators, in another factor labelled ‘disintegrative individu-
alism’. Since our present article does not deal with theoretical issues we have
limited our analysis, i.e. the application of the stPCA approach, to the two factors
most commonly applied in criminological research based on areal units, economic
deprivation and urbanism. Furthermore, we exclude the percentage of foreign-
born population, as this variable is closely related to both factors, urbanism and
relative deprivation, and therefore interferes with our aim to construct two clearly
distinguished factors.

Whereas Messner et al. (2013) averaged their data over a 3-year period to
generate the factor scores in a cross-sectional approach, stPCA allows to include
every year separately in the analysis. Hence, the presented projections are based on
more data points and take into account serial correlation.

Figure 7 presents the scree plot generated by stPCA and based on a row-
weighted binary spatial weight matrix indicating direct neighbouring counties and
standardized data. An aggregation of the seven indicators into two factors seems
reasonable, as the first two eigenvalues clearly stand out if compared to the
remaining ones.

The corresponding variable weights for each factor are detailed in Table 1. The
variables are grouped as expected by criminological theory. The unemployment

0.
0

0.
5

1.
0

1.
5

2.
0

Eigenvalues
1 2 3 4 5 6 7

Figure 7. Scree plot for the indicators on urbanism and economic deprivation.

Table 1. The first and second eigenvector corresponding to the two largest eigenvalues

Eco. deprivation Urbanism

Unemployment rate 0.563 0.222
Social welfare rate 0.446 0.339
Household income −0.465 0.293
Housing allowance rate 0.503 −0.092
Population size −0.013 0.396
Population density −0.060 0.554
Employment in agriculture 0.105 −0.527
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rate, social welfare rate, household income and housing allowance rate together
describe a factor interpreted as relative economic deprivation, whereas population
size, population density and employment in agriculture jointly specify the level of
urbanism. Most of the single variables can clearly be attributed to one of the two
factors. Only the social welfare rate takes on similar weights in both factors since
the need for such payments arises less often in rural areas.

Finally, Figures 8 and 9 display the projections resulting from the application of
the weights to the single counties. The projections of the economic deprivation
factor depict two spatial patterns. First, there remains a clear disparity between East
and West Germany, as counties of the former German Democratic Republic possess
less economic means than their western counterparts. Second, inside these two
blocks there arises a North–South divide as the southern part of Germany has, during
the last two decades, achieved a more advanced, higher-level balance between
traditional and modernized sectors of economic development. These two patterns
remain stable over the inspected time horizon. This stationarity over time is also
observed in case of the urbanism factor. The corresponding projections clearly
highlight the big urban hubs of Berlin, Munich, Hamburg or the Rhine-Ruhr
metropolitan region and the sparsely populated north–eastern part of Germany.

5. Conclusion

The analyses of purely spatial data are confronted with the implied peculiarities of
such data, namely spatial correlation and heterogeneity. Consequently, such

Figure 8. Projections of the factor ‘Economic Deprivation’ on German Kreise. Digital
map provided and copyrighted by GeoBasis–DE/BKG 2013.
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analyses entail a need for a high amount of data in order to obtain reliable estimates
of any parameter of interest. But due to natural limits, which are especially obvious
in the case of areal data, sample sizes cannot be enlarged indefinitely over space.
However, a feasible solution in dealing with this problem can be forged ahead by
the extension of such data over time resulting in spatio-temporal analyses. This
approach requires the transformation of well-known instruments and techniques
from the i.i.d. or spatial environment to the spatio-temporal one.

To our knowledge, stPCA offers a first attempt to transfer the original PCA to
the spatio-temporal realm of geographical and serial correlation. The proposed
technique allows for dimension reduction on the attribute space while preserving
the geographical and temporal structure and it offers a promising approach to
generate consistent factors from spatio-temporal data. It differs from any explicit
factor modelling approach by its algorithmic nature, which can be viewed as a
welcomed feature or a drawback depending on substantive issues given in a
particular research context.

In any case stPCA possesses a superior performance in terms of sensibility to
detect and of accuracy to disclose spatio-temporal factors if compared to the
original PCA and the proposed spatial variants thereof. Especially the original PCA
lacks power to correctly identify spatial factors and its spatial variants fail to exploit
any serial correlation to improve their results due to their static nature.
Furthermore stPCA is much faster than its archetypes, as the time-consuming
eigendecomposition has to be calculated only once instead of t times.

Figure 9. Projections of the factor ‘Urbanism’ on German Kreise. Digital Map provided
and copyrighted by GeoBasis–DE/BKG 2013.
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As PCA and the spatial variants have to be applied separately for every t, they
are prone to sign and factor switching over t. This behaviour complicates an
analysis, as such instances have to be detected and resolved before the projections
can be analysed or supplied for further use. stPCA avoids such issues, as it presents
time stable weights for the linear combinations and consequently allows for a direct
and consistent interpretation of these values. Summing up, stPCA seems to be
better suited than its static forerunners to address the specific requirements arising
from spatio-temporal analyses.

However, the projections resulting from stPCA obviously depend on the
variable scale and on the appropriateness of the spatial weight matrix, although our
simulation indicates only minor effects of the diverse parametrisations. Furthermore
the performance of stPCA might be amplified by a suitable orthogonal or oblique
rotation, which will consequently restrict the algorithmic nature of stPCA and
increase the researcher’s influence.

Finally, we would like to mention two modifications of stPCA, from which
certain applications might benefit. First, the spatial weight matrix could be
understood as time dependent and, upon availability, a time-specific Wt could be
introduced into the optimisation (3) to refine the technique. Second, stPCA could
also be developed into an adaptive approach, in which the projections for t are not
obtained via the time average of the spatial covariance matrix over the whole time
frame T, but only over the interval ½t $ t?; t þ t?+, where t? < T=2 denotes a
tuning parameter. An appropriate weighting schema over this interval could
furthermore enhance the flexibility. This moving window approach resides
between the spatial variants of PCA and stPCA, as it exploits serial correlation
over time, but foregoes any computational advantage, as an eigendecomposition
has to be obtained at every t separately. Yet this adaptive stPCA might allow for
time trends in the data and consequently account for not only the spatial
peculiarities in spatial-temporal data, but also for the temporal ones.
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Decision making can be a complex process requiring the integration of several attributes of choice
options. Understanding the neural processes underlying (uncertain) investment decisions is an important
topic in neuroeconomics. We analyzed functional magnetic resonance imaging (fMRI) data from an invest-
ment decision study for stimulus-related effects. We propose a new technique for identifying activated brain
regions: cluster, estimation, activation, and decision method. Our analysis is focused on clusters of voxels
rather than voxel units. Thus, we achieve a higher signal-to-noise ratio within the unit tested and a smaller
number of hypothesis tests compared with the often used General Linear Model (GLM). We propose to
first conduct the brain parcellation by applying spatially constrained spectral clustering. The information
within each cluster can then be extracted by the flexible dynamic semiparametric factor model (DSFM)
dimension reduction technique and finally be tested for differences in activation between conditions. This
sequence of Cluster, Estimation, Activation, and Decision admits a model-free analysis of the local fMRI
signal. Applying a GLM on the DSFM-based time series resulted in a significant correlation between the
risk of choice options and changes in fMRI signal in the anterior insula and dorsomedial prefrontal cortex.
Additionally, individual differences in decision-related reactions within the DSFM time series predicted
individual differences in risk attitudes as modeled with the framework of the mean-variance model.

Key words: risk, risk attitude, fMRI, decision making, neuroeconomics, semiparametric model, factor
structure, brain imaging, spatial clustering, inference on clusters, CEAD method.
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1. Introduction

Economic decision making takes place when, for example, an individual buys beverages in
a supermarket, purchases a car, or chooses an investment fund. Some of these choices are made
when the outcome is uncertain and hard to anticipate, which is particularly true for an investment
decision. The decision-making process builds on different mechanisms such as representation
and integration of relevant evidence for and a comparison process of different choice options.
This mechanism has attracted considerable attention in many different fields, from cognitive
psychology, behavioral economics to neuroscience, see, e.g., Glimcher and Fehr (2013). Eco-
nomic decisions are usually explained in a value-based scheme, where different choice options
are evaluated and the option with the highest value is chosen. The values attributed to different
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Universität zu Berlin, Spandauer Str. 1, 10178 Berlin, Germany. Email: majerpio@cms.hu-berlin.de
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incarnations of options may be generated by a nonobservable utility function. It was first for-
malized by Bernoulli (1738) and further developed by Neumann and Morgenstern (1953) and
Kahneman and Tversky (1979) to address the uncertainty of outcomes. In this case individual risk
preferences are attributed to the curvature of the utility function. Alternatively, decision making
can be explained in a framework of risk-return models, which incorporate the risk attitude as a
weighting factor, see, e.g., Weber and Milliman (1997).

Research in the field of Decision Neuroscience (as well as its sub-field Neuroeconomics)
attempts to address human economic behavior (i.e., decisions) by looking at neural systems that
underlie decision making (e.g., Camerer, 2007; Heekeren, Marrett, & Ungerleider, 2008). In
practice one measures changes in brain activity using methods such as electroencephalography
(EEG) and functional magnetic resonance imaging (fMRI), see, e.g., Ruff and Huettel (2013).
FMRI is based on measuring the blood-oxygen-level-dependent (BOLD) signal and captures
parameters related to changes in blood flow and blood oxygenation. FMRI data are recorded over
time, for example during multiple investment decisions. The captured changes in fMRI BOLD
signal are indirectly related to neural firing rates (Logothetis, 2008). The acquired images are
high-dimensional, and detecting stimulus-related effects is a non-trivial task. Changes in brain
activation in response to decision making may be of a modest size (i.e., in comparison to reactions
to visual or auditorial stimuli) and possible hemodynamic responses may be subtle and hardly
detectable in the BOLD signal. It poses a genuine challenge to all existing methods and may
require some extraordinary techniques.

A benchmark method to detect brain regions activated by the stimulus is the general linear
model (GLM). GLM is a single-voxel technique which tests each voxel separately and results in
a 3-D map of changes in fMRI signal. The test is done in a linear regression setup, where the
voxel time series are modeled according to the hypothesized and predefined regressors (design
matrix), which correspond to the experimental paradigm and potential confounds. This simple
methodology has proved to be extremely successful in practice and has led to a wealth of impor-
tant findings (e.g., Kable & Glimcher, 2007), also regarding investment decisions (Mohr, Biele,
Krugel, Li, & Heekeren, 2010; Mohr, Biele, & Heekeren, 2010). Nevertheless, it has several
limitations. Firstly, all neural activity not predefined in the design is neglected and cannot be
identified by the model. In contrast to this model-based approach, recently introduced model-
free approaches (Beckmann & Smith, 2005; van Bömmel et al., 2013) offer to identify effects
without any a priori hypothesis. Secondly, possible information reflected in variability and higher
moments of the BOLD signal (Mohr & Nagel, 2010; Garrett et al., 2013) is disregarded by the
GLM approach. Moreover, activation maps derived by the single-voxel approach may be “inher-
ently limited” by a typically low signal-to-noise ratio of individual voxel data, as reported by
Heller, Stanley, Yekutieli, Rubin, and Benjamini (2006). Alternatively, a simultaneous analysis of
multi-voxel data that co-vary with the experimental design may increase the signal without adding
noise.

To overcome these shortcomings, we follow the idea of Heller et al. (2006) and focus our
analysis on the cluster rather than voxel unit. This leads in fact to an alternative technique for
analyzing fMRI data, where the brain parcellation serves as a starting point. The fMRI clustering
is done by the normalized cut spectral algorithm (Shi & Malik, 2000) which became very popular
in neuroscience, see, e.g., Craddock, James, Holtzheimer, Hu, and Mayberg (2012). The algorithm
makes use of a correlation between neighboring voxels which defines their proximity. Thus, a
possible co-movement (i.e., simultaneous hemodynamic response) plays a key role in defining a
homogeneous cluster. The shape and spatial structure is data driven, and clusters are contiguous
volumes of voxels, ensuring interpretability. After functional connectivity maps are constructed,
one needs to investigate neural activity displayed by the cluster unit. Our approach is model-
free, the signal carried within a cluster is extracted by the dynamic semiparametric factor model
(DSFM). The DSFM, proposed by Park, Mammen, Härdle, and Borak (2009), is employed here
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as a dimension reduction technique (van Bömmel et al., 2013). It filters the noise and extracts only
the common temporal information (i.e., joint reaction by neighboring voxels to the stimulus). The
resulting simple, denoised temporal representation of cluster dynamics may be tested for activation
within the GLM framework or using a model-free approach. Our technique: Cluster, Estimation,
Activation, and Decision (CEAD) method combines parcellation based on functional connectivity
and DSFM. Thus, it greatly simplifies the complexity of the data while preserving the high accu-
racy of the representation. Particularly this high spatiotemporal accuracy is of great importance,
when stimulus-related effects may be subtle and local (such as in investment decisions under
risk).

The presented methodology is applied to investigate a possible relationship between indi-
vidual differences in risk preferences and dynamics in the BOLD response. In the first step, the
extracted temporal information from clusters is tested for changes in brain activation. These,
possibly few, activated clusters correlated with risk are further investigated with respect to risk
attitudes estimated from subject responses to investment decision (ID) tasks. Here, we establish a
link between changes in BOLD signal and individuals’ risk weights in a risk-return model. Based
on this analysis, we identify bilateral anterior insula (aINS) activity as a correlate of risk (stan-
dard deviation). The risk attitudes derived from the subject’s investment decisions are successfully
predicted based only on the underlying brain activity in aINS.

In the upcoming Section (2), we describe the experimental procedures, our methodology, and
derivation of risk attitudes. At the end of that part, a short simulation study of testing performance
is shown. In the next Section (3), our modeling parameters and empirical findings are reported.
We show and exploit the relation between risk preferences and temporal information extracted
from clusters. Our conclusions are detailed in the discussion section.

2. Materials and Methods

In this section, our experimental and fMRI data acquisition setup is presented. In the next
step, we describe our methodology and employed statistical tools. It begins with an introduction
to the normalized cut spectral clustering. Secondly, the advanced dimension reduction technique,
DSFM, is discussed. It shows how to extract a temporal information (i.e., hemodynamic response)
from entire clusters. We briefly sketch our activation testing procedure which is similar to the
voxelwise GLM approach. The testing performance is evaluated in a simulation study. Finally, we
introduce the risk-return model and estimate the subjects’ risk attitudes based on their investment
decisions.

2.1. Experimental Procedures

Subjects, I = 19, performed an adjusted version of the Risk Perception in Investment Deci-
sions Task (Mohr et al., 2010). In this task subjects see past returns of either one single investment
or two investments that form a portfolio (50 % of the money invested in each). While they see the
past returns they have to make a choice between, if they would prefer to invest in a bond with 5 %
fixed return or the investment that is displayed (either single risky investment or risky portfolio).
The choice situations differed in three within-subject conditions: (A) choices between 5 % fixed
return and a single risky investment, (B) choices between 5 % fixed return and a risky portfolio of
2 single investments with perfectly (ρ = 1) correlated returns, and (C) choices between 5 % fixed
return and a risky portfolio of 2 single investments with uncorrelated returns (ρ = 0). Importantly,
the return history of the risky options (either single investment or portfolio) was exactly the same
in all 3 conditions. All displayed returns were gaussian with different set of parameters µ and σ ,
where µ = 5, 7, 9, 11 % and σ = 2, 4, 6, 8 %. Each of the choices regarding single investments
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was repeated once to hold the number of choices between the bond and a single investment and
the bond and a portfolio constant. In total subjects made 256 choices in two blocks of 128 choices
each. Subjects had a maximum of 7 s to enter their choices via a response box with two buttons.
The location of the choice options on the screen was counterbalanced between left and right to
avoid order effects.

2.2. fMRI Data

MRI data were acquired on a 3 T scanner (Trio; Siemens) using a 12-channel head coil.
Functional images were acquired with a gradient echo T2*-weighted echo-planar sequence (TR
= 2, 000 ms, TE = 30 ms, flip angle = 70, 64 × 64 matrix, field of view = 192 mm, voxel size
= 3 × 3 × 3 mm3). A total of 37 axial slices (3-mm thick, no gap) were sampled for whole-
brain coverage. Imaging data were acquired in two functional runs with 695 and 705 volumes,
respectively. A high-resolution T2-weighted anatomical scan of the whole brain was acquired
(256 × 256 matrix, voxel size = 2 × 2 × 2 mm3).

The data were initially pre-processed with FSL 4.0 (FMRIB’s Software Library). Pre-
processing included motion correction and slice time correction. Additionally, images were nor-
malized into a standard stereotaxic space [Montreal Neurological Institute (MNI), Montreal,
Quebec, Canada]. As a result high-dimensional data were obtained 91 × 109 × 91 × 1400, where
t = 1, . . . , 1400 for each subject i = 1, . . . , 19.

2.3. fMRI Analysis

The key idea of this study is to use data-driven, contiguous clusters as the units of the analysis.
The clustering is done by a Spatially Constrained Spectral Clustering algorithm which became
extremely successful in neuroscience, see, e.g., Craddock et al. (2012). In the second step, temporal
information contained in each cluster is extracted by the DSFM approach, as an alternative to
averaging over voxels in the clusters proposed by Heller et al. (2006). Comparison with the latter
approach is presented in a simulation study (see Section 2.4) and our empirical results. After the
cluster temporal information is extracted, activated regions of interest (ROIs) are found by the
GLM testing procedure.

2.3.1. Spatially Constrained Spectral Clustering The brain parcellation results from nor-
malized cut spectral clustering (NCUT). This technique, first proposed by Shi and Malik (2000),
is reported to be robust to outliers (Luxburg, 2007) and computationally efficient. It also allows for
a simple incorporation of constraints, i.e., a spatial contiguousness, which can be exploited in the
human brain mapping. The method was introduced to the field of cognitive neuroscience by (van
den Heuvel, Mandl, & Hulshoff Pol, 2008; Shen, Papademetris, & Constable, 2010; Craddock
et al., 2012). Shen et al. (2010) reported that task-related fMRI data may be analyzed with this
algorithm and that the resulting brain parcellation is highly consistent with the resting-state fMRI.
The NCUT approach is closely related to the graph theoretic formulation of clustering. The set of
voxels Y = (Y1, . . . , YJ ) is represented as a weighted undirected graph, where the nodes of the
graph are the voxels and an edge is given between every pair of voxels Y j and Y j ′ . The weight on
each edge, denoted by w( j, j ′), is a proximity measure between voxels (nodes) j and j ′ and is
defined as in the previous paper:

w( j, j ′) =
{

max
{
Corrt (Y j , Y j ′), 0

}
, for

∥∥X j − X j ′
∥∥ < d,

0, otherwise,
(1)
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where ∥·∥ denotes the Euclidean norm in R3 space, X j ∈ R3 are j th voxel coordinates. The
radius d is selected in such a way that only the 26 nearest neighbors (face and edge touching;
3-D neighborhood of a single voxel) are included. Such a constraint ensures a contiguous shape
of each cluster (Xu, desJardins, & Wagstaff, 2005; Kamvar, Klein, & Manning, 2003). Moreover,
the similarity matrix W =

{
w( j, j ′)

}
j, j ′=1,...,J (of size J × J ) derived by (1) is sparse and thus

computational complexity is reduced. The similarity between voxels in 3-D neighborhood is given
by correlation coefficient of the voxels time series with a threshold to make it non-negative. By
applying the correlation as a similarity measure, we ensure the temporal homogeneity within a
cluster, which is further exploited in the next Section (2.3.2). Once a proximity measure is chosen,
a group-building algorithm for creating a functional connectivity map needs to be specified. The
NCUT algorithm is a hierarchical procedure, it starts with the coarsest partition possible: one
cluster contains all of the voxels. It proceeds by splitting the single cluster up into smaller sized
clusters until a pre-specified number of groups C is achieved. The partition of an initial set is done
such that the similarity between voxels within the proposed group is greater than the similarity
between voxels in different groups. For example, for two disjoint groups P and Q, one computes
the normalized cut cost by

Ncut(P, Q) =
∑

Y j ∈P,Y j ′ ∈Q w( j, j ′)
∑

Y j ∈P,Y j ′ ∈R w( j, j ′)
+

∑
Y j ∈P,Y j ′ ∈Q w( j, j ′)

∑
Y j ∈Q,Y j ′ ∈R w( j, j ′)

, (2)

where R = Q + P is the initial set that has to be partitioned. The denominators in the formula (2)
may be seen as a sum of all similarities between sets P and Q that are neglected in this division.
The nominators stand for all the similarities between the proposed groups (P and Q) and the
initial set R, thus a size of a group has an influence on the normalized cut cost. Finding an optimal
division of set R might be found by minimizing the normalized cut criterion:

(P∗, Q∗) = arg min
R=P+Q

Ncut(P, Q). (3)

Therefore we ensure that, simultaneously, similarities within each cluster are maximized and
similarities between clusters are minimized. This approach leads to balanced sizes of clusters
and reduces the likelihood of obtaining singletons as a result. Shi and Malik (2000) showed that
minimizing (2) is equivalent to minimizing the Rayleigh quotient denoted by

Q(y) = y⊤Ly
y⊤ Dy

, (4)

under the constraint that y is a piecewise (discrete) vector J × 1 and y⊤ diag(D)1J = 0. Matrix
diag(D) is defined by D = (d1, . . . , dJ ) a degree vector, d j = ∑J

j ′=1 w( j, j ′) and L is the
Laplacian of the graph given by

L( j, j ′) =

⎧
⎨

⎩

d j , j = j ′,
−w( j, j ′) , w( j, j ′) > 0,

0 , elsewhere.
(5)

Minimizing the formula (4) is closely related to spectral clustering, where the first nontrivial
eigenvector of the graph Lapacian matrix L is used. The authors showed that the problem is
NP-complete, an approximate discrete solution can be found efficiently.
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2.3.2. Dynamic Semiparametric Factor Model The clusters are constructed to maximize
the temporal homogeneity between voxels. Their similar time evolution (i.e., reflected in joint
hemodynamic response after stimuli) explicitly suggest possible low-dimensional representation
of the multidimensional time series. The temporal variability in the cluster series, that may be
related to investment decisions and possibly individual differences in risk attitude, is captured by a
dynamic semiparametric factor model (DSFM), proposed by Park et al. (2009). DSFM serves here
as a dimension reduction technique, which is able to extract temporal dynamics from the functional
connectivity brain maps by corresponding low-dimensional time series (factor loadings) in only
one estimation step. Due to a subject-specific spatial structure of the brain functional connectivity
maps, we model each cluster separately.

The BOLD signal of all voxels in a single cluster c, c = 1, . . . , C during the entire experiment
is a multi-dimensional time series. The stated below DSFM is designed to model such high-
dimensional time series:

Yt, j = m0(Xt, j ) +
L∑

l=1

Zt,l ml(Xt, j ) + εt, j , 1 ≤ j ≤ Jc, 1 ≤ t ≤ T .

def= Z⊤
t m(Xt, j ) + εt, j = Z⊤

t A∗$t, j + εt, j , (6)

where Zt = (1, Zt,1, . . . , Zt,L)⊤ is a latent (L + 1)-dimensional stochastic process and m
is an (L + 1)-tuple (m0, . . . , mL) of unknown real-valued functions ml . More precisely, the
voxel’s coordinates (x1, x2, x3) ∈ R3 that belong to an analyzed cluster c is the covariate
Xt, j (in this setup it is time-invariant Xt, j = X j ) and the normalized BOLD signal is the
dependent variable Yt, j ; j = 1, . . . , Jc; t = 1, . . . , T . We assume εt, j⊥Zt, j , E εt, j = 0
and E ε2

t, j < ∞. The functions ml are given as a linear combination of space basis functions
$t, j = [ψ1(Xt, j ), . . . ,ψK (Xt, j )]⊤ and corresponding (L + 1) × K matrix of unknown coeffi-
cients A∗. In our setup, [ψ1(Xt, j ), . . . ,ψK (Xt, j )]⊤ are quadratic tensor B-splines on K equidis-
tant knots. To find the estimates of Z⊤

t and A∗, one solves

(Ẑt , Â∗) = arg min
Zt ,A∗

T∑

t=1

J∑

j=1

{Yt, j − Zt A∗$t, j }2. (7)

A solution to the problem stated in (7) may be found by the Newton–Raphson method. Time
dynamics are represented by Ẑt , while Â∗ captures the smooth, nonparametrically estimated
spatial structure of clusters.

In the formula (6) the time frame is constant over all clusters and equals T = 1, 400. Due
to varying spatial structure and size of each cluster c, c = 1, . . . , C , we denote the dimension
Jc as the c cluster size. The statistical inference of the each cluster is then based on the low-
dimensional time series analysis for Zt . As shown by Park et al. (2009), the inference based on
the estimates Ẑ⊤

t holds for “true” unobserved time series Z⊤
t , as the difference between Z⊤

t and
Ẑ⊤

t is asymptotically negligible.

2.3.3. General Linear Model and Testing Procedure In practice, the analysis of BOLD
fMRI data is conducted using voxelwise General Linear Model, see, e.g, Friston et al. (1994) and
Worsley et al. (2002), where the magnetic resonance signal at voxel j is modeled by

Y j = X̃β j + e j , (8)
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where X̃ denotes the T × p design matrix, β j is the p × 1 vector of regression coefficients, and
e j is a (often serially correlated) measurement error. The matrix X̃ is constructed as a convolu-
tion of hemodynamic response function (HRF) h(t) and the stimulus time signal and might also
incorporate additional elements (i.e., temporal derivatives) when required by a specific experi-
ment setup. It is common practice to model the HRF by a difference of two gamma functions,
i.e.,

h(t) =
(

t
5.4

)6

exp {−(t − 5.4)/0.9)} − 0.35
(

t
10.8

)12

exp {−(t − 10.8)/0.9} ,

see, e.g., Worsley et al. (2002). Inference focuses on the estimates β̂ j and the hypothesis
H0 : β j = 0 is tested voxelwise (first-level analysis). β̂ j being significantly different from 0
is interpreted as activation at the voxel j . Group analysis is usually done in the mixed-effects
framework, where the activation pattern for i subject at j voxel β̂ i

j serves as an input for the
model (higher-level analysis). This standard technique implemented in FSL’s FLAME (FMRIB’s
local analysis of mixed effects) is used here to test whether regression coefficients are significant
and activation can be reported at the group level. The region of interest is reported to be signifi-
cantly activated for clusters reaching uncorrected threshold of Z -score > 3.09 and consisting of at
least 20 neighboring voxels. For more details, we refer here to the technical reports of the FMRIB
Analysis Group, see, e.g., Beckmann, Jenkinson, and Smith (2003) and Beckmann and Smith
(2004).

2.3.4. Cluster, Estimation, Activation, and Decision (CEAD) Method The resulting cluster
representation by Ẑ⊤

t serves as the unit of analysis for the relevant signals related to the ID tasks
and decisions. Profiting from higher signal-to-noise ratio present on the group level (Heller et al.
2006) clusters are tested for activation. For analysis of all participated subjects i = 1, . . . , I , our
multivariate scheme may be summarized in the following steps:

1. Cluster step: for each subject i construct the brain parcellation into C groups using spectral
clustering NCUT algorithm.

2. Estimation step: given the subject-specific clustering results, for subject i take the c cluster
and fit the DSFM, given in (6). Repeat this estimation procedure for all clusters c = 1 . . . , C
and all subjects i = 1, . . . , I . The DSFM approach is thus applied C × I times separately.

3. Activation step: representing (i, c), i = 1, . . . , I , c = 1 . . . , C cluster dynamics by low-
dimensional representation Ẑ (i,c)

t test the time series activation in the GLM framework.
Select the activated clusters that are related to neural processes underlying (risky) investment
decisions.

4. Decision step: investigate the activated factor loadings Ẑ (i,c)
t . Is the subjects investment

behavior represented in any of the activated clusters? Is there any relation between the risk
attitude and the low-dimensional time series?

2.4. Simulation Study

This part of our study is designed to investigate the performance of the proposed method
in a simulation study. Our approach is evaluated against the benchmark, voxelwise GLM and
the averaging technique introduced by Heller et al. (2006) (in each cluster take average over
voxels and test for activation). We simulated data at one, exemplary cluster on the 6 × 7 × 6
grid that mimics the average cluster obtained in our empirical analysis: Yt = Z⊤

t m(X) + εt ,
where Yt is a 6 × 7 × 6 × 1400 BOLD signal, m(X) = m(x, y, z) = ∥(x, y, z) − (6, 8, 6)∥ is a
smooth spatial structure, Zt is a (perfect) stimulus time series (HRF ×64, see Figure 10) and εt
is noise. The (single) factor m(·) is a smooth, non-linear function that decreases in the direction
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Figure 1.
Setup (a): the simulated (1, 1, 1) voxel Yt,1 (top) and the estimated Ẑt (bottom) plotted against time (each 2 s); red dots
denote stimulus; Corrt (Ẑt , stimulus) = 0.98.
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Figure 2.
Setup (b): the simulated (1, 1, 1) voxel Yt,1 (top) and the estimated Ẑt (bottom) plotted against time (each 2 s); red dots
denote stimulus; Corrt (Ẑt , stimulus) = 0.60.

of the point (6,8,6), that is not present on the grid, thus m(·) > 0. The Zt is the simplest design
matrix (here 1 × 1400) from GLM setup and in this case stands for all stimuli corresponding
to the correlated portfolio from our experiment. Therefore, we assume that only one true neural
process is present in this cluster. We investigate two possible cases for εt (6 × 7 × 6 × 1400):
(a) εt is i.i.d. Gaussian and (b) εt is spatially correlated Gaussian; µ = 0 and σ = 1. The
spatially correlated noise time series εsc,t is derived (independently at each t , t = 1, . . . , 1400)
as a convolution of i.i.d. Gaussian noise from (a) with a spatial Gaussian kernel (FWHM 8 mm)
and depicted in Figure 11. Examples of simulated BOLD signals are shown in Figures 1 and 2.
The performance for all three techniques: DSFM with L = 1, GLM (pre-smoothed with FWHM
8 mm) and averaging over voxels in the cluster (with and without pre-smoothing) for the setup
(a) is remarkably good and all statistics are higher than 100. The (b) study is summarized in
Table 1. Firstly, all investigated techniques discover a significant activation and yield similar
results. Secondly, the maximum Z -score in the GLM approach is the highest test statistics in all
cases. When the Z -scores are averaged over all voxels, the DSFM approach yields the best result.
Moreover, the simple averaging approach is outperformed by the DSFM. We conclude that DSFM
might serve as an interesting alternative to the benchmark GLM method, especially if the analysis
goes beyond an identification of activation patterns (i.e., higher moments, time series analysis of
voxels in a neighborhood).
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Table 1.
Test statistics Z -scores derived in simulation setup (b) for GLM, DSFM, averaging, and averaging for smoothed (FHWM
8mm) data denoted by Average(s).

GLM DSFM Average(s) Average

Max Z -score 30.54 27.96 27.14 27.48
Mean Z -score 26.34 27.96 27.14 27.48

Table 2.
Test statistics Z -scores derived in simulation setup (c)-upper and (d)-lower panel, respectively, for GLM, DSFM, averaging,
and averaging for smoothed (FHWM 8mm) data denoted by Average(s).

GLM DSFM Average(s) Average

Max Z -score 1.90 0.38 0.68 0.62
Mean Z -score 0.61 0.38 0.68 0.62
Max Z -score 1.66 1.10 1.07 1.10
Mean Z -score 0.99 1.10 1.07 1.10

The performance of the proposed method is also studied, when the exemplary cluster does
not exhibit stimulus-related effects. In particular, we simulated the 6 × 7 × 6 × 1, 400 BOLD
signal Yt = Z̃⊤

t m(X) + εsc,t , where: (c) Z̃t = 11,400 is a constant series of ones and (d) Z̃t
is a simulated autoregressive process of order 2, where Z̃t = 0.5Z̃t−1 + 0.2Z̃t−2 + εAR,t ,
εAR,t is a white noise independent of εsc,t and Corrt (Z̃t , stimulus) = 0.04, see Figure 12.
Therefore, the setup (c) corresponds to a case, when only the (spatially correlated) noise is
present in the cluster and there is no common neural signal. The setup (d) assumes a com-
mon neural process which is not related to the stimulus. The results of all 3 techniques are
summarized in Table 2. The resulting Z -scores are remarkably smaller than a typical threshold
3.09 and the stimulus-related effects are not identified. Furthermore, all approaches yield similar
results.

2.5. Behavioral Modeling

The subject-specific risk attitudes can be directly derived from subject responses to ID tasks.
Following (Markowitz, 1952 and Caraco, 1981), we apply the benchmark mean-variance model
to reflect the subject’s decision-making process:

Vi (x) = x − φi S(x), (9)

where Vi (x) is the value a subject i assigns to an investment x , x is an empirical mean and
represents the expected return, S(x) stands for a standard deviation and represents the subject’s
risk, and φi is the individual risk weight: risk attitude. Therefore, in line with the portfolio theory
introduced by Markowitz (1952), we follow the common mean-variance approach.

The risk attitude can be estimated based on subject responses (risky choice vs. sure, 5 %
return) by the logistic model:

P {risky choice|x} = 1
1 + exp {x − φS(x) − 5} . (10)
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Figure 3.
Risk attitudes of 19 subjects (indexed on x-axis) derived by the (10).

Negative values of φ̂i indicate a risk-seeking behavior, φ̂i ≈ 0 relates to risk neutrality and
φ̂i > 0 to risk aversion. The estimated risk attitudes are shown in Figure 3 and additional analysis
in Figures 13 and 14. For simplicity of presentation, in the subsequent part of the analysis we show
data for two most extreme subjects: 19th, risk-seeking: risk weight=−0.0699 and 1st, risk-averse:
risk weight=1.092.

3. Results

Choice of the model parameters is described and the clustering results together with the
estimated factor loadings are presented. This 2-step dimension reduction technique simplifies
the brain dynamics into C-dimensional time series. The activated clusters are selected in the
Activation step and the subjects’ risk aversion is modeled and predicted based only on the fMRI
data.

3.1. Model Parameters

Selection of the number of clusters plays of course a role in our analysis. Choosing only few
regions of interest (i.e., 50 parellations) leads to over-generalized and condensed regions that are
anatomically distinctive, see, e.g., Craddock et al. (2012). Increasing the division into 200 clusters
is reflecting the anatomical brain atlases (Talairach & Tournoux, 1988; Desikan et al., 2006) and an
approach based on the brain identified atlas zones is often used. When a more precise parcellation
is called for, practitioners then select 1, 000 clusters as discussed by Craddock et al. (2012). Our
study aims to find activated brain regions related to the investment decisions, where the possible
HRF may be subtle. Moreover, a successful implementation of the dynamic semiparametric factor
model and conducted testing procedure requires highly accurate and homogenous inputs, we thus
select C = 1, 000 clusters and ensure thereby the high accuracy of the representation. In the next
step, each (homogenous) cluster is represented by the DSFM technique with 1 dynamic factor,
L = 1 for all cluster c = 1, . . . , 1, 000. Inclusion of higher number, though yielding a better fit,
does not allow for a simple interpretation.

The parcellation technique is based on (1) as a proximity measure. In order to check stability
of (1) over the entire experiment, we conduct a moving window exercise. Figure 15 shows the
correlation between 3 neighboring voxels derived by a rolling window exercise (for past 250 ≈ 8
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Figure 4.
Illustration of the clustering results for subject 1 derived by the NCUT algorithm, C = 1, 000. The parcellation is
represented as an orthogonal view, and color-coding is arbitrarily used to capture the clusters’ boundaries.

min and 500 ≈ 17 min). One observes a stable, stationary behavior over time which stands in
favor of our modeling setup.

3.2. Clustering Results

Clustering results are illustrated in Figure 4. The subject-specific parcellation, though compu-
tationally extensive, addresses inter-subject functional variability. Therefore, we derive spatially
coherent regions of homogenous functional connectivity, that are present at a voxel scale. The
clusters are contiguous sets of neighboring voxels and a distinction between network nodes and
large-scale network of nodes is ensured, see Smith et al. (2009). The neuroscientific interpretabil-
ity is preserved and further elaborated on in the modeling and testing part of our study. An average
cluster is of a size 207 voxels, which might be compared to a 6 × 6 × 6 = 216 (12 mm) cube. The
smallest cluster is a singleton and the largest consists of 353 voxels. Clusters have a data-driven
shape and vary with respect to the size and spatial structure as shown in Figure 16.

3.3. Factor Loadings Ẑt

The clustering spatial maps serve as a basis for further exploratory analysis. The information
carried in time evolution of the derived clusters is extracted by the DSFM technique. More
precisely, all voxels belonging to cluster c of subject i : Y i

c,1, . . . , Y i
c,J i

c
, where J i

c is the size of c
cluster for subject i , are jointly modeled by (6). For simplicity of representation and as a natural
consequence of cluster (homogenous) construction, we employ the DSFM with L = 1. Thus, each
cluster’s dynamics are captured by the univariate time series Ẑ i,c

t , i = 1, . . . , I ; c = 1, . . . , 1, 000,
and the complete brain representation consists of 1, 000 processes. The derived brain model
significantly simplifies the complexity of the data, while ensuring the interpretability and a good
quality fit. For a demonstration two extreme subjects: 1 (with the smallest risk attitude) and 19
(with the largest risk attitude) are selected, see Figure 3. Figure 5 shows the estimated Ẑ1

t and Ẑ19
t

for anterior insula (aINS; left and right) and dorsomedial prefrontal cortex (DMPFC) clusters. All
factor loadings exhibit stationary behavior, high persitency, and a high fluctuation around their
mean value (see Figure 17; Table 4), which may be related to the underlying investment decision
stimulus.

3.4. Activation Results Ẑt

The derived low-dimensional representation of each cluster Ẑt serves as a principal unit of
this study and is tested for activation. We compare our method with both the standard voxelwise
GLM technique and the approach proposed by Heller et al. (2006) (average over voxels and use it
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Figure 5.
Factor loadings Ẑt for clusters aINS(left), aINS(right), and DMPFC (upper, middle lower panel) for risk-averse subject
1 (top) and weakly risk-seeking subject 19 (bottom) plotted against time (each 2 s). Red points correspond to the time
points of stimuli.
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Figure 6.
Results of the higher-level analysis (mixed-effects model) associated with decision making; Z -scores> 3.09. Upper panel:
the bilateral aINS, lower panel: DMPFC.
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Figure 7.
Average reaction to the ID stimulus over all 19 subjects for bilateral aINS and DMPFC regions plotted against time (from
−4 s before the stimuli up to 16 s afterwards).

as a cluster temporal representation). Four separate analyses were conducted (single, correlated,
and uncorrelated, jointly all types of portfolio). For each type of investment, we reported the same
activation pattern, thus only the joint analysis (all portfolios) is reported here.

Figure 6 presents significant brain correlates of the ID task: aINS and DMPFC associated with
decision making. These activation results are in line with findings by Mohr et al. (2010), Mohr,
Biele, and Heekeren (2010) and contribute to the neural foundations of risk-return model. Alto-
gether 9 activated clusters were detected which survived statistical thresholding at Z -scores> 3.09
and had a cluster size of at least 20 voxels. Besides aINS and DMPFC factors corresponding to
decision making, we identified other brain regions previously associated with visual perception
and motoric responses. These factors are most likely not connected to the decision-making process
but confirm the activity of regions which were necessary to give the answer by pushing the but-
ton. Average reactions to the ID stimuli over all 19 subjects are depicted in Figure 7. Reported
maximum Z -scores for aINS and DMPFC are shown in Table 5. One observes that all approaches
yield very similar results, although the highest maximum Z -score is achieved by the GLM tech-
nique for all 3 ROIs. Secondly, the DSFM outperforms the simple averaging over voxels. The
non-parametric estimation pays off in terms of the quality of the representation.
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Table 3.
Risk attitude regressed on the average response for all 19 subjects; R2 = 0.47, adjusted R2 = 0.36.

Estimate SE t Statistic p value

α0 0.097 0.115 0.861 0.403
)ẐDMPFC 0.851 0.526 1.619 0.126
)ẐaINS(r) −1.506 0.550 −2.737 0.015
)ẐaINS(l) −1.126 0.379 −2.967 0.001

4. Risk Attitude \ Stimulus Response

The key goal in neuroeconomics is to “(…) ground economic theory in detailed neural
mechanisms which are expressed mathematically and make behavioral predictions.” as Camerer
(2007, 2013) states. Motivated by that, we investigated a connection between the neural processes
underlying decision making and risk perception. Without prior knowledge of the subjects’ answers,
based only on the activated cluster dynamics, represented by Ẑt a simple model is proposed to
predict the risk attitude φi . As described in Section (3.4), three activated (see Table 5) clusters
are associated with decision making under risk. Therefore only cluster dynamics of bilateral
aINS and DMPFC are considered here as regressors for the risk attitude φi . These loadings
(brain regions) respond to the stimulus and thus mimic neural processes present in a whole
cluster during investment decisions under risk in our study. The hemodynamic response function
usually peaks around 6 s after the stimulus. Therefore, we focus on an average reaction to r ,
r = 1, . . . , 256, stimulus for the i th subject:)Ẑ i

r = 1
4

∑4
τ=1 Ẑ i

r+τ − Ẑ i
r .)Ẑ i

r covers a period up
to 8 s afterward and ensures that the HRF maximum is captured. An average reaction to all stimuli
(entire experiment) for a single cluster is defined as )Ẑ i = 1

256
∑256

r=1)Ẑ i
r . Our model-free

methodology closely follows the statistics proposed by van Bömmel et al. (2013), Brown, Lazar,
Datta, Jang, and McDowell (2014).

Understanding which among the variables: )ẐaINS(l), )ẐaINS(r), )Ẑ DM P FC are related to
the φ and an exploration of the forms of these relationships is done via regression analysis. More
precisely,

φi = α0 + α1 ·)Ẑ i
DMPFC + α2 ·)Ẑ i

aINS(l) + α3 ·)Ẑ i
aINS(r) + ε̃i , (11)

where α0 is an intercept, α = (α1,α2,α3)
⊤ is a vector of regression coefficients and ε̃ stands

for the error term. In other words, (spatially constrained, local) information extracted from the
BOLD signal serves as regressors for the subject’s risk weights.

Summary statistics of the model defined in (11) are reported in Table 3. Surprisingly, we report
that the DMPFC factor, though significantly activated, does not carry explanatory power for risk
preferences. This finding, among others, goes far beyond classical fMRI analysis done within the
GLM framework and highlights the flexibility and advantages of our approach. Furthermore, the
aINS, both left and right regions, are picked up by the model and reported p-values are remarkably
smaller than 0.05. Overall, the explanatory power is satisfactory despite the simplicity of linear
relation and the noisy nature of the studied panel data (for both, BOLD signal and risk weights).
We obtain R2 = 0.47 and adjusted R2 = 0.36. The regression fit is depicted in Figure 8.

Dropping out of the insignificant terms in (11) yields

φi = α2 ·)Ẑ i
aINS(l) + α3 ·)Ẑ i

aINS(r) + ε̃i . (12)
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Figure 8.
Added variable plot for models given in (11) left and (12) right panel, respectively. Horizontal axis denotes the (rescaled)
best linear combination of regressors )Ẑ that fit φ.
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Figure 9.
Predicted risk preferences by the model given in (12) for the average )Ẑ and the weighted average )w Ẑ : left and right
panel, respectively. Information extracted from the aINS BOLD signal; w = (0.38, 0.41, 0.16, 0.05)⊤.

The simplified model achieves R2 = 0.37, adjusted R2 = 0.30, and the p-values are 0.03
and 0.02 for)ẐaINS(r) and)ẐaINS(l), respectively. Figure 8 shows the regression fit. In this setup
subject risk aversion depends only on the average reaction to the stimulus in the aINS regions.
This setup, consisting only of activated (see Table 5) and significant BOLD cluster statistics, is
kept in the reminder of the analysis.

4.1. Risk Attitude Forecasting

The regression results presented in Table 3 indicate that the DMPFC factor is not signif-
icant and does not carry explanatory power for φi . Thus, the regression setup, stated in (12),
is used to predict the subject risk attitude based only on the information extracted from BOLD
signal in aINS. For each subject i = 1, . . . , 19, its information is excluded from the regres-
sion analysis and the model (12) is re-estimated. Plugging in the neural low-dimensional rep-
resentation, )Ẑ i

aINS(l) and )Ẑ i
aINS(r), to the new model predicts the risk weight φi , and the

out-of-sample performance is shown in Figure 9. Seven predicted risk attitudes, out of 19,
lie out of 95% prediction confidence intervals and the absolute average forecasting error is
0.257. One could expect that the proposed statistics )Ẑ is not the best univariate projec-
tion of the hemodynamic response to the stimulus. To overcome some possible deviations
in the HRF peak’s location, we apply the weighted average reaction to the stimulus denoted
by a weighted average reaction: )w Ẑ i

r = ∑4
τ=1 wτ (Ẑ i

r+τ − Ẑ i
r ), with

∑4
τ=1 wτ = 1.
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Thus, observations after stimulus are weighted with unknown weights wτ . The procedure intro-
duced before is repeated for )w Ẑ i = 1

256
∑256

r=1)w Ẑ i
r and the weights are found by minimiz-

ing the absolute average forecasting error. The optimal weights w = (0.38, 0.41, 0.16, 0.05)⊤

are derived by Monte Carlo simulation with 10, 000 iterations and the new absolute average
prediction error is 0.202. The prediction fit is reported in Figure 9. In this setup the first
three observations (up to 6 s after stimuli) exhibit a remarkably higher impact than the 4th
one.

The neural predictions of risk attitudes, though satisfactory, do not perfectly match risk
weights derived from subjects’ investment decisions. A plausible explanation from a statisti-
cal point of view would be the simplicity of linear relation, inhomogeneity of studied subjects,
and above all, the noisy nature of the data. Nevertheless, we are convinced that the neural
processes underlying investment decisions and corresponding risk preferences are a far more
complex phenomenon and go beyond the aINS and DMPFC only. Our statistical methodol-
ogy is constrained here by the experiment setup that, naturally, cannot capture all brain reac-
tions and allows only to estimate a proxy of “true” risk preferences by risk-return model.
Although the activation is reported by the benchmark testing procedure, we suspect additional
brain regions to contribute to investment decisions (e.g., Mohr, Biele, and Heekeren, 2010) not
identified in this fMRI study. This goes beyond the scope of this paper and deserves further
research.

5. Discussion

We have presented a novel method for analyzing fMRI data based on cluster units: CEAD.
In the first step, the clusters are derived via the NCUT algorithm as contiguous groups of vox-
els and there are no further constraints concerning the shape and spatial structure. This data-
driven approach makes use of the correlation between neighboring voxels and therefore ensures
a co-movement of the BOLD signals within cluster. This property of “anatomic” homogene-
ity pays off when temporal information carried by each cluster has to be extracted. Derived
functional connectivity maps are a starting point of analysis. In the estimation step, the DSFM
method is applied on each cluster and serves here as a dimension reduction technique. It serves
as a filter of the noise and only extracts the common temporal information: the signal (i.e.,
joint reaction to the stimulus). This semiparametric approach can handle various specifica-
tions of noise observed at the voxel level and yields favorable results in comparison to sim-
ple averaging over voxels (Heller et al., 2006). It is a model-free technique that derives com-
plete spatiotemporal information from brain regions. In the activation step, the extracted signal
is further studied for experimental responses. Our local-dynamic representation yields similar
results as traditional GLM analyses. The high accuracy of the model plays an important role
when possible task-related effects are subtle and local. Our approach ensures a simplicity of
neural interpretation and addresses the key limitations of the benchmark method GLM. In the
decision step, the CEAD method allows for any model-free analysis of spatiotemporal ROI’s
information.

We apply the CEAD methodology to study neural systems that underlie decision mak-
ing under risk. In particular, investment decision is a complex process of valuation and com-
parison of possible choices with unknown outcomes. Risk attitude is a crucial metric that
influences the subjective value of investment. In this paper, we analyzed an fMRI experi-
ment with 19 subjects. Each subject was scanned during multiple ID tasks and a series of
1, 400 images of 91 × 109 × 91 voxels are investigated here. Using our methodology, we
decomposed individual brains into sets of 1, 000 spatially disjoint factors and factor load-
ings Ẑ i,c

t , i = 1, . . . , 19 and c = 1, . . . , 1, 000. Derived spatiotemporal representation is
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subject specific and possible variations in functional brain structure are addressed. Therefore
we ensure high accuracy and interpretability of the results. Extracted Ẑt are tested for acti-
vation in the GLM (mixed-effects model) framework. For the studied population, we detect
significant activation at aINS and DMPFC regions as correlates for risk, already reported in
Mohr, Biele, and Heekeren (2010). Our approach yields similar results to the benchmark and is
complimentary.

To deepen our understanding of changes in neural activity underlying risk preferences,
we conducted a model-free analysis. The focus is on those ROIs that show ID-related
effects: aINS (left and right) and DMPFC (see Table 5) which have previously been asso-
ciated with decision making. More precisely, we explore the relation between average reac-
tion to the stimulus in subject-specific loadings Ẑt representing selected regions. Follow-
ing Brown et al. (2014) we construct simple, model-free statistics that capture the peak
of HRF: )ẐaINS(l), )ẐaINS(r), )ẐDMPFC and explore their explanatory power on the risk
attitude φi . The resulting regression model with brain dynamics as regressors achieves
R2 = 0.47. Changes in brain activity represented by )ẐDMPFC did not carry informa-
tive power for risk attitude. Simultaneously, both aINS regions are picked up to be sta-
tistically significant and reported p-values are ≈ 0.01. We conclude that DMPFC, though
activated by the risk of the investment, is not significantly correlated to risk attitudes.
Dropping off all irrelevant terms and reestimating the regression model (12) yields R2 =
0.37. This parsimonious and informative setup is used to predict the risk attitudes based
only on fMRI information. The analysis is further refined adjusting for possible variation
of hemodynamic response by adding the weights to the sequence of observations after
stimulus.

We report, that neural predictions of risk attitudes, though satisfactory, do not mimic perfectly
risk weights derived from subject investment decisions. One may claim that the applied mean-
variance model does not reflect true risk attitudes adequately well and additional measures for
subjective expected returns and perceived risk than mean and standard deviation should be intro-
duced. Secondly, the risk preferences and neural responses identified in this study may not cover all
the effects and brain reactions. Risk attitude is far more complex and may not be only localized in
aINS. Therefore we plan to apply our methodology to a wide spectrum of similar studies for further
investigations.
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See (Figures 10–17 and Tables 4, 5).

Simulation Study
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Figure 10.
Stimulus time series derived as a convolution of double Gamma hemodynamic response function and uncorrelated portfolio
stimulus ×64 plotted against time (each 2 s).
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Figure 11.
Simulated spatially correlated Gaussian noise for 2 vertical neighbor voxels (red and blue) plotted against time (each 2
s); Corrt (εt,1, εt,2) = 0.97.
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Figure 12.
Simulated stimulus time series as the AR(2) process: Z̃t = 0.5Z̃t−1 + 0.2Z̃t−2 + εAR,t , plotted against time (each 2 s).
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Figure 13.
Sensitivity analysis of the risk attitude φ: estimates φ̂i , i = 1, . . . , 19 with 95 % confidence intervals.
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Figure 14.
The derived risk attitude of subject 1 in a rolling window exercise (φ̂i estimated from past 100 ID answers).
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Figure 15.
Time series of the correlation coefficient derived by the rolling window (250 top, 500 bottom) for the center voxel and:
horizontal, vertical diagonal neighboring voxel for aINS(right) of subject 1.
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Figure 16.
Contour plots of derived aINS(left), aINS(right) and DMPFC (upper, middle lower panel) clusters for subjects 1 (left)
and 19 (right), respectively; derived by the NCUT algorithm with C = 1, 000. x , y z axis denote the 3D space given in
millimeters.
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Figure 17.
Sample autocorrelation function of aINS(left), aINS(right), and DMPFC Ẑt (top left, top right, bottom panel, respectively)
for subjects 1 (top) and 19 (bottom), respectively.

Table 4.
KPSS, ADF test statistics for estimated factor loadings aINS(left), aINS(right), and DMPFC Ẑt ; subject 1 (left panel),
subject 19 (right panel) (KPSS: H0: weak stationarity, critical values at 0.10, 0.05, 0.01 are 0.119, 0.146, and 0.216;
ADF: H0: unit root, critical values at 0.01, 0.05, 0.10 are −1.61, −1.94, and −2.58).

aINS(l) aINS(r) DMPFC aINS(l) aINS(r) DMPFC

KPSS 0.035 0.063 0.038 0.044 0.051 0.044
ADF −0.128 −0.137 −0.110 −0.185 −0.207 −0.159
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Table 5.
The position of the cluster local maximum, denoted in the Montreal Neurological Institute (MNI) standard at 2mm
resolution, corresponding Z -score (middle) and p value (bottom) of activated “risk” clusters during the ID stimuli.

DSFM Average GLM

aINS(l) (−34, 18, −8) (−36, 18, −8) (−32, 22, −12)
4.13 4.08 4.58
3 × 10−4 4 × 10−4 3 × 10−3

aINS(r) (34, 24, −4) (36, 18, −6) (40, 22, −16)
4.39 4.21 5.24
6 × 10−6 6 × 10−7 3 × 10−7

DMPFC (6, 24, 42) (4, 24, 42) (4, 24, 24)
4.43 3.88 4.56
2 × 10−9 1 × 10−8 3 × 10−7

Average stands for a mean value over voxels in each cluster (results of the NCUT parcellation with
C = 1, 000). Analysis done in the FSL (FEAT/FLAME) software.
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Abstract Independent component analysis (ICA) is a mod-
ern computational method developed in the last two decades.
The main goal of ICA is to recover the original indepen-
dent variables by linear transformations of the observations.
In this study, a copula-based method, called COPICA, is
proposed to solve the ICA problem. The proposed COP-
ICA method is a semiparametric approach, the marginals are
estimated by nonparametric empirical distributions and the
joint distributions are modeled by parametric copula func-
tions. The COPICA method utilizes the estimated copula
parameter as a dependence measure to search the optimal
rotation matrix that achieves the ICA goal. Both simulation
and empirical studies are performed to compare the COP-
ICA method with the state-of-art methods of ICA. The re-
sults indicate that the COPICA attains higher signal-to-noise
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ratio (SNR) than several other ICA methods in recovering
signals. In particular, the COPICA usually leads to higher
SNRs than FastICA for near-Gaussian-tailed sources and is
competitive with a nonparametric ICA method for two di-
mensional sources. For higher dimensional ICA problem,
the advantage of using the COPICA is its less storage and
less computational effort.

Keywords Blind source separation · Canonical maximum
likelihood method · Givens rotation matrix · Signal/noise
ratio · Simulated annealing algorithm

1 Introduction

Independent component analysis (ICA) is a recently devel-
oped multivariate statistical method, and can be treated as a
generalization of principal component analysis (PCA). PCA
is based on the eigenvalue decomposition of the covariance
matrix, and projects data onto the eigenvectors of the co-
variance matrix. Although an eigenvalue decomposition of
covariance yields only uncorrelated factors, together with
Gaussian distributional assumption, the principal compo-
nents are independent. However, the “independent” property
will not hold if Gaussianity is violated. Non-Gaussianity of
the independent components is a fundamental restriction of
ICA, since one can only estimate the ICA model of Gaus-
sian data up to an orthogonal transformation and the mixing
matrix is not identifiable if there are more than two Gaus-
sian independent components. Thus ICA targets on non-
Gaussian samples. The main goal of ICA is to find linear
transformations that map the observed multivariate time se-
ries into independent components (ICs). To accomplish the
ICA goal, unlike the eigenvalue decomposition approach
in PCA, ICs are estimated via an optimization problem, in
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which the statistical cross dependency among the extracted
ICs is minimized. In practice, ICA has been successfully ap-
plied in blind source separation (Comon 1994), image de-
noising (Hyvärinnen 1999b), natural image patch (Bell and
Sejnowski 1995), single-trial EEG records (Tsai et al. 2006)
and many other applications (see for example Lee 1998;
Hyvärinen and Oja 2000; Abayomi et al. 2011).

There has been a wide development of interest in the
computational technique of ICA in the past two decades.
The ICA method can be formulated as optimization of an
objective function which minimizes the cross-dependency
among the components. The performance of the ICA method
depends on the choice of objective function and the algo-
rithm used for implementation of the optimization problem
determines the speed of the ICA method. Various objective
functions used in ICA include maximum likelihood, negen-
tropy, higher order cumulants, kurtosis and mutual informa-
tion. Several procedures and algorithms were proposed to
search the independent components based on different ob-
jective functions and searching algorithms. The well known
FastICA proposed by Hyvärinen and Oja (1997) was based
on maximization of non-Gaussianity via measurements such
as kurtosis and negentropy. Since the negentropy is always
nonnegative and vanishes if and only if the signal is Gaus-
sian, it can be used as a measure of distance to normality.
And an approximative Newton iteration fixed-point algo-
rithm is used to improve the computational efficiency of
the FastICA which is faster than the gradient based meth-
ods. The details of FastICA can be found in Hyvärinen and
Oja (2000). Bell and Sejnowski (1995) proposed a natu-
ral gradient ICA algorithm by minimizing the mutual infor-
mation among the outputs, which can be considered as the
Kullback-Leibler divergence (KL divergence) between the
current joint density and the product of marginal densities.
Their approach can also be treated as a maximum likeli-
hood approach. Comon (1994) gave a contrast function for
ICA by approximating the mutual information in terms of
third-order and fourth-order cumulants. CuBICA, proposed
by Blaschke and Wiskott (2004), improved Comon’s algo-
rithm by simplifying the corresponding contrast function.
Bach and Jordan (2002) proposed the kernel independent
component analysis which uses flexible kernels to model
the dependence between the variables. Gretton et al. (2005)
proposed another kernel independent criterion, the Hilbert-
Schmidt Independent Criterion (HSIC), and the HSIC-based
ICA contrast has a diagonal Hessian at independence. Then
Shen et al. (2009) introduce an optimization method for
HSIC, named FastKICA, and RADICAL (Learned-Miller
and Fisher 2003) used an estimate of univariate entropies
to find Jacobi rotations that make pairs of signals as in-
dependent as possible. Kirshner and Póczos (2008) used
Schweizer-Wolff measure of dependence to search the in-
dependent components.

In this research, a new procedure called COPICA is pro-
posed for ICA. In the COPICA procedure, the joint distri-
bution of the components is modeled by copula functions.
For better modeling of non-Gaussianity and other empirical
facts such as heavy tail behavior of financial data, copulae
have been introduced into the quantitative finance practice.
The copula technique is based on the thought that every mul-
tivariate distribution can be seen as a coupling of a distribu-
tion function (on the unit cube) operating on the marginal
distribution functions of each variable. This coupling func-
tion has been coined the name “copula” (Sklar 1959 and
1996). Copulae can be parameterized with low dimensional
parameters and fitted to multivariate data by a variety of op-
timization techniques (Nelsen 2006). Copulae also provide
a flexible family for modeling dependencies and include the
product copula as the family element representing indepen-
dence. An important property of the copula parameters is
that in some cases they are also the tail dependence parame-
ters. Hence, the estimates of the copula parameters provide
direct parametric estimates of the tail dependence. In the
proposed COPICA approach, we use the deviation between
the fitted copula parameters and the copula parameters at in-
dependence as a measure of dependence, then define the cor-
responding divergence function used as the objective func-
tion in ICA. Thus the COPICA procedure combines ICA
ideas from the engineering literature with the copula based
research in quantitative finance. For parameter estimation,
we use the historical empirical distribution in the estimation
of marginal distributions then use the canonical maximum
likelihood (CML) to estimate the copula parameters. A sim-
ulated annealing algorithm is used to minimize our diver-
gence function to find the best recovered matrix. Since the
marginal distribution is estimated by a nonparametric em-
pirical estimate and the joint distribution is modeled by a
parametric copula function, the proposed COPICA method
can be viewed as a semiparametric ICA approach.

We took the advantage of copula to separate the param-
eter space of the full likelihood function into the copula
parameter space and the marginal parameter space. If the
margins are well fitted, then an estimator on the joint part
(i.e. the copula parameters) can recover independence. In
COPICA, we estimate the marginal distribution by the non-
parametric empirical distribution. An advantage of estimat-
ing marginals using empirical distributions is that this pro-
cedure is relatively free of assumptions. And the empirical
distribution has nice asymptotic properties including con-
sistency and asymptotic normality. Since marginal distribu-
tions are estimated nonparametrically, the copula parameters
are the only unknown parameters in COPICA. Based on the
whitening data, our goal is to find the proper rotation ma-
trix to recover the independent sources. To accomplish this
goal, the divergence function is defined via the copula pa-
rameters. Given a rotation matrix, R, the estimations of cop-
ula parameters in divergence function are obtained via CML
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approach based on the current empirical marginal distribu-
tions of the rotated data. Thus the copula parameter estima-
tors and our divergence function are function of the rotation
matrix, R. However, it is difficult to express the divergence
function explicitly in terms of the rotation matrix (or rotation
angles). Hence to solve our optimization problem w.r.t. rota-
tion angles, the gradient based optimization approach cannot
be used. Simulated annealing algorithm is a stochastic opti-
mization method which does not need the gradient informa-
tion. Of course, SA is not the only optimization approach to
solve our target problem. Other possible approaches are pat-
tern search, Gold search and other stochastic optimization
approach, for example, genetic algorithm.

In addition to our COPICA method, copula based inde-
pendent component analysis approach has also been pro-
posed in Ma and Sun (2007), Abayomi et al. (2008, 2011).
Abayomi et al. (2008, 2011) considered the objective func-
tion based on the mutual information via copula, which mea-
sures a norm between the estimator and the oracular value.
Specifically, Abayomi et al. (2008) provided a theoretical
foundation of mutual information based approach and a ver-
sion of their norm was utilized in Abayomi et al. (2011).
Their rotation matrix is obtained by minimizing the mu-
tual information (distance) between parametric copula and
independent marginals. In addition to the full parametric ap-
proach, they also proposed a semiparametric approach by
using the empirical distributions for marginals. Two numer-
ical approaches were introduced to obtain their rotation ma-
trix. In their full model method, the mutual information is
used as the objective function and the gradient type approach
is applied to obtain the rotation matrix numerically. In their
partite model approach, they use Singular Value Decompo-
sition of the bivariate mutual information matrix, which is
constructed via pairwise copula, to find the orthogonal trans-
formation matrix.

Although, the COPICA method and Abayomi et al.’s ap-
proach both use copula to model the joint distributions of the
components, the objective function and optimization algo-
rithm are different, which are the two major components de-
termining the performance and speed of the ICA method. In
Abayomi et al. (2008, 2011), mutual information was used
as the dependent measurement. For the ICA problem when
independent signals are obtained, the joint density function
is equal to the product of the marginal densities and the mu-
tual information is zero. And the copula parameter (no mat-
ter which copula is fitted) equals to its independent parame-
ter, consequently our COPICA objective function equals to
zero which is the same as the mutual information. Hence al-
though our norm is not generated directly from the mutual
information, yet it achieves the same optimal point when in-
dependence are obtained.

In the next section, the detail procedure of COPICA is
introduced. In Sect. 3, blind source separation examples are

demonstrated to illustrate the performance of our method.
In Sect. 4, we compare the performance of COPICA with
FastICA in terms of their signal to noise ratios (SNR) on
the recovered signals for blind source separation problems.
In Sect. 5, we compare COPICA method with nonparamet-
ric rank-based approaches. Both simulation and empirical
studies will be performed to compare the COPICA method
with the state-of-art methods of ICA. Our numerical results
and empirical study also support the applicability of the pro-
posed COPICA method. In summary, the comparison results
show that:

(1) The computational burden in determining the ICA
transformation are the same for the COPICA and the
FastICA.

(2) The COPICA method attains higher SNR than the
FastICA for near-Gaussian-tail sources on the recov-
ered signals for the blind source separation problems.
We also noted that the FastICA method sometimes fails
to converge for near-Gaussian-tail sources.

(3) The COPICA method is competitive with the ICA
method via a nonparametric measure, Schweizer-Wolff
σSW for bivariate sources. For higher dimensional case,
the COPICA method attains higher SNR than the ICA
method via Schweizer-Wolff σSW on the average and
reduces significantly the storage space.

Finally conclusion is given in Sect. 6.

2 COPICA procedure

Assume we observe the n linear mixtures

X = (x1, x2, . . . , xn)
⊤

of the n independent components S = (s1, s2, . . . , sn)
⊤, that

is X = AS, where A = (aij ) is the n × n mixing matrix.
Here we assume that A is full rank. The independent compo-
nents sj ’s are latent random variables with zero mean which
cannot be observed directly and the mixing matrix A is un-
known. The goal of ICA is to find linear combination of the
observed data X, Y = BX such that the components of Y ,
yi ’s, are as independent as possible. Here unlike PCA to ob-
tain uncorrelated linear combination of xi , to achieve the in-
dependence among yi ’s, the possible measurements are re-
lated to nonlinear transformations of yi , for example, non-
linear correlation, E(f (yi)g(yj )), where f and g are two
function and at least one is nonlinear (Hyvärinen and Oja
2000). Thus ICA can be treated as to remove the nonlinear
dependence by using the linear transformation of data.

In addition to centralize the observed data, most of the
ICA procedures, such as FastICA, whiten the observations
first by the matrix W = Σ−1/2, where Σ is the covariance
matrix of X. That is, the components of Z = WX are uncor-
related with unit norm, i.e. Cov(Z) = In. The independent
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components are obtained by multiplying the pre-whitened
observations with an orthogonal matrix R such that the out-
puts Y = RZ are nearly statistically independent.

In this section, we first introduce the copula modeling
of the joint dependence structure of the transformed com-
ponents, then define the copula parameters as a measure of
dependence. A rotation matrix representation of the orthog-
onal matrix R is also given. Finally, the COPICA procedure
is introduced.

2.1 Copula model

According to Nelsen (2006), an n-dimensional copula is de-
fined as follows.

Definition 1 An n-dimensional copula C(u), where u =
(u1, . . . , un), is a function from [0,1]n → [0,1] with the fol-
lowing properties:

1. C(u) is grounded, that is,

C(u1, . . . , ui−1,0, ui+1, . . . , un) = 0,

which means that the copula is zero if one of the argu-
ments is zero, and C(1, . . . ,1, u,1, . . . ,1) = u, which
means that the copula is equal to u if one argument is
u and all others are 1.

2. C(u) is n-increasing, that is, for each hyperrectangle B =∏n
i=1[xi, yi] ⊆ [0,1]n,

∫

B
dC(u) =

∑

z∈×n
i=1{xi ,yi }

(−1)N(z)C(z) ≥ 0,

where z = (z1, . . . , zn), ×n
i=1{xi, yi} denotes the set of

the vertices of B , and N(z) is the number of {k : zk = xk}.

Copula has recently become the most significant new tool
to handle co-movement between markets in the field of fi-
nance and the analysis of current status data in biostatistics,
because it provides a flexible way to connect the marginal
distributions of individual component to their multivariate
joint distribution. Sklar’s theorem provides the theoretical
foundation for the application of copulae. Let FXj (xj ) de-
note the marginal distribution of Xj , j = 1, . . . , n. Based on
the work of Sklar (1959), there exists a copula function C

such that

FX(x1, . . . , xn) = C
{
FX1(x1), . . . ,FXn(xn); θ

}
, (1)

where FX(x1, . . . , xn) is the joint distribution of X =
(X1, . . . ,Xn) and θ = (θ1, . . . , θd) denotes the copula pa-
rameters. In the case of independence, the joint distribu-
tion is the product of the marginal distributions, that is
FX(x1, . . . , xn) = FX1(x1) · · ·FXn(xn). This corresponds to
the product (independence) copula C(u) = u1 · · ·un. In the
following, we introduce some well-known copula families
which will be considered in this work as an illustration.

(1) Gumbel copula:

C(u1, . . . , un; θ) = exp

[

−
{

n∑

j=1

(− loguj )
θ

} 1
θ
]

,

θ ≥ 1.

When the Gumbel parameter θ = 1, it is the indepen-
dence copula. The Gumbel copula is motivated by limit
theorems for joint extremes (Kotz and Nadarajah 2000)
and has for long played an important role in model-
ing distributions of extremes. The Gumbel copula can
model upper tail dependence. For instance the bivariate
Gumbel copula, the upper tail dependence of two ran-
dom variables X1 and X2 is defined as

λU = lim
v→1−

P
(
FX2(X2) > v | FX1(X1) > v

)

= lim
v→1−

(
1 − 2v + C(v, v)

)
/(1 − v) = 2 − 21/θ , (2)

which is always positive for θ > 1. In addition, the
Gumbel copula can be rotated to change the direc-
tion of the tail dependence. For example, in the
2-dimensional case, the survival Gumbel copula, de-
noted by Ĉ(u1, u2; θ), can be obtained by rotating a
Gumbel copula by 180 degrees, that is,

Ĉ(u1, u2; θ) = u1 + u2 − 1 + C(1 − u1,1 − u2; θ),

where C(u1, u2; θ) is the 2-dimensional Gumbel cop-
ula. Thus, the survival Gumbel copula can be used to
model lower tail dependence.

(2) Clayton copula:

C(u1, . . . , un; θ) =
(

n∑

j=1

u−θ
j − n + 1

)−1/θ

, θ > 0.

As the copula parameter θ → 0, the Clayton copula ap-
proaches to the independence copula. The Clayton cop-
ula can model multivariate lower tail dependence. For
instance the bivariate Clayton copula, the lower tail de-
pendence of two random variables X1 and X2 is defined
as

λL = lim
v→0+

P
(
FX2(X2) ≤ v | FX1(X1) ≤ v

)

= lim
v→0+

C(v, v)/v = 2−1/θ , (3)

which is positive for all θ > 0. Similar to the Gumbel
copula, the Clayton copula can also be used to depict
the upper tail dependence by rotation.

(3) Gaussian copula: for a given correlation matrix
Σ ∈ Rn×n, the Gaussian copula with parameter matrix
Σ can be written as

C(u1, . . . , un;Σ) = ΦΣ

{
Φ−1(u1), . . . ,Φ

−1(un)
}
,
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Fig. 1 Bivariate plots of Clayton and Gumbel copulae with θ = 3 and
N(0,1) marginals (Color figure online)

where ΦΣ is the joint cumulative distribution function
of a multivariate normal distribution with mean vec-
tor zero and covariance matrix equal to the correlation
matrix Σ and Φ−1 is the inverse cumulative distribu-
tion function of N(0,1). In particular, if the correlation
matrix is the identity matrix, then Gaussian copula is
the independence copula. Furthermore, if the Xj ’s are
normally distributed, then the Gaussian copula is corre-
spond to the multivariate normal distribution. Gaussian
copula is a popular and convenient type of copula, es-
pecially when the dimension is large. Since Gaussian
copula depends only on the pairwise rank correlations
between the marginals when the marginal are continu-
ous (Mardia 1970), it continues to capture the depen-
dence structure of the Normal-To-Anything (NORTA)
distribution with arbitrary continuous marginal distribu-
tions (Ghosh and Henderson 2003). The bivariate Gaus-
sian copula can model neither upper nor lower tail de-
pendence, unless the correlation coefficient ρ = 1, since
λU = λL = 0 for ρ < 1 and λU = λL = 1 for ρ = 1.

In Fig. 1, we give the bivariate plots of random samples gen-
erated from Clayton and Gumbel copulae with parameter
θ = 3 and N(0,1) marginal distributions, respectively. Al-
though the marginal distributions of the two cases are the
same, different tail dependencies are displayed. Yet there
are modeling limitations for the Gumbel and Clayton cop-
ulae (in general the family of Archimedean copulae) in
higher-dimensions, as they imply exchangeability and hence
equicorrelated ranks, which is obviously untenable in real
application. For general reference of copulae, please refer
to Nelsen (2006). For generalization of Archimedean cop-
ula models, see for example, McNeil and Nešlehová (2010)
and Genest et al. (2011). For applications of copula in data
mining, see Yu et al. (2011). For more discussion of the tail
dependence parameters and the Gaussian copula, we refer to
Schweizer and Wolff (1981) and Genest et al. (2011).

Let {φ(·|θ)}θ∈Θ be a family of copula densities, where
Θ ⊂ ℜq is the parameter space. In this work, we use the

canonical maximum likelihood (CML) estimator to esti-
mate the copula parameter θ defined as below. Let {Xt =
(x1t , x2t , . . . , xnt )

⊤}Tt=1 is a realization of length T of the
linear mixture X.

Step 1: Obtain F̂Xi (·), i = 1, . . . , n are the empirical mar-
ginal distributions, and then

Step 2:

θ̂ = arg max
θ∈Θ

T∑

t=1

ln
(
φ
((

F̂Xi (xit ), i = 1,2, . . . , n
)∣∣θ

))
, (4)

Therefore, the fitted copula φ(.|θ̂) with the CML estimator
can be treated as the best approximation for the true cop-
ula ψ in the copula family {φ(·|θ)}θ∈Θ based on {Xt =
(x1t , x2t , . . . , xnt )

⊤}, t = 1, . . . , T . In the proposed COP-
ICA method, we consider the best approximations of the
transformed data in the three copula families, Gumbel, Clay-
ton and Gaussian copulae to capture its different dependence
structure.

2.2 Representation of orthogonal matrices

In an ICA model, the following two ambiguities are well
known to hold. Firstly because we can freely change the or-
der of the components si ’s, and call any of the independent
components the first one, we cannot determine the order of
the independent components. This ambiguity is insignificant
in most applications though. Secondly we cannot determine
the variances of the independent components. Thus, with-
out loss of generality, we assume that each component of
Y = RZ has unit variance. Then by independence assump-
tion of Y , we have Cov(Y ) = In. Therefore the transforma-
tion matrix R satisfies

RR⊤ = R Cov(Z)R⊤ = Cov(RZ) = Cov(Y ) = In.

That is, the transformation matrix R is an orthogonal matrix
which can be represented as the following product of the
Givens rotation matrices,

R =
∏

1≤i<j≤n

Gij (βij ).

The matrix Gij (βij ) is an n-dimensional Givens rota-
tion matrix which represents a rotation in the plane spanned
by the axes xi and xj , i < j , with angle βij . Specifically,
Gij (βij ) is obtained by modifying the identity matrix so
that the (i, i), (i, j), (j, i) and (j, j) elements of this ma-
trix are respectively cosβij , sinβij , − sinβij , and cosβij ,
where βij ∈ [0,2π). This Givens matrix representation of R

has been used in ICA algorithms, such as Comon (1994),
Blaschke and Wiskott (2004), Kirshner and Póczos (2008)
and so on. The product of the orthogonal matrix R and the
whitening matrix W , B = RW , is our objective transforma-
tion matrix of the observed data X to achieve independence.



278 Stat Comput (2015) 25:273–288

The major task is to search the rotation angles, βij , to make
the components of

Y = RZ = (RW)X = (RW)(AS)

nearly independent. In the bivariate case, n = 2, the Givens
matrix is derived in the following proposition.

Theorem 1 Assume S = (s1, s2)
⊤ is a random vector of

two independent random variables with unit variance. Let
X = AS where

A =
(

a b

c d

)

is a non-degenerated mixing matrix. Let Z = WX and W =
(AA⊤)−1/2 is the whitening matrix of X. Then the following
Givens matrix of order 2,

G(β) =
(

cosβ12 sinβ12
− sinβ12 cosβ12

)
(5)

is the objective rotation matrix, that is

G(β)Z =
{

(s1, s2)
⊤, if ad − bc > 0,

(s2, s1)
⊤, if ad − bc < 0,

where
⎧
⎨

⎩

cosβ12 = (a+d) sign(ac+bd)√
(a+d)2+(b−c)2

,

sinβ12 = (−b+c) sign(ac+bd)√
(a+d)2+(b−c)2

,
if ad − bc > 0,

or
⎧
⎨

⎩

cosβ12 = (b+c) sign(ac+bd)√
(a−d)2+(b+c)2

,

sinβ12 = (−a+d) sign(ac+bd)√
(a−d)2+(b+c)2

,
if ad − bc < 0.

Proof First, consider the case ad − bc > 0. Since

G(β)Z = G(β)WX = G(β)
(
AA⊤)−1/2

AS = S,

it implies G(β) = A−1(AA⊤)1/2. Let U =
( u11 u12

u12 u22

)
be the

positive definite matrix satisfying U2 = AA⊤. We have
⎧
⎪⎨

⎪⎩

u2
11 + u2

12 = a2 + b2,

u11u12 + u12u22 = ac + bd,

u2
12 + u2

22 = c2 + d2.

(6)

Combining with the constrains of ad − bc > 0 and U be the
positive definite matrix, the solutions of (6) are

u11 = (a2 + b2 + ad − bc) sign(ac + bd)
√

(a + d)2 + (b − c)2
,

u12 = |ac + bd|
√

(a + d)2 + (b − c)2
,

u22 = (c2 + d2 + ad − bc) sign(ac + bd)
√

(a + d)2 + (b − c)2
.

Thus,

G(β) = A−1(AA⊤)1/2 = A−1U

=

⎛

⎝
(a+d) sign(ac+bd)√

(a+d)2+(b−c)2

(−b+c) sign(ac+bd)√
(a+d)2+(b−c)2

(b−c) sign(ac+bd)√
(a+d)2+(b−c)2

(a+d) sign(ac+bd)√
(a+d)2+(b−c)2

⎞

⎠ .

Similarly, if ad − bc < 0, then G(β)Z = JS, where
J =

( 0 1
1 0

)
. The solutions of (6) are

u11 = (a2 + b2 + bc − ad) sign(ac + bd)
√

(a − d)2 + (b + c)2
,

u12 = |ac + bd|
√

(a − d)2 + (b + c)2
,

u22 = (c2 + d2 + bc − ad) sign(ac + bd)
√

(a − d)2 + (b + c)2
.

Thus,

G(β) = JA−1(AA⊤)1/2 = JA−1U

=

⎛

⎝
(b+c) sign(ac+bd)√

(a−d)2+(b+c)2

(−a+d) sign(ac+bd)√
(a−d)2+(b+c)2

(a−d) sign(ac+bd)√
(a−d)2+(b+c)2

(b+c) sign(ac+bd)√
(a−d)2+(b+c)2

⎞

⎠ .

This completes the proof. !

Geometrically speaking, the rotation angle β12 represents
the angle between one of the column vectors in the matrix
(AA⊤)−1/2A and the x1-axis. In general for higher dimen-
sional case, we have G(β) = A⊤(AA⊤)−1/2, where β is the
vector of the Givens rotation angles, βij . However the for-
mula is not practically applicable, due to the fact that the
matrix A is unknown in real applications. In order to deter-
mine the rotation angles of the Givens matrix, we will adopt
a criterion based on copula parameter.

2.3 Divergence function based on copula parameter

Suppose X = (X1, . . . ,Xn) comes from the joint distribu-
tion, FX . Then according to Eq. (1), we have that dC(x) =

dFX(x)∏
i {dFXi

(xi )} , where FXi is the marginal distribution of Xi .

That is that the derivative of the copula is the ration of the
joint density function and the product of the marginal den-
sity functions. Therefore, the copula parameters contain the
information of the dependence among X. Furthermore, the
mutual information for X can be re-presented via given cop-
ula C and its copula density φ by

MI(X) =
∫

log
dFX(x)∏

i{dFXi (xi)}
dFX(x)

=
∫

In
log

(
dC(u)

)
dC(u)

=
∫

In
φ(u|θ) log

(
φ(u|θ)

)
du,

where In = [0,1]n. Once the independent copula param-
eters are obtained, the value of the mutual information is
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zero. Thus the copula parameter θ could be used as the mea-
surement of the dependency. The similar idea was also men-
tioned in Abayomi et al. (2008). Another point comes from
the relation of the tail dependence and copula parameters. As
shown by (2) and (3), both the upper tail dependence λU of
the bivariate Gumbel copula and the lower tail dependence
λL of the bivariate Clayton copula are monotonic function
of their copula parameters θ . Therefore the copula parame-
ters of the Gumbel copula and of the Clayton copula are also
their tail dependence parameters. This is also supported us
to use the copula parameters as the measure of dependence.

In ICA approach, we need to define an objective func-
tion for the source separation such that if the minimal value
of this objective function is attended, then the recovered
sources are independent. Since the copula parameters are
used as the dependence measurement, we illustrate by the
bivariate case in the following about how to choose the cor-
responding objective function for ICA problem. For a given
(demean) realization {Xt = (x1t , x2t )

⊤}Tt=1, select a copula
function and a rotation angle β12. Transform the whitening
data Z = WX by the Givens rotation matrix R = G of the
form given in (5), then compute the CML estimator θ̂ based
on transformed data. Let θ0 denote the copula parameter at
independence of the selected copula, for example θ0 = 1 for
the Gumbel copula. The magnitude

o(θ̂ |β) = ∥θ̂ − θ0∥
is used as a measure of deviation from independence be-
tween x1t and x2t for this rotation angle β12. Then search
the angle β12 to minimize o(θ̂ |β) which is regarded as
the optimal solution of the Givens rotation matrix to make
RZ = R(WX) nearly independent. In brief, we first find the
best approximation of the true copula of the transformed
data in a copula family, then measure the deviation from
independence by the fitted copula (dependence) parameter.
The objective rotation angle is obtained by minimizing the
deviation from independence defined via copula parame-
ters. In this study, we consider the best approximations of
the true copula in the three copula families: Gumbel, Clay-
ton and Gaussian. The three families are used to model up-
per tail, lower tail dependence structure and pairwise rank
correlation between the marginals of the transformed com-
ponents, respectively. Accordingly, the divergence function
based on the three copula families is defined by the follow-
ing weighted sum,

O(θ̂1, θ̂2, θ̂3|β) =
3∑

i=1

wioi(θ̂i |β), (7)

where oi(θ̂i ) = ∥θ̂ − θi0∥, θ̂i and θi0 are respectively the fit-
ted copula parameter and the independent parameter value
of the i-th copula model, and wi ’s are the positive weights.
In our simulation and empirical studies, we set the weights
wi ’s to be inverse proportional to the standard deviations of

the CML estimators. In the implementation we will rotate
the transformed components by the angles iπ/2, i = 1,2,3
to identify possible dependent structure, and include the cor-
responding measure of deviation from independence in the
divergence function O .

The idea can be extended to higher dimensional case. For
n-dimensional random variables Y1, . . . , Yn (n ≥ 2), mutual
independence implies that any subset random variables of
Y1, . . . , Yn are also mutually independent. Therefore, the di-
vergence function measuring multivariate dependence of a
selected copula function can be defined as

O(θ̂ |β) =
∑

{i,j}⊂N
wijo(θ̂ij |β)

+
∑

{i,j,k}⊂N
wijko(θ̂ijk|β) + · · · + wN o(θ̂N |β),

(8)

where the vector parameter

θ̂ = (θ̂12, . . . θ̂(n−1)n, θ̂123, . . . , θ̂N ),

denote the copula parameter estimations of the transformed
(pre-whitening and rotated via the rotation angle vector β)
data of

(Y1, Y2), . . . , (Yn−1, Yn), (Y1, Y2, Y3), . . . , (Y1, . . . , Yn),

respectively. The divergence function O(θ̂ |β) measure all
multivariate dependence of dimensionality greater then or
equal to 2. The components of the data are deemed nearly
independent when O(θ̂ |β) is close to zero. Similarly, multi-
ple copula families can be included in the divergence func-
tion (8) as in (7).

Based on the chosen copulae and the pre-whitening data
Z, the magnitude of the divergence function O(θ̂ |β) given
the rotation angle vector β , is computed in the following
steps:

(1) Rotate the data according to the rotation angle vector β;
(2) Find the currently empirical marginal distributions, F̂Yi ;
(3) Obtain CML estimator θ̂ by minimizing Eq. (4) based

on F̂Yi ;
(4) Compute O(θ̂ |β).

Thus the CML estimator θ̂ is the function of the ro-
tation angles βij , 1 ≤ i < j ≤ n. And the independent
components are identified once O(θ̂ |β) attains its mini-
mum value in the rotation angle vector β . For brevity, we
use O(β12, . . . ,β(n−1)n) to denote the objective function
O(θ̂ |β), and then our ICA problem is equivalent to the min-
imization problem

min
βij ,1≤i<j≤n

O(β12, . . . ,β(n−1)n), (9)

which means that we find the rotation angles β ′
ij s to mini-

mize the divergence function O(θ̂ |β) at the CML estimator
θ̂ with respect to β .
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Algorithm 1 COPICA by simulated annealing algorithm

(I) [Initialization]

(1) Center the data X to make its mean zero, and obtain its
sample covariance matrix Σ̂ .

(2) Whiten the data by setting Z = WX where W = Σ̂−1/2.

(3) Choose the copula families and define the objective
function O(β).

(II) [Optimization by simulated annealing algorithm]

(1) Select initial angles, β
(0)
i ; Choose the decreasing function

T (t) and set t = 1.

(2) Repeat until t is large enough

(2.1) Run Nt iterations of the Gibbs sampler with πT (t)(β)

as its target distribution. Pass the final sample as β(t).

(2.2) t = t + 1.

(3) Identify the optimal angle vector β∗ for O(β).

(III) [Transformation matrix]

(1) Compute R = ∏
1≤i<j≤n Gij (β

∗
ij )

(2) The optimal transformation matrix B = RW .

2.4 The details of the COPICA procedure

The COPICA procedure used to find the independent com-
ponents of a given data set X is given in Algorithm 1, in
which the optimization step is by the simulated annealing
method.

There are two crucial steps in Algorithm 1: selection of
the copulae models, and estimation of the copula parameter
and search the best rotation angles. Discussion of the two
steps are given below.

Copula selection It is well known that copulae are invari-
ant with respect to strictly increasing transformations but
not necessary to general linear transformation. Hence even
if we can find the “true” copula family of the whiten ran-
dom vector Z, the “true” copula after rotation might still
fall in another family. Therefore, the key is not to find the
“true” copula but to choose the proper copulae whose best
approximations are useful in providing dependence measure
under mis-specification situation. In general, prior informa-
tion of the data or selection criteria are helpful to choose
the copulae, for example, the Copula Information Criterion
(CIC in short) proposed by Grønneberg and Hjort (2008).
Due to the characteristic of the signals/sources in engineer-
ing or finance applications, heavy-tailed source is a widely
used assumption in blind source separation (BSS) problems,
for example, Kidmose (2001) and Chen and Wu (2007). In
addition to BSS, the heavy-tailed assumption is also popu-
lar in the analysis of EEG signal (Tsai et al. 2006), natu-
ral image representation (Olshausen and Field 1996) and so
on. The existence of tail dependence is a special feature of
heavy-tailed signals/sources as well as an indication of non-
independence. In this study, we utilize the tail dependence

feature of the Gumbel and Clayton copulae to estimate the
dependency of the transformed data. The Gaussian copula
is also considered to capture pairwise rank correlations be-
tween the marginals. In an extensive simulation study, we
compare the copula based dependence measure with the
nonparametric Kendall’s τ in various settings of misspeci-
fied models. For the reason of concision, we only report the
summary results here without detailed description. The re-
sults show that the dependence measured by the copula pa-
rameters is in good accordance with the Kendall’s τ . And
under misspecified models, the copula-based measure still
provide valuable dependence information. The advantages
of the copula based criterion over the Kendall’s τ is its faster
convergence rate and higher SNR values in ICA applica-
tion. In addition, we will demonstrate the effectiveness of
the three copula based dependency measure by blind source
separation (BSS) examples in next section.

Optimization procedure for identifying best rotation angles
Recall from Eq. (4), we estimate the copula parameters by
the CML estimator which gives the best approximation to
the “true” copula in its family based on the transformed
data. Due to the constraints of copula parameter estimation
method, it is in general difficult to have closed form solu-
tion of the CML estimators. As a result there is no explicit
form of the objective function O(β12, . . . ,β(n−1)n) even for
low dimensional case. Derivative-free optimization meth-
ods, such as genetic algorithm, simulated annealing algo-
rithm, direct search method and so on, can aid to solve the
minimization problem defined in Eq. (9). Herein, the sim-
ulated annealing (SA) algorithm, proposed by Metropolis
et al. (1953) and introduced as an optimization technique by
Kirkpatrick et al. (1983), is used as an illustration to search
these optimal angles. For simplicity of notation, we denote
the rotation angels β12, . . . ,β(n−1)n by β1, . . . ,βq , where
q = n(n − 1)/2. First define a density

πT (t)(β) ∝ exp
{
−O(β)/T (t)

}
,

where O(β) is the objective function, β = (β1, . . . ,βq)⊤

and T (t) is the “temperature” at time t which is a decreasing
function from initial temperature, T (0) > 0, to 0+. The key
step of the SA algorithm is that for t , we run Nt iterations
of the Gibbs sampler with πT (t)(β) as its target distribution,
and then choose the final sample as β(t) = (β

(t)
1 , . . . ,β

(t)
q )⊤

that denotes β at time t . In order to speed up our optimiza-
tion process, we use exp(O(β)) in the SA algorithm instead
of O(β) directly. For more details about the SA algorithm,
please refer to Liu (2001).

In implementing the COPICA with SA algorithm, the
data is rotated by each sampled angles βij , and the cop-
ula parameter vector θ are re-estimated based on the rotated
data to compute the magnitude of the divergency function.
And in the Gibbs sampler, the simple inversion method is
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employed by using discretization of the continuous cumu-
lative distribution function. Note here for this discretization
method, suppose that we approximate the cumulative distri-
bution function of πT (t)(βi ) by K points, β

j
i , j = 1, . . . ,K .

Then for each point, β
j
i , CML approach is used to obtain

the copula parameter estimator based on the rotated data
with respect to β

j
i , and evaluate the corresponding objec-

tive function values. Finally we can have the approximated
cumulative distribution function for βi .

When we implement SA algorithm, we need to set the
initial values of rotation angles, β , and the temperature,
T (t). For the initial β , we can simply set the β = 0 for
the initial angles or we can set β based on our prior infor-
mation, for example, the angles obtained by the FastICA.
Consider the temperature T (t). In order to get the global
optimal point, the temperature T (t) of the SA should de-
crease slowly such as O(log(t)−1), for details we refer to
Liu (2001). However in practice, it is too slow to get the
global optimal point and instead the linear or exponential
temperature decreasing is used. In our COPICA, the tem-
perature is chosen as O(t−1/4) which would lead to a rea-
sonable convergent area quickly. From our simulations and
real example results, it seems that this T (t) works well in
our approach.

The complexity of Algorithm 1 can be analyzed as fol-
lows. First we consider the 2-dimensional situation and there
is only one angle β1 needed to identify via SA algorithm.
Then in each iteration of Gibbs sampler in SA algorithm,
the complexity of the inversion method is O(KSCT log(T )),
where K is the number of points to obtain the approxima-
tion cumulative distribution function, T log(T ) is the com-
plexity to sort each marginal source, C is the cost for max-
imization in CML method, and S is the number of the cop-
ula parameters used in our divergence function. Finally for
general n-dimensional problem, the complexity of sweeping
q = n(n − 1)/2 angles in each iteration of the Gibbs sample
is O(n2KSCT log(T )).

3 COPICA for blind source separation

We illustrate the performance of the proposed COPICA
method by solving blind source separation (BSS) problems.
Recently, blind source separation by ICA has received lots
of attention because of its potential applications in signal
processing such as in speech recognition systems, telecom-
munications and medical signal processing. In BSS prob-
lems, the observations xt = (x1t , . . . , xnt )

⊤ are assumed
to be mixtures of n mutually independent sources, st =
(s1t , . . . , snt )

⊤ at time t , that is

xt = Ast , t = 1, . . . , T , (10)

where A is an n × n invertible mixing matrix. The goal of
the BSS problem is to estimate the mixing matrix A and

recover the original sources st , for given mixtures, xt , t =
1, . . . , T simultaneously. If the matrix A is invertible and
known, then the independent sources can be recovered by
A−1xt , t = 1, . . . , T . While applying ICA methods to solve
the BSS problems, the optimal transformation matrix will
be the inverse matrix, A−1, multiplying by a permutation
matrix or a scaler.

In the following examples, we generate the sources
{st }Tt=1 independently from a mixture normal distribution
or from natural sound signals. The observation vectors are
then generated by Eq. (10) for a given mixing matrix, A. In
order to measure the performance of the COPICA method,
we consider the following signal/noise ratio (SNR) value

SNRsi (ŝi )[B] = 10 log10
(
∥si∥2/∥si − ŝi∥2) (11)

where si = (sit , t = 1, . . . , T ), i = 1, . . . , n, are the origi-
nal signals from the sources, ŝi = (ŝit , t = 1, . . . , T ), i =
1, . . . , n, are the recovered signals transformed by the ma-
trix B found by the COPICA method, and ∥ · ∥ denote
the L2-norm. Note that the columns of the inverse of the
transformation matrix, B , will be proportional to the true
mixing matrix A, and the signals are normalized for SNR
computation. By the definition of SNR in Eq. (11), larger
value of SNR indicates better performance. We consider
SNR ≥ 10 as a threshold of high SNR value, see also
Sodoyer et al. (2003). By its definition, SNR ≥ 10 is equiv-
alent to ∥si − ŝi∥2/∥si∥2 ≤ 10 %, which implies approxi-
mately at least 90 % of the signals are recovered by ŝi .
Statistical reasoning of using 10 as high SNR value is also
given below. If under independent and normal assumptions,
we have roughly ∥si∥2 ∼ χ2

T and ∥si − ŝi∥2 ∼ χ2
T −m, where

T ≫ m, hence ∥si∥2/T

∥si−ŝi∥2/(T −m)
∼ FT,T −m. Since the proba-

bility of the event {∥si − ŝi∥2/∥si∥2 ≤ 10 %}(≡ SNR ≥ 10)

is very small for large T , it is reasonable to consider 10 as a
large SNR value.

Example 1 Three sources are generated independently from
the following mixture normal density,

f (si) = 0.7fN(0,1)(si) + 0.3fN(0,32)(si),

where fN(µ,σ 2) is the density function of the normal dis-
tribution with mean µ and variance σ 2. That is each sam-
ple is generated from N(0,1) with probability 0.7 and from
N(0,32) with probability 0.3. The mixing matrix A is set to
be
⎛

⎝
1.0000 −2.0000 1.0000

−1.0000 1.0000 2.0000
−1.0000 1.0000 1.0000

⎞

⎠ . (12)

Two copulae, Gumbel and Clayton are used to measure the
tail dependence. The objective function is set to be
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Fig. 2 The simulation results for a three dimensional blind source sep-
aration problem with mixture normal sources. The red lines are the
original sources, and the blue lines are the recovered signals (Color
figure online)

O(θ̂) = ω1 ∗ |θ̂123,Gumbel − 1|
+ ω2 ∗

∑

i<j

|θ̂ij,Gumbel − 1|

+ ω3 ∗
∑

i<j

|θ̂ij,Clayton|

+ ω4 ∗
∑

i<j

|θ̂ij,Gaussian|, (13)

where the weights (ω1,ω2,ω3,ω4) = (200,300,200,500)

are chosen to be inverse proportional to the standard devia-
tions of the CML estimators of the copula parameters. After
100 iterations of the COPICA algorithm, the inverse trans-
formation matrix found by the COPICA procedure is

B−1 =

⎛

⎝
1.9974 −3.5685 1.7266

−1.9178 1.8719 3.6426
−1.9304 1.8337 1.8368

⎞

⎠ .

Note that each column of this matrix is approximately pro-
portional to the corresponding column of the genuine mix-
ing matrix A, and the three recovered signals give high SNR
values, 25.3238, 26.0529 and 32.8434. Figure 2 shows the
original source signals and the recovered signals, which also
illustrates high similarity between the two signals. The re-
sults show that the COPICA method successfully solve this
simulated BSS problem.

Example 2 In this example we demonstrate a real case with
one near-Gaussian-tail signal. Three natural sounds of thun-
der, water and fire each containing 5000 sample points are
used as the original signals. The sample kurtosises of these
three natural sounds are 3.5323, 29.4978 and 16.6685 re-
spectively. Note that the p-values of the Jarque-Bera test for
these natural sounds are all less than 10−3, which indicates
non-Gaussianity. The first source (thunder sound) is a near-
Gaussian-tail sample since its sample kurtosis is close to 3,

Fig. 3 The numerical results for three dimensional blind source sepa-
ration problem with three natural sounds (thunder, water and fire). The
red lines are the original sounds, green lines are their mixtures, and the
blue lines are the recovered signals (Color figure online)

while the other two sources (water and fire sounds) are of
heavy-tailed distributions. Using the same mixing matrix in
Eq. (12) and the objective function defined in Eq. (13), after
100 iterations of the COPICA method, we obtained

B−1 =

⎛

⎝
1.8946 −2.0933 0.7112

−1.8875 0.9933 1.5947
−1.8888 1.0118 0.8202

⎞

⎠ ,

and the corresponding SNR values are 35.6150, 35.2765 and
32.3912. We also found great similarity in the original natu-
ral sounds and the recovered signals shown in Fig. 3.

Example 3 In this example we demonstrate a real case with
three near-Gaussian-tail signals. Three sounds with 10000
sample points, boat engine, rain and wind, are used as the
original signals. The values of their sample kurtosis are 3.20,
3.23 and 3.71, respectively. Note that the p-values of the
Jarque-Bera test for the signals are all less than 10−3, which
indicates non-Gaussianity.

The mixing matrix A and the objective function are the
same as in Example 2. After 100 iterations of the COPICA
method, we obtain

B−1 =

⎛

⎝
5.6205 −3.3402 2.1439

−6.0068 1.6872 3.4948
−5.8871 1.7050 1.6141

⎞

⎠ ,

and the SNR values are 25.8270, 35.3203 and 23.8432 re-
spectively. The time plots of the original natural sounds and
the recovered signals are given in Fig. 4, again the result
show that the COPICA method successfully separate the
original natural sounds from their mixtures.

4 Comparisons with the FastICA

The FastICA (Hyvärinen and Oja 1997; Hyvärinen 1999a)
is one widely used and efficient method for identifying in-
dependent components. The FastICA is a two-step method.
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Fig. 4 The numerical results for three dimensional blind source sepa-
ration problem with three natural sounds (boat engine, rain and wind).
The red lines are the original sounds, green lines are their mixtures,
and the blue lines are the recovered signals (Color figure online)

Table 1 The kurtoses of the mixture normal distributions with σ1 = 1
and σ2 = 3

Near-Gaussian-tailed Heavy-tailed

p = 0.1 p = 0.2 p = 0.4 p = 0.6 p = 0.7

Kur. 3.2570 3.5610 4.3698 5.6122 6.4879

After whitening the data at the first step, the FastICA find
the independent components based on a fixed-point iteration
scheme for finding a maximum of the non-Gaussianity of a
linear projection. And the kurtosis or negentropy is used as
the measure of non-Gaussianity. The computer program of
the FastICA is available at the web-site,

http://www.cis.hut.fi/projects/ica/fastica/.

In this section, we compare the performance of COPICA
and FastICA for the BSS problems via simulation study.
The original independent sources are generated from mix-
ture normal distributions with the pre-specified parame-
ters σ1, σ2 and p. The corresponding kurtosis is 3{pσ 4

1 +
(1−p)σ 4

2 }/{pσ 2
1 + (1−p)σ 2

2 }2. Thus we can generate sam-
ples with different kurtosis by choosing proper values of p,
σ1 and σ2. In the following, (σ1,σ2) is set to be (1,3) and
p = 0.1,0.2,0.4,0.6,0.7 respectively, and the correspond-
ing kurtoses are given in Table 1.

Three dimensional BSS problem is considered for com-
parison. At each replication, three original sources are gen-
erated independently from the same mixture normal distri-
bution with sample size T , and the observations are obtained
by mixing the original sources with the matrix A given in
Eq. (12). Two sample sizes T = 1000 and T = 5000 are con-
sidered and 100 replications are performed. Since there are
three signals, 300 SNR values are obtained for each sample
size. For each value of p = 0.1,0.2,0.4,0.6,0.7, we report
the medians and standard deviations of the 300 SNR val-
ues obtained respectively by the two methods. The results

Table 2 Medians and standard deviations of the SNR for the BBS
problem with three mixture-normal sources mixed by a fixed matrix,
where N1 denotes the number of sources whose COPICA SNR val-
ues are larger than the FastICA SNR values, N2 is a 3 × 1 vector
whose components denote the non-recovery numbers of FastICA for
each source, and N3 (or N4) is a 3 × 1 vector with each component
representing the number that the COPICA (or FastICA) SNR values
are less than 10 (including the number of non-recovery)

Median std. N1
N2

N3
N4

T = 1000 p = 0.1 28.05 4.78 297 (0,0,0)

(7.56) (6.14) (15,16,11) (74,64,75)

p = 0.2 27.67 4.44 290 (0,0,0)

(14.62) (6.59) (5,4,2) (19,19,26)

p = 0.4 27.73 4.66 274 (0,0,0)

(18.63) (5.77) (0,0,0) (1,3,5)

p = 0.6 27.39 4.19 219 (0,0,0)

(22.62) (6.98) (0,0,0) (1,0,1)

p = 0.7 27.05 4.08 225 (0,0,0)

(22.82) (6.25) (0,0,0) (1,1,0)

T = 5000 p = 0.1 31.81 4.51 290 (0,0,0)

(15.09) (6.52) (1,1,2) (19,13,23)

p = 0.2 32.30 4.15 280 (0,0,0)

(21.44) (6.34) (0,0,0) (0,0,1)

p = 0.4 31.43 4.90 225 (0,0,0)

(26.27) (6.11) (0,0,0) (0,0,0)

p = 0.6 30.45 4.21 162 (0,0,0)

(29.35) (5.54) (0,0,0) (0,0,0)

p = 0.7 30.98 4.93 184 (0,0,0)

(29.38) (5.69) (0,0,0) (0,0,0)

are given in the first two columns of Table 2. The reason
for reporting the medians instead of the means is to avoid
the case of non-recovery (the FastICA method sometimes
cannot recover the original sources for near-Gaussian-tailed
case). We also compute the number of sources whose COP-
ICA SNR values are larger than the FastICA SNR values
denoted by N1. And let N2 be a 3 × 1 vector whose com-
ponents denote the non-recovery numbers of FastICA for
each source, and let N3 (or N4) be a 3 × 1 vector with each
component representing the number that the COPICA (or
FastICA) SNR values are less than 10 (including the num-
ber of non-recovery). The results of N1–N4 are given in the
third and fourth columns of Table 2.

We summarized the results by the tail type of the origi-
nal sources. The distribution is referred to “near-Gaussian-
tailed” if the kurtosis is less than 4, to “heavy-tailed” if the
kurtosis is greater than or equal to 4. In all cases, the COP-
ICA method gives larger SNR medians and smaller stan-
dard deviations than the FastICA method. Note that there are
300 original sources for each pair (p,T ), since all the val-
ues of N1 > 150, the COPICA method attains higher SNR
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values more than half of all time. Significant dominance in
the SNR medians and N1 of the COPICA over the FastICA
is apparent for smaller sample size (T = 1000) and near-
Gaussian-tail case p = 0.1,0.2. The non-recovered number
of the FastICA method, N2, are noted when p = 0.1,0.2,
T = 1000 and p = 0.1, T = 5000, which indicates the
FastICA method might fail to recover the near-Gaussian-
tailed signals. All the values of N3 are equal to zero, im-
plies the SNR values obtained by the COPICA are greater
than 10 for all cases. Moreover, there are significant times
(N4) that the FastICA attains small SNR (≤10) values for
the near-Gaussian-tailed case p = 0.1,0.2, T = 1000 and
p = 0.1, T = 5000. Based on the above, we conclude that
for all generated sources, COPICA successfully identifies
the three independent components, while FastICA works
well for heavy-tailed sources, but may fail for the near-
Gaussian-tailed sources. The reason might be due to the cri-
terion of the FastICA is based on the kurtosis and negen-
tropy which is not sensitive to near Gaussian-tailed distribu-
tions. However, the signals with kurtosis close to 3 do exist
in real application. Recall the sample kurtosis of thunder,
boat engine, rain and wind sounds in Examples 2 and 3 are
all close to 3. We further applied the FastICA method to
these two real sound examples. For the case with one near-
Gaussian-tailed and two heavy-tailed signals (Example 2),
the inverse matrix found by the FastICA is

B−1
FastICA =

⎛

⎝
1.8889 −2.0828 0.7548

−1.8882 1.0274 1.5716
−1.8880 1.0311 0.7970

⎞

⎠ ,

and the SNR’s are 37.0375, 51.6663 and 46.4812 which
are all larger than those obtained by the COPICA method.
While for the case with three near-Gaussian-tail signals (Ex-
ample 3), the inverse transformation matrix found by the
FastICA of is

B−1
FastICA =

⎛

⎝
5.7296 −3.3709 1.7740

−5.5537 2.1166 3.9765
−5.6351 2.0033 2.0973

⎞

⎠ ,

and the SNR’s are 18.3674, 18.3564 and 22.6044 which are
all smaller than those found by the COPICA method. The re-
sults of the real sound examples also support the aforemen-
tioned simulation findings. Finally from Table 2, one can see
that both methods improve their SNR median values when
the sample size increases from T = 1000 to T = 5000.

In addition, we also compare the performance of the
two methods by using random mixing matrix. The original
sources are generated independently from a mixture-normal
distribution with σ1 = 1, σ2 = 3 and p ∈ {0.1,0.2,0.4,

0.6,0.7}. The size of each source is set to be 1000. How-
ever, in each replication, each component of the mixing
matrix, A, is generated from [−5,5] uniformly such that
A is invertible. That is the mixing matrix is different for
each replication. The 100 simulation results are shown in

Table 3 Medians and standard deviations of the SNR for the BBS
problem with three mixture-normal sources mixed by a random matrix,
where N1, . . . ,N4 are defined the same as in Table 2

Median std. N1
N2

N3
N4

p = 0.1 27.97 4.82 298 (0,0,0)

(7.07) (6.32) (20,18,12) (72,63,66)

p = 0.2 27.95 4.31 288 (0,0,0)

(13.97) (6.15) (0,1,1) (19,21,23)

p = 0.4 27.51 4.31 260 (0,0,0)

(19.64) (6.34) (0,0,0) (4,1,4)

p = 0.6 27.90 4.16 236 (0,0,0)

(21.64) (6.37) (0,0,0) (0,0,0)

p = 0.7 27.67 4.46 241 (0,0,0)

(22.64) (6.39) (0,0,0) (1,1,0)

Table 3. From Table 3 similar conclusions are obtained
as from Table 2. That is COPICA recovers all original
sources from their mixtures but FastICA might be fail for
some near-Gaussian-tail sources, and overall COPICA at-
tains higher SNR than FastICA, especially for the cases of
near-Gaussian-tail sources.

The infomax principle, maximizing the output entropy of
a neural network with nonlinear outputs, has been applied
to develop ICA algorithm in Bell and Sejnowski (1995), and
this principle is closely related to the maximum likelihood
approach. Hyvärinen (1999a) pointed out that the fixed-
point scheme in FastICA can be directly applied to infomax
type ICA algorithm by choosing the corresponding nonlin-
earity g, for example, g(y) = −2 tanh(y) for heavy-tailed
sources. We also studied the performance of the FastICA
using the infomax principle with g(y) = −2 tanh(y) for the
three dimensional BSS problem with different mixture nor-
mal sources and the mixing matrix A given by Eq. (12).
Since the results are similar to Table 2, thus details are omit-
ted here.

5 COPICA vs. nonparametric rank-based approach

In this section, we compare the COPICA method with sev-
eral nonparametric rank-based ICA approaches via simula-
tion studies. Many non-linear dependence measures for a
pair of continuous random variables (X,Y ) are based on
ranks. Among most commonly used are Kendall’s τ and
Spearman’s ρ. Kendall’s τ , is defined as the difference be-
tween probability of concordance and probability of discor-
dance. Spearman’s ρ is defined as the Pearson’s correlation
coefficient between the ranks of the two samples and for a
given copula model. More details of these two measures can
be found in Nelsen (2006). Another nonparametric approach
for measuring the dependence is the Blomqvist’s β (Schmid
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and Schmidt 2007). Recently, Kirshner and Póczos (2008)
suggested using the Schweizer-Wolff σSW , defined as

σSW = 12
∫

[0,1]2

∣∣C(u, v) − uv
∣∣dudv, (14)

to measure the pairwise dependence (Schweizer and Wolff
1981). They proposed an algorithm for ICA by replacing the
copula function in (14) with empirical copula.

Most of the ICA algorithms use an approximation to mu-
tual dependence as their objective functions. And the per-
formance of an ICA algorithm depends on how accurate the
approximate dependence measure is. The above four non-
parametric dependence measures are all zero if X and Y are
independent. However, the converse is not necessary true.
Kirshner and Póczos (2008) showed that σSW is more ro-
bust than Kendall’s τ and Spearman’s ρ with added out-
liers and noise. However, to obtain the nonparametric mul-
tivariate empirical distribution requires an intensive compu-
tational effort when sample size is large or dimensionality
is high. It might even collapse when dimension is too high
say higher than 4. A semiparametric approach such as COP-
ICA, which estimates the joint distribution via copula func-
tion and one dimensional empirical distribution, can provide
an alternative to greatly relieve the computational burden.

We conduct several simulation studies to compare the
performance of COPICA with nonparametric ICA methods
based on Kendall’s τ , Spearman’s ρ, Blomqvist’s β , and
Schweizer-Wolff σSW . Basically COPICA method attains
higher SNRs than the ICA methods based on Kendall’s τ ,
Spearman’s ρ or Blomqvist’s β , and is competitive with
the ICA method via Schweizer-Wolff σSW . To save the
space, we only show comparison between COPICA and ICA
method via Schweizer-Wolff σSW (ICA_SW). Note that the
ICA-SW used here is similar to a ICA algorithm proposed
by Kirshner and Póczos (2008). In the simulation study to
compare the ICA performance of COPICA and ICA-SW,
various types of heavy-tailed sources are used to generat-
ing original independent sources. Similar to the experimen-
tal setting of Bach and Jordan (2002), we consider 12 differ-
ent one-dimensional densities with kurtosis greater than 3,
shown in Fig. 5, including those densities commonly used in
finance (a)–(d), in reliability and lifetime modeling (e)–(h)
and (k) and in communications (i), (j) and (l).

For the bivariate case, we generate two independent
sources each of size 1,000 from the same density, normal-
ize the sources, and then mix them by a matrix whose ele-
ments are randomly sampled from [−5,5]. We compute the
SNR’s of the COPICA and ICA_SW for the 12 heavy-tailed
sources, respectively. Figure 6 plots the medians of the dif-
ferences in the SNRs of COPICA and ICA_SW (COPICA-
ICA_SW) based on 100 replications. Since most of the me-
dians in Fig. 6 are around zero, the results indicate the
ICA performance of the semiparametric COPICA method is
competitive with the nonparametric ICA_SW method, Also,

Fig. 5 Probability density functions of heavy-tailed sources. (a) Stu-
dent t with 3 degrees of freedom (d.f.); (b) Student t with 5 d.f.;
(c) double exponential distribution; (d) mixture of two Gaussians,
where the density is f (x) = 0.5φ(x+0.5)+φ(2x−1); (e) exponential
distribution; (f) Chi-square distribution with 3 d.f.; (g) Chi-square dis-
tribution with 5 d.f.; (h) gamma distribution; (i) Rayleigh distribution;
(j) Nakagami distribution; (k) Weibull distribution; (l) Rician distribu-
tion (Color figure online)

Fig. 6 The medians of SNR(COPICA)-SNR(ICA_SW) absed on 100
replications, where the two original independent sources are generated
from the same density in (a)–(l) with sample size 1,000 (Color figure
online)

in Table 4 we list the numbers of SNRs greater than 10
(or 15) in recovering the 200 mixed signals (of two sources
and 100 replications) for COPICA and ICA_SW. The results
show both methods recover almost all the mixed signals with
SNRs greater 10. The SNRs of both methods increase as
the sample size increases from 1,000 to 5,000, and the re-
sult based on 5,000 samples are similar to the ones shown
in Fig. 6 and Table 4. However, the computational time of
ICA_SW increases quadratically (i.e., 25 times) while the
computational time of COPICA only increases linearly (i.e.,
5 times). In the semiparametric COPICA approach, sort-
ing is only needed for one dimensional marginal empiri-
cal distributions for each source and the joint distribution is
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Table 4 The number of SNRs greater than 10 (or 15) of COPICA and
ICA_SW in the 2-dimensional cases

Case #{SNR ≥ 10} #{SNR ≥ 15}
COPICA ICA_SW COPICA ICA_SW

(a) 200 200 197 198

(b) 200 193 188 176

(c) 199 200 191 200

(d) 200 200 200 200

(e) 200 200 200 200

(f) 200 200 200 200

(g) 200 200 200 200

(h) 200 200 198 200

(i) 200 200 195 200

(j) 200 200 200 200

(k) 200 200 200 200

(l) 200 200 197 200

Fig. 7 Box-plots of the SNR difference (COPICA - ICA_SW) for
2-dimensional (left) and 6-dimensional (right) sources generated ran-
domly from the 12 heavy tailed densities (a)–(l) (Color figure online)

linked by parametric copulae. While for the nonparametric
approach ICA_SW, sorting is required for both one dimen-
sional and two dimensional joint copulae. In sum this means
that our method is computationally lighter than their tech-
nique.

Another scenario of the experiments is to generate each
independent source randomly from the 12 heavy tailed den-
sities (a)–(l) (therefore the sources are not necessary of the
same distribution) and then mix the sources by a matrix
with elements sampled randomly from [−5,5]. We show
the SNR differences (COPICA-ICA_SW) of 2-dimensional
and 6-dimensional cases in Fig. 7. The SNR’s are obtained
after 90 iterations, the sample size of each source is 1,000,
and the numbers of replication are 1,000 and 100 for the
2-dimensional and 6-dimensional cases, respectively. The
results show that the COPICA method is still competitive

with the ICA_SW method for the random mixing bivariate
cases. Nevertheless, in the 6-dimensional case the COPICA
method attains higher SNR than the ICA_SW method on the
average.

6 Conclusions and discussions

In this article, a new ICA method, COPICA, is proposed.
Similar to the FastICA, the COPICA method is also a two-
step procedure. After whitening the data, COPICA projects
the whiten data into the n-dimensional plane simultane-
ously, and this projection is chosen in terms of the param-
eters of the pre-specified copulae. Thus in COPICA, ICA
problem is transformed to a minimization problem whose
objective function is defined by the weighted combination of
the divergence functions of copula parameters. The weights
in the objective function are chosen to be inverse propor-
tional to the standard deviations of the parameter estima-
tors. Here the copula parameters are estimated via CML ap-
proach. Thus given a rotation matrix, R and the current re-
covered data, Y = R(WX), the empirical marginal distribu-
tions of Yi are obtained first and then the copula parameter
vector, θ , is found by maximizing Eq. (4). Hence we only
have parameterized copula model assumption and do not
have other assumptions on the marginal distribution. That
is why we treat our COPICA as a semiparametric approach.

By comparing COPICA with the commonly used FastICA
method and the nonparametric ICA methods, we find that
the copula parameter based divergence function of the three
copulae Gumbel, Clayton and Gaussian provide useful de-
pendency measures when the observations come from a lin-
ear mixing model. The simulation and real data studies in-
dicate that COPICA attains higher SNR than FastICA in
BSS problems, especially when the original sources come
from near-Gaussian-tailed distributions. Also, the COPICA
is shown to have higher SNRs than the ICA_SW on the aver-
age in the 6-dimensional case. Another interesting problem
is to study the COPICA method for multi-modes densities,
which is referred to our future work.

We investigate the sensitivity of COPICA w.r.t. weights
via the BSS problem. A preliminary study is conducted here.
In addition to (ω1,ω2,ω3,ω4) = (200,300,200,500) in
Example 1, six more weight combinations (ω1,ω2,ω3,ω4)

are considered and five mixture-normal distributions with
p = 0.1,0.2,0.4,0.6,0.7 are considered. In each replica-
tion three independent sources of length T = 1000, gen-
erated from a mixture-normal distribution, are mixed by
the matrix A defined in (12). For each p, the average
SNRs of 3 × 100 independent copies are obtained for each
weight combination. The highest average SNR among the
seven weight combinations is taken as the benchmark value.
The ratios of the average SNR of each weight combina-
tion to the benchmark SNR are reported in Table 5. The
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Table 5 The average SNR ratios of COPICA for different weight com-
binations of the objective function (13)

Weights p

0.1 0.2 0.4 0.6 0.7

(200,300,200,500) 0.84 0.87 0.82 0.86 0.83

(200,200,200,200) 1.00 1.00 1.00 1.00 1.00

(0,200,200,200) 0.97 0.95 0.98 0.89 0.99

(200,200,0,200) 0.94 0.89 0.75 0.74 0.79

(200,200,0,0) 0.84 1.00 0.84 0.89 0.96

(200,0,200,0) 0.94 0.87 0.76 0.78 0.83

(200,0,0,200) 0.78 0.61 0.31 0.25 0.30

Highest ave. SNR 6.25 7.56 14.83 17.79 17.98

initial rotation angles are set to be zero and the number
of iterations in the SA algorithm are set to be 100. The
SNR ratios of the first six weight combinations range from
0.74 to 1, which indicates the COPICA is only slightly
sensitive to these six weight combinations. The weight
combinations (200,300,200,500) has relatively robust per-
formance among 7 weight cases. The weight combina-
tions (200,200,200,200) and (0,200,200,200) are the
best two obtaining the high SNRs, while the combination
(200,0,0,200) has the poorest performance in this sce-
nario. This suggest the necessity of including the Gumbel
and Clayton copulae in the objective function. Moreover,
the highest average SNR of the COPICA increases as p in-
creases (equivalently the kurtosis increases, see Table 1) af-
ter 100 iterations in the SA algorithm. To find general rules
for weight selection of high SNR further studies are still
needed.
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This study considers the theoretical bootstrap ‘‘coupling’’ techniques for nonparametric
robust smoothers and quantile regression, and we verify the bootstrap improvement. To
handle the curse of dimensionality, a variant of ‘‘coupling’’ bootstrap techniques is devel-
oped for additive models both in a robust mean regression and in a quantile regression
framework. Our bootstrap method can be used in many situations such as constructing
confidence intervals and bands. We demonstrate the bootstrap improvement over the the-
oretical asymptotic band in simulations and in applications to firm expenditures and the
interaction of economic sectors and the stock market.
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1. Introduction

Confidence bands are important tools for model specifications. However, it is difficult to construct precise confidence
bands for nonparametric curves since a supreme norm is usually involved in the statistics. Traditional methods based on
the asymptotic theory have natural drawbacks in their finite sample performance, and this motivates bootstrap methods to
attain more precise bands. In this article, we deal with bootstrap bands construction for a general class of nonparametricM-
and L-estimates; moreover, we adopt additive models to handle the multivariate covariates case. We believe that the devel-
oped technique is essential for componentwise shape inspection of additive models in empirical economics. Applications
can be found in the work of [6] or [4].

Consider Y , X 2 Rd+1 with variable Y and X 2 Rd.
l(x) = arg min

✓
EY |X=x⇢(Y � ✓), (1)
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Fig. 1. Plot of true curve (gray), robust estimate with Tukey biweight loss and 5% confidence bands (blue dashed), local polynomial estimate (black),
bootstrap band (red dotted), n = 150.

with ⇢(·) as a loss function described in detail in Section 2.1. For the confidence bands construction, one stream of literature
using empirical process theory follows the asymptotic results of [2], which is further extended by [19], and has recently
been studied by [13] for L-smoothers. However, it has also been shown by [31] that such an asymptotic confidence band
has a much lower coverage probability in a finite sample than what it is supposed to have. The poor performance of such a
band in a finite sample has been well attributed to its slow convergence, see [7]. To address improvement of a finite sample
performance, there is a class of literature on the bootstrap confidence band, see [3,12], among others. Fig. 1 shows a boot-
strap confidence band and an asymptotic band for an M-smoother with ⇢(·) being Tukey’s bisquare loss. One can see that
the asymptotic band is narrower than the bootstrap one. Moreover, the asymptotic band does not cover the true curvewhile
the bootstrap band does.

Many different resampling techniques have been developed, among which the permutation tests are very popular and
can be adapted tomany application scenarios, see [28,1,22,23]. The bootstrap is a class of data driven resampling techniques
that provide non-asymptotic approximations of finite sample distributions of different statistics. In a location model (more
generally a regressionmodel), resampling is done from the estimated residuals, and a typical theoretical analysis leads to the
conclusion that ‘‘bootstrap works’’ in the sense that a suitably centered bootstrap estimator converges to the same asymp-
totic normal distribution as the original estimator under consideration. A large literature body has focused on showing
bootstrap improvements and refinements of approximations via bootstrap resampling, see [8,21,15,11], which discuss the
conditions for bootstrap consistency, and also prove the bootstrap accuracy as an approximation to the exact finite sample
distribution for special types of statistics in a nonparametric framework. However, very few articles have focused on nonlin-
ear statistics (e.g. maximum) in nonparametric regression. [31] proposes a bootstrap procedure and shows its improvement
properties.

This stimulates the current research on finding common properties that loss functions have to share in order to attain
such an improvement. Accordingly, we prove a generalized version in the univariate case for a class of loss function with
bounded influence. The bootstrap becomes difficult when the dimension d of the regressors gets large. One way to avoid
this problem is to impose a structure, such as an additive model, on the multivariate nonparametric function. The additive
structure assumes that the covariates’ effects are separable, and this effect is presented inmany economic applications, [10].
Specifically, we consider the regression function

m(x1, . . . , xd) =
dX

j=0

mj(xj), (2)

with m0(x0) a constant. It is worth noting that the additive structure implicitly assumes that the covariates effects are sep-
arable, and of course this assumption needs to be tested in advance. [32] develops a test on testing the interaction effects;
correspondingly, our method can also be extended to implement similar tests.

It is well known that (2) avoids the ‘‘curse the dimensionality’’ in the sense that one-dimensional convergence rates are
achieved for the estimation ofm(x1, . . . , xd), but keeps enough flexibility of themarginal influence of the different variables.
See [14,17,16] amongmany others. [14] focuses on generalized additivemodels with unknown link functions, [17] proposes
a two-stage estimation for quantile regression in additive models, [16] shows the equivalence between spline, kernel and
othermethods in terms of optimalminimax rate in the additivemodel estimation. The resulting estimate m̂j(xj) in (2) though
needs to be screened for closeness tomj(xj). This requires construction of confidence intervals and bands as a function of xj.
For such screening tests, our tightened bootstrap techniques will be verified. Namely, the bootstrap-based confidence bands
are shown to be very close to the true finite sample distribution-based ones.
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In summary, we investigate a coupling technique that allows us to ‘‘tie the straps’’ even a little tighter for a class of
bounded influence estimators. Theoretically speaking, confidence band construction is made more precise in a variety of
the estimation problems that we consider. The coupling idea is based on mimicking the distribution of the original data via
a controllable randommechanism. Similar results like (9) will be derived for additive models.

The remainder of this paper is organized as follows. In Section 2, we explain the model setup and the bootstrap method
in more detail. Section 3 presents the main results. In Section 4, a small simulation study is presented. Moreover, we show
in Section 5 applications on managerial compensation and the impact on stock markets. Finally, Section 6 concludes with
some comments and directions for future research.

2. Models and bootstrap confidence sets

This section describes the estimator and our coupling techniques, which motivate the obtainable theoretical results, and
discusses some of the assumptions.

2.1. Univariate case

Let us describe the coupled bootstrap in the simple case of nonparametric minimum contrast curve estimation. Here
(X, Y )> 2 R2. The object of estimation is identified via:

l(x) = arg min
✓

E(Y |X=x)⇢(Y � ✓), (3)

where ⇢(·) is a loss function of e.g. Hampel/Huber type or more generally (up to a constant) a negative (pseudo) log likeli-
hood. In the quantile regression case, ⇢(x) = |x|{⌧ � 1(x  0)} is the check function. Another example for ⇢(·) includes the
trimmed mean, [18]

⇢(x) =
⇢
x2/2, |x|  k,
�k2/2 + k|x|, |x| > k

(4)

or a form of Winsorized mean:

⇢(x) =
⇢
x2, |x|  k,
k2, |x| > k.

(5)

A sample based version of (3) is:

l̂h(x) = argmin
✓

n�1
nX

i=1

⇢(Yi � ✓)Kh(x � Xi), (6)

where Kh(u) = K(u/h)/h is a kernel function with bandwidth h. Now we generate a bootstrap sample using i.i.d. uniform
random variables U1, . . . ,Un 2 U(0, 1), and then generate:

Y ⇤
i = l̂g(Xi) + "⇤

i , i = 1, . . . , n, (7)

where "⇤
i ⇠ F̂�1

("|X=xi)
(Ui) (discussed in detail in (24)) and g = O(n�1/9) a slightly larger bandwidth than h. The basic idea of

coupling is based on comparing this sample to the pseudo observations:

Y ]i = l(Xi) + "
]
i , i = 1, . . . , n, (8)

where "]i = F�1
(Y |X=xi)

(Ui). Note that given {Xi}ni=1, the distribution of Y ]i and Yi is the same. We will show that for a class of
loss functions the following approximation holds:

sup
x2B

h
l̂]h(x) � l(x) � {l̂⇤h,g(x) � l̂g(x)}

i
= Op(h2�n), (9)

where B is a closed compact set in [0, 1], �n a slowly increasing sequence (a sequence an is slowly increasing if n�↵an ! 0
for any ↵ > 0), l̂]h(·) is the nonparametric estimate calculated from {(Xi, Y

]
i )}, l̂⇤h,g(Xi) is an estimate calculated from the

bootstrap sample {(Xi, Y ⇤
i )} with bandwidth h,

ˆ̀⇤
h,g

def= argmin
✓

nX

i=1

⇢(Y ⇤
i � ✓)Kh(x � Xi) (10)

and l̂g(Xi) is calculated as in (6) from the original samplewith bandwidth g . The basic elements in proving (9) are smoothness
of F"|X=x(·) and bounded influence of ⇢(·) in (3).
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2.2. Additive models and bootstrap confidence sets

For any x 2 Rd (d > 1), the nonparametric approach in (6) is not appropriate when d is large, as the standard non-
parametric optimal convergence rate, Op(n�4/(4+d)), would be too slow when d is large. Additive models were suggested to
remedy the problems posed by the dimensionality. Recall (2), and impose the additive structure:

Yi =
dX

j=0

mj(xi,j) + "i. (11)

Further, approximate the additive model via a basis function approach:

mj(xi,j) ⇡
Lj+1X

l=1

al,j⌫l(xi,j),

where the ⌫1(·), ⌫2(·), . . . could be any sequence of functions spanning the L2 space. Our implementation uses B-splines, for
example, linear B-splines: consider a sequence of H�1 equally spaced knots on the interval [0, 1], which defines the width
H subintervals [lH, (l + 1)H], 0  l  (H�1 � 1). The linear B-spline basis is:

⌫l(x) =
8
<

:

H�1x � l + 1 (l � 1)H  x  lH,

l + 1 � H�1x lH  x  (l + 1)H,
0 otherwise.

Denote the theoretical standardized B spline basis �l(·), for the jth variable, j = 1, . . . , d,

�l,j(xj)
def= ⌫l(xj) � ⌫l�1(xj)cl,j/cl�1,j,

Bj,l(xj) = �l,j(xj)/k�l,j(xj)k2,

where l = 0, . . . ,H�1, cl,j
def= R

�l,j(u)fj(u)duwith fj(u) is the density for xj, so that EBj,l(xj) = 0, EBj,l(xj)2 = 1.
The additive estimate can then be obtained as follows. Define the vectors in (RH�1d+1),

A = (a0, a>
1 , . . . , a>

d )>,

�(Xi) = {1, g(xi,1)>, . . . , g(xi,d)>}>,

where
aj = (a1,j, . . . , aH,j)

>,

g(xi,j)> = {⌫1(xi,j), . . . , ⌫H(xi,j)}>.

Finally, let Â be the estimation of A:

Â = argmin
A

nX

i=1

⇢{Yi � A>�(Xi)}, (12)

and

m̂j(xi,j) = â

>
j g(xi,j), (13)

with j = 1, . . . , d.

2.3. Coupled bootstrap for cases of high dimensional covariates

The additive structure in (11) is one solution to the curse of dimensionality, however, the bootstrap approach in (7) does
not work for this modeling scenario as nonparametric estimation of F"|X (·) would again run into the ‘‘curse of dimension-
ality’’ problem. We suggest another bootstrap technique, and prove that it strongly approximates a model with the same
asymptotic properties as the original model.

Define

Zi =
⇢

1 with prob ⌧
�1 with prob 1 � ⌧ ,

i = 1, . . . , n. (14)

This includes the special case for symmetric error distributions with ⌧ = 1/2, which is the usual assumption for mean or
robustM-smoothers. Moreover, it generally adapts to the case of quantile regression for asymmetric error distributions. The
bootstrap couple ("⇤, "]), the bootstrap residuals and its associate theoretical couple respectively are:

"⇤
i

def= Zi|"̂i| (15)

"
]
i

def= Zi⌘i, i = 1, . . . , n, (16)
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where

⌘i
def= F�1

i,Zi {Fi,sgn("i)(|"i|)}, i = 1, . . . , n, (17)

and

Fi,s(t)
def= P(|"i|  t|s"i > 0), i = 1, . . . , n, s 2 {1, �1}. (18)

Note that the same Zi appears both in (15) and in (16).
Recall that FY |X=Xi{l(Xi)} = ⌧ and, hence, F"|X=Xi(0) = ⌧ . Now, it is easy to see that Vi

def= Fi,sgn("i)(|"i|) has a standard
uniform distribution, and if Zi is as above, then "i and ZiF�1

i,Zi (Vi) have the same distribution. Formally, note that

Fi,+1(t) = Fi(t) � 1 + ⌧

⌧
,

Fi,�1(t) = 1 � ⌧ � Fi(�t)
1 � ⌧

,

where Fi(·) is the cdf of "i. Hence, for t > 0:

P("]i < t) = ⌧P[F�1
i,+1{Fi,sgn("i)(|"i|)} < t] + 1 � ⌧

= ⌧P{Fi,sgn("i)(|"i|) < Fi,+1(t)} + 1 � ⌧

= ⌧P{"i < 0, Fi,�1(�"i) < Fi,+1(t)} + ⌧P{"i > 0, Fi,+1("i) < Fi,+1(t)} + 1 � ⌧

= ⌧P
⇢
"i < 0,

1 � ⌧ � Fi("i)
1 � ⌧

<
Fi(t) � 1 + ⌧

⌧

�
+ ⌧P(0 < "i < t) + 1 � ⌧

= ⌧P

1 � ⌧ > Fi("i) >

1 � ⌧

⌧
{1 � Fi(t)}

�
+ ⌧P(0 < "i < t) + 1 � ⌧

= ⌧


1 � 1 � ⌧

⌧
{1 � Fi(t)} � ⌧

�
+ ⌧ {Fi(t) � 1 + ⌧ } + 1 � ⌧

= Fi(t).

The case t < 0 is dealt similarly. It follows

L("
]
i ) = L("i). (19)

Our confidence ‘‘ideal’’ interval is conditional on {Vi}ni=1 which has a direct link to the absolute value of errors {|"i|}ni=1.
Note, however, that the estimator is asymptotically consistent and its bias does not depend on these absolute values. More-
over, by the law of large numbers, the pointwise width of the conditional confidence interval is within a factor of 1+ Op(1)
of the unconditional one.

2.4. How does the coupling work?

The basic idea of our approach is to construct an empirically feasible bootstrap sample that strongly approximates a
sample from the true distribution. One example of the coupled bootstrap approach has already been explained in (7) and
(8). It, however, relies on estimators of the conditional distribution FY |X=x(·), which become very imprecise when d is large.

Another approach proposed in Section 2.3motivated as thewild bootstrap is based on randomizing the obtained residuals
and using the same random source to mimic the stochastic of the unobservable errors. To get the basic idea, let us assume
for amoment that the distributions of "i are symmetric. Then the couplingmay be performed via a Rademacher randomized
variable Zi with

P(Zi = 1) = P(Zi = �1) = 1/2

and generation of the couple "⇤
i (the bootstrapped residuals), "]i (the theoretical coupling), where {"⇤

i , "
]
i } is:

"⇤
i

def= Zi|"̂i|
"
]
i

def= Zi⌘i. (20)

With this construction, we are able to establish a result similar to (9).
In a non symmetric distribution (required for quantile regression), one defines Zi with P(Zi = 1) = ⌧ and P(Zi = �1) =

1 � ⌧ assuming the centering FY |Xi{l(Xi)} = ⌧ , and the couple ("⇤
i , "

]
i ) is given by (15) and (16). It was argued that the

distributions of "]i and "i are identical and also the conditional distributions given {Vi}ni=1 are the same.
The resampling technique will be applied to a nonparametric estimation of an additive quantile regression model. The

reanalysis of the data used by [17] provides us with sharper bands that have not been calculated in that paper.
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2.5. Extension to generalized linear models

The model in Section 2 can be extended to generalized linear models, with the relation g{E(Y |X)} = l(X), where g(·) is
the known prespecified link function. For continuous random variable Y , the extension to the above bootstrap procedure is
trivial. Moreover, it can be also generalized to the models with discrete Yi. For example, for the binary logistic model with
Yi as binary data, define

"̂i = Yi � g{l̂h(Xi)}, (21)

then "̂i will be bounded in [�1, 1], and one can apply the same bootstrap procedure as in (20).

3. Main results

The section gives asymptotic results for the estimators described in Section 2. To establish the asymptotic property, some
assumptions are needed:

Assumptions

A.1 The solution l(·) of (1) is two-times differentiable and bounded. We abbreviate  (Y , ·) to  (·), and  (·) = ⇢ 0(·) (or
subgradient in the quantile regression case) is a.s. bounded by M < 1. E{ (")|X} = 0 w.p. 1. Also  (·) is Lipschitz
continuous except for a finite number of points in the compact set B.

A.2 Assume the support ofX is [0, 1]d, the conditional density of "f("|X=·)(·|·), and is bounded by C1 and is twice differentiable
in the interior point of [0, 1]d, and bounded away from 0 by c1 > 0.

A.3 The kernel function Kh(·) is a product kernel composed from one dimensional kernels with bandwidth h:

Kh(s) = ⇧d
j=1K(sj/h)/h, s = (s1, . . . , sd)> 2 Rd. (22)

A.4 The kernel bandwidth satisfies h ⇠ n�1/5. Let g be another bandwidth sequence g � h, e.g., g = O(n�1/9).
A.5 For each j, the true regression function mj(·), j 2 1, . . . , d, is at least one time continuous differentiable function on

[0, 1].
A.6 E{g2

l (Xj)} = 1 for j 2 1, . . . , d. k�l(Xj)k1  C3H, a.s., where�l(Xj)
def= {�2

l (x1,j), . . . ,�
2
l (xn,j)}>, with j 2 1, . . . , d.

A.7 The number of regressors in (12) is of O(p), where p = dH�1 + 1 with H�1 ⇠ n1/5, and d = O(n2/3).

A.1 is about the continuity and the bounded influence structure of the loss function, it is quite essential for proving the
bootstrap improvement. Also, A.1 includes a very general class of regression loss functions although it does not include the
usual mean regression loss. A.2 assumes W.L.O.G., the covariates are on bounded support and impose assumption on the
conditional density of the error term. A.3 is a standard assumption on the kernel function. A.4 is about theoretical rates
of the bandwidths h and g . h is of the standard optimal rate in nonparametric regression, while g is required to be larger
as we need to mimic the bias of estimation in the original nonparametric regression, see [12]. A.5–A.7 are assumptions on
additivemodels. A.5 assumes that additive components behave properly. A.6 imposes conditions on the basis functions, and
the linear B-spline satisfies A.6. The above assumptions are all verymild or standard assumptions according to the literature.

We show first convergence results for the bootstrap methods in (7) and (8). The resampling step has been defined in (7),
where the smooth estimate of the conditional distribution is:

eF("|X=x)(t)
def=

nX

i=1

Wh,i(x)1[{Yi � l̂h(Xi)}  t], (23)

with Wh,i(x) = n�1Kh(x � Xi)/f̂h(x) and f̂h(x) = n�1Pn
i=1 Kh(x � Xi) the kernel density estimator. To have a correctly

centered estimation for F("|X=x)(t), we define

dF̂("|X=x)(t) =

8
>>><

>>>:

deF("|X=x)(t)
eF("|X=x)(0) + C0(1 �eF("|X=x)(0))

if t < 0,

C0deF("|X=x)(t)
eF("|X=x)(0) + C0(1 �eF("|X=x)(0))

otherwise
(24)

where C0 is a constant defined as

C0
def= � R 0

�1  (u)deF("|X=x)(u)R1
0  (u)deF("|X=x)(u)

.

Note that the estimator in (24) is centered so that

EF̂"|X=xi
 ("⇤

i ) = 0 = EF"|X=xi
 ("]). (25)
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The influence function of the estimator is proportional to  (·) = ⇢ 0(·). If it is bounded with bounded derivatives a.e. and
L("|X) is such that kF̂("|Xi=x)(·) � F("|X=xi)(·)k1 = O(h2�n), then a similar coupling argument as in (7) can be used. Recall
"⇤
i = F̂�1

("|Xi=x)(F("|Xi=x)), then

| ("⇤
i ) �  ("

]
i )| = Op(h2�n). (26)

This ensures that

n�1
nX

i=1

{ ("⇤
i ) �  ("

]
i )}Kh(x � Xi) = Op(h2�n). (27)

The argument is based on two facts. First from (25) the means are zero and second that (26) holds.
Once the Y ⇤

i s are generated, one applies (10) to the bootstrap data {(Xi, Y ⇤
i )}ni=1 to obtain l̂⇤h,g(x). Summarizing, we have:

Theorem 3.1. Let assumptions A.1–A.4 be fulfilled and define l̂]h(·) as in (9). Then

sup
x2B

|An(x)| = Op(h2�n), (28)

where

An(x)
def= (l̂]h � l)(x) � {(l̂⇤h,g � l̂g)(x)}. (29)

Let assumptions A.1–A.7 be fulfilled and consider the additive model of (11)with the estimator (12), and the resampling scheme
is considered as in (15) and (16), then

sup
x2B

|(m̂]
j � mj)(x) � {(m̂⇤

j � m̂j)(x)}| = Oa.s.(H2�n).

Remark 1. The aforementioned strong approximation resultsmean that the stochastic behavior of l̂]h(x)�l(x) ((m̂]
j �mj)(x))

iswell approximated by its bootstrap counterpart l̂⇤h,g(x)� l̂g(x) ((m̂⇤
j �m̂j)(x)). This implies in particular that the distribution

of supx |̂l]h(x)�l(x)| (supx2B |(m̂]
j �mj)(x)|) is consistently approximated by that of supx |̂l⇤h,g(x)�l̂g(x)| (supx2B |(m̂⇤

j �m̂j)(x)|).
Also the rate H2�n is sufficient for the validity of the bootstrap for supremum-functionals, see [24]. Therefore, the bootstrap
confidence band is a direct consequence of the results.

Remark 2. A similar result was proved by [31] for quantile regression. There the centering ensures that the bootstrap error
distribution has the proper quantile. Here it is generalized to a wider class of centering, and to additive models.

4. Simulation

This section is divided into two parts. First, we concentrate on the univariate x 2 [0, 1] case and the bootstrap procedure
(7), (8), check the validity of the bootstrap procedure, and compare it with asymptotic uniform confidence bands. Second,
we adopt the bootstrap procedure for the additive model as in (20), and check the validity of the bootstrap band in the same
fashion.

4.1. Univariate case

The simulation setup in the univariate case is:

(1) Simulate (Xi, Yi), i = 1, . . . , n according to the predefined joint probability density function (pdf) f (x, y). In order to
compare with [9], we set the joint pdf of (X, Y ) as,

f (x, y) = g{y � sin(⇡x)}1(x 2 [0, 1]), (30)
g(u) = 9'(u)/10 + '(u/9)/90. (31)

(2) Compute l̂h(x) as in (6), with ⇢(·) as a biweight loss, "̂i
def= Yi � l̂h(Xi).

(3) Compute the estimated conditional edf as in (A.2) with a Gaussian kernel

Kh(u) = (
p
2⇡)�1 exp{�u2/2h}/h,

and h = 0.06 is selected by cross validation.
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Table 1

Relative errors and areas (estimated as averaged width of the confidence bands over the grid points) of asymptotic and bootstrap with 1000 repetitions
per sample, and 5000 samples. Relative error def= |(true coverage � nominal coverage)|/nominal coverage. Standard deviations measuring variability over
samples are shown in brackets.

n 95% 90%
Rel. Err. Area Rel. Err. Area

Boot. 100 0.02(0.015) 2.52(0.547) 0.02(0.014) 2.21(0.746)
200 0.01(0.010) 2.01(0.387) 0.02(0.010) 1.82(0.679)
400 0.01(0.004) 1.33(0.201) 0.01(0.003) 1.13(0.301)

Asym. 100 0.09(0.034) 1.22(0.596) 0.11(0.070) 1.02(0.711)
200 0.06(0.026) 0.91(0.602) 0.10(0.051) 0.67(0.518)
400 0.05(0.018) 0.72(0.314) 0.09(0.043) 0.68(0.325)

(4) For each i = 1, . . . , n, generate random variable "⇤
i ⇠ F̂("|X)(t), i = 1, . . . , n:

Y ⇤
i = l̂g(Xi) + "⇤

i ,

with g = 0.2.
(5) For each sample {Xi, Y ⇤

i }ni=1, compute l̂⇤h,g(·) and the random variable

di⇤
def= sup

x2B
[|̂l⇤h,g(x) � l̂g(x)|

q
f̂X (x){f̂("|X=xi)("

⇤
i )}/

q
b
EY |X { 2("⇤

i )}].
(6) Calculate the 1 � ↵ quantile d⇤

↵ of d1, . . . , dn⇤ .
(7) Construct the bootstrap uniform band centered around l̂h(x)

l̂h(x) ± [
q
f̂X (x){f̂("|X=xi)("

⇤
i )}/

q
b
EY |X { 2("⇤

i )}]�1d⇤
↵.

Fig. 1 shows the theoretical signal curve, the robust estimate using Huber loss functionwith a corresponding 95% uniform
confidence band from the asymptotic theory and the confidence band using the bootstrap method. The real curve is marked
as the gray solid line.We then compute the confidence bandbasedon asymptotic theory according to [9]. Here,wenotice that
the asymptotic band is narrower than the bootstrap band. The width of the bands has not been affected by outliers since we
adopt a robust estimation. To compare which method is more precise, Table 1 presents respectively the simulated coverage
probabilities together with the calculated area of the 95% and 90% confidence band, for sample sizes n = 100, 200, 400.
(Practically we would like to keep the sample size larger than 100 to achieve a reasonably precise estimation.) 5000
simulation runs are carried out and 1000 bootstrap samples are generated for each simulation. FromTable 1,we observe that,
for the asymptotic method, coverage probabilities improve with increased sample size and the bootstrapmethod (shown in
brackets) obtains a larger coverage probability than the asymptotic one, as it has smaller relative errors. It is also observed
that the sizes of the bands decreasewith increased sample sizes. Overall, the bootstrapmethod displays a better convergence
rate, while not sacrificing much on the width of the bands.

4.2. Additive model

We now extend the study to the case of multivariate covariates, where we use an additive model for the estimation. The
bootstrap procedure is as follows:

(1) Simulate (Xi, Yi), i = 1, . . . , n following model (11). The variables x1, x2, x3, x4 ⇠ U(�2.5, 2.5),

m1(x1) = sin(⇡x1), m2(x2) = �(3x2), m3(x3) = x33, m4(x4) = x44,

and "i is simulated from a mixture normal density function with density '(u/9)/90 + '(u)/10.
(2) Compute the estimation m̂1(x1), m̂2(x2), m̂3(x3), m̂4(x4) via (13) and "̂i = Yi �P4

j=1 m̂j(xi,j).
(3) For each i = 1, . . . , n, generate random variable "⇤

i , i = 1, . . . , n as in (15):

Yi,i⇤ =
4X

j=1

m̂j(xi,j) + "⇤
i .

(4) For each sample {xi,1, xi,2, xi,3, xi,4, y⇤
i }, compute m̂⇤

j (·) and the random variable

di⇤
def= sup

x2[�2.5,2.5]
{
q
f̂Xj(x){f̂("|Xj=xi,j)("

⇤
i )}/

q
b
EY |Xj=xi,j{ 2("⇤

i )}|m̂⇤
j (x) � m̂j(x)|}.

(5) Calculate the 1 � ↵ quantile d⇤
↵ of d1, . . . , dn⇤ .
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Fig. 2. Plot of true curve (dark blue), robust estimates and bands (cyan), bootstrap band (red dotted). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Table 2

Relative errors and areas of bootstrap bands for m̂1(·), m̂2(·), m̂3(·), m̂4(·) with 1000 repetitions per sample, and 5000 samples. Standard deviations
measuring variability over samples are shown in brackets.

n m̂1(·) m̂2(·) m̂3(·) m̂4(·)
Rel. Err. 95% 100 0.08(0.051) 0.05(0.027) 0.08(0.037) 0.09(0.020)

200 0.07(0.042) 0.03(0.015) 0.02(0.018) 0.04(0.019)
400 0.04(0.023) 0.02(0.012) 0.01(0.010) 0.03(0.012)

90% 100 0.06(0.050) 0.09(0.079) 0.06(0.066) 0.04(0.022)
200 0.04(0.038) 0.05(0.026) 0.03(0.048) 0.02(0.014)
400 0.03(0.028) 0.02(0.013) 0.02(0.021) 0.01(0.010)

Area 95% 100 6.76(1.291) 6.99(1.213) 6.87(1.241) 6.69(1.546)
200 5.54(1.112) 4.84(1.007) 4.98(1.115) 4.79(1.134)
400 4.56(0.988) 3.78(1.001) 3.21(0.943) 3.76(1.019)

90% 100 5.99(1.667) 5.45(1.472) 5.75(1.987) 6.01(1.654)
200 4.84(1.331) 4.38(1.112) 4.13(1.198) 4.11(1.219)
400 3.51(0.969) 3.23(0.989) 2.98(0.823) 3.09(1.012)

(6) Construct the bootstrap uniform band centered around m̂j(xj)

m̂j(xi,j) ± [
q
f̂xi,j(xj){f̂("|Xj=xi,j)("

⇤
i )}/

q
b
EY |Xj=xi,j{ 2("⇤

i )}]d⇤
↵.

The estimation of m̂j(xj)s (j = 1, . . . , 4) and their bootstrap confidence bands is shown in Fig. 2.
The simulated coverage probabilities are shown in Table 2. The coverage probabilities are close to the nominal levels and

the widths of the bands are clearly shrinking w.r.t. the sample sizes.

5. Empirical analysis

5.1. Firm expenses analysis

[35] uses a sample of Japanese firms in the chemical industry to examine whether a concentrated shareholding is associ-
atedwith lower expenditure on activities with scope formanagerial private benefits.We focus on the same regression prob-
lem as proposed in [17]. The dependent variable Y is: general sales and administrative expenses deflated by sales (denoted
by MH5), which is one of five measures of expenditures on activities with scope for managerial private benefits considered.
The covariates are: ownership concentration (denoted by TOPTEN, cumulative shareholding by the largest ten sharehold-
ers), and firm characteristics: the log of assets, firm age, and leverage (the ratio of debt to debt plus equity), the sample size
is 185. The regression model we consider here is:

MH5 = m0 + m1(TOPTEN) + m2{log(Assets)} + m3(Age) + m4(Leverage) + error.
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Fig. 3. Robust estimates (blue), bootstrap bands (red dotted), left up: Log(Asset), right up: Leverage, left below: Age, right below: TOPTEN. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

The estimated additive components and its bootstrap confidence bands are shown in Fig. 3. Similarly, it can be seen that the
nonlinear effects are log(asset) and TOPTEN, and the firm age effects are minor compared to the other three. The effect of
leverage is also a little bit nonlinear, and the shape of the curves deviates from what [17] presents, especially for the effect
of TOPTEN. This may be due to the different subjects studied: in our case, robust estimation with Tukey biweight loss, while
in their case the conditional median curve.

5.2. The impact on the stock market

We analyze how four assets (oil, currency, bonds, real estate) affect the stock market. This study would give implications
on the interactions of the economic conditions among different sectors. The data source is ProQuest Statistical Datasets, and
we focus on the United States market. Therefore, the covariates are taken as: the crude oil index, EUR–USD exchange rate,
the 10-year treasury constant maturity inflation index %, the real estate index, and the Y variable is S&P 500 index returns.
The data are synchronized to a weekly frequency. We selected the data during the period of 09/03/2008–11/28/2011.

It can be observed that all of the four markets have nonlinear effects on the stock indices values, Fig. 4, but only the
exchange rate EUR–USD and crude oil prices affect the stock indices returns nonlinearly, Fig. 5. It is not difficult to interpret
the relationships: In Fig. 4, for the exchange rate EUR–USD, the weakness of EUR up to a certain level (<1.27) is negatively
correlated with the stock indices, and then a positive correlation follows, but this relationship is again reversed when the
EUR is too high (>1.43). Oil prices have a negative impact on stock indices at every level, but the effects decrease when
the prices rise. As for the inflation index, when the inflation rate is high, interest rates are typically high, this may reduce
the consumption and investments in the stock market. One can see a negative correlation there when the inflation index is
larger than 0.7. Finally, an increasing real estate index can be a sign of booming economic conditions, therefore the stock
indices rise when the real estate index gets higher. However, when the real estate index is too high, it is likely that there
exists a bubble, so a drop in the market indices is seen.

In Fig. 5, we see a difference in effects on S&P log returns, exchange rate EUR–USD is positively correlated with returns
until a high level (>1.40), the crude oil has major negative effects on stock returns. More nonlinearity is presented in the
plots for the inflation index and the real estate index.

6. Conclusion

We have developed and proved the bootstrap improvement for a wide class of smoothers with bounded influence func-
tions. Moreover, we extended our results to additivemodels in order to copewith the curse of dimensionality. Our bootstrap
method can be further extended to serve various purposes in additive models. It may be used for componentwise hypothe-
sis testing, testing the separability or interaction and bias correction, see [32]. Furthermore, similar bootstrap improvement
results can be extended to other semiparametric models, e.g. partial linear models, and single index models. Moreover,
different types of resampling procedures can be adopted to directly resample (Yi, Xi), such as in [27,22]. And, according
to [1], we are able to deal with cases with discrete covariates.
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Fig. 4. Robust estimate (blue), bootstrap bands (red dotted), Y : S&P index, left up: exchange rates EUR–USD, right up: crude oil price, left below: inflation
index, right below: real estate index. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

Fig. 5. Robust estimate (blue), bootstrap bands (red dotted), Y : S&P index log return, left up: exchange rates EUR–USD, right up: crude oil price, left below:
inflation index, right below: real estate index. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
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Appendix. Proof

A.1. Proof of Theorem 3.1 in the d = 1 case

To prove Theorem 3.1, we show finally, with (optimal rate) h = O(n�1/5):

max
i

[(l̂]h � l)(Xi) � {(l̂⇤h,g � l̂g)(Xi)}] = Op(h2�n). (A.1)

This is extended to any point x in a compact set B in (A.12).
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Proving (A.1) can be done by showing first:

max
i

| ("⇤
i ) �  ("

]
i )| = Op(h2�n). (A.2)

Recall the definition of F̃ |X (·) in (24), it is the induced conditional cdf of { ("⇤
i )}ni=1. By [5] we have for a small b:

sup
|t|b,i=1,...,n

|F̃("|X)(t) � F("|X)(t)| = Op(h2�n). (A.3)

Also recall (24) F̂("|X) is a scaled version of F̃("|X). Then according to A.2, the inverse function of F̂("|X)(·) and F("|X)(·) will also
be close in the sense that

max
i

|"]i � "⇤
i | = max

i
|F�1

("|X)(Ui) � F̂�1
("|X)(Ui)| = Op(h2�n). (A.4)

Moreover, for a �i = Op(h2�n) uniformly, define F�1
 |X (·) as the conditional c.d.f. of  (") on X ,

| ("
]
i ) �  ("⇤

i )| = |F�1
 |X [F̂ |X { ("⇤

i )|Xi}|Xi] �  ("⇤
i )|,

= |F�1
 |X [F |X { ("⇤)|Xi} + �i|Xi] �  ("⇤

i )|,
= |F�1

 |X [F |X { ("⇤)|Xi} + �i|Xi] � F�1
 |X [F |X { ("⇤)|Xi}|Xi]|,

 1
c1
�i = Op(h2�n),

by A.2. Therefore, (A.2) is proved. As (·) plays a role in the estimation via the zero functions defined below, to prove (A.1),
we first want to write the estimation difference (l̂]h � l)(Xi) and (l̂⇤h,g � l̂g)(Xi) written w.r.t. to their zero functions defined
as follows.

G⇤
n(✓ , Xi)

def= 1
n

nX

j=1

Wh,j(Xi)[ {"⇤
j � ✓ + l̂g(Xj)}],

= 1
n

nX

j=1

Wh,j(Xi){ (Y ⇤
j � ✓)},

G]n(✓ , Xi)
def= 1

n

nX

j=1

Wh,j(Xi)[ {"]j � ✓ + l(Xj)}],

= 1
n

nX

j=1

Wh,j(Xi){ (Y ]j � ✓)}.

Note that, for the first moment, we have the natural equality as follows, so we can focus on the difference in the second
moment,

EF̂"|Xi=x
 ("⇤

i ) = 0 = EF"|Xi=x ("]). (A.5)

We abbreviate EF"|X=Xi
as E and EF̂"|X=Xi

as E⇤, define

el(x) def= argmin
✓

E⇢(Y � ✓)Kh(X � x), (A.6)

elg(x)
def= argmin

✓
E

⇤⇢(Y ⇤ � ✓)Kh(X � x), (A.7)

Tn(Xi)
def= G⇤

n{elg(Xi), Xi} � G]n{el(Xi), Xi} (A.8)

as the unbiased versions of the true function. It is not hard to derive that the bias has the order of Op(h2).

el(Xi) � l(Xi) = EG]n(l(Xi), Xi)

@EG]n(l(Xi), Xi)
+ O(el(Xi) � l(Xi)),

= {h2l00(Xi)/2 + f 0
X (Xi)l0(Xi)h2/fX (Xi)}kKk2

s + Op(h2).

Similarly forelg(Xi) � l̂g(Xi), we have

elg(Xi) � l̂g(Xi) = E

⇤G⇤(l(Xi), Xi)

@EE⇤G⇤
n(l(Xi), Xi)

+ O(elg(Xi) � l̂(Xi)),

= {h2 l̂00g (Xi)/2 + f 0
X (Xi)l̂0g(Xi)h2/fX (Xi)}kKk2

s + Op(h2),
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where kKk2
s

def= R
s2K 2(s)ds. A balance between bias and variance termwould lead to the choice of the rate h as O(n�1/5�n),

and we have |el(Xi) � l(Xi) � {elg(Xi) � l̂g(Xi)}| = Op(h2), so we can write the difference of the bias term as Op(h2) in the
following derivation.

Remark. In the case when  (·) is not differentiable, in particular for the quantile case, the above stochastic expansion is
still valid, see the stochastic expansion in [20].

According to A.1, excluding the non-differentiable  (·) case, one can use the Lipschitz condition of the function  (·),
and  (·) is bounded, we have, 9 a constant C , such that,

max
i

|Tn(Xi)| = max
i

�����
1
n

nX

j=1

Wh,j(Xi){ ("⇤
j �elg(Xi) + l̂g(Xj)) �  ("

]
j �el(Xi) + l(Xj))}

����� ,

 max
i

1
n

nX

j=1

Wh,j(Xi)|(C[{"⇤
j �elg(Xi) + l̂g(Xj)} � {"]j �el(Xi) + l(Xj)}])|.

So we can break the upper bound of maxi |Tn(Xi)| into two terms, the first term maxi Tn,1(Xi) involves the bootstrapped
error and its theoretical couple, which has been proved by (A.3), and the second term maxi Tn,2(Xi) is concerning the
convergence rate of l̂g(·),

max
i

|Tn(Xi)|  max
i

1
n
C

nX

j=1

Wh,j(Xi)|("⇤
j � "

]
j )| + max

i

1
n
C

nX

j=1

Wh,j(Xi)|[{l̂g(Xj) �elg(Xi)} � {l(Xj) �el(Xi)}]|,

 max
i

Tn,1(Xi) + max
i

Tn,2(Xi).

maxi |Tn,1(Xi)| is known to have the rate Op(n�1/2h3/2�n), and

max
i

Tn,2(Xi) = max
i

1
n
C

nX

j=1

Wh,j(Xi)|{l̂0g(Xi,j,0) � l0(Xi,j,0)}(Xi � Xj)| + Op(h2),

where Xi,j,0 is a point between Xi and Xj, and C is a constant, according to the mean value theorem. supx2B |̂l0g(x) � l0(x)| is
of the rate Op(g�1(ng)�1/2�n + g3), see [33]. Therefore the optimal rate for g would be O(n�1/9) in our case (as in A.4), this
rate is slower than the choice of h, which confirms the results in [12]. Then we can achieve

max
i

Tn,2(Xi) = Op(h2�n).

As the second derivative of the loss function (·) does not exist at zero, we use the local version of equicontinuity lemma
from chapter VII.1 in [29]. Our loss function has the following expansion with the remainder term defined as r{y, ✓(x)}

⇢{y � ✓(x)} = ⇢{y � l(x)} + {✓ � l(x)} {y � l(x)} + |✓ � l(x)|r{y, ✓(x)}, (A.9)

define R⇤
n(Y

⇤,elg(Xi))
def= n�1Pn

j=1 r(Y
⇤
j ,elg(Xi)), Rn(Y ,el(Xi))

def= n�1Pn
j=1 r(Yj,el(Xi)) are the high order function, we need to

prove it satisfies the equicontinuity condition around the pointelg(Xi) andel(Xi), namely, for each ⌘ and ✏, 9� such that,

lim sup
n

P( sup
l0:kl0g�elgk<�

kR⇤
n(l

0
g) � R⇤

n(
elg)k > ⌘) < ✏, (A.10)

lim sup
n

P( sup
l0:kl0�elk<�

kRn(l0) � Rn(el)k > ⌘) < ✏. (A.11)

According to the equicontinuity lemma in [29], first of all we can prove that |r(y, ✓)| has an envelope, by having the
function r(y, ✓) satisfying certain conditions.

So we can achieve the estimations are linked to the zero functions around the pointelg(Xi) andel(Xi) respectively, as fol-
lows:

l̂⇤h,g(Xi) �elg(Xi) = � G⇤
n{el(Xi), Xi}

@EE⇤G⇤
n{elg(Xi), Xi}

+ Op((nh)�1/2),

l̂]h(Xi) �el(Xi) = � G]n{el(Xi), Xi}
@EG]n{el(Xi), Xi}

+ Op((nh)�1/2),

where @EE⇤G⇤
n{elg(Xi), Xi} denotes the partial derivative of EE⇤G⇤

n{✓ , Xi} w.r.t. ✓ taking value at the pointelg(Xi).
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This means,

|̂l⇤h,g(Xi) � l̂g(Xi) � l̂]h(Xi) + l(Xi)| = � G⇤
n{elg(Xi), Xi}

@EE⇤G⇤
n{elg(Xi), Xi}

+ G]n{el(Xi), Xi}
@EG]n{el(Xi), Xi}

+ Op(h2),

= �@EG
]
n{el(Xi), Xi}[G⇤

n{elg(Xi), Xi} � G]n{el(Xi), Xi}]
@EE⇤G⇤

n{elg(Xi), Xi}@EG]n{el(Xi), Xi}

+ G]n{el(Xi), Xi}[@EE⇤G⇤
n{elg(Xi), Xi} � @EG]n{el(Xi), Xi}]

@EE⇤G⇤
n{elg(Xi), Xi}@EG]n{el(Xi), Xi}

+ Op(h2).

Therefore, since G⇤
n{l̂g(Xi), Xi} and G]n{l(Xi), Xi} are known by S.L.L.N. to have strong consistency to E

⇤G⇤
n{l̂g(Xi), Xi} and

EG]n{l(Xi), Xi}, we have,

max
i

|̂l⇤h,g(Xi) � l̂g(Xi) � l̂]h(Xi) + l(Xi)| = O(max
i

Tn(Xi)) + Op(h2�n) + Op(h2�n),

and (A.1) is proved.
Define the order statistics X(1), . . . , X(n) of X1, . . . , Xn, so the claim (28) can be proved from (A.1) using the fact that

sup |An(x)|  max
i

|An(X(i))| + max
i

sup
x2[X(i),X(i+1)]

|An(X(i)) � A(x)|, (A.12)

it suffices to consider the speed of the last term. With Lipschitz continuity of An(·):
max

i
sup

x2[X(i),X(i+1)]
|An(X(i)) � A(x)|  c2 max

i
sup
x

|Xi � x|, (A.13)

where c2 > 0 is a constant, this upper randombound is of orderOp(n�1/d log n) = Op(h2�n). The uniform bound for kXi�xk
results from the uniform law of large numbers over a ball of size n�1/d, see [26, Theorem 1.1].

Remark. For the non-differentiable  (·) cases, in particular the quantile regression case, one can still establish similar
inequality, as

max
i

�����
1
n

nX

j=1

Wh,j(Xi){ ("⇤
j �elg(Xi) + l̂g(Xj)) �  ("

]
i �el(Xi) + l(Xj))}

�����

 max
i

1
n

nX

j=1

Wh,j(Xi)|( {"⇤
j �elg(Xi) + l̂g(Xj)} �  {"]i �el(Xi) + l(Xj)})|.

Define  i,j
def= | {"⇤

j �elg(Xi) + l̂g(Xj)} �  {"]i �el(Xi) + l(Xj)}| = Op(h2) because, so

P( i,j > c3h2)  E(| i,j|)/(c3h2)

= Op({elg(Xi) + l̂g(Xj) �el(Xi) + l(Xj)}/h2).

Then the argument follows from the above proof.
Moreover, one can also use the strong consistency of G]n, G⇤

n to E(G]n) and E

⇤G⇤
n respectively based on A.1 and Lemma 2.4

of [25].

A.2. Proof of second part of Theorem 3.1

The number of regressors in (11) is of order p = H�1d + 1. [30] shows that as long as n�1(p log n)3/2 ! 0 then the
estimators of the regression parameters are consistent and have the standard variance. In our situation,

n�1n1/5⇤2/3 log n = O(1), (A.14)
and therefore the condition is satisfied.

Now we have a look at the behavior of the design matrix in (12).

L̂(A)
def= �n�1

nX

i=1

⇢{Yi � A>�(Xi)},

rL̂(A)
def= n�1

nX

i=1

 {Yi � A>�(Xi)}�(Xi),

r2
EL̂(A)

def= �rE {Yi � A>�(Xi)}�(Xi)�(Xi)
>.
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Recall that

Â = argmin
A

L̂(A).

Lemma 14 of [34] ensures that with probability approaching 1, Â exists uniquely and that rL̂(Â) = 0. In addition, there
existsm(x) = A

>
�(x), such that

sup
x2B

|m(x) � m(x)|  C1H2. (A.15)

According to the bounded influence condition A.1, the jth term, j 2 1, 2, . . . ,H�1d + 1.

|{rL̂(A)}j| =
�����

(

�n�1
nX

i=1

[ {m(Xi) + "i � A
>
�(Xi)} �  (0)]�(Xi)

)

j

����� ,


"

n�1
nX

i=1

C3|{A>�(Xi) + "i � A
>
�(Xi)}�(Xi)|

#

j

,


"

n�1
nX

i=1

C3|{A>�(Xi) + "i � A
>
�(Xi)}�(Xi)|

#

j

.

We know first that,

E|[{m(Xi) � m(Xi)}�(Xi)]j| = O(H2).

Let ⇠i,j
def= {|m(Xi) � m(Xi)�(Xi)| � E|m(Xi) � m(Xi)�(Xi)|}j, by Bernstein’s Lemma:

Lemma A.1. Let Z1, . . . , Zn be independent r.v.s.

log E exp(tZi)  E(Z2
i )t2/2

for all t 2 [0, 1]. Then

P

0

@
�����

nX

i=1

Zi

����� � t

vuut2
nX

i=1

EZ2
i

1

A  2 exp(�t2).

Finally, we can derive that,

n�1
nX

i=1

⇠i,j = Oa.s.(H2n�1/2�n), j 6= 1. (A.16)

The last term

n�1

�����

(
nX

i=1

"i�(Xi)

)

j

����� = Oa.s.(n�1/2�n). (A.17)

Therefore, one has a collective term from (A.16) and (A.17),

krL̂(A)k = Oa.s.(H3/2 + H�1/2n�1/2�n),

where k · k denotes the L2 norm.
By assumptions A.5, A.7, 8l = 1, . . . ,H�1, the d dimensional vector�>

l (Xi) satisfies,

�kbk2/d � Eb>�>
l (Xi)�l(Xi)b � ↵kbk2/d,

where ↵ and � are two constants.

Lemma A.2. Assume A.1 and A.5, as n ! 1,

kÂ � Ak = Oa.s.(H3/2 + H�1/2n�1/2�n),

max
i21,...,n

km̂(Xi) � m(Xi)k = Oa.s.(H + H�1n�1/2�n).
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Proof. According to similar equicontinuity arguments, exists an (H�1d + 1) ⇥ (H�1d + 1) matrix A, such that

kÂ � Ak = O(k{r2
EL̂(A0)}�1{�rL̂(A)}k),

since

r2
EL̂(Xi) = �(Xi)�(Xi)

>rE (Yi � Â>
0 �(Xi)).

According to assumption A.7,

c3IH�1d+1 � r2
EL̂(Xi) � c4IH�1d+1,

therefore

kÂ � Ak = Oa.s.(H3/2 + H�1/2n�1/2�n).

Moreover, by Cauchy–Schwarz inequality

max
i21,...,n

|m̂(Xi) � m(Xi)|  max
i

kÂ � Ak k�(Xi)k,
= Oa.s.(H3/2 + H�1/2n�1/2�n)Oa.s.(H�1/2),

= Oa.s.(H + H�1n�1/2�n).

We would like to check for the pseudo observations Y ]i = m(Xi) + "
]
i .

|{m̂⇤
k(Xi,k) � m̂k(Xi,k)} � {m̂]

k(Xi,k) � mk(Xi,k)}|
 |(Â⇤> � Â> � Â]> + A>)�(Xi,k)|,
= O(|[r2

EE

⇤L̂⇤(Â)�1{�rL̂⇤(Â)} � r2
EL̂(A)�1{�rL̂(A)}]>�(Xi)| + H2),

as r2
EL̂⇤(Â)�1 and r2

EL̂(A)�1 are both bounded,

|{m̂⇤
k(Xi,k) � m̂k(Xi,k)} � {m̂]

k(Xi,k) � mk(Xi,k)}|

= O

 �����n
�1

nX

i=1

{ ("⇤
i ) �  ("

]
i + A

>
�(Xi) � A>�(Xi))}�(Xi)

>�(Xi)

�����+ H2

!

,

= O

 �����n
�1

nX

i=1

{ ("⇤
i ) �  ("

]
i )}�(Xi)

>�(Xi)

�����+ H2

!

,

= O

 �����n
�1

nX

i=1

{"⇤
i � "

]
i }�(Xi)

>�(Xi)

�����+ H2

!

,

= O

 �����n
�1

nX

i=1

{Zi|"̂i| � Zi⌘i}�(Xi)
>�(Xi)

�����+ H2

!

.

One can derive using a coupling argument,

|{m̂⇤
k(Xi,k) � m̂k(Xi,k)} � {m̂]

k(Xi,k) � mk(Xi,k)}| = Oa.s.(n�1/2(H2 + n�1/2�n)H�1/2 + H2)

= Oa.s.(H2).

References

[1] D. Basso, M. Chiarandini, L. Salmaso, Synchronized permutation tests in replicated i ⇥ j designs, J. Statist. Plann. Inference 137 (8) (2007) 2564–2578.
[2] P.J. Bickel, M. Rosenblatt, On some global measures of the deviations of density function estimates, Ann. Statist. 1 (6) (1973) 1071–1095.
[3] G. Claeskens, I. Van Keilegom, Bootstrap confidence bands for regression curves and their derivatives, Ann. Statist. 31 (6) (2003) 1852–1884.
[4] A. Deaton, J. Muellbauer, An almost ideal demand system, Amer. Econ. Rev. 40 (3) (1980) 312–326.
[5] J. Franke, P. Mwita, W. Wang, Nonparametric estimates for conditional quantiles of time series, SFB 649 Discussion Paper.
[6] M. Fuss, D. McFadden, Y. Mundlak, A survey of functional forms in the economic analysis of production, Vol. 1, McMaster University Archive for the

History of Economic Thought, 1978.
[7] P. Hall, Edgeworth expansions for nonparametric density estimators, with applications, Statistics 22 (2) (1991) 215–232.
[8] P. Hall, The Bootstrap and Edgeworth Expansion, Springer Verlag, 1992.
[9] W.K. Härdle, Asymptotic maximal deviation ofM-smoothers, J. Multivariate Anal. 29 (2) (1989) 163–179.

[10] W.K. Härdle, Applied Nonpametric Regression, Cambridge University Press, 1990.
[11] W.K. Härdle, J. Horowitz, J.-P. Kreiss, Bootstrap method for time series, Int. Statist. Rev. 71 (2) (2003) 435–459.
[12] W.K. Härdle, S.J. Marron, Bootstrap simultaneous error bars for nonparametric regression, Ann. Statist. 19 (2) (1991) 778–796.
[13] W.K. Härdle, S. Song, Confidence bands in quantile regression, Econometric Theory 26 (4) (2010) 1180–1200.
[14] J.L. Horowitz, Nonparametric estimation of a generalized additive model with an unknown link function, Econometrica 69 (2) (2001) 499–513.
[15] J.L. Horowitz, The bootstrap, in: Handbook of Econometrics, Vol. 5, Elsevier, 2001.



W.K. Härdle et al. / Journal of Multivariate Analysis 134 (2015) 129–145 145

[16] J.L. Horowitz, J. Klemelä, E. Mammen, Optimal estimation in additive regression models, Bernoulli 12 (2) (2006) 271–298.
[17] J.L. Horowitz, S. Lee, Nonparametric estimation of an additive quantile regression model, J. Amer. Statist. Assoc. 100 (472) (2005) 1238–1249.
[18] P.J. Huber, Robust estimation of a location parameter, Ann. Math. Statist. 35 (1) (1964) 73–101.
[19] G.J. Johnston, Probabilities of maximal deviations for nonparametric regression function estimates, J. Multivariate Anal. 12 (3) (1982) 402–414.
[20] E. Kong, O. Linton, Y. Xia, Uniform Bahadur representation for local polynomial estimates of M-regression and its application to the additive model,

Econometric Theory 26 (05) (2010) 1529–1564.
[21] E. Mammen, When Does Bootstrap Work?: Asymptotic Results and Simulations, Springer Verlag, 1992.
[22] M. Marozzi, Applications in business, medical and industrial statistics of bi-aspect nonparametric tests for location problems, Stat. Methods Appl. 12

(2) (2003) 187–194.
[23] M. Marozzi, Multivariate tri-aspect non-parametric testing, J. Nonparametr. Stat. 19 (6–8) (2007) 269–282.
[24] M.H. Neumann, J.-P. Kreiss, Regression-type inference in nonparametric autoregression, Ann. Statist. 26 (4) (1998) 1570–1613.
[25] W.K. Newey, D.L. McFadden, Large sample estimation and hypothesis testing, in: Handbook of Econometrics, Vol. 4, 1986, pp. 2111–2245.
[26] M.D. Penrose, A strong law for the largest nearest-neighbour link between random points, J. Lond. Math. Soc. 60 (3) (1999) 951–960.
[27] F. Pesarin, L. Salmaso, Finite-sample consistency of combination-based permutation tests with application to repeated measures designs,

J. Nonparametr. Stat. 22 (5) (2010) 669–684.
[28] F. Pesarin, L. Salmaso, Permutation Tests for Complex Data: Theory, Applications and Software, John Wiley & Sons, 2010.
[29] D. Pollard, Convergence of Stochastic Processes, Springer Verlag, 1984.
[30] S. Portnoy, Local asymptotics for quantile smoothing splines, Ann. Statist. 25 (1) (1997) 414–434.
[31] S. Song, Y. Ritov, W.K. Härdle, Bootstrap confidence bands and partial linear quantile regression, J. Multivariate Anal. 107 (2012) 244–262.
[32] S. Sperlich, D. Tjøstheim, L. Yang, Nonparametric estimation and testing of interaction in additivemodels, Econometric Theory 18 (02) (2002) 197–251.
[33] C.J. Stone, Optimal global rates of convergence for nonparametric regression, Ann. Statist. 10 (4) (1982) 1040–1053.
[34] C.J. Stone, Additive regression and other nonparametric models, Ann. Statist. 13 (2) (1985) 689–705.
[35] Y. Yafeh, O. Yosha, Large shareholders and banks: who monitors and how? Econ. J. 113 (2003) 128–146.



Econometric Theory, 31, 2015, 981–1015.
doi:10.1017/S0266466614000607

HIDDEN MARKOV STRUCTURES
FOR DYNAMIC COPULAE

WOLFGANG KARL HÄRDLE, OSTAP OKHRIN, AND WEINING WANG
Humboldt-Universität zu Berlin

Understanding the time series dynamics of a multi-dimensional dependency
structure is a challenging task. Multivariate covariance driven Gaussian or mixed
normal time varying models have only a limited ability to capture important fea-
tures of the data such as heavy tails, asymmetry, and nonlinear dependencies. The
present paper tackles this problem by proposing and analyzing a hidden Markov
model (HMM) for hierarchical Archimedean copulae (HAC). The HAC constitute a
wide class of models for multi-dimensional dependencies, and HMM is a statistical
technique for describing regime switching dynamics. HMM applied to HAC flexibly
models multivariate dimensional non-Gaussian time series.

We apply the expectation maximization (EM) algorithm for parameter estima-
tion. Consistency results for both parameters and HAC structures are established
in an HMM framework. The model is calibrated to exchange rate data with a VaR
application. This example is motivated by a local adaptive analysis that yields a
time varying HAC model. We compare its forecasting performance with that of
other classical dynamic models. In another, second, application, we model a rainfall
process. This task is of particular theoretical and practical interest because of the
specific structure and required untypical treatment of precipitation data.

1. INTRODUCTION

Modeling multi-dimensional time series is often an underestimated exercise
of routine econometrical and statistical work. This slightly pejorative attitude
towards day to day statistical analysis is unjustified since actually the calibration
of time series models in several dimensions for standard data sizes is not only
difficult on the numerical side but also on the mathematical side. Computation-
ally speaking, integrated models for multi-dimensional time series become more
involved when the parameter space is too large. Consequently the mathematical
and econometrical aspects become more difficult since the parameter space be-
comes too complex, especially when their time variation is allowed. An example
is the multivariate GARCH(1,1) BEKK model, which for even two dimensions
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has an associated parameter space of dimension 12. For moderate sample sizes,
the parameter space dimension might be in the range of the sample size or even
bigger. This data situation has evoked a new strand of the literature on dimension
reduction via penalty methods.

In this paper we take a different route, by calibrating an integrated dynamic
model with unknown dependency structure among the d-dimensional time series
variables. More precisely, the unknown dependency structure may vary within a
set of given dependencies. These dependency structures might have been selected
via a preliminary study, as described in, e.g., Härdle, Herwartz, and Spokoiny
(2003). The specific dependence at each time t is unknown to the data analyst,
and depends on the dependency pattern at time t − 1. Therefore, hidden Markov
models (HMM) naturally come into play. This leaves us with the task of specify-
ing the set of dependencies.

An approach based on assuming a multivariate Gaussian or mixed normals is
inappropriate in the presence of important types of data features such as heavy
tails, asymmetry, and nonlinear dependencies. Such a simplification is certainly
in practical questions concerning too restrictive tails and might lead to biased
results. The use of copulae is one possible approach to solving these prob-
lems. Moreover, copulae allow us to separate the marginal distributions and the
dependency model, see Sklar (1959). In recent decades, copula-based models
have gained popularity in various fields like finance, insurance, biology, hydrol-
ogy, etc. Nevertheless, many basic multivariate copulae are still too restrictive
and the extension to more parameters leads initially to a nonparametric den-
sity estimation problem that suffers of course from the curse of dimensionality.
A natural compromise is the class of hierarchical Archimedean copulae (HAC).
An HAC allows a rich copula structure with a finite number of parameters. Re-
cent research has demonstrated their flexibility (see McNeil and Nešlehová, 2009;
Okhrin, Okhrin, and Schmid, 2013; Whelan, 2004).

Insights into the dynamics of copulae have been offered by Chen and Fan
(2005), who assume an underlying Markovian structure, and a specific class
of copulae functions for the temporal dependence; Patton (2004) considers an
asset-allocation problem with a time-varying parameter of bivariate copulae; and
Rodriguez (2007) studies financial contagion using switching-parameter bivari-
ate copulae. Similarly, Okimoto (2008) provides strong empirical evidence that
a Markov switching multivariate normal model is not appropriate for the depen-
dence structures in international equity markets.

Moreover, an adaptive method isolating a time varying dependency structure
via a local change point method (LCP) has been proposed in Giacomini, Härdle,
and Spokoiny (2009) and Härdle, Okhrin, and Okhrin (2013). Figure 1 presents
an analysis of HAC for exchange rate data using LCP on a moving window,
where the window sizes are adaptively selected by the LCP algorithm. It plots the
changes of estimated structure (upper panel) and parameters (lower panel) in each
window over time. In particular, in the upper panel, the y-axis corresponds to the
dependency structures picked by estimation of three-dimensional copulae; in the
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FIGURE 1. LCP for exchange rates: structure (upper) and parameters (lower, θ1(gray) and
θ2(black)) for Gumbel HAC. m0 = 40 (starting value for the window size in the algorithm).

lower panel, the y-axis shows the two estimated dependency parameters (value
converted to Kendall’s τ ) corresponding to the estimated structure. In more detail,
we have three exchange rates series: P (GBP/EUR), Y(JPY/EUR), D(USD/EUR);
the label P(DY) means that the pair D and Y have a stronger dependency than
other possible pairs. For a more detailed introduction to HAC and their structures,
see Section 2.1. One observes that the structure very often remains the same for
a long time, the parameters only varying slowly over time. This indicates that the
dynamics of HAC functions is likely to be driven by a Markovian sequence seem-
ingly determining the structures and parameter values. This observation motivates
us to pursue a different path of modeling the dynamics. Instead of taking a local
point of view, we adopt a global dynamic model HMM for the change of both the
tree structure and the parameters of the HAC over time. In this situation, the not
directly observable underlying Markov process X determines the state of distri-
butions of Y .

HMM has been widely applied to speech recognition, see Rabiner (1989),
molecular biology, and digital communications over unknown channels. Markov
switching models were introduced to the economics literature by Hamilton
(1989), where the trend component of a univariate nonstationary time series
changes according to an underlying Markov chain. Later, it was extended and
combined with many different time series models, see, e.g., Pelletier (2006).
For estimation and inference issues in HMM, see Bickel, Ritov, and Rydén (1998)
and Fuh (2003), among others.

In this paper, we propose a new type of dynamic model, called HMM HAC,
which incorporates HAC into an HMM framework. The theoretical problems,
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such as parameter consistency and structure consistency, are solved. The expecta-
tion maximization (EM) algorithm is developed in this framework for parameter
estimation. See Section 2 for a description of the model, and Section 3 for the-
orems about its consistency and asymptotic normality. Issues as to the EM algo-
rithm and computation are in Section 4. Section 5 treats a simulation study, and
Section 6 is the applications. The technical details are put into the Appendix.

2. MODEL DESCRIPTION

In this section, we introduce our model and estimation method. Section 2.1 briefly
introduces the definition and properties of HAC, and Section 2.2 introduces the
HMM HAC. In the last subsection, we describe the estimation and algorithm
we use.

2.1. Copulae

Let Z1, . . . , Zd be r.v. with continuous cumulative distribution function (cdf) F(·).
The Sklar theorem guarantees the existence and uniqueness of copula functions:

THEOREM 2.1 (Sklar’s theorem). Let F be a multivariate distribution func-
tion with margins Fm1 , . . . , Fmd , then a copula C exists such that

F(z1, . . . , zd) = C{Fm1 (z1), . . . , Fmd (zd)}, z1, . . . , zd ∈ R.

If Fmi (·) are continuous for i = 1, . . . ,d then C(·) is unique. Otherwise C(·) is
uniquely determined on Fm1 (R)× · · ·× Fmd (R).

Conversely, if C(·) is a copula and Fm1 , . . . , Fmd are univariate distribution
functions, then the function F defined above is a multivariate distribution function
with margins Fm1 , . . . , Fmd .

The family of Archimedean copulae is very flexible: it captures tail dependency,
has an explicit form, and is simple to estimate,

C(u1, . . . ,ud) = φ{φ−1(u1)+·· ·+φ−1(ud)}, u1, . . . ,ud ∈ [0,1], (1)

where φ(·) is defined as the generator of the copula and depends on a parame-
ter θ , see Nelsen (2006). φ(·) is d monotone, and φ(·) ∈ L = {φ(·) : [0; ∞) →
(0,1] |φ(0) = 1, φ(∞) = 0; (−1) jφ( j) ≥ 0; j = 1, . . . ,d −2}. As an example, the
Gumbel generator is given by φ(x) = exp(−x1/θ ) for 0 ≤ x < ∞, 1 ≤ θ < ∞.

In the present paper we consider less restrictive compositions of simple
Archimedean copulae leading to a Hierarchical Archimedean Copula (HAC)
C(u1, . . . ,ud ; θθθ,s), where s = {(. . . (i1 . . . i j1) . . . (. . .) . . .)} denotes the structure of
HAC, with iℓ ∈ {1, . . . ,d} being a reordering of the indices of the variables and sj
the structure of the subcopulae with sd = s, and θθθ is the set of copula parameters.
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FIGURE 2. Fully and partially nested copulae of dimension d = 4 with structures s =
(((12)3)4) on the left and s = ((12)(34)) on the right.

For example, the fully nested HAC (see Figure 2, left) can be expressed by

C(u1, . . . ,ud ; θθθ,s = sd)

= C{u1, . . . ,ud ; (θ1, . . . ,θd−1)
⊤, ((sd−1)d)}

= φd−1,θd−1

(
φ−1

d−1,θd−1
◦C

{
u1, . . . ,ud−1; (θ1, . . . ,θd−2)

⊤, ((sd−2)(d −1))
}

+φ−1
d−1,θd−1

(ud)
)
,

where s = {(. . . (12)3) . . . )d)}. On the RHS of Figure 2 we have the partially
nested HAC with s = ((12)(34)) in dimension d = 4.

For more details about HAC, see Joe (1997), Whelan (2004), Savu and Trede
(2010), and Okhrin, Okhrin, and Schmid (2013).

It is worth noting that not all generator functions can be mixed within one
HAC. We therefore concentrate on one single generator family within one HAC.
This boils down to binary structures, i.e., at each level of the hierarchy only two
variables are joined together. In fact, this makes the architecture very flexible and
yet parsimonious.

Note that not only are the parameters unknown for each HMM HAC, but also
the structure has to be determined. We adopt the modified computational steps
of Okhrin et al. (2013) to estimate the HAC structure and parameters. One esti-
mates the marginal distributions either parametrically or nonparametrically. Then
(assuming that the marginal distributions are known) one selects the couple
of variables with the strongest fit and denotes the corresponding estimator of
the parameter at the first level by θ̂1 and the set of indices of the variables
by I1. The selected couple is joined together to define the pseudo-variables
z1 = C{(I1); θ̂1,φ1}. Next, one proceeds in the same way by considering the re-
maining variables and the new pseudovariable. At every level, the copula param-
eter is estimated by assuming that the margins as well as the copula parameters
at lower levels are known. This algorithm allows us to determine the estimated
structure of the copula recursively.
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2.2. Incorporating HAC into HMM

A hidden Markov model is a parameterized time series model with an underlying
Markov chain viewed as missing data, as in Leroux (1992), Bickel et al. (1998),
and Gao and Song (2011). More specifically, in the HMM HAC framework, let
{Xt , t ≥ 0} be a stationary Markov chain of order one on a finite state space
D = {1,2, . . . , M}, with transition probability matrix P = {pi j }i, j=1,...,M and ini-
tial distribution π = {πi }i=1,...,M .

P(X0 = i) = πi , (2)
P(Xt = j |Xt−1 = i) = pi j (3)

= P(Xt = j |Xt−1 = i, Xt−2 = xt−2, . . . , X1 = x1, X0 = x0),

i, j = 1, . . . , M

Let {Yt , t ≥ 0} be the associated observations, and they are adjoined with
{Xt , t ≥ 0} in such a way that given Xt = i, i = 1, . . . , M , the distribution of Yt is
fixed:

(Xt |X0:(t−1),Y0:(t−1))
L= (Xt |Xt−1), (4)

(Yt |Y0:(t−1), X(0:t))
L= (Yt |Xt ), (5)

where Y0:(t−1) stands for {Y0, . . . ,Yt−1}, t < T .
Let f j{·} be the conditional density of Yt given Xt = j with θθθ ∈ &,s ∈

S, j = 1, . . . , M being the unknown parameters. Here, {Xt , t ≥ 0} is the Markov
chain, and given X0, X1, . . . , XT , the Y0,Y1, . . . ,YT are independent. Note that
θθθ = (θθθ (1), . . . ,θθθ (M)) ∈ R(d−1)M are the unknown dependency parameters, s =
(s(1), . . . ,s(M)) are the unknown HAC structures. Denote their true values by θθθ∗

and s∗ respectively.
For the time series y1, . . . , yT ∈ Rd (yt = (y1t , y2t , y3t , . . . , ydt )⊤) and the un-

observable (or missing) x1, . . . , xT from the given hidden Markov model, define
πx0 as the πi for x0 = i, i = 1, . . . , M , and pxt−1xt = pji for xt−1 = j and xt = i .
The full likelihood for {xt , yt }T

t=1 is then:

pT (y0:T ; x0:T ) = πx0 fx0(y0)
T∏

t=1

pxt−1xt fxt (yt ), (6)

and the likelihood for the observations {yt }T
t=1, only is calculated by marginaliza-

tion:

pT (y0:T ) =
M∑

x0=1

· · ·
M∑

xT =1

πx0 fx0(y0)
T∏

t=1

pxt−1xt fxt (yt ). (7)

The HAC is a parameterization of fxt (yt )(xt = i), which helps properly
understand the dynamics of a multivariate distribution. Up to now, typical param-
eterizations have been mixtures of log-concave or elliptical symmetric densities,
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such as those from Gamma or Poisson families, which are not flexible enough to
model multi-dimensional time series. The advantage of the copula is that it splits
the multivariate distribution into its margins and a pure dependency component.
In other words, it captures the dependency between variables, eliminating the im-
pact of the marginal distributions as introduced in the previous subsection.

Furthermore, we incorporate this procedure within an HMM framework.
We denote the underlying Markov variable Xt as a dependency type variable.
If xt = i , the parameters (θθθ (i),s(i)) determined by state i = 1, . . . , M take values
on &× S, where S is a set of discrete candidate states corresponding to different
dependency structures of the HAC, and & is a compact subset of Rd−1 in which
the HAC parameters take their values. Therefore,

fi (·) = c
{

Fm1 (y1), Fm2 (y2), . . . , Fmd (yd),θθθ (i),s(i)
}

f m1 (y1) f m2 (y2) · · · f md (yd),

(8)

with f mi (yi ) being the marginal densities, Fmi (yi ) the marginal cdf and c(·) the
copula density, which is defined in assumption A.4 in Section 3.

Let θθθ (i) = (θi1, . . . ,θi,d−1)⊤ be the dependency parameters of the copulae start-
ing from the lowest up to the highest level connected with a fixed state xt = i and
corresponding density fi (.). Refining the algorithm of Okhrin et al. (2013), the

multistage maximum likelihood estimator (θ̂θθ
(i)

, ŝ(i)) solves the system

(
∂L1

∂θi1
, . . . ,

∂Ld−1

∂θid−1

)⊤
= 0, (9)

where

Lj =
T∑

t=1

wi t li j (Yt ), for j = 1, . . . ,d −1,

li j (Yt ) = log

⎛

⎝c
[
{F̂mm (ytm)}m∈{1,..., j}; {θiℓ}ℓ=1,..., j−1,s(i)

m
] ∏

m∈{1,..., j}
f̂ mm (ytm)

⎞

⎠

for t = 1, . . . ,T .

where j denotes the layers of the tree structure, and F̂mm (·) is an estimator (either
nonparametric with F̂mm (x) = (T +1)−1 ∑T

t=11(Ytm ≤ x) or parametric F̂mm (x) =
Fmm (x,α̂ααm)) of the marginal cdf Fmm (·), where α̂ααm stand for estimated parameters
of a marginal distribution. Note that a nonparametric estimation of the margins
would lead to our estimation’s having a semiparametric nature. The marginal den-
sities f̂ mm (·) are estimated parametrically or nonparametrically (kernel density es-
timation) corresponding to the estimation of the marginal distribution functions,
and wi t is the weight associated with state i and time t , see (14). Chen and Fan
(2006) and Okhrin et al. (2013) provide the asymptotic behavior of the estimates.
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2.3. Likelihood estimation

For the estimation of the HMM HAC model, we adopt the EM algorithm, see
Dempster, Laird, and Rubin (1977), also known as the Baum–Welch algorithm
in the context of HMM. Recall the full likelihood pT (y0:T ; x0:T ) in (6) and the
partial likelihood pT (y0:T ) in (7), and the log likelihood:

log{pT (y0:T )} = log

⎧
⎨

⎩

M∑

x0=1

· · ·
M∑

xn=1

πx0 fx0 (y0; θθθ (x0)
T∏

t=1

pxt−1xt fxt (yt ; θθθ (xt ),s(xt ))

⎫
⎬

⎭ . (10)

The EM algorithm suggests estimating a sequence of parameters g(r)
def=

(P(r),θθθ (r),s(r)) (for the r th iteration) by iterative maximization ofQ(g; g(r)) with

Q(g; g(r))
def= Eg(r){log pT (Y0:T ; X0:T )|Y0:T = y0:T }.

That is, one carries out the following two steps:

• (a) E-step: compute Q(g; g(r)),

• (b) M-step: choose the update parameters g(r+1) = arg maxgQ(g; g(r)).

The essence of the EM algorithm is that Q(g; g(r)) can be used as a substitute
for log pT (y0:T ; x0:T ; θ), see Cappé, Moulines, and Rydén (2005).

In our setting, we may write Q(g; g(r)) as:

Q(g; g(r)) =
M∑

i=1

Eg(r) [1{X0 = i} log{πi fi (y0)}|Y0:T = y0:T ] (11)

+
T∑

t=1

M∑

i=1

Eg(r)[1{Xt = i} log fi (yt )|Y0:T = y0:T ]

+
T∑

t=1

M∑

i=1

M∑

j=1

Eg(r)[1{Xt = j}1{Xt−1 = i} log{pi j }|Y0:T = y0:T ]

=
M∑

i=1

Pg(r) (X0 = i |Y0:T = y0:T ) log{πi fi (y0)}

+
T∑

t=1

M∑

i=1

Pg(r) (Xt = i |Y0:T = y0:T ) log fi (yt )

+
T∑

t=1

M∑

i=1

M∑

j=1

Pg(r) (Xt−1 = i, Xt = j |Y0:T = y0:T ) log{pi j }, (12)

where fi (·) is as in (8). The E-step, in which Pg(r) (Xt = i |Y0:T ),Pg(r) (Xt−1 =
i, Xt = j |Y0:T ) are evaluated, is carried out by the forward–backward algorithm
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and the M-step is explicit in the pi j s and the πi s. Adding constraints to (12) yields

L(g,λ; g′) =Q(g; g′)+
M∑

i=1

λi

⎛

⎝1−
M∑

j=1

pi j

⎞

⎠ . (13)

For the M-step, we need to take the first order partial derivatives, and plug into
(13). So the dependency parameters θθθ and the structure parameters s need to be
estimated iteratively, for θθθ (i) (θθθ (i) = {θi1, . . . ,θi(d−1)}):

∂L(g,λ; g′)
∂θi j

=
T∑

t=1

Pg′(Xt = i |Y0:T )∂ log fi (yt )/∂θi j . (14)

To simplify the procedure, we adopt the HAC estimation method (9) with

weights wi t
def= Pg′(Xt = i |Y0:T ). We also fix πi , i = 1, . . . , M , as this influences

only the first observation x0 which may be considered also as given and fixed.
Maximizing (12) w.r.t. πi would return the first derivative with one observation
y0. Also as the previous information for the distribution of x0 is not available,
our EM algorithm would not involve updating πi . The estimation of the transition
probabilities pi j follows:

∂L(g,λ; g′)
∂pi j

=
T∑

t=1

Pg′(Xt−1 = i, Xt = j |Y0:T )

pi j
−λi , (15)

∂L(g,λ; g′)
∂λi

= 1−
M∑

j=1

pi j . (16)

Equating (15) and (16) yields

p̂i j =
∑T

t=1 Pg′(Xt−1 = i, Xt = j |Y0:T )
∑T

t=1
∑M

l=1 Pg′(Xt−1 = i, Xt = l|Y0:T )
. (17)

3. THEORETICAL RESULTS

In this section, we discuss the conditions needed to derive the consistency and
the asymptotic properties of our estimates. We then state our main theoretical
theorems. Throughout the theory we concentrate on the most interesting case: a
semi-parametric estimation with nonparametric margins.

Assumptions.
A.1 {Xt } is a stationary, strictly irreducible, and aperiodic Markov process of

order one with final discrete state, and {Yt }T
t=1 are conditionally independent

given {Xt }T
t=1 and generated from an HAC HMM model with parameters

{s∗(i),θ∗(i),π∗,{p∗
i j }i, j }, i, j = 1, . . . ,d .
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It is worth noting that A.1 is the basic assumption on the evolution of a hid-
den Markov chain. One key property is that given one realization of the path
of {Xt }, the conditional distributions of {Yt }T

t=1 are totally fixed. But {Yt } will be
dependent and will even have a finite mixture distribution from the given paramet-
ric family. The evolution of {Xt } will later be linked to the dependency parameters
of the state space distribution of {Yt }.

A.2 The family of mixtures of at most M elements { f (y; θθθ (i),s(i)) : θθθ (i) ∈
&(i),s(i) ∈ S} is identifiable w.r.t. the parameters and structures:

M∑

i=1

αi f
(

y; θθθ (i),s(i)
)

=
M∑

i=1

α′
i f

(
y; θθθ ′(i),s′(i)

)
a.e. (18)

then,
M∑

i=1

αjδθθθ (i),s(i) =
M∑

i=1

α′
iδθθθ ′(i),s′(i) , (19)

defining δθθθ (i),s(i) as the distribution function for a point mass in & associated with
the structure s(i), noting that θθθ (i) = θθθ ′(i) is only meaningful when s(i) = s′(i).

The property of identifiability is nothing else than the construction of a finite
mixture model, see McLachlan and Peel (2000). As a copula is a special form of
a multivariate distribution, similar techniques may be applied to get identifiability
also in the case of copulae. The family of copula mixtures has been thoroughly
investigated in Caia, Chen, Fan, and Wang (2006) while developing estimation
techniques. In that general case, one should be careful, as the general copula class
is very wide and its mixture identification may cause some problems because of
the different forms of the densities. The very construction of the HAC narrows
this class. Imposing the same generator functions on all levels of the HAC, we re-
strict the family to the vector of parameters and the tree structure, see also Okhrin
et al. (2013). Moreover, we restrict the classes to only binary trees with distinct
parameters to avoid identifiability issues induced by the case of the same param-
eter values on each layer of a tree. Our preliminary numerical analysis shows that
the HAC fulfills the identifiability property for all the structures and parameters
used in this study.

A.3 The true marginal distribution f mm (·) ∈ C2, and the derivatives up to a sec-
ond order are bounded for all m = 1, . . . ,d . Also

√
f m is absolute continuous.

In the case of a nonparametric estimation for f mi (·) ∈ C2, one needs also to en-
sure that the kernel function K (·) ∈ C2 subject to

∫
B K (u)du = 1, has support on

a compact set B, is symmetric, and has integrable first derivative.
We would like to focus on the dependency parameter, therefore in the following

setting, we simply assume that the marginal processes yt1, yt2, . . . , ytd are
identically distributed.

A.4 E{| log fi (y)|} < ∞, for i = 1, . . . , M , ∀s(i) ∈ S. Define the copu-

lae density function c(u1,u2, . . . ,ud ,θθθ (i),s(i))
def= ∂dC(u1,u2, . . . ,ud , ,θθθ (i),s(i))/

∂u1∂u2 · · ·∂ud , then logc(u1,u2, . . . ,ud ,θθθ (i),s(i)) as well as its first and second



HIDDEN MARKOV STRUCTURES FOR DYNAMIC COPULAE 991

partial derivatives w.r.t. ui s and θθθ (i) are well defined for ((0,1)d × &(i)). Also,
their suprema in a compact set ((Ed)×&(i)) (Ed ∈ [0,1]d ) has finite moments
up to the order four.

A.5 For every θθθ (i) ∈ &, and any particular structure s ∈ S,

E

[

sup
∥θθθ ′(i)−θ (i)∥<δ

{ fi (Y1,θ
′(i),s)}+

]

< ∞,

for some δ > 0.
A.6 The true point θθθ∗ is an interior point of &.
A.7 There exists a constant δ0, such that P(sup∥θθθ ′(i)−θθθ (i)∥<δ0 maxi, j E

{ fi (Y1,θθθ
′,s)}

{ f j (Y1,θθθ ′,s)}
= ∞|X1 = i) < 1.

Denote by pT (y0:T ; v,ω) the density in (7) with parameters {v,ω} ∈ {V,,} as

described in the Appendix 7.2. Define θ̂θθ
(i)

, ŝ(i) as θ̂θθ
(i)

(v̂, ω̂), and ŝ(i)(v̂, ω̂) with
(v̂, ω̂) being the point where pT (y0:T ; v,ω) achieves its maximum value over the
parameter space {V,,}.

It is known that HMM is not itself identifiable, as a permutation of states would
yield the same value for pT (y0:T ; v,ω). We assume therefore θθθ∗( j)s and s∗( j)s to
be distinct in the sense that for any s∗(i) = s∗( j), i ̸= j we have θθθ∗(i) ̸= θθθ∗( j).

THEOREM 3.1. Under A.1–A.7, we find the corresponding structure:

lim
T →∞

min
i∈1,...,M

P(ŝ(i) = s∗(i)) = 1. (20)

Moreover,

THEOREM 3.2. Assume that A.1–A.7 hold then the parameter θ̂θθ
(i)

satisfies,
∀ε > 0:

lim
T →∞

max
i∈1,...,M

P
(
|θ̂θθ (i) −θθθ∗(i)| > ε|ŝ(i) = s∗(i)

)
= 0. (21)

In addition, we can also establish asymptotic normality results for parameters.

THEOREM 3.3. Assume that A.1–A.7 hold , and given that s∗(i) is correctly
estimated, which is an event with probability tending to 1, we have
√

T
{
θ̂θθ −θθθ

}
→ N(0,.∗), (22)

where .∗ is the asymptotic covariance function, defined as .∗ def= B−1Var(
√

T A)
B−1, where B, A are defined in the Appendix in (A.19).

The proofs are presented in the Appendix.

4. SIMULATION

The estimation performance of HMM HAC is evaluated in this section: subsec-
tion I aims to investigate whether the performance of the estimation is affected
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by 1) adopting a nonparametric or parametric margins; 2) introducing a GARCH
dependency in the marginal time series. Subsection II presents results for a five-
dimensional time series model. In subsection III we compare the DCC method
and our HMM HAC method. All the simulations show that our algorithm con-
verges after a few iterations with moderate estimation errors, and the results are
robust with respect to different estimation methods for the margins. Moreover our
method dominates the DCC one.

Regarding the selection of the orders, in both the simulations and the applica-
tions, we have started with a model with three states, which is suggested by the
initial moving window analysis described later. In the applications, the number of
states will even be degenerated to two or one for some windows. This suggests
that three states are sufficient for model estimations. However, one can consider
general BIC or AIC criteria for selecting the number of states.

4.1. Simulation I

In this subsection, a three-dimensional generating process has fixed marginal dis-
tributions: Yt1,Yt2,Yt3 ∼N(0,1). To study the effect of deGARCH step in our ap-
plication (DeGARCH is meant by prefitting marginal time series with a GARCH
model, and take the residuals for estimation in later steps.), we simulated also
according to a GARCH(1,1) model,

Yt j = µt j +σt jεt j with σ 2
t j = ωj +αjσ

2
t−1 j +βj (Yt−1 j −µt−1 j )

2, (23)

with parameters ωj = 10−6,αj = 0.8,βj = 0.1, with standard normal residuals
εt1,εt2,εt3 ∼ N(0,1). The dependence structure is modeled through HAC with
Gumbel generators. Let us consider now a Monte Carlo setup where the setting
employs realistic models. The three states with M = 3 are as follows:

C
{
u1,C(u2,u3; θ (1)

1 = 1.3); θ (1)
2 = 1.05

}
for i = 1,

C
{
u2,C(u3,u1; θ (2)

1 = 2.0); θ (2)
2 = 1.35

}
for i = 2,

C
{
u3,C(u1,u2; θ (3)

1 = 4.5); θ (3)
2 = 2.85

}
for i = 3,

where the dependency parameters correspond to Kendall’s τ s ranging between
0.05 and 0.78, which is typical for financial data. The transition matrix is chosen
as:

P =

⎛

⎜⎝
0.982 0.010 0.008

0.008 0.984 0.008

0.003 0.002 0.995

⎞

⎟⎠ ,

with initial probabilities as π = (0.2,0.1,0.7) and sample size T = 2000.
Figure 3 presents the underlying states and a marginal plot of the generated
three-dimensional time series. No state switching patterns are evident from the
marginal plots. Figure 4, however, clearly displays the switching of dependency
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FIGURE 3. The underlying sequence xt (upper left panel), marginal plots of (yt1,
yt2, yt3)(t = 0, . . . ,1000).

FIGURE 4. Snapshots of pairwise scatter plots of dependency structures (t = 0, . . . ,1000),
the (yt1) vs. (yt2) (left), the (yt1) vs. (yt3) (middle), and the (yt2) vs. (yt3)(right).
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FIGURE 5. The averaged estimation errors for the transition matrix (left panel), parameters
(middle panel), and convergence of states (right panel). Estimation starts from near true
value (dashed); starts from values obtained by rolling window (solid). x-axis represents
iterations. Number of repetitions is 1000.

patterns. The circles, triangles, and crosses correspond to the observations from
states i = 1,2,3, respectively.

Generally, the iteration procedure stops after around ten steps. Figure 5 presents
the deviations from their true values of the estimated states, the transition ma-
trix, and the parameters for the first ten iterations of one sample. Since the start-
ing values may influence the results, a moving window estimation is proposed
to decide the initial parameters. The dashed black and solid black lines show,
respectively, how the estimators behave with the initial values close to the true
(dashed) and initial values obtained from the proposed rolling window algorithm
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(solid). By “close to the true initial states”, we mean true structures with parame-
ters all shifted up by 0.5 from the true ones. For “rolling window algorithm” we
estimate HAC for overlapping windows of width 100, and then take the M most
frequent structures with averaged parameters as initial states. The left panel of
Figure 5 shows the (L1) difference (

∑d
i, j=1 | p̂i j − pi j |) of the true transition ma-

trix from the estimated ones at each iteration, we see that for the three particular
samples, the values all converge to around 0.4, which are moderately small; the
middle panel is the sum of the estimated parameter errors of the four states with
the correctly estimated states, we see that the accumulated errors are different
depending on the different starting values; the right panel presents the percent-
age of wrongly estimated states, in all cases the percentage of wrongly estimated
states is smaller than 8%. One can see that our choice of initial values can perform
as well as the true ones through showing small differences, and our results from
more iterations further confirm this.

Generally, the iteration procedure stops after around ten steps. Figure 5 presents
the deviations from their true values of the estimated states, the transition matrix,
and the parameters for the first ten iterations of one sample. Since the starting
values may influence the results, a moving window estimation is proposed to de-
cide the initial parameters. The dashed black and solid black lines show, respec-
tively, how the estimators behave with the initial values close to the true (dashed)
and initial values obtained from the proposed rolling window algorithm (solid).
By “close to the true initial states”, we mean true structures with parameters all
shifted up by 0.5 from the true ones. For “rolling window algorithm” we estimate
HAC for overlapping windows of width 100, and then take the M most frequent
structures with averaged parameters as initial states. The left panel of Figure 5
shows the (L1) difference (

∑d
i, j=1 | p̂i j − pi j |) of the true transition matrix from

the estimated ones at each iteration, we see that for the three particular samples,
the values all converge to around 0.4, which are moderately small; the middle
panel is the sum of the estimated parameter errors of the four states with the cor-
rectly estimated states, we see that the accumulated errors are different depending
on the different starting values; the right panel presents the percentage of wrongly
estimated states, in all cases the percentage of wrongly estimated states is smaller
than 8%. One can see that our choice of initial values can perform as well as the
true ones through showing small differences, and our results from more iterations
further confirm this.

Finally, we summarize our estimation results over 1000 repetitions. In Ta-
bles 1–2, we report the averaged estimation values with standard deviations
(in brackets) and MSE (in brackets) for the estimated states, the transition
matrix, and the parameters. Table 1 presents the results with the marginal
time series being generated as just identically distributed data, while Table 2
presents the results with the marginal DGPs being GARCH(1,1). For the im-
pact of estimating the copula model on estimated standardized residuals (after
GARCH fitting, for example), we have also included a comparison of the es-
timation on the deGARCHed residuals (nonparametrically estimated margins).
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TABLE 1. Simulation results for the marginal time series being generated as iden-
tically distributed data, sample size T = 2000, 1000 repetitions, standard devia-
tions and MSEs are provided in brackets

True Rol. Win. True Str.

N
on

pa
ra

m
et

ri
c

M
ar

gi
ns C1

θ (1)
1 1.05 1.030 (0.046, 0.003) 1.057 (0.068, 0.005)

θ (1)
2 1.30 1.313 (0.156, 0.025) 1.308 (0.083, 0.007)

C2
θ (2)

1 1.35 1.366 (0.121, 0.015) 1.346 (0.182, 0.033)

θ (2)
2 2.00 2.556 (1.052, 1.416) 3.212 (1.991, 5.433)

C3
θ (3)

1 2.85 2.854 (0.073, 0.005) 2.854 (0.073, 0.005)

θ (3)
2 4.50 4.497 (0.133, 0.018) 4.496 (0.130, 0.017)

rat. of correct states 0.958 (0.029) 0.933 (0.056)
∑d

i, j=1 | p̂i j − pi j | 0.278 (0.230) 0.404 (0.307)
rat. of correct structures 0.949 0.918

Pa
ra

m
et

ri
c

M
ar

gi
ns

C1
θ (1)

1 1.05 1.030 (0.041, 0.002) 1.056 (0.066, 0.004)

θ (1)
2 1.30 1.310 (0.154, 0.024) 1.306 (0.087, 0.008)

C2
θ (2)

1 1.35 1.365 (0.130, 0.017) 1.344 (0.173, 0.030)

θ (2)
2 2.00 2.544 (0.962, 1.221) 3.157 (1.906, 4.971)

C3
θ (3)

1 2.85 2.855 (0.074, 0.006) 2.854 (0.074, 0.005)

θ (3)
2 4.50 4.513 (0.133, 0.018) 4.513 (0.132, 0.018)

rat. of correct states 0.959 (0.029) 0.934 (0.056)
∑d

i, j=1 | p̂i j − pi j | 0.278 (0.232) 0.395 (0.297)
rat. of correct structures 0.955 0.921

de
G

A
R

C
H

in
g

C1
θ (1)

1 1.05 1.030 (0.045, 0.002) 1.056 (0.067, 0.005)

θ (1)
2 1.30 1.320 (0.264, 0.070) 1.307 (0.081, 0.007)

C2
θ (2)

1 1.35 1.367 (0.123, 0.015) 1.345 (0.166, 0.028)

θ (2)
2 2.00 2.577 (1.273, 1.953) 3.180 (1.976, 5.297)

C3
θ (3)

1 2.85 2.852 (0.074, 0.005) 2.852 (0.074, 0.005)

θ (3)
2 4.50 4.489 (0.133, 0.018) 4.488 (0.130, 0.017)

rat. of correct states 0.958 (0.029) 0.933 (0.056)
∑d

i, j=1 | p̂i j − pi j | 0.280 (0.234) 0.399 (0.299)
rat. of correct structures 0.950 0.919

Also the estimation for different ways of deciding starting values are shown:
“close to the true initial states” (True str), rolling window algorithm (Rol. Win.).
Apparently, nonparametric or parametric estimation of the margins does not make
big differences; this is also true for the prewhitening step. Regarding the precision
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TABLE 2. Simulation results for the marginal DGPs (data generating processes)
being GARCH(1,1), sample size T = 2000, 1000 repetitions, standard deviations
and MSEs are provided in brackets

True Rol. Win. True Str.

N
on

pa
ra

m
et

ri
c

M
ar

gi
ns C1

θ (1)
1 1.05 1.100 (0.888, 0.791) 1.138 (0.080, 0.014)

θ (1)
2 1.30 1.407 (0.888, 0.800) 1.246 (0.080, 0.009)

C2
θ (2)

1 1.35 1.403 (1.473, 2.173) 1.436 (2.608, 6.089)

θ (2)
2 2.00 3.288 (1.473, 3.829) 5.106 (2.608, 16.449)

C3
θ (3)

1 2.85 2.772 (0.936, 0.882) 2.790 (0.941, 0.889)

θ (3)
2 4.50 4.570 (0.936, 0.881) 4.606 (0.941, 0.897)

rat. of correct states 0.853 (0.054) 0.813 (0.061)
∑d

i, j=1 | p̂i j − pi j | 0.601 (0.217) 0.770 (0.242)
rat. of correct structures 0.853 0.757

Pa
ra

m
et

ri
c

M
ar

gi
ns

C1
θ (1)

1 1.05 1.205 (1.261, 1.614) 1.107 (0.079, 0.009)

θ (1)
2 1.30 1.843 (1.261, 1.885) 1.145 (0.079, 0.030)

C2
θ (2)

1 1.35 1.577 (1.381, 1.959) 1.838(1.612, 2.837)

θ (2)
2 2.00 3.150 (1.381, 3.230) 3.480 (2.270, 7.343)

C3
θ (3)

1 2.85 3.879 (1.453, 3.170) 3.906 (1.523, 3.435)

θ (3)
2 4.50 6.390 (1.453, 5.683) 6.592 (1.523, 6.696)

rat. of correct states 0.732 (0.080) 0.747 (0.053)
∑d

i, j=1 | p̂i j − pi j | 0.761 (0.179) 0.760 (0.156)
rat. of correct structures 0.358 0.323

de
G

A
R

C
H

in
g

C1
θ (1)

1 1.05 1.030 (0.736, 0.542) 1.067 (0.141, 0.020)

θ (1)
2 1.30 1.333 (0.736, 0.543) 1.305 (0.141, 0.020)

C2
θ (2)

1 1.35 1.356 (1.059, 1.122) 1.333 (1.755, 3.080)

θ (2)
2 2.00 2.579 (1.059, 1.457) 3.351 (1.755, 4.905)

C3
θ (3)

1 2.85 2.835 (0.816, 0.666) 2.833 (0.816, 0.666)

θ (3)
2 4.50 4.452 (0.816, 0.668) 4.451 (0.816, 0.668)

rat. of correct states 0.958 (0.028) 0.925 (0.058)
∑d

i, j=1 | p̂i j − pi j | 0.299 (0.235) 0.460 (0.325)
rat. of correct structures 0.938 0.916

of the estimation, one sees that when the true GDP is GARCH(1,1), the prewhiten-
ing step is necessary to guarantee the quality of estimation. Also we see that for
the parameter θ (2)

2 the estimation errors are larger. The standard deviations of the
design matrix are also relatively high. This is due to our selected design matrix



998 WOLFGANG KARL HÄRDLE ET AL.

FIGURE 6. The averaged estimation errors for transition matrix (left panel), parameters
(middle panel), convergence of states (right panel). Estimation starts from near true value
(dashed); starts from values obtained by rolling window(solid). x-axis represents iterations.
Number of repetitions is 1000.

having very small off-diagonal values, so for some realizations we have too few
observations for state 2 to achieve accurate estimates. One sees in our simula-
tion II nicer results with a different transition matrix.

4.2. Simulation II

In this subsection, we consider a five-dimensional model. The marginal distri-
butions are taken as: Yt1,Yt2,Yt3,Yt4,Yt5 ∼ N(0,1). The dependence structure is
modeled through an HAC with Gumbel generators as well. We set also three states
(M = 3) :

C
(
u1,C[u2,C{u3,C(u5,u4; θ1 = 3.15); θ2 = 2.45}; θ3 = 1.75]; θ4 = 1.05

)
for i = 1,

C
(
u3,C[u5,C{u2,C(u1,u4; θ1 = 3.15); θ2 = 2.45}; θ3 = 1.75]; θ4 = 1.05

)
for i = 2,

C
(
u5,C[u4,C{u3,C(u1,u2; θ1 = 3.15); θ2 = 2.45}; θ3 = 1.75]; θ4 = 1.05

)
for i = 3,

the transition matrix is chosen as:

P =

⎛

⎜⎝
0.82 0.10 0.08

0.08 0.84 0.08

0.03 0.02 0.95

⎞

⎟⎠ ,

and the initial probabilities are π = (0.2,0.1,0.7) and T = 2000. Figure 7 shows
the pairwise scatterplots of the observations generated from the above men-
tioned model. Similarly, Figure 6 and Table 3 present the estimation accuracy
for this model. Although the computation is more demanding when the dimen-
sion is higher, we still can achieve the same degree of accuracy as in the three-
dimensional case.
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TABLE 3. The summary of estimation accuracy in five dimensional model, stan-
dard deviations and MSEs are provided in brackets. The case of deGARCHing is
with nonparametrically estimated margins

True Param. Margins deGARCHing

C1

θ (1)
1 1.05 1.019 (0.020, 0.001) 1.019 (0.020, 0.001)

θ (1)
2 1.75 1.739 (0.077, 0.006) 1.741 (0.078, 0.006)

θ (1)
3 2.45 2.584 (0.126, 0.034) 2.583 (0.126, 0.034)

θ (1)
4 3.15 3.328 (0.194, 0.069) 3.318 (0.194, 0.066)

C2

θ (2)
1 1.05 1.017 (0.021, 0.002) 1.017 (0.021, 0.002)

θ (2)
2 1.75 1.795 (0.084, 0.009) 1.797 (0.084, 0.009)

θ (2)
3 2.45 2.499 (0.120, 0.017) 2.499 (0.122, 0.017)

θ (2)
4 3.15 3.381 (0.216, 0.100) 3.369 (0.215, 0.094)

C3

θ (3)
1 1.05 1.044 (0.017, 0.000) 1.045 (0.018, 0.000)

θ (3)
2 1.75 1.745 (0.041, 0.002) 1.747 (0.041, 0.002)

θ (3)
3 2.45 2.492 (0.065, 0.006) 2.492 (0.065, 0.006)

θ (3)
4 3.15 3.189 (0.094, 0.010) 3.185 (0.095, 0.010)

rat. of correct states 0.915 (0.011) 0.915 (0.011)∑d
i, j=1 | p̂i j − pi j | 0.133 (0.054) 0.133 (0.054)

rat. of correct structures 1 1

4.3. Simulation III

To compare the forecasting performances of the different models, we simulate
data from different true models: HMM GARCH, HMM id, and DCC, from which
we simulate three-dimensional time series with T − 1 observations. Then we fit
different models (HMM GARCH, HMM id, HAC GARCH, HAC id, and DCC)
with the T −1 observations at hand, and compare the one-step ahead distribution
forecasts for the true and the estimated models. More specifically, for the distri-
bution forecast comparison, we calculate the sum yT 1 + yT 2 + yT 3 (which may be
thought of as the returns of an equally weighted portfolio).

Simulation of 1000 observations yT 1 + yT 2 + yT 3 allows us to compare the
forecast distribution between the true model and the estimated models. Fur-
thermore, we calculate Kolmogorov–Smirnov (KS) test statistics to measure the
difference between the forecast distribution of observations from the true and
the estimated model. The comparison has been done with T = 250,500,1000
Table 4 reports the means and the standard deviations of the KS test statis-
tics for different models w.r.t. to the true one. We see obvious advantages of
our method over the DCC model in the sense that our HMM GARCH model
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FIGURE 7. Snapshots of pairwise scatter plots of dependency structures (t = 0, . . . ,
1000).

is in all cases closer on average to the forecast distribution of the true model
than is the DCC model. Especially when the data generating processes are
HMM GARCH or HMM ID. We use nonparametric estimated margins in this
subsection.
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TABLE 4. The estimated mean KS test statistics (standard deviation) of the fore-
cast distribution from the true model and the estimated model. Number of repeti-
tions is 1000

True\Estimated Sample size HMMGARCH HMM ID DCC

HMM GARCH
250

0.0899 (0.0353) 0.1243 (0.0571) 0.1949 (0.1112)
DCC 0.0607 (0.0241) 0.0723 (0.0320) 0.0782 (0.0309)
HMM ID 0.0908 (0.0359) 0.0867 (0.0345) 0.1424 (0.0271)

HMMGARCH
500

0.0889 (0.0338) 0.1203 (0.0556) 0.2117 (0.0782)
DCC 0.0541 (0.0194) 0.0672 (0.0325) 0.0774 (0.0254)
HMM ID 0.0936 (0.0331) 0.0924 (0.0326) 0.1515 (0.0239)

HMM GARCH
1000

0.0869 (0.0321) 0.1237 (0.0605) 0.3703 (0.1366)
DCC 0.0494 (0.0166) 0.0659 (0.0320) 0.0823 (0.0392)
HMM ID 0.0919 (0.0331) 0.0907 (0.0322) 0.1509 (0.0213)

5. APPLICATIONS

To see how HMM HAC performs on a real data set, applications to financial
and rainfall data are offered. A good model for the dynamics of exchange rates
gives insights into exogenous economic conditions, such as the business cycle.
It is also helpful for portfolio risk management and decisions on asset allocation.
We demonstrate the performance of our proposed technique by applying it to fore-
casting the VaR of a portfolio and compare it with multivariate GARCH models
(DCC, BEKK, etc.) The backtesting results show that the VaR calculated from
HMM HAC performs significantly better.

The second application is on modeling a rainfall process. HMM is a conven-
tional model for rainfall data, however, bringing HMM and HAC together for
modeling the multivariate rainfall process is an innovative modeling path.

5.1. Application I

5.1.1. Data. The data set consists of the daily values for the exchange
rates JPY/EUR, GBP/EUR, and USD/EUR. The covered period is [4.1.1999;
14.8.2009], resulting in 2771 observations.

To eliminate intertemporal conditional heteroscedasticity, we fit a univariate
GARCH(1,1) process to each marginal time series of log-returns

Yj,t = µj,t +σj,tεj,t with σ 2
j,t = ωj +αjσ

2
j,t−1 +βj (Yj,t−1 −µj,t−1)

2 (24)

and ω > 0, αj ≥ 0, βj ≥ 0, αj +βj < 1.
The residuals exhibit the typical behavior: they are not normally distributed,

which motivates nonparametric estimation of the margins. From the results of
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FIGURE 8. Rolling window estimators of Pearson’s (left) and Kendall’s (right) correlation
coefficients between the GARCH(1,1) residuals of exchange rates: JPY and USD (solid
line), JPY and GBP (dashed line), GBP and USD (dotted line). The width of the rolling
window is set to 250 observations.

the Box–Ljung test, whose p-values are 0.73,0.01, and 0.87 for JPY/EUR,
GBP/EUR, and USD/EUR, we conclude that the autocorrelation of the residu-
als is strongly significant only for the GBP/EUR rate. After this intertemporal
correction, we work only with the residuals.

The dependency variation is measured by Kendall’s and Pearson’s correla-
tion coefficients: Figure 8 shows the variation of both coefficients calculated in
a rolling window of width r = 250. Their dynamic behavior is similar, but not
identical. This motivates once more a time varying copula based model.

5.1.2. Fitting a HMM model. Figures 1, 9, and 10 summarize the analysis
using three methods: moving window, LCP, and HMM HAC. LCP uses moving
windows, with varying sizes. To be more specific, LCP is a scaling technique
which determines a local homogeneous window at each time point, see Härdle
et al. (2013). In contrast to LCP, HMM HAC is based on a global modeling con-
cept rather than a local one. One observes relatively smooth changes of the pa-
rameters, see Figures 1 and 9. HMM HAC is as flexible as LCP, as can be seen
from Figures 1, 9, and 10, since the estimated structure also takes three values
and is confirmed by the variations of structures estimated from LCP. Moreover,
the moving window analysis or LCP can serve as a guideline for choosing the ini-
tial values for our HMM HAC. Figure 11 displays the number of states for HMM
HAC for rolling windows with a length of 500 observations.

A VaR estimation example is undertaken to show the good performance of
HMM HAC. We generate N = 104 paths with T = 2219 observations, and |W | =
1000 combinations of different portfolios, where W = {(1/3,1/3,1/3)⊤

⋃
[w =

(w1,w2,w3)⊤]}, with wi = w′
i/

∑3
i=1 w′

i , w′
i ∈ U (0,1). The Profit Loss (P&L)

function of a weighted portfolio based on assets ytd is Lt+1
def= ∑3

d=1 wi (yt+1d −
ytd), with weights w = (w1,w2,w3) ∈ W . The VaR of a particular portfolio at
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FIGURE 9. Rolling window for exchange rates: structure (upper) and dependency param-
eters (lower, θ1 (gray) and θ2 (black)) for Gumbel HAC. Rolling window size win = 250.

FIGURE 10. HMM for exchange rates: structure (upper) and dependency parameters
(lower, θ1 (gray) and θ2 (black)) for Gumbel HAC.
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FIGURE 11. Plot of estimated number of states for each window.

level 0 < α < 1 is defined as V a R(α)
def= F−1

L (α), where the α̂w is estimated as a
relative fraction of violations, see Table 5:

α̂w
def= T −1

T∑

t=1

I{Lt < V̂ a Rt (α)},

and the distance between α̂w and α is

ew
def= (α̂w −α)/α.

If the portfolio distribution is i.i.d., and a well calibrated model properly mimicks
the true underlying asset process, α̂w is close to its nominal level α. The perfor-
mance is measured by averaging αw over all |W | portfolios, see Table 5.

We consider four main models: HMM HAC for 500 observation windows for
Gumbel and rotated Gumbel; multiple rolling window with 250 observations win-
dows; LCP with m0 = 20 and m0 = 40 with Gumbel copulae (the LCP finds the
optimal length of window in the past by a sequence of tests on windows of in-
creasing sizes, m0 is a starting window size); and DCC, see Engle (2002), based

TABLE 5. VaR backtesting results, ¯̂α, where “Gum” denotes the Gumbel copula
and “RGum” the rotated survival Gumbel one

Window\α 0.1 0.05 0.01

HMM, RGum 500 0.0980 0.0507 0.0128
HMM, Gum 500 0.0981 0.0512 0.0135
Rolwin, RGum 250 0.1037 0.0529 0.0151
Rolwin, Gum 250 0.1043 0.0539 0.0162
LCP, m0 = 40 468 0.0973 0.0520 0.0146
LCP, m0 = 20 235 0.1034 0.0537 0.0169
DCC 500 0.0743 0.0393 0.0163
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TABLE 6. Robustness relative to AW (DW )

Window\α 0.1 0.05 0.01

HMM, RGum 500 −0.0204 (0.013) 0.0147 (0.012) 0.2827 (0.064)
HMM, Gum 500 −0.0191 (0.008) 0.0233 (0.018) 0.3521 (0.029)
Rolwin, RGum 250 0.0375 (0.009) 0.0576 (0.012) 0.5076 (0.074)
Rolwin, Gum 250 0.0426 (0.009) 0.0772 (0.030) 0.6210 (0.043)
LCP, m0 = 40 468 −0.0270 (0.010) 0.0391 (0.018) 0.4553 (0.037)
LCP, m0 = 20 235 0.0344 (0.009) 0.0735 (0.026) 0.6888 (0.050)
DCC 500 −0.2573 (0.015) −0.2140 (0.015) 0.6346 (0.091)

on 500 observation windows. For each model we make an out of sample forecast.
To better evaluate the performance, we calculated the average and SD of eW :

AW = 1
|W |

∑

w∈W

ew, DW =
{

1
|W |

∑

w∈W

(ew − AW )2

}1/2

.

Tables 5 and 6 show the backtesting performance for the described models. One
concludes that HMM HAC performs better than the concurring moving window,
LCP, or DCC, as Aw and Dw are typically smaller in absolute value.

5.2. Application II

Rainfall models are used to forecast, simulate, and price weather derivatives. The
difficulty in precipitation data is the nonzero point mass at zero and spatial rela-
tionships, see Ailliot, Thompson, and Thomson (2009) for Gaussian dependency
among locations with HMM application.

In this application we extend it to a copula framework. Unlike application I, the
marginal distribution here vary over states. We propose two methods for modeling
the marginal distributions: one is to take ytk to be censored normal distributions,
with the following equation:

f mk {ytk} =
{

1− pxt
k ytk = 0,

pxt
k ϕ[{ytk −µxt (k)}/{σ xt (k)}]/σ xt (k) ytk > 0;

with k = 1, . . . ,d as the location, ϕ(·) as the standard normal density, pxt
k as the

rainfall occurrence probability for the location k and state xt , and µxt (k),σ xt (k)
the mean and standard deviation parameters at time t for location k.

A second proposal for the marginal distributions are the gamma distributions:

f mk {ytk} =
{

1− pxt
k ytk = 0,

pxt
k γ {ytk ; α(k)xt ,β(k)xt } ytk > 0;
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where again the α(k)xt ,β(k)xt are the shape and scale parameters for state xt and
location k. We take the joint distribution function to be a truncated version of a
continuous copula function, with the copula density cd(·) denoted by

cd(µ,θ) =
{

cc(µ,θ), ytk > 0,∀k,

∂Cc(µ,θ)/∂µk1 . . .∂µkB , ki ∈ {ytki > 0}, i ∈ 1, . . . , E ; (25)

where E denotes the number of wet places among the d locations, the Cc are the
continuous copula functions, and cc are the continuous copula densities.

Assume that the daily rainfall observations from the same month are yearly
independent realizations of a common underlying hidden Markov model, whose
states represent different weather types. As an example, we take every June’s daily
rainfall.

log pT (y0:T , x0:T ; v ×ω)

=
M∑

i=1

1{x0 = i} log{πi fi (y0)}+
T∑

t=1

M∑

i=1

M∑

j=1

1{xt = j}1{xt−1 = i} log{pi j f j (yt )}

+
∑

t∈B

M∑

i=1

⎡

⎣1{xt = i}{log(πi )}−
M∑

j=1

1{xt = i}1{xt−1 = j} log(pji )

⎤

⎦ ,

with B is the set of days which are the first day of June for each year. We use here
50 years of rainfall data from three locations in China: Guangxi, Guangdong, and
Fujian (Figure 12). The graphical correlation can naturally be captured by the
fitting of different copulae state parameters.

Table 7 presents (with a truncated Gumbel) the estimated three states, the cor-
responding different marginal distributions and copula parameters, with estimated
initial probability: π̂Xt = (0.298,0.660,0.042) and estimated transition probabil-
ity matrix:

P̂ =

⎛

⎝
0.590 0.321 0.089
0.188 0.742 0.080
0.329 0.271 0.400

⎞

⎠ .

In the case of our data, gamma distributions fit better as marginals. The states
filtered out represent different weather types. The third states are the most humid
states, with high rainfall occurrence probabilities, while the second states are drier,
and the first are the driest. From the parameters of the gamma distributions, one
sees that the variance increases from the first to the third states, which indicates a
higher chance for heavy rainfall for the humid states.

To validate our model, 1000 samples of artificial time series of 1500 obser-
vations were generated from the fitted model and compared with the original
data. Table 8 presents the true Pearson correlation compared with the estimated
ones from the generated time series. The 5% confidence intervals of the estima-
tors cover the true correlation, which implies that the simulated rainfall can de-
scribe the real correlation of the data quite well. Figure 13 shows a marginal plot
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FIGURE 12. Map of Guangxi, Guangdong, Fujian in China.

TABLE 7. Rainfall occurrence probability and shape, scale parameters estimated
from HMM (data 1957–2006)

Xt Shape Scale Occur Prob

1 (0.442, 0.429, 0.552) (139.33, 116.70, 169.66) (0.252, 0.256, 0.439)
2 (0.671, 0.618, 0.561) (273.83, 253.25, 427.46) (0.806, 0.786, 0.683)
3 (0.636, 1.125, 0.774) (381.09, 264.83, 514.08) (0.667, 1.000, 0.944)

TABLE 8. True correlations, simulated averaged correlations from 1000 samples
and their 5% confidence intervals. 1 Fujian, 2 Guangdong, 3 Guangxi

Location True Ĉorr(Yt,1,Yt,2)

1−−2 0.308 0.300 (0.235,0.373)
2−−3 0.261 0.411 (0.256,0.586)
1−−3 0.203 0.130 (0.058,0.215)

of the log survival function derived from the empirical cdf of the real data and
generated data. The log survival function is a transformation of the marginal cdf
Fmk (ytk):

log{1− Fmk (ytk)}. (26)
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FIGURE 13. Log-survivor-function (black solid) and 95% prediction intervals (gray dot-
ted) of the simulated distribution for the fitted model with sample log-survivor-function
superimposed (black dashed).

Again we see that the 95% confidence interval can cover the true curve fairly
well.

Table 8 contains the autocorrelations and cross-correlations of the real data
and the generated time series. Unfortunately, our generated time series does not
show a similar autocorrelation or cross-correlation. Since there is usually more
than one significant lag of autocorrelation or cross-correlation, the simulated time
series mostly only have one lag. This is an issue also observed in Ailliot et al.
(2009). The precipitation can be modeled first by a vector autoregressive (VAR)
type model, adjusted for zero observations. An alternative could be to impose an
additional dependency structure on {Yt }.

6. CONCLUSION

We propose a dynamic model for multivariate time series with non-Gaussian de-
pendency. Applying an HMM for general copulae leads to a rich clan of dynamic
dependency structures. The proposed methodology is helpful in studying finan-
cial contagion at an extreme level over time, and it can naturally help in deriving
conditional risk measures, such as CoVaR, see Adrian and Brunnermeier (2011).
We have shown that dynamic copula models fit financial markets well, and rainfall
patterns too.
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In the financial application, we performed deGARCHing to remove the second
order dependencies in the marginal time series. As this is a

√
n step, it will not

contaminate the final estimation, and our simulation study confirms this. In the
rainfall application, we extend our model to allow the marginal distribution’s pa-
rameters to also vary over states. Typically it will adapt to nonstationary marginal
time series with trend.
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APPENDIX

A.1. Proof of Theorems 3.1 and 3.2

In the HMM HAC framework, let {Xt , t ≥ 0} with transition probability matrix Pv,ω =
[pv,ω

i j ]i, j=1,...,M and initial distribution πv,ω = {πv,ω
i }i=1,...,M , where {v,ω} ∈ {V,,}

denotes an element in the parameter space {V,,} which parametrizes this model, and q
is the number of continuous parameters (note that our parameter space is partly discrete
(V ) and partly continuous (,)). We introduce the event {v,ω} because , correspond to
events induced by continuous parameters θθθ,sj , pi j ,πi . Suppose that Bt, j is a real-valued
additive component equal to

∑t
k=0 Yk, j , j ∈ 1, . . . ,d , with Bt = (Bt,1, Bt,2, . . . , Bt,d )⊤

and with Yk = (Yk,1,Yk,2, . . . ,Yk,d )⊤ a r.v. taking values on Rd . Suppose further that Bt, j
is adjoined to the chain in such a way that {(Xt , Bt ), t ≥ 0} is a Markov chain on D ×Rd

and

P{(Xt , Bt ) ∈ A × (B +b)|(Xt−1, Bt−1) = (i,b)} (A.1)

= P{(X1, B1) ∈ A × B|(X0, B0) = (i,0)}

= P(i, A × B) =
∑

j∈A

∫

b∈B
pv×ω

i j f j

{
b; θθθ ( j)(v ×ω),s( j)(v ×ω)

}
µ(db),

where B,b ⊆ Rd , A ⊆ D, f j {b; θθθ ( j)(v,ω), s( j)(v,ω)} is the conditional density of Yt

given Xt−1, Xt with respect to a σ -finite measure µ on Rd , and θθθ(v,ω) ∈ &,s(v,ω) ∈
S, j = 1, . . . , M are the unknown parameters. That is, {Xt , t ≥ 0} is a Markov chain,
given X0, X1, . . . , XT , with Y1, . . . ,YT being independent. In this situation, {Bt , t ≥ 0} is
called a hidden Markov model if there is a Markov chain {Xt , t ≥ 0} such that the process
{(Xt , Bt ), t ≥ 0} satisfies (A.1). Note that in (A.1), the usual parameterization θθθ ( j)(v,ω) =
θθθ ( j), and s( j)(v,ω) = s( j).

Recall the associated parameter space {V,,}, where V consists of a set of discrete finite
elements and , is associated with the parameters θθθ, [pi j ]i, j . Define s∗ and θθθ∗ associated
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with the point {v0,ω0} in the parameter space, as follows.

qT (Y0:T ; v0,ω0)
def= max

j∈0,...,M
pT (Y0:T |x1 = j ; v0,ω0) (A.2)

H(v0,ω0)
def= Ev0,ω0{− log p(Y0|Y−1,Y−2, . . . ; v0,ω0)}

Here, the Y−1, . . . ,Y−T are a finite number of past values of the process.

H(v0,ω0,v,ω)
def= Ev0,ω0{log pT (Y0:T ; v,ω)}

THEOREM A.1 (Leroux (1992)). Under A.1–A.5,

lim
T →∞

T −1Ev0,ω0{log pT (Y0:T ; v0,ω0)} = −H(v0,ω0)

lim
T →∞

T −1 log pT (Y0:T ; v0,ω0) = −H(v0,ω0),

with probability 1, under (v0,ω0), and

lim
T →∞

T −1Ev0,ω0{log pT (Y0:T ; v,ω)} = H(v0,ω0,v,ω)

lim
T →∞

T −1 log pT (Y0:T ; v,ω) = H(v0,ω0,v,ω),

with probability 1, under (v0,ω0).

LEMMA A.2. ∀vi ,uj , i, j ∈ 1, . . . , M as weights, the difference between M linear com-
bination of states leads to

M∑

i=1

vi f (y,θθθ s(i) ,s(i)) ̸=
M∑

j=1

µj f (y,θθθ s′( j) ,s′( j)). (A.3)

Proof. For each s(i), i ∈ 1, . . . , M associated with dependency parameter θθθ s(i) ∈ Rd
+.

So

M∑

i=1

vi δs(i) ̸=
M∑

j=1

µj δs′( j) ,a.e. (A.4)

implies

M∑

i=1

vi δs(i)δθθθ s(i)
̸=

M∑

j=1

µj δs′( j)δθθθ s′( j) ,a.e. (A.5)
n

Furthermore, if (A.4), then the corresponding point in the parameter space (v,ω)
leads to K(v0,ω0; v,ω), and (v,ω) would not be in the equivalent class of (v0,ω0) as
long as the points v and v0 are different as (A.4) (the equivalence class of v0 is de-
fined in Leroux (1992)), and the divergence between (v,ω) and (v0,ω0) is defined as
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K(v0,ω0; v,ω)
def= H(v0,ω0,v0,ω0) − H(v0,ω0,v,ω). This is connected with the log

likelihood ratio process, and one can prove that if either (A.4) or (A.5), and provided that
(A.2) holds, then (A.3) will hold, and so K(v0,ω0; v,ω) > 0. Namely, the divergence can
distinguish between points from different equivalent classes.

Next, we study whether plugging in nonparametric estimated margins would affect the
consistency results by analyzing the uniform convergence of f̂i (y).

Recall f̂i (y)
def= c{F̂m1 (y1), F̂m2 (y2), . . . , F̂md (yd ), θ̂θθ

(i), ŝ(i)} f̂m1 (y1) f̂m2 (y2) · · · f̂md (yd ).
We have, according to the uniform consistency of copulae density, for all t ∈ 1, . . . ,T,
i ∈ 1, . . . , M ,

max
s(i)

sup
yt1,...,ytd∈Bd ,θθθ (i)∈&

∣∣∣ĉ(F̂m1 (yt1), F̂m2 (yt2), . . . , F̂md (ytd ),θθθ (i),s(i))

− c(Fm1 (yt1), Fm2 (yt2), . . . , Fmd (ytd ),θθθ (i),s(i))
∣∣∣ (A.6)

≤
d∑

j=1

∣∣∣c(Fm1,η1
(yt1), Fm2,η2

(yt2), . . . , Fmd,ηd
(ytd )){F̂mj (yt j )− Fmj (yt j )}

∣∣∣, (A.7)

where Fmj,ηj
(·) def= Fmj (·) + ηj [F(·) − Fmj (·)], ηj = [0,1], and Fmj,ηj

(·) lies in the set of

admission functions for Fmj .
Bickel et al. (1998) states that as {Xt } is ergodic, then it follows that {Yt } is also ergodic.

It is known that any strictly irreducible and aperiodic Markov chain is β-mixing, Bradley
(1986). Then the marginal distribution of Ytm ,m = 1, . . . , M follows a process that is
β-mixing with an exponential decay rate, namely βt = O{t−b} for some constant a.
The temporal dependence of the marginal univariate time series Ytm is inherited sim-
ply from the underlying Markov chain as it is a measurable transformation of Xt . Since
{Yt } follows HMM HAC, then the marginal distribution of Ytm follows a process that is
β-mixing with decay rate βt =O(b−t ) for some constant b. Then it follows from the re-
sults of Liu and Wu (2010), under assumptions A1–A5, that the marginal kernel density
estimation has a Bickel and Rosenblatt (1973)-type of uniform consistency.

sup
y∈B

∣∣ f̂mi (y)− fmi (y)
∣∣ =Op(1) (A.8)

Also according to Chen and Fan (2005),
√

T sup
y∈B

∣∣F̂mm (y)− Fmm (y)
∣∣ =Op(1). (A.9)

Finally, we have

max
s

sup
y1,...,yd∈Bd ,θθθ∈E

∣∣∣ĉ(F̂m1 (y1), F̂m2 (y2), . . . , F̂md (yd ),θθθ (i),s(i))

− c(Fm1 (y1), Fm2 (y2), . . . , Fmd (yd ),θθθ (i),s(i))
∣∣∣ =Op(1).

Therefore, the multivariate distribution at each state satisfies

sup
y∈Bd

∣∣ f̂ j (y)− f j (y)
∣∣ =Op(1),
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where B, Bd are compact sets. So the plug in estimation does not contaminate the consis-
tency results.

To prove the consistency of our estimation of this parameter, we restate the theorems of
consistency in Leroux (1992) for our parameter space. One needs to show that for a discrete
subspace V c which does not contain any point of the equivalence class of v0, for v ∈ V c

and an arbitrary value of ω ∈ ,, that, with probability 1,

lim
T →∞

[

min
v∈V c

log sup
ω∈,

pT (Y0:T ; v,ω)− log pT
(
Y0:T ; v0,ω0)

]

→ −∞. (A.10)

This follows directly from Lemma A.2 (the identifiability of the state parameters) and its
consequence K(v0,ω0; v,ω) > 0. Theorem 3.1 is proved.

To prove Theorem 3.2, note that limT →∞ maxi∈1,...,M P(|θ̂θθ (i) −θθθ∗(i)| > ε|ŝ(i) = s∗(i))

is conditioned on the event {ŝ(i) = s∗(i)} which asymptotically holds with probability 1.
Therefore it suffices to prove, for any ŝ(i) = s(i)

lim
T →∞

min
i∈1,...,M

P
(
|θ̂θθ (i) −θθθ∗(i)| > ε

)
= 0. (A.11)

To show (A.11), one needs to show that for a (V c,,c) which does not contain any point
of the equivalence class of (v0,ω0), we have, with probability 1,

lim
T →∞

{

log sup
ω∈,c

pT (Y0:T ; v0,ω)− log pT
(
Y0:T ; v0,ω0)

}

→ −∞, (A.12)

which is implied from the following statement: for any closed subset C of ,c, there exists
a sequence of open subsets of Oωh with h = 1, . . . , H with C ⊆ ∪H

h=1Oωh , such that

lim
T →∞

⎧
⎨

⎩max
h

log sup
ω∈Oωh

pT (Y0:T ; v0,ω)− log pT (Y0:T ; v0,ω0)

⎫
⎬

⎭ → −∞. (A.13)

To prove (A.13), we have the modified definition:

H(v0,ω0,v0,ω;Oωh )
def= lim

T
log sup

ω′∈ω0
qT (Y0:T ,v0,ω′)/T . (A.14)

It can be derived that

H(v0,ω0,v0,ω) < H(v0,ω0,v0,ω0), (A.15)

when (v0,ω) and (v0,ω0) do not lie in the same equivalence class. Then (A.15) is a con-
sequence of the identifiability condition A.2, and this leads to: ∃ε > 0, Tε and Oω such
that

E log sup
ω′∈Oω

qTε (v
0,ω′)

/
Tε < E logqTε (v

0,ω)/Tε + ε < H(v0,ω0,v0,ω0)− ε.

Also because logsupω′∈Oω
pT (Y0:T ,v0,ω′)/T and logsupω′∈Oω

qT (Y0:T ,v0,ω′)/T
have the same limit value, there exists a constant ε > 0,

lim
T →∞

log sup
ω′∈Oωh

pT (y0:T ,v0,ω′)
/

T = H(v0,ω0,v0,ω;Oωh ) ≤ H(v0,ω0,v0,ω0)− ε.

Now (A.13) follows.
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A.2. Proof of Theorem 3.3

Recall from the last subsection, under A.3,

sup
y∈B

∣∣ f̂mi (y)− fmi (y)
∣∣ =Op(1) (A.16)

√
T sup

y∈B

∣∣F̂mm (y)− Fmm (y)
∣∣ =Op(1). (A.17)

Let Utm
def= Fmm (Ytm), Ũtm

def= F̂mm (Ytm), and Ut
def= (Ut1, . . . ,Utd ). Define the log

likelihood LT (θθθ) = LT (θθθ,U0:T )
def= log pT (y0:T ); in our case, we will work with

LT (θθθ, Ũ0:T ). Relying on the LAN property proved in Bickel et al. (1998), under A.1–A.7,
we have

LT (θθθ∗ + T −1/2θθθ,U0:T )− LT (θθθ∗,U0:T )

= T −1/2θθθ⊤∂LT (θθθ∗)+ T −1θθθ⊤∂2LT (θθθ∗)θθθ/2+ RT (θθθ), (A.18)

where RT (θθθ) tends to zero in probability, uniformly on compact subsets of the parameter
space of θθθ .

Next we need to prove that, uniformly over θθθ ,

LT (θθθ∗ + T −1/2θθθ,U0:T )− LT (θθθ∗,U0:T )− LT (θθθ∗ +n−1/2θθθ, Ũ0:T )+ LT (θθθ∗, Ũ0:T )

− T −1/2θθθ⊤ ∑

t

∑

m
Wm(Utm) =Op{RT (θθθ)},

where

Wm(Utm)
def=

∫

v1,...,vd

{1(Utm ≤ vm)− vm}(E∂ ãt b̃m/∂θθθ |θθθ=θθθ∗)

×c
(
v1, . . . ,vd ,θθθ∗(m),s∗(m)

)
dv1 · · ·dvd .

ãt (·) and b̃m(·) are functions defined later in the proof.
Similarly, we have

LT (θθθ∗, Ũ0:T )− LT (θθθ∗,U0:T )

= log

(∑M
x0=1 · · ·∑M

xT =1 πx0 f̃x0(y0)
∏T

t=1 pxt−1xt f̃xt (yt )
∑M

x0=1 · · ·∑M
xT =1 πx0 fx0(y0)

∏T
t=1 pxt−1xt fxt (yt )

)

=
∑M

x0=1 · · ·∑M
xT =1 πx0 f̃x0(y0)

∏T
t=1 pxt−1xt f̃xt (yt )

∑M
x0=1 · · ·∑M

xT =1 πx0

∏T
t=1 pxt−1xt fxt (yt )

−
∑M

x0=1 · · ·∑M
xT =1 πx0 fx0(y0)

∏T
t=1 pxt−1xt fxt (yt )

∑M
x0=1 · · ·∑M

xT =1 πx0

∏T
t=1 pxt−1xt fxt (yt )

+Op(1)

def=
∑

t

M∑

x0=1

· · ·
M∑

xT =1

ãt (θθθ
∗){ f̃xt (yt )− fxt (yt )}+Op(1),

where ãt0(θθθ
∗) = πx0 f̃x0 (y0)

∏t0
t=1 pxt−1xt f̃xt (yt )

∏T
t=t0+1 pxt−1xt fxt (yt )

∑M
x0=1···

∑M
xT =1 πx0 fx0 (y0)

∏T
t=1 pxt−1xt fxt (yt )

.
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As

f̃xt (yt )− fxt (yt ) = c
(

Ũ0:T ,θθθ∗(xt ),s∗(xt )
) d∏

m=1

fmm − c
(

U0:T ,θθθ∗(xt ),s∗(xt )
) d∏

j=1

fmj

=
∑

m
cum

{
Fm1 (y1t ), Fm2 (y2t ), . . . , Fmd (ydt ),θθθ

∗(xt ),s∗(xt )
}

×
{

F̂mm (ymt )− Fmm (ymt )
} d∏

j=1

fmj +Op(1)

def=
∑

m
b̃m(θθθ (xt ))

{
F̂mm (ymt )− Fmm (ymt )

}
+Op(1),

where b̃m(θθθ (xt ))
def= cum {Fm(y1t ), Fm(y2t ), . . . , Fm(ydt ),θθθ

(xt ),s(xt )}∏d
j=1 fmj , and

cum denotes the partial derivative of the copulae density w.r.t. um .
Then it follows that

LT (θθθ∗ + T −1/2θθθ,U1:T )− LT (θθθ∗,U1:T )− LT (θθθ∗ + T −1/2θθθ, Ũ1:T )+ LT (θθθ∗, Ũ1:T )

= T −1/2θθθ⊤
M∑

x0=1

· · ·
M∑

xT =1

∑

t

[
∑

m
∂ ãt b̃m/∂θθθ{F̂m(ymt )− Fm(ymt )}

]

+Op(T −1/2)

= T −1/2θθθ⊤ ∑

t

∑

m
Wm(Utm)+Op(T −1/2)

So, let

B def= E{∂2LT (θθθ∗,U1:T )}

A def=
{

∂LT (θθθ∗,U1:T )+
∑

t

∑

m
Wm(Utm)

}

, (A.19)

Finally, we have that the estimated θ̂θθ can be represented by θ̂θθ − θθθ∗ = B−1 A +
Op(T −1/2) coming from Bickel et al. (1998).
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theoretical economics, stochastics, mathematical statistics and radiology; today, we would call him a
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of insurance claims applying the—at that time hardly known—Poisson distribution to Prussian
horse kick and child suicide data. He proposed a simple solution to the Marxian transformation
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1 Introduction

On 16 July 1931 in an obituary for the Berlin newspaper ‘Vossische Zeitung’, Ock (1931)
wrote:

Bortkiewicz war ein Meister der Wahrscheinlichkeitsrechnung. Die Beherrschung dieser
Wahrscheinlichkeitsrechnung, die er auf Versicherungswissenschaft und Bevölkerungslehre
genau so anwandte wie auf naturwissenschaftliche Gebiete, besonders auf die radioaktive
Strahlung, trug dazu bei, Bortkiewicz den Ruf als einen der fähigsten Statistiker der Welt zu
schaffen. (Bortkiewicz was a master in theory of probability. The containment of this theory
of probability allowed him to apply it to the insurance science and the theory of population
as well as on topics in science such as radioactivity; this led him to have the reputation as
one of the most capable (competent) statistician in the world.)

About 30 years later, one of Bortkiewicz’s students, Emil Julius Gumbel (1891–1966), under-
lined that ‘He was one of the few representatives of mathematical statistics in Germany and as
such a lonely figure, highly respected but rarely understood’ (Gumbel, 1968, p. 128) and pointed
out that ‘His writings stimulated numerous scientists in Germany, in the northern European
countries and in Italy, but not in England.’ (Gumbel, 1968, p. 130) These quotations demon-
strate that Ladislaus von Bortkiewicz (LvB) was in fact one of the founders of statistical science
as we know it today. What was this topic—statistical science—in the early 20th century? How
was it linked with the development of scientific disciplines like economy, political sciences and
mathematics? How and what did LvB contribute to this development? These are questions that
we would like to answer and thereby shed some light on the development of statistics in the early
20th century. Statistics as a scientific discipline like physics or medicine, meaning statistics as
a science with its own fundamental laws, its own technology and methods, was defined at the
end of the 19th century. The first International Statistical Congress was organised by Adolphe
Quetelet (1796–1874) and held in Brussels in September 1853. The first Session of the Interna-
tional Statistical Institute (ISI) was held in Rome in 1887, and the second in Paris in 1889. LvB
was elected to the ISI in 1903, and his friend A. A. Chuprov in 1913. In central Europe, it took
a little while longer to establish statistics firmly in the curriculum universitas. The importance
of this science was made evident when the German Statistical Association was founded in June
1911. Georg von Mayr (1841–1925) became its first president, and he was the president until
his death in 1925. When he was honoured in 1911, it was written about statistics:

Die Statistik nimmt heute auf weiten Gebieten des öffentlichen Lebens eine Achtung ge-bie-
ten-de, einflussreiche Stellung ein. Reich, Staat, Kommune, Allgemeinheit, Privatwirtschaft,
Wissenschaft bedienen sich ihrer Hilfe in ausgedehntem Maße. Die Statistik ist selbst zu
einer Wissenschaft geworden. (quoted in Steger (2011), p. 17)

(Statistics today occupies an influential and an imposing position in many public spheres.
The (German) Federation, counties and communities, the general public, industry and
science make use of it extensively. Moreover, statistics itself has become a science in itself.)

One of the driving forces for the establishment of statistics as a science at this time was
LvB, as he realised that the introduction of mathematical concepts into the analysis of statistical
data created a new quality. As S. Hertz rightly mentioned, ‘Of his generation, Bortkiewicz was
the main representative of mathematical statistics in Germany’ (Hertz, 2001, p. 274). Unfor-
tunately, LvB died too early to see the fruits of his thoughts ripen in the work of his brilliant
students who shared his view on applicability of statistical concepts to science in general. On
15 January 1901, the Russian citizen Vladislav Josephovich Bortkievich (1868–1931)—known
as Dr. habil. Ladislaus von Bortkiewicz (also transliterated as Bortkewitsch)—was appointed as
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‘ausserordentlicher Professor’ at the Friedrich-Wilhelms-Universität Berlin (after 1945 named
Humboldt-Universität zu Berlin) by the Prussian Ministry for Culture and Education. How was
it possible that the Prussian administration for science and education appointed an official staff
member of the civil service in an Imperial Russian ministry? Who was this young scientist,
where was he trained and what had he done of importance? The letters of the administra-
tion related to LvB and other relevant documents are saved in the archive of Berlin University
(Archive HU), containing the aforementioned appointment letter from the Prussian Ministry
for Education. But the personal papers of LvB, including hundreds of letters, his class notes
and his manuscripts, are not in Berlin. The Bortkiewicz papers are saved in Uppsala (Archive
Uppsala). We will later explain why this happened. Independently from archival sources, the
life, destiny and fate of LvB were always linked to Europe. LvB, by his training, his mind and
his vision, was a true European scholar and one of the most respectable founders of modern
statistical science. In this paper, we would like to demonstrate how LvB has contributed to the
development of statistics by a cross-disciplinary view of the sciences. We start with a sketch of
his life and scientific growth in Section 2 and continue by describing his courses in Section 3.
His network of friends and colleagues is described in Section 4. After giving an overview on
his numerous publications in Section 4.5, we discuss LvB and the transformation problem in
Section 4.6 and his stochastic thinking and his influence on modern statistics in Section 5.
Finally, we summarise our results in Section 6.

2 From St. Petersburg to Berlin—The Ways of Education of LvB

Ladislaus von Bortkiewicz was born in the Russian imperial city of St. Petersburg (see
[1]) on 7 August 1868 into a Polish family. In the Russian language, his name reads,
Vladislav Josephovich Bortkievich (BSE, vol. 5, p. 605). His father was Joseph Ivanovitch
Bortkiewicz, a military man and an instructor teaching artillery and mathematics. His mother
was Helene von Rokicka. LvB had two sisters, and his beloved Helene had the same name
as their mother (Sheynin, 1970, p. 318). He studied law at St. Petersburg University for eight
semesters. At that time, the education system of Imperial Russia successfully applied the
principle of ‘komandirovka za granicu’ (travelling abroad, to foreign countries), that is, the
mission of young academic researchers to universities outside of Russia, in most cases to west-
ern European countries, especially to France and Germany. This principle was described by
Pelageja Jakovlevna Kochina (1899–1999) who studied the career paths of the Russian disci-
ples of the mathematician Karl Weierstrass (1815–1897) in her biography about LvB (Kochina,
1985). The same principle was also applied to ophthalmologists and physicists who studied with
Hermann von Helmholtz (1821–1894). After studying at Western European universities, most
of these post-doc students obtained doctoral degrees there and later became professors at
Russian universities. LvB chose the University in Göttingen, to study with Wilhelm Lexis
(1837–1914) who was one of the most prominent economists and statisticians at that time. He
finished his dissertation on 2 August 1892 and received his Doktor-Diplom the following year
on 6 February 1893 after his thesis was published (LvB, 1893; Figure 1).

Further studies in economics and statistics led him to Straßburg, Alsace (today Strasbourg),
where he worked together with Georg Friedrich Knapp (1842–1926), another prominent statisti-
cian at that time. Between 1871 and 1918, Alsace, and therefore Straßburg, belonged to Prussian
Germany and consequently had a Prussian university. The Habilitation (see [2]) of LvB was
finished on 2 March 1895, and LvB became a ‘Privatdozent’. In Straßburg, he was a contem-
porary of A. A. Chuprov (1874–1926) who was also a disciple of G. F. Knapp. However, just
being a Privatdozent does not pay well, is not really exciting and, even today in Germany, is not
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Figure 1. The dissertation of LvB, 1893.

equivalent to a real professorship. Other prominent examples of this non-incentive-based
German university system include Johann von Neumann (1903–1957), who was a Privatdozent
at the Berliner Universität. In brief: It was not Straßburg, but it was his Privatdozent status that
made LvB change locations. After 7 years in Germany, LvB returned to St. Petersburg to look
for an academic position. He was offered an appointment in the civil service of the Russian
ministry of transport, and thanks to Aleksandr Ivanovich Chuprov (1842–1908)—the father
of Aleksandr Aleksandrovich Chuprov (1874–1926)—he also taught statistics at the Aleksan-
drovskij Lyceum (Oscar Sheynin, 1996, p. 38; Sheynin, 2005). LvB achieved excellent work in
St. Petersburg, and A. I. Chuprov tried again to find an academic position for him in 1905/1906
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but failed and then finally LvB accepted the offer by the Berlin Universität and made the
decision to stay in Berlin for the rest of his life.

3 Teaching Modern Statistics

LvB lectured statistics, insurance science, mortality and fertility forecasting, mathematics,
quantitative economics and mathematical statistics at two academic institutions in Berlin. From
1901 until 1931, he was a professor, and from 1920 onwards, a full professor (‘Professor ad per-
sonam’, i.e. Personal Chair), at Berlin University (Friedrich-Wilhelms-Universität zu Berlin),
(von Bortkiewicz (1930)). In addition, from 1906 until 1923, he taught at the newly founded
Berlin School of Economics (Handels-Hochschule, located in Spandauer Str. 1), where a higher
income from teaching was possible (Figure 2).

At Berlin University, each semester, LvB normally offered (the winter semester started in
October each year and ended in February the following year, and the summer semester was
from April to July) two courses, one lecture and one training seminar (‘Übung’). Over a period
of 30 years, he offered approximately 120 courses (see [3]), most of the lectures and Übungen
he held more on general statistics (once an introduction to statistics); all in all, he offered
them 28 times. Another big issue (19 lectures and five training courses) he offered was on
population theory and population statistics. Sometimes, he offered these lectures with special
consideration to Malthus’s theory. He held seven lectures on the mathematical and statistical
foundations of insurance science, and 11 special training courses on insurance science and
insurance mathematics. He also offered similar lectures and courses at the Berlin School of
Economics, but the students there protested against the high mathematical content. Only four

Figure 2. Handels-Hochschule (now School of Business and Economics) with the Heiliggeist Kapelle.
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times, between 1917 and 1920, did he offer courses on mathematical statistics and one training
course on mathematical statistics. In winter semester 1915/1916, the class list of his seminar (he
called it ‘Statistisches Konservatorium’) contained the young post-doc student from Munich,
Emil Julius Gumbel (1891–1966) . Figure 3 displays the original handwritten table of LvB (in
Archive Uppsala) on class room attendance. Gumbel (1958) wrote later that this class motivated
him to work on extreme value theory.

LvB rarely taught jointly with colleagues, and when he did, it was with the close friend Carl
(Karl) Ballod (1864–1931). They offered eight tutorials on socio-economic and business statis-
tics between 1902 and 1914. The Faculty of Economics, Humboldt–Universität zu Berlin, where
LvB also taught, is a traditional academic teaching and research institution. It was founded
in 1886 as the Economic-Statistical Seminar of the Friedrich-Wilhelms-Universität zu Berlin.
The early years were dominated, besides LvB, by economists and statisticians such as Richard
Boeckh (1824–1907), Gustav von Schmoller (1838–1917) and Adolph Wagner (1835–1917).
In 1904, the chamber of commerce of Berlin decided to establish and to build a school of eco-
nomics in Spandauer Straße 1, between St. Wolfgang Str. and Anna Louisa Karsch Str. The
Heiliggeist Kapelle (Holy Spirit Chapel)—built around 1300—is one of the oldest buildings in
Berlin and was integrated into the new building; see Figure 2. On 27 October 1906, the Berlin
School of Economics was inaugurated. Ever since that time, economics has been permanently
taught at Spandauer Straße 1. Because of the Nazi’s policy, many prominent scientists were
forced to leave the university and the school of economics. Among the many emigrants were the
rector of the School of Economics (1931–1933) Moritz Julius Bonn (1873–1965), one of the
founders of modern insurance science Alfred Maues (1877–1963) and the philosopher Arthur
Liebert (1878–1946). The statistician and economist Franz Eulenburg (1867–1943), rector from
1929 to 1930, became a victim of the Nazi persecution.

Figure 3. Class list of ‘Statistisches Konversatorium’ (i.e. seminar) 1915/1916—‘e’ means excused, and ‘f’ means not in
class without excuse (In: Archive Uppsala, Bortkiewicz Papers, box 36).
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4 The Network of LvB—Family, Friends and Colleagues

Thanks to different primary and secondary sources, we were able to reconstruct the network
of the many relationships LvB had with different scientists and scholars from many European
countries. The correspondence in the Bortkiewicz papers in Uppsala altogether contain 991
letters from more than 60 colleagues (63 in total). After his death, several obituaries were
written, by, for instance, E. J. Gumbel in the journal ‘Statistisches Zentralblatt’, by colleagues
such as Thor Andersson (1869–1935), Hermann Schumacher (1868–1952), Oskar Anderson
(1887–1960) and Ferdinand Tönnies (1855–1936), (O. Anderson (1932), T. Andersson (1931),
H. Schumacher (1931), F. Tönnies (1931)). The leading intellectual newspaper at that time, the
‘Vossische Zeitung’, published an obituary (Figure 4). An excerpt of this text appears at the
beginning of this article.

Some authors reviewing his life have pointed out that LvB was a very ambitious and strong
university teacher as well as an intensive reader of the publications of his colleagues. Hermann
Schumacher stressed the stereotype that LvB lived together with his sister, living without a

Figure 4. Obituary, in the ‘Vossische Zeitung’, 16 July 1931.
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family because he wanted to serve the sciences only. On his characteristic way of working,
Gumbel wrote:

He presented each problem from all sides with extreme thoroughness and patience after an
extensive study of literature. This multiple foundation makes the solution unassailable, but
the reader can trace no single line from premises to conclusion: the central line of thought is
entwined with numerous sidelines and extensive polemics, especially on matters of scientific
priority.’ (Gumbel, 1968, p. 130)

4.1 Family

LvB was born in a wealthy Polish family in St. Petersburg, in that time the capital of
the Russian Empire. His father Joseph von Bortkiewicz died in summer 1914, shortly before
the outbreak of World War I (WWI). It was during this summer of 1914 that LvB visited
St. Petersburg for the last time; he never returned because of the political changes in Russia.
The Russian intelligentsia made sure that children learned French and German as second
languages to read and write fluently; consequently, his family motivated LvB and his younger
sister Helene to study in Germany. LvB’s sister Olga married and died of cancer later in
Russia in December 1917. Her death was announced by the second sister Helene who had,
because of WWI, communicated with LvB in Berlin from St. Petersburg via Thor Andersson in
Sweden. Helene von Bortkiewicz (3 August 1870 St. Petersburg to 29 October 1939 Berlin) was
a remarkable woman; she was one of the first female students of mathematics to attend Women’s
Courses (Vysshiye zhenskiye kursy—Higher Women’s Courses) in St. Petersburg, where she
received a very good scientific training. These Women’s Courses were opened in 1878 with
support from scientists of the University and of the Russian Academy of Science (Kochina,
1988, pp. 45–47). Helene von Bortkiewicz then became one of the Russian mathematics stu-
dents at the University of Göttingen. She took classes from David Hilbert (1862–1943) and
Felix Klein (1849–1925) (see Archive of the Göttingen University, Tobies, 1991/1992, pp. 156,
158, 165–166). Back in Russia, Helene von Bortkiewicz published papers in Russian journals,
but the situation was not comfortable for her because the only widely accepted professions for
women were as a physician or a teacher in a girls school. From 1910 until summer 1914, she
lived with her brother. She travelled together with him to St. Petersburg in the summer of 1914
but did not return with him to Berlin. After the outbreak of WWI, she stayed in St. Petersburg
and then in fact worked as a teacher of mathematics and languages. After the first Russian revo-
lution, in February 1917, she became a staff member in a St. Petersburg bank. After the October
revolution 1917, she moved, with the help of Thor Andersson, to Berlin where she lived from
1919 until 1931 in her brother’s apartment in Berlin-Halensee (Johann Sigismundstr. 2). We
can only speculate whether she worked scientifically with LvB, or whether she ran her brother’s
household. After the death of her brother in 1931, she encountered serious financial problems
(see [4]) and finally had to give up the apartment and to move to Berlin-Steglitz (see Archive
HU, personal file LvB, Bd. 1, Bl. 22R, Bl. 24). This move to a more modest accommodation
must also have been the reason that the Bortkiewicz papers have found shelter in Sweden.

4.2 Friends

Among LvB’s friends, one of the first, was the Swedish economist and statistician Thor
Andersson (1869–1935). Thor Andersson was not only an economist and statistician, but he
was also an entrepreneur and publisher. He founded and edited the journals ‘Nordisk statis-
tisk tidskrift’ and later the ‘Nordisk Statistical Journal’ (Sjöström, 2002, p. 195). He invited
his friend and colleague LvB to publish in his journals and often visited Berlin. It was his
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idea to start the ‘LvB Collected Papers’ project, which he unfortunately could not finish. His
oldest friend, dating back to LvB’s student years in St. Petersburg, was the mathematician, statis-
tician and economist Aleksandr Aleksandrovich Chuprov (1874–1926). Aleksandr Chuprov
received his doctoral degree in 1896, and as a post-doc, he stayed until 1902 at several German
universities. First, he went to Berlin where he visited Adolph Wagner (1835–1917) and then
moved to Straßburg, where he studied with Georg Friedrich Knapp. In 1902, he defended
his dissertation in economics (Staatswissenschaft) and also passed his master examination
at the Faculty of Law of Moscow University. From 1902 to 1917, he taught statistics at the St.
Petersburg Polytechnical Institute and was always in close contacts with LvB. In May 1917,
he visited Sweden and, with the October Revolution, became an emigré. First, he lived in
Stockholm and later in Oslo. In 1920, he moved to Germany, desperately looking for an aca-
demic position. For 5 years, he lived in Dresden and taught in Prague, at the Russian Institute. In
the LvB Papers in the Uppsala Archive, 125 letters are kept, detailing concerning these almost
parallel career paths (Sheynin, 2005). One of the disciples of A. A. Chuprov was the statisti-
cian Oskar (Nikolaevich) Anderson (2 August 1887 Minsk to 12 February 1960 Munich). He
studied mathematics and physics first in Kazan, and then statistics in St. Petersburg, where in
1912 he defended his thesis (on correlation analysis). From 1910 onwards, he worked with
Chuprov and LvB. From September 1912 to October/November 1917, he was employed as an
instructor (teacher) in the Higher Commercial School in Lesnoe (near St. Petersburg), where
he taught political economy, commercial geography and jurisprudence (Sheynin, 1996, p. 59).
After the revolution in October 1917, he emigrated, first teaching in Kiev, and then in the
Higher Commercial School in Varna (Bulgaria), where he lived from 1924 to 1942. During
WWII, in 1942, he became a full professor of statistics in Kiel, and after 1947, he was a pro-
fessor in Munich (see ‘Metrika’ 3 (1960), pp. 89–94). Among his papers, the one titled ‘Über
die Anwendung der Differenzenmethode bei Reihenausgleichungen, Stabilitätsuntersuchungen
und Korrelationsmessungen’, (Anderson, O. (1926, 1927)), had great influence. He propa-
gated cross-disciplinary links between humanities and mathematics (Anderson, O. (1935)). This
perception was that of LvB and more of his friends and was a rather rare position among statis-
ticians at that time, and not only at that time! Carl Ballod (1864–1931) was also a close friend
of LvB. He was a statistician and an expert on Russian economy and taught at Berlin Univer-
sity from winter 1900/1901 until summer 1919. Ballod received his doctoral degree in 1892 at
the University of Jena, and he made the Habilitation at Berlin University where he became Pri-
vatdozent in December 1899. From 1905 until 1914/1919, he was ausserordentlicher Professor
at Berlin University and at the same time staff member at the Prussian Statistical Office. The
couple Wladimir Savel’evich Woytinsky (12 November 1885 St. Petersburg to 11 June 1960
Washington, DC) and Emma Shadkhan Woytinsky (19 April 1893 Witebsk to April 1968 Wash-
ington, DC) became close friends of LvB and Helene vB. This friendship was an unusual one.
In their autobiographies (Wl. Woytinsky, 1961, pp. 452–453; Emmy Woytinsky, 1965, pp. 108–
110), both described the history of this relationship. Their famous publication ‘Die Welt in
Zahlen’ (The World in Figures) in seven volumes was published in Berlin between 1925 and
1928. Originally, the series should have been published in both Russian and German, by the
publishing house Rudolf Mosse in Berlin. In fact, only two volumes were published in Russian,
in 1924 and in 1925, and then it was halted because of the developing situation in the Soviet
Union. However, all seven German volumes were published, edited by LvB. Emma Woytinsky
called it a ‘marvelous feature of this project’, that he

played (a part) in it. We learned later that he had been the terror of all German publishers,
most of whom had ceased to send him their statistical publications for comment. Not that he
was mean—actually, he was just the opposite. He was the embodiment of scientific integrity
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and honesty; ... The only trouble was that it was extremely difficult to satisfy him, to reach
his level. He was called the ‘Pope of Statistics’, also ‘Die Leuchte’ (The Luminary). (Emma
Woytinsky, 1965, p. 109)

She finished her description about the collaboration with LvB and the later friendship with
him with the observation:

Nobody who knew Bortkiewicz from his behaviour at the university or from his writings,
so highly technical that he could never distribute all ten of the reprints he received from a
journal, could realize how much wit and fun he had in him when he let the bars down. (Emma
Woytinsky, 1965, p. 110)

After the success, Wladimir S. Woytinsky became the head of the small statistical department
of the leading trade union organisation (Allgemeiner Deutscher Gewerkschaftsbund) in Berlin.
Here, he worked together with a young colleague, Bruno Gleitze (1903–1980), who later in
1946 became the first dean of the newly established economics faculty at Berlin University.
Emma and Wladimir Woytinsky described LvB as a warm, friendly, helpful and very generous
person, quite the opposite of other descriptions of him (as dry, cold, very strict and dangerous).
It is worth mentioning that Wladimir S. Woytinsky also published a remarkable article ‘Limits
of Mathematics in Statistics’ (1954).

4.3 Colleagues

Among the colleagues of LvB, we have to first mention his teachers Wilhelm Lexis in
Göttingen and Georg Friedrich Knapp in Straßburg. LvB was in close and regular contact
with both of them and kept almost all of their letters that they had written to him (see
Archive Uppsala). When LvB was appointed in 1901, statistics was taught by Richard Boeckh
(1824-1907)—the co-founder of the Economic-Statistical Seminar (Staatswissenschaftlich-
Statistisches Seminar), established in 1886, and the ‘Altmeister der Berliner Statistik’ (master
of Berlin statistics)—and the agricultural statistician August Meitzen (1822–1910). He also had
contact with Adolph Wagner (1835–1917) and Gustav von Schmoller (1838–1917). Boeckh
and Meitzen had enormous practical experience from their work in statistical offices; the Royal
Prussian Statistical Bureau, the Imperial Statistical Office and the Statistical Office of the city
of Berlin, where Boeckh was the director from 1875 to 1902. Studying the lecture schedules,
we found that until 1910, LvB taught special courses on statistics. After the death of Boeckh
and Meitzen, LvB became the only expert on statistics, and he offered the introductory courses.
From 1907 until 1922, he was the only professor of statistics at Berlin University. From 1922 to
1928, Rudolf Meerwarth (1883–1946) joined him in teaching economic and business statistics.
One of the very few female colleagues of LvB was Charlotte Lorenz (1895–1979). In 1919,
she received her doctoral degree on a thesis about the economic situation in Turkey. Later, she
became interested in statistics, and she was employed in the Imperial Statistical Office. Her
thesis for ‘Habilitation’ was on price indices, and her work was highly acknowledged by LvB
who was one of her advisers in 1927 (see Archive HU, Phil. Fak. Nr. 1242, pp. 217–237).
LvB underlined in his review that Charlotte Lorenz was willing to learn the mathematical basis
and was able to study recent mathematical literature on price indices. LvB highly acknowl-
edged her work. Only in 1937 did Charlotte Lorenz become a professor at Berlin University,
teaching mainly economic and business statistics. After 1945, she taught at Göttingen
University. Scientific activities received momentum in 1920 when Richard von Mises
(1883–1953) was appointed as the first professor of applied mathematics and director of the
Institute for Applied Mathematics and Mechanics at Berlin University. Both von Mises and
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LvB belonged to the Philosophical Faculty then, and von Mises took over the classes that had a
more mathematical touch from LvB. Soon, they had a joint doctoral student. Both belonged to
the Berlin Mathematical Society too, and they had much in common. Among the colleagues
of the Berlin School of Economics (Handels-Hochschule), we have to mention the founder of
modern insurance science, Alfred Manes (1877–1963), and the economist and statistician Franz
Eulenburg (1867–1943). Alfred Manes was an economist and editor of a series on insurance
mathematics, and in 1919, he published the book ‘Staatsbankrotte’ (national bankruptcy; the
third edition came out in 1923). LvB and Manes had common interests in insurance calcula-
tions, and LvB published some articles in the journal of the German Association of Insurance
Science (Deutsche Gesellschaft für Versicherungswissenschaft) where A. Manes was one of
the heads (Koch, 1990). It was the statistician Franz Eulenburg, from 1929 until 1930, rector
of the School of Economics, who first had the idea to publish a series ‘Collected Papers’ of
LvB (see the letter written by F. Eulenburg to Thor Andersson, spring 1933 in: von Bortkiewicz
Papers, Uppsala). Because of the world economic crisis (1929) and the Nazis’ rise, this project
failed. In 1933, both A. Manes and F. Eulenburg were dismissed from the School of Economics,
and A. Manes also from Berlin University. Whereas A. Manes successfully managed to emi-
grate in 1935, first to South America, and then later to the USA (University of Chicago),
Franz Eulenburg stayed in Berlin. In December 1943, he was arrested by the Gestapo in Berlin
and died on 28 December 1943 in a Gestapo prison.

4.4 Disciples and Doctoral Students

In 1926, the Austrian physician Karl Freudenberg [11 October 1892 Berlin to 14 January
1966 Berlin (West)] defended his thesis on statistics in medicine at Berlin University (see
Archive HU, Phil. Fak. Nr. 646, Bl. 373–397, Diss. Karl Freudenberg, 12 October 1926).
His advisors were LvB and Richard von Mises. LvB also supported the ‘Habilitation’ of
Karl Freudenberg, which followed 2 years later (see Archive HU, Habil. Med. Fak. Nr. 1359,
Bl. 153–167, Habilitation Karl Freudenberg, 9 June 1928). From 1928 until 1935, Karl
Freudenberg was a Privatdozent at the Medical Faculty of Berlin University, and he was the
only teacher in medical statistics (Medizinalstatistik). In 1935, he was dismissed (see Archive
HU, personal file Karl Freudenberg), and in 1938, he was arrested by the Gestapo; but in 1939,
he was able to emigrate to the Netherlands, where he escaped Nazi persecution. As one of the
very few German-Jewish emigrants in mathematics and statistics, he returned to Berlin in 1947
and taught medical statistics at Free University Berlin. One of the most famous disciples was
Emil Julius Gumbel (18 July 1891 Munich to 10 September 1966 New York), who later fol-
lowed the ideas of LvB on distributions (Gumbel, 1958). Obviously, E. J. Gumbel met LvB
often in Berlin, between 1920 and 1932, and he lived in Berlin regularly during the semester
breaks. Gumbel was not only a successful mathematician and statistician at Heidelberg Univer-
sity but also politically very active. As a member of the German League for Human Rights, he
became one of the leading individuals to fight against the Nazis before 1933. He published two
books against them in the Weimar Republic (Jansen, 1991; Vogt, 1991; Brenner, 2001). As a
result, he was forced to leave Germany, emigrating first to France and in 1940 to the USA. In
the early 1950s, Gumbel was a guest professor at Free University Berlin, where he again met,
among others, Karl Freudenberg. Gumbel recalled LvB and his work repeatedly (Gumbel, 1931,
1968). Thanks to the documents in the Archive of Berlin University, we were able to analyze
all the instances where LvB was the advisor of doctoral students. At the Philosophical Faculty,
two different doctoral degrees were possible, Dr. phil. and Dr. rer. pol. Between 1920 and 1931,
LvB was the advisor of 11 PhD projects, which led to Dr. phil. In addition, he was the advisor
of 29 students who received the degree Dr. rer. pol. Six of his 11 PhD students had to go into
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exile because of the Nazi regime. We have already mentioned Karl Freudenberg, and another
student was Karl Kost who received a degree in 1926, who also then emigrated to Argentina
where he became a novelist. Raimund Goldschmidt (b. in 1904) who received a doctoral degree
in 1928 emigrated later to the USA where he published, as Raymond W. Goldsmith, many arti-
cles and papers. Another famous doctoral student of LvB was Wassilij Leontief (5 August 1905
Munich to 5 February 1999 New York). He received his doctoral degree in December 1928 (see
Archive HU, Phil. Fak. Nr. 678, Bl. 135–197), and his advisors were LvB and Werner Sombart.
LvB wrote a long reference about Leontief’s thesis, at six pages (see Archive HU, Phil. Fak.
Nr. 678, Bl. 156–158R), where LvB strongly argued that this young man from St. Petersburg
(at the time Leningrad) was highly talented in statistics as well as in economics. After his stud-
ies in Berlin, Leontief obtained an assistant position in Kiel, and thanks to a fellowship, he was
able to go to the USA after 1933, where he worked very successfully. In 1973, he was awarded
a Nobel Prize in Economics. Another student was Miron Kantorowitsch (b. 1895 Minsk) who
lived in Germany from 1919 to 1933. He received his doctoral degree in 1930, and from 1934
to 1938, he worked as a demographer in London and published in the Journal of the Royal
Statistical Society. In 1938, he emigrated to the USA where he became an acknowledged statis-
tician and an expert on the Soviet Union and Soviet demography (Tolts, 2012), and he changed
his name to Myron Kantorowicz, later Myron K. Gordon. Also, Harald von Waldheim received
his doctoral degree in 1930. He was a disciple and an assistant of Alfred Manes. Like him,
Harald von Waldheim also had to go into exile. LvB was a member of the German Society
(Association) of Insurance Sciences, and he belonged to the founding members of the German
Statistical Society (Grohmann et al. (2011), pp. 227–229). He was also a member of the ISI in
Brussels. He was less visible in the UK, possibly because of a controversy with Karl Pearson
(1857–1936) (Porter, 2005). Shortly before his death, he was invited to give a key lecture of the
Annual Meeting of the American Statistical Society in 1930. He cancelled this trip because of
health complications.

4.5 The Publication Activities of LvB

LvB’s list of publications is long, and thanks to T. Anderson (1931) and Gumbel (1931,
1968), three bibliographies exist. The publications of LvB can be separated into three groups.
The first group includes articles in journals like ‘Allgemeines Statistisches Archiv’ (the journal
of the German Statistical Society), where he published four papers until 1915, and the ‘Nordisk
Statistical Journal’, where he published articles between 1922 and 1930. The second group of
publications includes articles in encyclopaedias and the most famous is his article ‘Anwendun-
gen der Wahrscheinlichkeitsrechnung auf Statistik’ (Application of the Theory of Probability on
Statistics) in the ‘Mathematische Encyclopedie’ (1901). The third group includes his reviews,
among others in the ‘Deutsche Literaturzeitung’. As Emma S. Woytinsky remembered (1965, p.
109): ‘We learned later that he had been the terror of all German publishers, most of whom had
ceased to send him their statistical publications for comment.’ In the mid-1920s, several pub-
lishers were afraid of LvB and his critical reviews, and consequently, he did not publish reviews
any more. When one re-reads his various publications, one should do so with the following
aspects in mind: the role of mathematics in his work, the under-representation of mathemati-
cal statistics in Germany and the extraordinary role that LvB and E. J. Gumbel had in this field
(Grohmann et al., 2011, p. 16, 23f, 81, 138–139 and p. 141), LvB’s publications on theory of
probability and radioactivity, his discussions on Karl Pearson (Quine and Seneta, 1987) and
finally the links to his disciple E. J. Gumbel and his book ‘Statistics of Extremes’ (1958).
Gumbel, who followed LvB in studying the Poisson distribution, had well described the
different fields that LvB was working on:
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Besides classical economics, the work of Bortkiewicz covered population statistics and the-
ory, actuarial science, mathematical statistics, probability theory, mathematical economics,
and physical statistics—fields separate in content but analogous in methodology. He con-
tributed to the process of consolidating each of these disciplines and did classic work in
mathematical statistics. (Gumbel, 1968, p. 128)

As S. Hertz suggested, ‘A systematic study of Bortkiewicz as a statistician would throw
valuable light on this crucial period in the history of mathematical statistics.’ (Hertz, 2001,
p. 276)

4.6 LvB and the Transformation Problem

The transformation problem deals with the question of how to transform the value of goods
into prices of production. The value of goods is measured for instance in units of time of labour
and is in its simplest form decomposable as

W D c C v Cm;

where W denotes the value, c the capital invested in production, v the circulating or variable
capital andm the surplus value (Marx, 1867, Das Kapital, Band 1). In the third volume of ‘Das
Kapital’ (containing thoughts actually prior to 1867, the publication date of the first volume), an
additional assumption on the profit ratem=.cC v/ is added: it is assumed to be constant across
all industry branches. At this point, we would like to invoke a famous quote by Schumpeter:

By far LvB’s most important achievement is his analysis of the theoretical framework of the
Marxian system, much the best thing ever written on it and, incidentally, on its other critics.
(Schumpeter, 1932, 2nd. ed. 1956, p. 303)

What, in terms of mathematical symbols, is the transformation problem? What was LvB’s
contribution to it? Let us consider as in LvB (1907) a simple three-sector economy producing
three goods: investment goods, foodstuffs and luxury goods. The original Marx presentation
is based on writing the price of good Wi as P.Wi / D li ! xi , with li the labour costs and xi
(unknown) coefficients. The price of W is a sum of the price of capital and that of the surplus:

P.W / D P.C/C P.M/

If p is the average profit rate, then P.M/ D p ! P.C/ and with x0 D 1=.1C p/

P.C / D x0 ! P.W /

Combining the equations leads to

P.Ci / D x0 ! li ! xi ; i D 1; : : : ; 3 (1)

If we denote t he proportion of goods j to produce i as qij , then (1) can also be written as

P.Cj / D
X

qj i ! x0 ! li ! xi ; i D 1; ::; 3; for all j (2)
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Putting (1) and (2) together will yield three equations:

x0 ! lj ! xj D
3X
iD1

qj i ! x0 ! li ! xi ; for all j (3)

with four unknowns .x0; x1; x2; x3/. Marx left open how to tackle this simple algebraic problem.
Among the first ideas to complement this set of equations was given by Mühlpfordt (1893)
who proposed that the sum of the values (sum of li ) should equal the sum of the prices (sum
of li " xi ). Although by writing it down like this, he was unable to express it mathematically
(Quaas, 1991). It was LvB later in 1907 who proposed a solution to the transformation problem.
Let us follow the outline of Quaas (1991) and define the (3#3) matrix A as Œc v 0!, where c D
.c1; c2; c3/

> denotes fixed capital and v D .v1; v2; v3/
> denotes variable capital. In addition,

we have the surplus m D .m1; m2; m3/
>. Then the first three equations of (3) are as follows:

.1C p/ ! A ! x D diag.1>c; 1>v; 1>m/ ! x; x 2 R3 (4)

We can see this by setting ci D qi1 ! l1, vi D qi2 ! l2, mi D qi3 ! l3 and observing that because
the three-sector economy is circular: l1 D 1>c, l2 D 1>v, l3 D 1>m. These transformation
conditions are under-determined. Thus, Bortkiewicz simply set the sum of surplus equal to the
sum of profits by setting x3 D 1. This way, the sum over the output prices on the right-hand
side is equal to the costs plus the average profit rate p. Moreover, all costs of production are
considered with cost of capital, and all prices are determined. Herein, Bortkiewicz provided
‘the’ solution to the transformation problem.

5 v. Bortkiewicz and his Influence on Modern Statistics

At the dawn of the 20th century, the mindset about statistics and probability theory as applied
to natural or social sciences can be described in the clever way that the Viennese mathematician
Emanuel Czuber (1851–1925) used in 1898:

An der Schwelle der Wahrscheinlichkeitstheorie steht eine Reihe von Begriffen, welche der
Mathematik fremd sind, und über deren Deutung die Discussion nicht abgeschlossen ist, ja
heute lebhafter geführt wird denn je.

(At the border of theory of probability we find a number of concepts which are alien to
mathematics and their interpretation has not been finished yet and even needs to be discussed
more than ever.)

The allocation of the statistical science as a non-mathematical discipline has also been under-
lined by David Hilbert (1862–1943). In 1900 in Paris, he presented his 23 ‘open problems’.
Problem number 6 was as follows:

Mathematische Behandlung der Axiome der Physik. Durch die Untersuchungen über die
Grundlagen der Geometrie wird uns die Aufgabe nahegelegt, nach diesem Vorbilde diejeni-
gen physikalischen Disziplinen axiomatisch zu behandeln, in denen schon heute die Math-
ematik eine hervorragende Rolle spielt; dies sind in erster Linie die Wahrscheinlichkeits-
rechnung und die Mechanik. Was die Axiome der Wahrscheinlichkeitsrechnung angeht, so
scheint es mir wünschenswert, daß mit der logischen Untersuchung derselben zugleich eine
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strenge und befriedigende Entwicklung der Methode der mittleren Werte in der mathema-
tischen Physik, speziell in der kinetischen Gastheorie Hand in Hand gehe. (Hilbert, 1971,
p. 47)

Hilbert classified here the theory of probability as a part of physics that was to be seen as a
future mathematical sub-discipline. As the probabilistic tools of the statistical discipline were
mostly used in physics (promoted by papers of Einstein, Maxwell and Boltzmann), Hilbert
more likely classified statistics not as a mathematical discipline but rather as a part of physics.
In fact, it was the British School around Karl Pearson (1857–1936), William S. Gosset (1876–
1937), Ronald A. Fisher (1890–1962), Jerzy Neyman (1894–1981) and Egon Sharpe Pearson
(1895–1980) who developed the branch of mathematical statistics. In contradiction, statistics
in Germany leaned more towards a descriptive analysis of data with a preference for a social
economic context. It was Ladislaus von Bortkiewicz who in several books and papers promoted
the probabilistic approach, for example, on the Poisson and exponential distributions and on
the distributions of runs (iterations). In his book on ‘Die Iterationen’ (von Bortkiewicz (1917))
in the second chapter on ‘Grundsätzliches aus der Wahrscheinlichkeitstheorie’, he gave a clear
exposition of the mathematical foundations of probability theory. In a somewhat sneering tone,
he comments that Marbe (1916–1919) was ‘touchingly clumsy’ in his quantitative description
of a simple coin-flipping experiment (Figure 5).

In mathematischer Hinsicht ist Marbe auch sonst von einer, man möchte beinahe sagen,
rührenden Unbeholfenheit. (see figure inset)

Karl Marbe (1869–1953), a professor of psychology, argued that a run of male births leads
per se to an increased probability of a female birth. He employed a ‘nature argument’ on
equalising the sex ratio. Bortkiewicz showed, however, that Marbe’s mathematics was wrong.

LvB became well known also for his precise calibration of real data. In 1898, he published
the book ‘Das Gesetz der kleinen Zahlen’ (The Law of Small Numbers) in which he first noted
that events with low frequency in a large population follow a Poisson distribution (Quine and
Seneta, 1987; Haight, 1967). The two data sets he considered were the Prussian horse-kick data
and child suicides. The horse-kick data give the number of soldiers killed by being kicked by

Figure 5. ‘Die Iterationen’ and an excerpt of ‘Die Iterationen’.
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Figure 6. Law of small numbers (left) and Prussian horse-kick data (right). The columns are the years 1875–1894, and rows
are the corps numbers.

Table 1. Results for a subset of Prussian horse-kick data.

k nk p bp exp !2

0 109 0.545 0.54335 108.670 0.00100
1 65 0.325 0.33144 66.289 0.02506
2 22 0.110 0.10109 20.218 0.15705
3 3 0.015 0.02056 4.111 0.30025
4 1 0.005 0.00313 0.627 0.22201

200 199.915 0.70537 ! !2
4

a horse each year in each of the 14 cavalry corps of the Prussian Army over a 20-year period
(Figure 6).

The Poisson distribution was first derived in 1837 by Siméon D. Poisson (1781–1840) who
applied it to the decisions of juries. Yet, Poisson’s analysis was not regarded as a central piece of
statistical data analysis. It was not until LvB’s publication in 1898 with his convincing analysis
of the Prussian horse-kick data that this distribution entered the standard canon. As a conse-
quence, it was suggested that the Poisson distribution should have been named the ‘Bortkiewicz
distribution’. Let us just check his analysis. For simplicity, we will take a subset of 200 observa-
tions as it is presented on the Internet. The maximum-likelihood estimator is " D 0:61 and with
the Bortkiewicz distribution: we arrive at Table 1 showing a remarkably good fit indeed. LvB
inspired his students to use mathematical techniques for data calibration. His work on Prussian
horse kicks and child suicide data promoted in his book on the law of small numbers was trend-
setting not only in Germany. LvB can therefore be seen as a founder of modern econometric
and statistical education in Germany and beyond.

6 Conclusion

As we have seen, the life, destiny and fate of LvB were always linked to Europe, from the
North, including the Scandinavian countries, to the South, where in Varna in Bulgaria a friend
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and colleague from St. Petersburg worked. LvB, by his training, his mind and his vision, was
a European intellectual, a European scholar and one of the respectable founders of modern
statistical science. Wladimir Woytinsky, who had the luck and the honour to be trained by LvB
in private courses, underlined that LvB had his own philosophy on statistics and measurement
and that LvB highly acknowledged the role of mathematics (Wl. Woytinsky, 1961, p. 453). E. J.
Gumbel, another disciple and follower of LvB working on distributions, evaluated the work
and research results, LvB succeeded, in his posthumously published article in 1968, and he
concluded it with the words:

Four of his contributions are decisive: the proof that the Poisson distribution corresponds to
a statistical reality; the introduction of mathematical statistics into the study of radioactivity;
the inception of the statistical theory of extreme values; and the lonely effort to construct a
Marxian econometry. (Gumbel, 1968, p. 130)

Another 45 years later, one could argue like E. J. Gumbel, but furthermore, one should
request that people should re-read and study the classic papers, written by LvB, again, at least
to get a great degree of stimulation.

Bibliography

Archives

Archive HU—Archive of the Humboldt University, Berlin.
Personal files (PA) of LvB, Karl Freudenberg, Alfred Manes, and others; documents related to
doctoral degrees and ‘Habilitation’; lecture schedules (Vorlesungs-Verzeichnisse)

Archive of the Göttingen University.
Documents related to Helene and Ladislaus von Bortkewitsch (sic)

Archive Uppsala—Department of Manuscripts and Music, Uppsala University Library.
Bortkiewicz Papers (41 Boxes)

Annotations

(1) Until WWI, August 1914, the city was named St. Petersburg, created by Zar Peter I. (the
Great) (1672–1725). From 1914 onwards, the town was named Petrograd; in 1924, it
obtained the name Leningrad. In 1991, it was given its original name back.

(2) The ‘Habilitation’ was introduced at German universities in about 1830. The procedure
consists of three elements/steps: a thesis (usually a book), a talk (‘Probevortrag’) and a
lecture (‘Probevorlesung’). When a chosen committee at a Faculty agreed on all three steps,
the candidate was nominated as a ‘Privatdozent’. This entailed the right to teach at the
Faculty. A Privatdozent (PD) position was the first and also lowest position in the staff
hierarchy of a Faculty. When a PD wanted to move to another university, he (until 1919,
only male PDs were allowed at German universities) had to obtain permission from the
new Faculty. See the description by Richard Goldschmidt (1960), pp. 52, 66-67.

(3) The sources to analyze his teaching activities are the printed schedules of lectures (in
German Vorlesungs-Verzeichnisse), university calendars or course catalogues, of Berlin
University, which were published every semester. These schedules of lectures allowed for
detailed reconstruction of the teaching activities between 1901 and 1931.
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(4) The file of the Humboldt University Archive contains several letters of Helene v. B., to the
Prussian Ministry when she claimed some money after the death of LvB. As she was not
LvB’s wife, but rather his sister, the claims could not be adequately responded. But the
Prussian Minister of Education admitted her once a small sum (see Archive HU, personal
file LvB, Bd. 1, Bl. 15–30).
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with the theoretical results. An example in CD4/HIV study is used to illustrate how
inference is made with computable p values on the effects of smoking, pre-infection
CD4 cell percentage and age on the CD4 cell percentage of HIV infected patients
under treatment.
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1 Introduction

Functional data, known also as “curve data”, are commonly encountered in biomed-
ical studies, epidemiology and social science, where information is collected over
a time period for each subject. Conceptually, such data can be viewed as a simple
random sample from the abstract space of functions, see for instance, Ferraty and
Vieu (2006), Manteiga and Vieu (2007). For functional data analysis (FDA) approach
without nonparametric smoothing, see Gabrys et al. (2010), and the recent compre-
hensive review in Horváth and Kokoszka (2012). In this, paper we have taken from
Ramsay and Silverman (2005) the more convenient view of functional data as dis-
cretely recorded observations of independent stochastic processes contaminated with
measurement errors.

In many longitudinal studies, repeated measurements are often collected at finite
number of time points. If the time points of observation for every subjects are dense
and regular, the data are termed dense functional data, see Cao et al. (2012a, b), and
Zhu et al. (2012) for theoretical development and real examples of dense functional
data. If, on the other hand, data collection is made at few and irregular time points
for each subject, the data are frequently referred to as sparse longitudinal or sparse
functional data, see James et al. (2000), James and Sugar (2003), Yao et al. (2005a),
Hall et al. (2006), Zhou et al. (2008), Ma et al. (2012) for works on sparse functional
data. It should be emphasized especially that by “sparse” we mean that the covariate is
observed sparsely over a compact interval, not having anything to do with sparsity used
in variable selection context such as the popular LASSO method. A crucial condition
for sparse FDA is that the time points from all subjects are dense in the data range
despite sparsity for any individual subject, see Assumption (A3) in Appendix A that
the design density f (t) has a positive lower bound c f , which implies that the sampling
frequency is almost uniform for the time covariate.

In longitudinal study, often, interest lies in studying the association between the
covariates and the response variable. In recent years, there has been an increasing
interest in nonparametric analysis of longitudinal data to enhance flexibility, see e.g.,
Yao and Li (2013). The varying coefficient model (VCM) proposed by Hastie and
Tibshirani (1993) strikes a delicate balance between the simplicity of linear regres-
sion and the flexibility of multivariate nonparametric regression and has been widely
applied in various settings, for instance, the Cobb–Douglas model for GDP growth in
Liu and Yang (2010), and the longitudinal model for CD4 cell percentages in AIDS
patients in Wu and Chiang (2000), Fan and Zhang (2000) and Wang et al. (2008). See
Fan and Zhang (2008) for an extensive literature review of VCM.

To examine whether the association changes over time, Hoover et al. (1998) pro-
posed the following VCM

Y (t) = β0(t) + X(t)Tβ(t) + ε(t), t ∈ T , (1)

where X(t) = (X1(t), . . . , Xd(t))T are covariates at time t , ε(t) is a mean zero
process, and β(t) = (β1(t), . . . ,βd(t))T are functions of t . Model (1) is a special case
of functional linear models, see Ramsay and Silverman (2005) and Wu et al. (2010).
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The coefficient functions βl(t)s in model (1) can be estimated by, for example,
kernel method in Hoover et al. (1998), basis function approximation method in Huang
et al. (2002), polynomial spline method in Huang et al. (2004) and smoothing spline
method in Brumback and Rice (1998). Fan and Zhang (2000) proposed a two-step
method to overcome the computational burden of the smoothing spline method.

For some longitudinal studies, the covariates are independent of time, and their
observations are cross-sectional. Take for instance the longitudinal CD4 cell percent-
age data among HIV seroconverters. This dataset contains 1,817 observations of CD4
cell percentages on 283 homosexual men infected with the HIV virus. Three of the
covariates are observed at the time of HIV infection and hence by nature independent
of the measurement time and frequency: Xi1, the i th patient’s smoking status; Xi2, the
i th patient’s centered pre-infection CD4 percentage; and Xi3 the i th patient’s centered
age at the time of HIV infection. A fourth predictor, however, is time dependent: Ti j ,
the time (in years) of the j th measurement of CD4 cell on the i th patient after HIV
infection; while the response Yi j is also time dependent: the j th measurement of the
i th patient’s CD4 cell percentage at time Ti j . Wu and Chiang (2000), Fan and Zhang
(2000) and Wang et al. (2008) all contain detailed descriptions and analysis of this
dataset.

A feasible VCM for multivariate functional data such as the above takes the form

Yi j =
d∑

l=1

ηil
(
Ti j

)
Xil + σ

(
Ti j

)
εi j , 1 ≤ i ≤ n, 1 ≤ j ≤ Ni , (2)

where the measurement errors
(
εi j

)n,Ni
i=1, j=1 satisfy E

(
εi j

)
= 0, E(ε2

i j ) = 1, and

{ηil(t), t ∈ T } are i.i.d copies of a L2 process {ηl(t), t ∈ T }, i.e., E
∫
T η

2
l (t)dt < +∞,

l = 1, . . . , d. The common mean function of processes {ηl(t), t ∈ T } is denoted
as ml(t) = E{ηl(t)}, l = 1, . . . , d. The actual data set consists of

{
Xi , Ti j , Yi j

}
,

1 ≤ i ≤ n, 1 ≤ j ≤ Ni , in which the i th subject is observed Ni times, the time-
independent covariates for the i th subject are Xi = (Xil)

d
l=1, 1 ≤ i ≤ n, and the

random measurement time Ti j ∈ T = [a, b]. The aforementioned data example
is called sparse functional as the number of measurements Ni for the i th subject is
relatively low. (In the above CD4 example actually at most 14). In contrast, for a dense
functional data limn→∞ min1≤i≤n Ni = ∞.

For the CD4 cell percentage data, we introduce a fourth time-independent covariate,
the baseline Xi0 ≡ 1, and denote by ml (t), l = 0, 1, 2, 3, the coefficient functions
for baseline CD4 percentage, smoking status, centered pre-infection CD4 percentage
and centered age, respectively. Figures 2, 3, 4, 5 contain spline estimates of the ml (t),
0 ≤ l ≤ 3, and simultaneous confidence corridors (SCC) at various confidence levels.

In previous works the theoretical focus has mainly been on consistency and asymp-
totic normality of the estimators of the coefficient functions of interest, and the con-
struction of pointwise confidence intervals. However, as demonstrated in Fan and
Zhang (2000), this is unsatisfactory as investigators are often interested in testing
whether some coefficient functions are significantly nonzero or varying, for which a
SCC is needed. Take for instance, Fig. 3, which shows both the 95 and 20.277 % SCC
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of m1 (t) contain the zero line completely, thus with a very high p value of 0.79723
the null hypothesis of m1 (t) ≡ 0, t ∈ T is not rejected. More details are in Sect. 6.

Construction of computationally simple SCCs with exact coverage probability is
known to be difficult even with independent cross-sectional data; see, Wang and Yang
(2009) and related earlier work Härdle and Luckhaus (1984) on uniform consistency.
Most earlier methods proposed in the literature restrict to asymptotic conservative
SCCs. Wu et al. (1998) developed asymptotic SCCs for the unknown coefficients
based on local polynomial methods, which are computationally intensive, as the ker-
nel estimator requires solving an optimization problem at every point. Huang et al.
(2004) proposed approximating each coefficient function by a polynomial spline and
developed spline SCCs, which are simpler to construct, while Xue and Zhu (2007)
proposed maximum empirical likelihood estimators and constructed SCCs for the
coefficient functions. All these SCCs are Bonferroni-type variability bands according
to Hall and Titterington (1988). The idea is to invoke pointwise confidence inter-
vals on a very fine grid of [a, b], then adjust the level of these confidence intervals
by the Bonferroni method to obtain uniform confidence bands, and finally bridge
the gaps between the grid points via smoothness conditions on the coefficient curve.
However, to use these bands in practice, one must have a priori bounds on the mag-
nitude of the bias on each subinterval as well as a choice for the number of grid
points. Chiang et al. (2001) proposed a bootstrap procedure to construct confidence
intervals. However, theoretical properties of their procedures have not yet been devel-
oped.

In this paper, we derive SCCs with exact coverage probability for the coefficient
functions ml(t), l = 1, . . . , d, in (3) via extreme value theory of Gaussian processes
and approximating coefficient functions by piecewise-constant splines. The results
represent the first attempt at developing exact SCCs for the coefficient functions in
VCM for sparse functional data. Our simulation studies indicate the proposed SCCs
are computationally efficient and have the right coverage probability for finite sam-
ples. Our work parallels Zhu et al. (2012) which established asymptotic theory of
SCC in the case of VCM for dense functional data. It is important to mention as
well that the linear covariates in Zhu et al. (2012) are time dependent, which does
not complicate the problem as they work with dense data instead of the sparse data
we concentrate on. Our work can also be viewed as an extension of the univariate
longitudinal regression in Ma et al. (2012) to varying coefficient regression, the lat-
ter corresponds exactly to the special case of d = 1, Xi1 ≡ 1. Theorem 1 of Ma et
al. (2012) follows from Theorems 1 and 2 in this paper with some slight modifica-
tions.

We organize our paper as follows. Section 2 describes spline estimators, and estab-
lish their asymptotic properties for sparse longitudinal data. Section 3.1 proposes
asymptotic pointwise confidence intervals and SCCs constructed from piecewise con-
stant splines. Section 3.2 describes actual steps to implement the proposed SCCs. In
Sect. 4, we provide further insights into the estimation error structure of spline estima-
tors. Section 5 reports findings from a simulation study. A real data example appears
in Sect. 6. Proofs of technical lemmas are in Appendix A.

123



810 L. Gu et al.

2 Spline estimation and asymptotic properties

For a functional data
{
Xi , Ti j , Yi j

}
, 1 ≤ i ≤ n, 1 ≤ j ≤ Ni , denote the eigenvalues

and eigenfunctions sequences of its covariance operator Gl (s, t) = cov {ηl(s), ηl(t)}
as

{
λk,l

}∞
k=1,

{
ψk,l(t)

}∞
k=1, in which λ1,l ≥ λ2,l ≥ · · · ≥ 0,

∑∞
k=1 λk,l < ∞,

and
{
ψk,l

}∞
k=1 form an orthonormal basis of L2 (T ). It follows from spectral the-

ory that Gl (s, t) = ∑∞
k=1 λk,lψk,l(s)ψk,l (t). For any l = 1, . . . , d, the i th trajec-

tory {ηil(t), t ∈ T } allows the Karhunen–Loève L2 representation (Yao et al. 2005b):
ηil(t) = ml(t) + ∑∞

k=1 ξik,lφk,l(t), where the random coefficients ξik,l are uncor-
related with mean 0 and variances 1, and the functions φk,l =

√
λk,lψk,l , thus

Gl(s, t) = ∑∞
k=1 φk,l(s)φk,l (t), and the response measurements (2) can be repre-

sented as follows:

Yi j =
d∑

l=1

ml
(
Ti j

)
Xil +

d∑

l=1

∞∑

k=1

ξik,lφk,l
(
Ti j

)
Xil + σ

(
Ti j

)
εi j . (3)

Without loss of generality, we take T = [a, b] to be [0, 1]. Following Xue and Yang
(2006), we approximate each coefficient function by the spline smoothing method. To
describe the spline functions, one can divide the finite interval [0, 1] into (Ns + 1)
equal subintervals χJ =

[
υJ ,υJ+1), J = 0, . . . , Ns −1,χNs =

[
υNs , 1

]
. A sequence

of equally spaced points {υJ }Ns
J=1, called interior knots, are given as υ0 = 0 < υ1 <

· · · < υNs < 1 = υNs+1. LetυJ = J hs for 0 ≤ J ≤ Ns+1, where hs = 1/ (Ns + 1) is
the distance between neighboring knots. We denote by G(−1) = G(−1) [0, 1] the space
of functions that are constant on each subinterval χJ , and the B-spline basis of G(−1),
as {bJ (t)}Ns

J=0, which are simply indicator functions of intervals χJ , bJ (t) = IχJ (t),
J = 0, 1, . . . , Ns. For any t ∈ [0, 1], define its location index as J (t) = Jn(t) =
min {[t/hs] , Ns} so that t ∈ χJ (t).

Next we define the space of spline coefficient functions on T × Rd as

M =
{

g (t, x) =
d∑

l=1

gl(t)xl : gl(t) ∈ G(−1), t ∈ T , x = (x1, . . . , xd)T ∈ Rd

}

,

and propose estimating the multivariate function
∑d

l=1 ml(t)xl by

m̂ (t, x) =
d∑

l=1

m̂l(t)xl = argmin
g∈M

n∑

i=1

Ni∑

j=1

{
Yi j − g

(
Ti j , Xi

)}2
. (4)

Let σ 2
Y (t, x) be the conditional variance of Y given T = t and X = x =

(x1, . . . , xd)T ∈ Rd

σ 2
Y (t, x) = Var(Y |T = t, X = x ) =

d∑

l=1

Gl (t, t) x2
l + σ 2(t).
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Next for any t ∈ [0, 1], let

+n(t) = c−2
J (t),n{nE(N1)}−1EXXT

[∫

χJ (t)

σ 2
Y (u, X) f (u) du

+ E {N1(N1−1)}
EN1

d∑

l=1

X2
l

∫

χJ (t)×χJ (t)

Gl (u, v) f (u) f (v) dudv

]

, (5)

where

cJ,n = Eb2
J (T ) =

∫ 1

0
b2

J (t) f (t)dt, J = 0, . . . , Ns. (6)

Further denote
,n(t) = H−1+n(t)H−1 =

{
σ 2

n,ll ′(t)
}d

l,l ′=1
, (7)

where σ 2
n,ll ′(t) are later shown to be the asymptotic covariances between m̂l(t) and

m̂l ′(t).

Theorem 1 Under Assumptions (A1)–(A6) in Appendix A, for any t ∈ [0, 1], as
n → ∞,

,
−1/2
n (t) {m̂(t) − m (t)} L−→ N (0, Id×d),

where m̂(t) =
(
m̂1(t), . . . , m̂d(t)

)T is the estimate of m(t) = (m1(t), . . . , md(t))T .

Furthermore, for any l = 1, . . . , d and α ∈ (0, 1) ,

lim
n→∞ P

{
σ−1

n,ll(t)
∣∣m̂l(t) − ml(t)

∣∣ ≤ Z1−α/2

}
= 1 − α.

Remark 1 Note that ,n(t) =
{
σ 2

n,ll ′(t)
}d

l,l ′=1
in (7) is complicated to compute in

practice. The next proposition suggests that, for any t ∈ [0, 1], +n(t) in (5 ) can be
simplified by

+̃n(t) ≡ E

[

XXT σ 2
Y (t, X)

f (t)hsnE(N1)

{

1 + EN1 (N1 − 1)

EN1

∑d
l=1 X2

l Gl (t, t) f (t)hs

σ 2
Y (t, X)

}]

.

(8)

Denote the supremum of a function φ on [a, b] by ∥φ∥∞ = supt∈[a,b] |φ(t)|. For
any matrix A =

(
ai j

)
, define ∥A∥∞ = max

∣∣ai j
∣∣, where the maximum is taken

over all the elements of A, while for a matrix function A(t) =
(
ai j (t)

)
, ∥A∥∞ =

supt∈[a,b] ∥A(t)∥∞.

Proposition 1 Under Assumptions (A2)–(A6) in Appendix A, there exists a constant
c > 0 such that as n → ∞, ∥+n(t) − +̃n(t)∥∞ = O

(
n−1hr−1

s
)

= O
(
n−c) .
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To derive the maximal deviation distribution of estimators m̂l(t), l = 1, . . . , d, let

QNs+1 (α) = bNs+1 − a−1
Ns+1 log

{
−1

2
log(1 − α)

}
, α ∈ (0, 1) (9)

aNs+1 = {2 log (Ns + 1)}1/2 , bNs+1 = aNs+1 −
log

(
2πa2

Ns+1

)

2aNs+1
. (10)

Theorem 2 Under Assumptions (A1)–(A6) in Appendix A, for l = 1, . . . , d and any
α ∈ (0, 1),

lim
n→∞ P

{

sup
t∈[0,1]

σ−1
n,ll(t)

∣∣m̂l(t) − ml(t)
∣∣ ≤ QNs+1 (α)

}

= 1 − α,

where σn,ll(t) and QNs+1 (α) are given in (7) and (9), respectively.

One reviewer has pointed out that the use of constant instead of higher order spline
is not optimal, which we completely agree. Further research involving sophisticated
nonstationary Gaussian process extreme value theory is needed to extend our present
work to splines of any order, such as the popular cubic spline. To be precise, analog
of Proposition 4 for higher order spline concerns the maximum of a standardized
continuous Gaussian process over interval [0, 1], whereas for constant spline, the
Gaussian process breaks down to Ns+1 weakly correlated standard Gaussian variables.

3 Asymptotic confidence regions

In this section, we construct the confidence regions for functions ml(t), l = 1, . . . , d.

3.1 Asymptotic confidence intervals and SCCs

Theorems 1 and 2 allow one to construct pointwise confidence intervals and SCCs for
components m̂l(t), l = 1, . . . , d. The next corollary provides the theoretical under-
pinning upon which SCCs can be actually implemented, see Sect. 3.2.

Corollary 1 Under Assumptions (A1)–(A6) in Appendix A, for any l = 1, . . . , d and
α ∈ (0, 1), as n → ∞,

(i) an asymptotic 100 (1 − α) % pointwise confidence interval for ml(t), t ∈ [0, 1],
is m̂l(t) ± σn,ll(t)Z1−α/2, with σn,ll(t) given in (7), while Z1−α/2 is the
100 (1 − α/2)th percentile of the standard normal distribution.

(ii) an asymptotic 100 (1 − α) % SCC for ml(t), with QNs+1 (α) given in (9), is
m̂l(t) ± σn,ll(t)QNs+1 (α), t ∈ [0, 1].

One reviewer has raised the interesting question whether our SCC would signifi-
cantly improve by some form of bootstrapping. The answer is negative for now due
to the lack of convincing procedures that simultaneously resample from the unknown
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distributions of both the unobserved error εi j s and the unobserved functional prin-
cipal components ξik,ls. On the other hand, further investigation in FDA will lead
to theoretically sound resampling methods analogous to the smoothed bootstrap for
nonparametric regression in Claeskens and Van Keilegom (2003).

3.2 Implementation

In the following, we describe procedures to construct the SCCs and the pointwise
intervals given in Corollary 1. For any data set

(
Ti j , Yi j , Xil

)n,Ni ,d
i=1, j=1,l=1 from model

(3), the spline estimators m̂l(t), l = 1, . . . , d, are obtained by (4), and the number of
interior knots is taken to be Ns = [cN 1/3

T (log(n))], in which NT = ∑n
i=1 Ni is the

total sample size, [a] denotes the integer part of a, and c is a positive constant.
To construct the SCCs, one needs to evaluate the functions σ 2

n,ll(t), l = 1, . . . , d,
which are the diagonal elements of matrix ,n(t) in (7). Based on Proposition 1, one
can estimate each unknowns f (t), σ 2

Y (t, x), Gl (t, t) and matrix H and then plug these
estimators into the formula of the SCCs; see Wang and Yang (2009).

The number of interior knots for pilot estimation of f (t), σ 2
Y (t, x), and Gl (t, t) is

taken to be N∗
s =

[
0.5n1/3], and h∗

s = 1/
(
1 + N∗

s
)
. The histogram estimator of the

density function f (t) is f̂ (t) = N−1
T h∗−1

s
∑n

i=1
∑Ni

j=1 bJ (t)(Ti j ).
To estimate the covariance matrix +n (t) in (5), define the raw covariance term

Ri j =
(

Yi j − ∑d
l=1 m̂(Ti j )Xil

)2
, 1 ≤ j ≤ Ni , 1 ≤ i ≤ n, the estimator of σ 2

Y (t, x)

is

σ̂ 2
Y (t, x) =

d∑

l=1

N∗
s∑

J=0

ρ̂J,lbJ (t)x2
l +

N∗
s∑

J=0

µ̂J bJ (t) =
d∑

l=1

Ĝl (t, t) x2
l + σ̂ 2(t),

where {ρ̂0,1, . . . , ρ̂N∗
s ,d , µ̂0, . . . , µ̂N∗

s
}T are solutions of the following least squares

problem:

(
ρ̂0,1, . . . , ρ̂N∗

s ,d , µ̂0, . . . , µ̂N∗
s

)T

= argmin
(
ρ0,1,...,µN∗

s

)T
∈R(N∗

s +1)(d+1)

n∑

i=1

Ni∑

j=1

⎧
⎨

⎩Ri j −
d∑

l=1

N∗
s∑

J=0

ρJ,l bJ (Ti j )X2
il −

N∗
s∑

J=0

µJ bJ (Ti j )

⎫
⎬

⎭

2

.

The matrix +n (t) is estimated by substituting f (t), Gl (t, t) and σ 2
Y (t, x) with f̂ (t),

Ĝl (t, t) and σ̂ 2
Y (t, x). Define

+̂n (t) ≡
[

n−1
n∑

i=1

Xil Xil ′ σ̂
2
Y (t, Xi )

{
f̂ (t)hs NT

}−1

×
{

1 +
(∑n

i=1 N 2
i

NT
− 1

) ∑d
l=1 Ĝl (t, t) X2

il

σ̂ 2
Y (t, Xi )

f̂ (t)hs

}]d

l,l ′=1

.

123



814 L. Gu et al.

The following proposition provides the consistent rate of +̂n(t) to +n(t).

Proposition 2 Under Assumptions (A1)–(A6) in Appendix A, there exists a constant

c > 0 such that as n → ∞,
∥∥∥+̂n(t) − +n(t)

∥∥∥
∞

= Op
(
n−c).

Proposition 2 implies that +n(t) can be replaced by +̂n(t) with a negligible error.
Define a d×d matrix Ĥ =

{
n−1 ∑n

i=1 Xil Xil ′
}d

l,l ′=1, then,n(t) can be estimated well

by ,̂n(t) =
{
σ̂ 2

n,ll ′(t)
}d

l,l ′=1
= Ĥ−1+̂n (t) Ĥ−1. Therefore, as n → ∞, l = 1, . . . , d,

the SCCs
m̂l(t) ± σ̂n,ll(t)QNs+1 (α) , (11)

with QNs+1 (α) given in (9), and the pointwise intervals m̂l(t) ± σ̂n,ll(t)Z1−α/2 have
asymptotic confidence level 1 − α.

4 Decomposition

In this section, we describe the representation of the spline estimators m̂l(t), l =
1, . . . , d, in (4), then break the estimation error m̂l(t) − ml(t) into three terms by the
decomposition of Yi j in model (3). Although such representation is not needed for
applying the procedure described in Sect. 3.2 to analyze data, it provides insights into
the proof of the main theoretical results in Sect. 2.

We consider the following rescaled B-spline basis {BJ (t)}Ns
J=0 for G(−1):

BJ (t) ≡ bJ (t)
(
cJ,n

)−1/2
, J = 0, . . . , Ns. (12)

It is easily verified that E{BJ (T )}2 = 1 for J = 0, 1, . . . , Ns, and BJ (t)BJ ′(t) ≡ 0
for J ̸= J ′. By simple linear algebra, the spline estimator m̂l(t) defined in (4) equals

m̂l(t) =
Ns∑

J=0

γ̂J,l BJ (t) = c−1/2
J (t),n γ̂J (t),l , l = 1, . . . , d, (13)

where the coefficients γ̂ =
(
γ̂ T

0 , . . . , γ̂ T
Ns

)T
with γ̂J =

(
γ̂J,1, . . . , γ̂J,d

)T being the
solution of the following least squares problem

γ̂ = argmin
γ=(γ0,1,...,γNs,d)

T∈Rd(Ns+1)

n∑

i=1

Ni∑

j=1

{

Yi j −
d∑

l=1

Ns∑

J=0

γJ,l BJ
(
Ti j

)
Xil

}2

. (14)

In the following, let Y =
(
Y11, . . . , Y1N1 , . . . , Yn1, . . . , YnNn

)T be the collection

of all the Yi j s. Let B(t) =
(
B0(t), . . . , BNs(t)

)T and Xi = (Xi1, . . . , Xid)T be two
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vectors of dimension (Ns + 1) and d, respectively. Denote

D =
(
B(T11) ⊗ X1, . . . , B(T1N1) ⊗ X1, . . . , B(Tn1) ⊗ Xn, . . . , B(TnNn ) ⊗ Xn

)T
,

(15)
a NT × ((Ns + 1) d) matrix, where “ ⊗” denotes the Kronecker product. Solving the
least squares problem in (14), we obtain

γ̂ =
(

DTD
)−1 (

DTY
)

. (16)

Denote x = (x1, . . . , xd)T, thus Eq. (4) can be rewritten as

d∑

l=1

m̂l(t)xl = (B(t) ⊗ x)T
(

DTD
)−1 (

DTY
)

. (17)

According to (15), one has DTD = ∑n
i=1

∑Ni
j=1

{
B(Ti j )B(Ti j )

T ⊗ Xi XT
i

}
, in

which matrix B(Ti j )B(Ti j )
T = diag

{
B2

0 (Ti j ), . . . , B2
Ns

(Ti j )
}

. So matrix DTD should

be a block diagonal matrix, and N−1
T DTD = diagV̂0, . . . , V̂Ns}, where

V̂J =

⎧
⎨

⎩N−1
T

n∑

i=1

Ni∑

j=1

B2
J (Ti j )Xil Xil ′

⎫
⎬

⎭

d

l,l ′=1

. (18)

On the other hand, we have DTY = ∑n
i=1

∑Ni
j=1

{
B(Ti j ) ⊗ Xi

}
Yi j . Thus, γ̂ =

(
γ̂ T

0 , . . . , γ̂ T
Ns

)T
can be easily calculated using

γ̂J = V̂−1
J

⎧
⎨

⎩N−1
T

n∑

i=1

Ni∑

j=1

BJ (Ti j )XilYi j

⎫
⎬

⎭

d

l=1

, J = 0, . . . , Ns. (19)

Then the functions m(t) = (m1(t), . . . , md(t))T can be simply estimated by

m̂(t) =
(
m̂1(t), . . . , m̂d(t)

)T = c−1/2
J (t),n

(
γ̂J (t),1, . . . , γ̂J (t),d

)T = c−1/2
J (t),n γ̂J (t). (20)

Projecting the relationship in model (3) onto the space of spline coefficient functions
on T ×Rd as M, we obtain the following important decomposition:

d∑

l=1

m̂l(t)xl =
d∑

l=1

m̃l(t)xl +
d∑

l=1

ξ̃l(t)xl +
d∑

l=1

ε̃l(t)xl , (21)
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where for any l = 1, . . . , d,

m̃l(t) =
Ns∑

J=0

γ̃J,l BJ (t) = c−1/2
J (t),n γ̃J (t),l , (22)

ξ̃l(t) =
Ns∑

J=0

α̃J,l BJ (t) = c−1/2
J (t),nα̃J (t),l , ε̃l(t) =

Ns∑

J=0

θ̃J,l BJ (t) = c−1/2
J (t),n θ̃J (t),l ,

(23)

where (γ̃J,l , J = 0, . . . , Ns, l = 1, . . . , d)T,
(
α̃J,l , J = 0, . . . , Ns, l = 1, . . . , d

)T,
and (θ̃J,l , J = 0, . . . , Ns, l = 1, . . . , d)T are solutions to (14) with Yi j replaced by∑d

l=1 ml
(
Ti j

)
Xil ,

∑d
l=1

∑∞
k=1 ξik,lφk,l

(
Ti j

)
Xil , and σ

(
Ti j

)
εi j , respectively.

Furthermore, under Assumption (A5) we can decompose m̂l(t) as

m̂l(t) = m̃l(t) + ξ̃l(t) + ε̃l(t), l = 1, . . . , d. (24)

The next two propositions concern the functions m̃l(t), ξ̃l(t), ε̃l(t), l = 1, . . . , d,
given in (22) and (23). Proposition 3 gives the uniform convergence rate of m̃l(t)
to ml(t). Proposition 4 provides the asymptotic distribution for the maximum of the
normalized error terms.

Proposition 3 Under Assumptions (A1), (A2) and (A4)–(A6) in Appendix A, the
functions m̃l(t), l = 1, . . . , d satisfy supt∈[0,1] sup1≤l≤d |m̃l(t) − ml(t)| = Op(hs).

Proposition 4 Under Assumptions (A2)–(A6) in Appendix A, for τ ∈ R, and σn,ll(t),
aNs+1, bNs+1 as given in (7) and (9),

lim
n→∞ P

{

sup
t∈[0,1]

σ−1
n,ll(t)

∣∣∣ξ̃l(t) + ε̃l(t)
∣∣∣ ≤ τ/aNs+1 + bNs+1

}

= exp
(
−2e−τ ) .

5 Simulation

To illustrate the finite-sample performance of the spline approach, we generate data
from the following model

Yi j =
{

m1
(
Ti j

)
+

2∑

k=1

ξik,1φk,1
(
Ti j

)
}

Xi1 +
{

m2
(
Ti j

)
+

3∑

k=1

ξik,2φk,2
(
Ti j

)
}

Xi2

+σ
(
Ti j

)
εi j , 1 ≤ i ≤ n, 1 ≤ j ≤ Ni ,

where T ∼ U [0, 1], X1 ∼ N (0, 1), X2 ∼ Binomial[1, 0.5], ξk,1 ∼ N (0, 1),
k = 1, 2, ξk,2 ∼ N (0, 1), k = 1, 2, 3, ε ∼ N (0, 1), and Ni is generated from
a discrete uniform distribution from 2, . . . , 14, for 1 ≤ i ≤ n. For the first com-
ponent, we take m1(t) = sin {2π (t − 1/2)}, φ1,1(t) = −2 cos {π (t − 1/2)} /

√
5,

φ2,1(t) = sin {π (t − 1/2)} /
√

5, thus λ1,1 = 2/5, λ2,1 = 1/10. For the second
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Table 1 Coverage percentages of the SCCs for functions m1 (left) and m2 (right), based on 500
replications

σ n 1 − α c = 0.3 c = 0.5 c = 0.8 c = 1

1.0 200 0.950 0.950, 0.952 0.944, 0.948 0.920, 0.904 0.886, 0.884

0.990 0.990, 0.998 0.990, 0.990 0.976, 0.984 0.968, 0.974

400 0.950 0.944, 0.948 0.950, 0.930 0.922, 0.912 0.908, 0.904

0.990 0.996, 0.984 0.990, 0.988 0.984, 0.988 0.974, 0.966

600 0.950 0.934, 0.962 0.954, 0.946 0.930, 0.952 0.930, 0.924

0.990 0.992, 0.996 0.992, 0.986 0.988, 0.990 0.984, 0.990

800 0.950 0.936, 0.934 0.960, 0.966 0.950, 0.964 0.956, 0.934

0.990 0.998, 0.996 0.994, 0.994 0.986, 0.992 0.988, 0.988

0.5 200 0.950 0.936, 0.948 0.952, 0.942 0.916, 0.900 0.912, 0.890

0.990 0.988, 0.994 0.992, 0.990 0.972, 0.974 0.972, 0.972

400 0.950 0.916, 0.930 0.936, 0.932 0.928, 0.916 0.904, 0.898

0.990 0.994, 0.984 0.992, 0.988 0.996, 0.988 0.978, 0.976

600 0.950 0.924, 0.948 0.952, 0.954 0.926, 0.958 0.936, 0.938

0.990 0.996, 0.994 0.994, 0.986 0.984, 0.990 0.990, 0.994

800 0.950 0.942, 0.900 0.950, 0.960 0.942, 0.962 0.960, 0.938

0.990 0.996, 0.998 0.996, 0.994 0.990, 0.996 0.992, 0.988

component, we take m2(t) = 5 (t − 0.6)2, φ1,2(t) = 1, φ2,2(t) =
√

2 sin (2π t),
φ3,2(t) =

√
2 cos (2π t), thus λ1,2 = λ2,2 = λ3,2 = 1. The noise level is chosen to be

σ = 0.5, 1.0, and the number of subjects n is taken to be 200, 400, 600, 800.
We consider the confidence levels 1 − α = 0.95 and 0.99. Table 1 reports the

coverage of the SCCs as the percentage out of the total 500 replications for which the
true curve was covered by (11) at the 101 points {k/100, k = 0, . . . , 100}.

In the above SCC construction, the number of interior knots Ns is determined
by the sample size n and a tuning constant c as described in Sect. 3.2. We have
experimented with c = 0.3, 0.5, 0.8, 1.0 in this simulation study. The simulation
results in Table 1 reflect that the coverage percentages depend on the choice of c;
however, the dependency becomes weaker when sample sizes increase. For large
sample sizes n = 600, 800, the effect of the choice of c on the coverage percent-
ages is insignificant. Because Ns varies with Ni , for 1 ≤ i ≤ n, the data-driven
selection of an “optimal” Ns remains an open problem. At all noise levels, the cov-
erage percentages for the SCC (11) are very close to the nominal confidence lev-
els 0.95 and 0.99 for c = 0.5. Note that since EN1 = 8, the total sample size
NT ≈ 8 × 200, 8 × 400, 8 × 600, 8 × 800 which explains the closeness of coverage
percentages in Table 1 to the nominal levels. These large NTs are realistic as we believe
they are common for real data. For instance, the CD4 cell percentage data in Sect. 6
has NT = 1,817.

For visualization of actual function estimates, Fig. 1 shows the true curve, the
estimated curve, the asymptotic 95 % SCC and the pointwise confidence intervals
at σ = 0.5 with n = 200. The same plot for n = 600 has shown significantly
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Fig. 1 Plots of 95 % SCC (11) (upper and lower solid), pointwise confidence intervals (dashed), the spline
estimator (thin), and the true function (middle thick) at σ = 0.5, n = 200 for m1 (left) and m2 (right)

narrower SCC and pointwise confidence intervals as expected, but is not included to
save space.

6 Real data analysis

To illustrate our method, we return to the CD4 cell percentage data discussed in Sect. 1
for further analysis. Since the actual visit times Ti j are irregularly spaced and vary
from year 0 to year 6, we first transform the times by Zi j = FNT

(
Ti j

)
, where FNT is

the empirical cdf of times
{
Ti j

}n,Ni
i=1, j=1. Then the Zi j values are distributed fairly uni-

formly. We have set a slightly smaller number of interior knots Ns = [0.3N 1/3
T (log(n))]

to avoid singularity in solving the least squares problem.
The left plots of Figs. 2, 3, 4 and 5 depict the spline estimates, the asymptotic 95 %

SCCs, the pointwise confidence intervals for ml (t), l = 0, 1, 2, 3, respectively. The
horizontal solid line represents zero. Based on the shape of the SCCs, we are interested
in testing the following hypotheses:

H00 : m0 (t) ≡ a + bt , for some a, b ∈ R v.s. H10 : m0 (t) ̸= a + bt , for any
a, b ∈ R;

H01 : m1 (t) ≡ 0 v.s. H11 : m1 (t) ̸= 0, for some t ∈ [0, 6];
H02 : m2 (t) ≡ c for some c > 0 v.s. H12 : m2 (t) ̸= c, for any c > 0;
H03 : m3 (t) ≡ 0 v.s. H13 : m3 (t) ̸= 0, for some t ∈ [0, 6].
Asymptotic p values are calculated for each pair of hypotheses as α̂0 = 0.99072,

α̂1 = 0.79723, α̂2 = 0.25404, α̂3 = 0.10775. Apparently, none of the null hypothesis
is rejected. The p values are calculated as, for example

α̂0 = 1 − exp

⎡

⎣−2 exp

⎛

⎝−aNs+1

⎧
⎨

⎩
400

max
k=0

∣∣∣∣∣∣

m̂0 (tk) −
(

â + b̂tk
)

σ̂n,ll(tk)

∣∣∣∣∣∣
− bNs+1

⎫
⎬

⎭

⎞

⎠

⎤

⎦ ,
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Fig. 2 Plots of a 95 % SCC (upper and lower solid), pointwise confidence intervals (dashed) and the spline
estimator m̂0 (middle solid) for baseline effect; and b the same except with confidence level 1 − α̂0 and the
estimated m0 under H00 (solid linear)
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Fig. 3 Plots of a 95 % SCC (upper and lower solid), pointwise confidence intervals (dashed) and the spline
estimator m̂1 (middle solid) for smoking effect; and b the same except with confidence level 1 − α̂1 and
the estimated m1 under H01 (solid linear)

where tk, k = 0, . . . , 400 are equally spaced grid points over the range of the actual
visit times, while â + b̂t is a least squares linear approximation to m̂0 (t). In other
words, the p value α̂0 is a solution of

400
max
k=0

∣∣∣∣∣∣

m̂0 (tk) −
(

â + b̂tk
)

σ̂n,ll(tk)

∣∣∣∣∣∣
= bNs+1 − a−1

Ns+1 log
{
−1

2
log(1 − α̂0)

}
.
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Fig. 4 Plots of a 95 % SCC (upper and lower solid), pointwise confidence intervals (dashed) and the spline
estimator m̂2 (middle solid) for pre-infection CD4 effect; and b the same except with confidence level 1−α̂2
and the estimated m2 under H02 (solid linear)
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Fig. 5 Plots of a 95 % SCC (upper and lower solid), pointwise confidence intervals (dashed) and the spline
estimator m̂3 (middle solid) for age effect; and b the same except with confidence level 1 − α̂3 and the
estimated m3 under H03 (solid linear)

The right plots of Figs. 2, 3, 4 and 5 show the spline estimates, the 100(1 − α̂l)%
SCCs and the pointwise confidence intervals, and estimates of ml (t) under H0l ,
l = 0, 1, 2, 3. From these figures, one can see the baseline CD4 percentage of the
population is a decreasing linear function of time and greater than zero over the range
of time. The effects of smoking status and age at HIV infection are insignificant, while
the pre-infection CD4 percentage is positively proportional to the post-infection CD4
percentage. These findings are consistent with the observations in Wu and Chiang
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(2000), Fan and Zhang (2000) and Wang et al. (2008), but are put on rigorous standing
due to the quantification of type I errors by computing asymptotic p values relative to
the SCCs.
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Appendix A

Throughout this section, an ∼ bn means limn→∞ bn/an = c, where c is some nonzero
constant. For functions an(t), bn(t), an(t) = U {bn(t)} means an(t)/bn(t) → 0 as
n → ∞ uniformly for t ∈ [0, 1], and an(t) = U {bn(t)} means an(t)/bn(t) = O(1)

as n → ∞ uniformly for t ∈ [0, 1]. We use U p(·) and Up(·) if the convergence is in
the sense of uniform convergence in probability.

A.1 Technical assumptions

We define the modulus of continuity of a continuous function φ on [a, b] byω (φ, δ) =
maxt,t ′∈[a,b],|t−t ′|≤δ

∣∣φ(t) − φ
(
t ′
)∣∣. For any r ∈ (0, 1], denote the collection of order

r Hõlder continuous function on [0, 1] by

C0,r [0, 1] =
{

φ : ∥φ∥0,r = sup
t ̸=t ′,t,t ′∈[0,1]

∣∣φ(t) − φ
(
t ′
)∣∣

|t − t ′|r < +∞
}

,

in which ∥φ∥0,r is the C0,r -seminorm of φ. Let C [0, 1] be the collection of contin-
uous function on [0, 1]. Clearly, C0,r [0, 1] ⊂ C [0, 1] and, if φ ∈ C0,r [0, 1], then
ω (φ, δ) ≤ ∥φ∥0,r δ

r .
The following regularity assumptions are needed for the main results.

(A1) The regression functions ml(t) ∈ C0,1 [0, 1], l = 1, . . . , d.
(A2) The set of random variables

(
Ti j , εi j , Ni , ξik,l , Xil

)n,Ni ,∞,d
i=1, j=1,k=1,l=1 is a subset of

variables
(
Ti j , εi j , Ni , ξik,l , Xil

)∞,∞,∞,d
i=1, j=1,k=1,l=1 consisting of independent ran-

dom variables, in which all Ti j ’s i.i.d with Ti j ∼ T , where T is a random vari-
able with probability density function f (t); Xil ’s i.i.d for each l = 1, . . . , d;
Ni ’s i.i.d with Ni ∼ N , where N > 0 is a positive integer-valued random
variable with E{N 2r } ≤ r !cr

N , r = 2, 3, . . ., for some constant cN > 0.

Variables
(
ξik,l

)∞,∞,d
i=1,k=1,l=1 and

(
εi j

)∞,∞
i=1, j=1 are i.i.d N (0, 1).

(A3) The functions f (t), σ (t) and φk,l(t) ∈ C0,r [0, 1] for some r ∈ (0, 1] with
f (t) ∈

[
c f , C f

]
, σ (t) ∈ [cσ , Cσ ], t ∈ [0, 1], for constants 0 < c f ≤ C f <

+∞, 0 < cσ ≤ Cσ < +∞.
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(A4) For l = 1, . . . , d,
∑∞

k=1

∥∥φk,l
∥∥

∞ < +∞, and Gl(t, t) ∈
[
cG,l , CG,l

]
, t ∈ [0, 1],

for constants 0 < cG,l ≤ CG,l < +∞.
(A5) There exist constants 0 < cH ≤ CH < +∞ and 0 < cη ≤ Cη < +∞, such

that cH Id×d ≤ H = {Hll ′}d
l,l ′=1 = E

(
XXT

)
≤ CH Id×d . For some η > 4,

l = 1, . . . , d, cη ≤ E |Xl |8+η ≤ Cη .
(A6) As n → ∞, the number of interior knots Ns = O

(
nϑ

)
for some ϑ ∈ (1/3, 1/2)

while N−1
s = O

{
n−1/3 (log(n)) −1/3}. The subinterval length hs ∼ N−1

s .

Assumptions (A1)–(A3) are common conditions used in the literature; see for
example, Ma et al. (2012). Assumption (A1) controls the rate of convergence of the
spline approximation m̂l , l = 1, . . . , d. The requirement of Ni in Assumption (A2)
ensures that the observation times are randomly scattered, reflecting sparse and irreg-
ular designs. Assumption (A4) guarantees that the random variable

∑∞
k=1 ξik,lφk,l(t)

absolutely uniformly converges. Assumption (A5) is analog to Assumption (A2) in
Liu and Yang (2010), ensuring that the Xils are not multicollinear. Assumption (A6)
describes the requirement of the growth rate of the dimension of the spline spaces
relative to the sample size.

A.2 Preliminaries

Lemma 1 (Bosq (1998), Theorem 1.2). Suppose that {ξi }n
i=1 are i.i.d with E(ξ1) =

0, σ 2 = Eξ2
1 , and there exists c > 0 such that for r = 3, 4, . . ., E |ξ1|r ≤

cr−2r !Eξ2
1 < +∞. Then for each n > 1, t > 0, P(|Sn| ≥ √

nσ t) ≤
2 exp

(
−t2 (

4 + 2ct/
√

nσ
)−1

)
, in which Sn = ∑n

i=1 ξi .

Lemma 2 Under Assumptions (A2)–(A6), we have

An,1 = sup
0≤J≤Ns,1≤l,l ′≤d

∣∣⟨BJ Xl , BJ Xl ′ ⟩NT − ⟨BJ Xl , BJ Xl ′ ⟩
∣∣

√⟨BJ Xl , BJ Xl⟩
√⟨BJ Xl ′ , BJ Xl ′ ⟩

= Op

(√
log (n)

nhs

)

,

where for any J = 0, . . . , Ns and l, l ′ = 1, . . . , d,

⟨BJ Xl , BJ Xl ′ ⟩NT = N−1
T

∑n

i=1

∑Ni

j=1
B2

J (Ti j )Xil Xil ′ ,

⟨BJ Xl , BJ Xl ′ ⟩ = E
{

B2
J (Ti j )Xil Xil ′

}
= Hll ′ .

Proof Let ωi,J = ωi,J,l,l ′ = ∑Ni
j=1 B2

J (Ti j )Xil Xil ′ , then Eωi,J = EN1 Hll ′ ∼ 1 and

E
(
ωi j,J

)2 = E
{∑Ni

j=1 B2
J (Ti j )

}2
E (Xil Xil ′)

2 ∼ h−1
s . Next define a sequence Dn =

nα with α(4 + η/2) > 1 and
√

log (n)Dnn−1/2h−1/2
s → 0, n1/2h1/2

s D−(3+η/2)
n → 0,

which necessitates η > 2 according to Assumption (A5). We make use of the following
truncated and tail decomposition

Xill ′ = Xil Xil ′ = X Dn
ill ′,1 + X Dn

ill ′,2,
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where X Dn
ill ′,1 = Xil Xil ′ I {|Xil Xil ′ | > Dn}, X Dn

ill ′,2 = Xil Xil ′ I {|Xil Xil ′ | ≤ Dn}.
Correspondingly, the truncated and tail parts of ωi,J are ωi,J,m = B2

J (Ti j )X Dn
ill ′,m ,

m = 1, 2. According to Assumption (A5), for any l, l ′ = 1, . . . , d,

∞∑

n=1

P {|Xnl Xnl ′ | > Dn} ≤
∞∑

n=1

E |Xnl Xnl ′ |4+η/2

D4+η/2
n

≤ Cη
∞∑

n=1

D−(4+η/2)
n < ∞.

By Borel–Cantelli Lemma, one has
∑Ni

j=1 B2
J (Ti j )X Dn

ill ′,1 = 0, a.s.. So we obtain

sup
J,l,l ′

∣∣∣∣∣n
−1

n∑

i=1

ωi,J,1

∣∣∣∣∣ = Oa.s.

(
n−k

)
, k ≥ 1,

and

Eωi,J,1 = E
(

X Dn
ill ′,1

)
E

⎧
⎨

⎩

Ni∑

j=1

B2
J (Ti j )

⎫
⎬

⎭

≤ D−(3+η/2)
n E |Xil Xil ′ |4+η/2 EN1EB2

J (Ti j ) ≤ cD−(3+η/2)
n .

Next we considerate the truncated part ωi,J,2. For large n, E
(
ωi,J,2

)
= E

(
ωi,J

)
−

E
(
ωi,J,1

)
∼ 1, E

(
ωi,J,2

)2 = E
(
ωi,J

)2 −E
(
ωi,J,1

)2 ∼ h−1
s . Defineω∗

i,J,2 = ωi,J,2 −
E

(
ωi,J,2

)
, then Eω∗

i,J,2 = 0, and

E
(
ω∗

i,J,2
)2 = E

(
ωi,J,2

)2 −
(
Eωi,J,2

)2 = E

⎧
⎨

⎩

Ni∑

j=1

B2
J (Ti j )X Dn

ill ′,2

⎫
⎬

⎭

2

− U (1)

= E
(

X Dn
ill ′,2

)2
E

⎧
⎨

⎩

Ni∑

j=1

B2
J (Ti j )

⎫
⎬

⎭

2

− U (1) .

Note that

E
(

X Dn
ill ′,2

)2
E

⎧
⎨

⎩

Ni∑

j=1

B2
J (Ti j )

⎫
⎬

⎭

2

≥
{

E (Xill ′)
2 − E

(
X Dn

ill ′,1

)2
}

E

⎧
⎨

⎩

Ni∑

j=1

B4
J (Ti j )

⎫
⎬

⎭

≥
{
E (Xill ′)

2 − U (1)
}

EN1EB4
J (Ti j ).

Thus, there exists cω such that for large n, E
(
ω∗

i,J,2

)2
≥ cωE (Xill ′)

2 h−1
s . Next for

any r > 2
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824 L. Gu et al.

E
∣∣ω∗

i,J,2

∣∣r = E
∣∣ωi,J,2 − E

(
ωi,J,2

)∣∣r ≤ 2r−1 (
E

∣∣ωi,J,2
∣∣r +

∣∣E
(
ωi,J,2

)∣∣r )

= 2r−1

⎧
⎨

⎩E
∣∣∣X Dn

ill ′,2

∣∣∣
r

E

∣∣∣∣∣∣

Ni∑

j=1

B2
J (Ti j )

∣∣∣∣∣∣

r

+ U(1)

⎫
⎬

⎭

= 2r−1

⎡

⎣E
∣∣∣X Dn

ill ′,2

∣∣∣
r

E

⎧
⎨

⎩

r1+···+rNi = r∑

0≤ r1,...,rNi ≤ r

(
r

r1 · · · rNi

) Ni∏

j=1

EB
2r j
J

(
Ti j

)
⎫
⎬

⎭+U(1)

⎤

⎦,

then there exists Cω > 0 such that for any r > 2 and large n,

E
∣∣ω∗

i,J,2

∣∣r ≤ 2r−1

⎡

⎣Dr−2
n E (Xill ′)

2 E

⎧
⎨

⎩Nr
1 max

Ni∏

j=1

EB
2r j
J

(
Ti j

)
⎫
⎬

⎭ + U(1)

⎤

⎦

≤ 2r−1
[

Dr−2
n E (Xill ′)

2 (
ENr

1
)

CBh1−r
s + U(1)

]

≤ 2r Dr−2
n

(
cr

N r !
)1/2 CBh2−r

s c−1
ω E

(
ω∗

i,J,2
)2

≤
(

CωDnh−1
s

)r−2
r !E

(
ω∗

i,J,2
)2

,

which implies that
{
ω∗

i,J,2

}n

i=1
satisfies Cramér’s condition with constant CωDnh−1

s .

Applying Lemma 1 to
∑n

i=1 ω
∗
i,J,2, for r > 2 and any large enough δ > 0,

P
{∣∣∣n−1 ∑n

i=1 ω
∗
i,J,2

∣∣∣ ≥ δ (nhs)
−1/2 (log(n))1/2

}
is bounded by

2 exp

{
−δ2 (log(n))

4 + 2CωDnh−1
s δ (log(n))1/2 n−1/2h1/2

s

}

≤ 2n−8.

Hence

∞∑

n=1

P

{

sup
0≤J≤Ns,1≤l,l ′≤d

∣∣∣∣∣n
−1

n∑

i=1

ω∗
i,J,2

∣∣∣∣∣ ≥ δ (nhs)
−1/2 (log(n))1/2

}

< ∞.

Thus, supJ,l,l ′
∣∣∣n−1 ∑n

i=1 ω
∗
i,J,2

∣∣∣ = Oa.s.
{
(nhs)

−1/2 (log(n))1/2} as n → ∞ by
Borel–Cantelli Lemma. Furthermore,

sup
J,l,l ′

∣∣∣∣∣n
−1

n∑

i=1

ωi,J − Eωi,J

∣∣∣∣∣

≤ sup
J,l,l ′

∣∣∣∣∣n
−1

n∑

i=1

ωi,J,1

∣∣∣∣∣ + sup
J,l,l ′

∣∣∣∣∣n
−1

n∑

i=1

ω∗
i,J,2

∣∣∣∣∣ + sup
J,l,l ′

∣∣Eωi,J,1
∣∣
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Varying coefficient regression with sparse functional data 825

= Ua.s.

(
n−k

)
+ Oa.s.

{
(nhs)

−1/2 (log(n))1/2
}

+ U
(

D−(3+η/2)
n

)

= Oa.s.

{
(nhs)

−1/2 (log(n))1/2
}

.

Finally, we notice that

sup
J,l,l ′

∣∣⟨BJ Xl , BJ Xl ′ ⟩NT −⟨BJ Xl , BJ Xl ′ ⟩
∣∣= sup

J,l,l ′

∣∣∣∣∣

(
nN−1

T

)
n−1

n∑

i=1

ωi,J − (EN1)
−1 Eωi,J

∣∣∣∣∣

≤ sup
J,l,l ′

(EN1)
−1

∣∣∣(nEN1) N−1
T −1

∣∣∣

∣∣∣∣∣n
−1

n∑

i=1

ωi,J

∣∣∣∣∣+ sup
J,l,l ′

(EN1)
−1

∣∣∣∣∣n
−1

n∑

i=1

ωi,J −Eωi,J

∣∣∣∣∣

= Op
(
n−1/2) + Oa.s.

{
(nhs)

−1/2 (log(n))1/2} = Op
{
(nhs)

−1/2 (log(n))1/2} ,

and ⟨BJ Xl , BJ Xl⟩ = Hll = U(1). Hence, An,1 = Op
{
(nhs)

−1/2 (log(n))1/2}. ⊓5

For the random matrix V̂J defined in (18), the lemma below shows that its inverse
can be approximated by the inverse of a deterministic matrix H = E(XXT).

Lemma 3 Under Assumptions (A2) and (A4)–(A6), for any J = 0, . . . , Ns, we have

V̂−1
J = H−1 + Op

{
(nhs)

−1/2 (log(n))1/2
}

. (25)

Proof By Lemma 2, we have

∥∥∥V̂J − H
∥∥∥

∞
= Op

{
(nhs)

−1/2 (log(n))1/2
}

.

Using the fact that for any matrices A and B,

(A + hB)−1 = A−1 − hA−1BA−1 + O(h2),

we obtain (25). ⊓5

The next lemma implies that the difference between ξ̃ (t) and ξ̂ (t) and the difference
between ε̃(t) and ε̂(t) are both negligible uniformly over t ∈ [0, 1].

Lemma 4 Under Assumption (A2)–(A6), for ξ̃(t), ε̃(t) given in (36), (37) and ξ̂(t),
ε̂(t) given in (38), (39), as n → ∞, we have

sup
t∈[0,1]

∥∥∥ξ̃ (t) − ξ̂ (t)
∥∥∥

∞
= Op

{
n−1h−3/2

s log(n)
}

, (26)

sup
t∈[0,1]

∥∥ε̃ (t) − ε̂ (t)
∥∥

∞ = Op

{
n−1h−3/2

s log(n)
}

. (27)
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Proof Comparing the equations of ξ̃(t) and ξ̂(t) given in (A.2) and (A.4), we let

1
NT

n∑

i=1

Ni∑

j=1

BJ (Ti j )Xil

d∑

l ′′=1

∞∑

k=1

ξik,l ′′φk,l ′′
(
Ti j

)
Xil ′′ = n

NT

d∑

l ′′=1

n∑

i=1

6i,J,l ′′,l .

where 6i,J,l ′′,l = 6i = n−1
[

Xil Xil ′′
∑∞

k=1

{∑Ni
j=1 BJ (Ti j )φk,l ′′

(
Ti j

)}
ξik,l ′′

]
. Note

that E6i = 0 and

σ 2
6i ,n = E

(
62

i

∣∣∣
(
Ti j , Ni , Xil

)n,Ni ,d
i=1, j=1,l=1

)

= n−2

⎡

⎢⎣Xil Xil ′′

∞∑

k=1

⎧
⎨

⎩

Ni∑

j=1

BJ (Ti j )φk,l ′′
(
Ti j

)
⎫
⎬

⎭

2
⎤

⎥⎦

≤ n−2

⎧
⎨

⎩X2
il X2

il ′′

∞∑

k=1

Ni

Ni∑

j=1

B2
J (Ti j )φ

2
k,l ′′

(
Ti j

)
⎫
⎬

⎭

= n−2

⎧
⎨

⎩X2
il X2

il ′′ Ni

Ni∑

j=1

B2
J (Ti j )Gl ′′

(
Ti j , Ti j

)
⎫
⎬

⎭

≤ Cn−2h−1
s X2

il X2
il ′′ N

2
i .

Given
(
Ti j , Ni , Xil

)n,Ni ,d
i=1, j=1,l=1,

{
σ−1
6i ,n6i

}n

i=1
are i.i.d N (0, 1). It is easy to show

that for any large enough δ > 0,

P

⎧
⎨

⎩

∣∣∑n
i=16i

∣∣
√∑n

i=1 σ
2
6i ,n

≥ δ
√

log(n)
∣∣∣
(
Ti j , Ni , Xil

)n,Ni ,d
i=1, j=1,l=1

⎫
⎬

⎭

≤ 2 exp
{
−1

2
δ2 log(n)

}
≤ 2n−8,

P

⎡

⎣
∣∣∣∣∣

n∑

i=1

6i

∣∣∣∣∣≥δ
{

C log(n)

nhs
n−1

n∑

i=1

X2
il X2

il ′′ N
2
i

}1/2
∣∣∣∣∣∣

(
Ti j , Ni , Xil

)n,Ni ,d
i=1, j=1,l=1

⎤

⎦≤2n−8.

Note that n−1 ∑n
i=1 X2

il X2
il ′′ N

2
i = Op (1), hence

∞∑

n=1

P

{

sup
0≤J≤Ns,1≤l,l ′′≤d

∣∣∣∣∣

n∑

i=1

6i,J,l ′′,l

∣∣∣∣∣ ≥ δ (nhs)
−1/2 (log(n))1/2

}

< ∞.

Thus, supJ,l,l ′′
∣∣∑n

i=16i,J,l ′′,l
∣∣ = Op

{
(nhs)

−1/2 (log(n))1/2} as n → ∞ by

Borel–Cantelli Lemma. It follows that supJ,l

∣∣∣nN−1
T

∑d
l ′′=1

∑n
i=16i,J,l ′′,l

∣∣∣ =
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Varying coefficient regression with sparse functional data 827

Op
{
(nhs)

−1/2 (log(n))1/2}. Finally, according to Lemma 25, we obtain (26). (27)
is proved similarly. ⊓5

Denote the inverse matrix of H by H−1 = {zll ′}d
l,l ′=1. For any l = 1, . . . , d, we

rewrite the lth element of ξ̂l(t) and ε̂l(t) in (38) and (39) as the following

ξ̂l(t) = c−1/2
J (t),n N−1

T

d∑

l ′′=1

n∑

i=1

∞∑

k=1

Rik,ξ,J (t),l ′′,lξik,l ′′ , (28)

ε̂l(t) = c−1/2
J (t),n N−1

T

n∑

i=1

N∑

j=1

Ri j,ε,J (t),lεi j , (29)

where for any 0 ≤ J ≤ Ns,

Rik,ξ,J,l ′′,l =
(

d∑

l ′=1

zll ′ Xil ′ Xil ′′

)⎧
⎨

⎩

Ni∑

j=1

BJ
(
Ti j

)
φk,l ′′

(
Ti j

)
⎫
⎬

⎭ , (30)

Ri j,ε,J,l =
(

d∑

l ′=1

zll ′ Xil ′

)

BJ
(
Ti j

)
σ

(
Ti j

)
. (31)

Further denote

Sill ′′ =
(

d∑

l ′=1

zll ′ Xil ′ Xil ′′

)2

, sll ′′ = E (Sill ′′) , 1 ≤ l, l ′′ ≤ d. (32)

Lemma 5 Under Assumptions (A2)–(A6), for Rik,ξ,J,l ′′,l , Ri j,ε,J,l in (30), (31),

E

( ∞∑

k=1

R2
ik,ξ,J,l ′′,l

)

= c−1
J,nsll ′′

[
(EN1)

∫
bJ (u) Gl ′′ (u, u) f (u) du

+E {N1(N1 − 1)}
∫

bJ (u) bJ (v) Gl ′′ (u, v) f (u) f (v) dudv

]
,

ER2
i j,ε,J,l = c−1

J,nzll

∫
bJ (u) σ 2 (u) f (u) du,

for 0 ≤ J ≤ Ns and 0 ≤ l, l ′′ ≤ d. In addition, there exist 0 < cR < CR < ∞, such
that

cRsll ′′ ≤ E

( ∞∑

k=1

R2
ik,ξ,J,l ′′,l

)

≤ CRsll ′′ , cR ≤ ER2
i j,ε,J,l ≤ CR,
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for 0 ≤ J ≤ Ns, 0 ≤ l, l ′′ ≤ d, and as n → ∞

An,ξ = sup
J,l ′′,l

∣∣∣∣∣n
−1

n∑

i=1

∞∑

k=1

R2
ik,ξ,J,l ′′,l − E

( ∞∑

k=1

R2
ik,ξ,J,l ′′,l

)∣∣∣∣∣

= Oa.s.

{
(nhs)

−1/2 (log(n))1/2
}

,

An,ε = sup
J,l

∣∣∣∣∣∣
N−1

T

n∑

i=1

Ni∑

j=1

R2
i j,ε,J,l − ER2

i j,ε,J,l

∣∣∣∣∣∣
= Oa.s.

{
(nhs)

−1/2 (log(n))1/2
}

.

Proof By independence of
{
Ti j

}∞
j=1, {Xil}d

l=1 , Ni , the definition of BJ and (32),

E

( ∞∑

k=1

R2
ik,ξ,J,l ′′,l

)

= E (Sill ′′) E
∞∑

k=1

⎧
⎨

⎩

Ni∑

j=1

BJ
(
Ti j

)
φk,l ′′

(
Ti j

)
⎫
⎬

⎭

2

= sll ′′E
Ni∑

j=1

Ni∑

j ′=1

BJ
(
Ti j

)
BJ

(
Ti j ′

)
Gl ′′

(
Ti j , Ti j ′

)

= sll ′′c
−1
J,n

{
(EN1)

∫
bJ (u) Gl ′′ (u, u) f (u) du

+E {N1(N1 − 1)}
∫

bJ (u) bJ (v) Gl ′′ (u, v) f (u) f (v) dudv

}
,

thus there exist constants 0 < cR < CR < ∞ such that cRsll ′′ ≤ E
(∑∞

k=1 R2
1k,ξ,J,l ′′,l

)

≤ CRsll ′′ , 0 ≤ J ≤ Ns, 0 ≤ l, l ′′ ≤ d.
If sll ′′ = 0, one has Sill ′′ = 0, almost surely. Hence n−1 ∑n

i=1
∑∞

k=1 R2
ik,ξ,J,l ′′,l =

0, almost surely. In the case of sll ′′ > 0, let ζi,J = ζi,J,l ′′,l = ∑∞
k=1 R2

ik,ξ,J,l ′′,l for
brevity. Under Assumption (A5), it is easy to verify that

0<s2
ll ′′ ≤E (Sill ′′)

2 ≤d3
d∑

l ′=1

E |zll ′ Xil ′ Xil ′′ |4 ≤d3
d∑

l ′=1

zll ′
{
E |Xil ′ |8 E |Xil ′′ |8

}1/2
<∞.

So for large n,

E
(
ζi,J

)2 = E

⎧
⎪⎨

⎪⎩
(Sill ′′)

2

⎛

⎝
Ni∑

j=1

Ni∑

j ′=1

BJ
(
Ti j

)
BJ

(
Ti j ′

)
Gl ′′

(
Ti j , Ti j ′

)
⎞

⎠
2
⎫
⎪⎬

⎪⎭

≥ E (Sill ′′)
2 1

4
c2

G,l ′′E

⎧
⎨

⎩

Ni∑

j=1

BJ
(
Ti j

)
⎫
⎬

⎭

4

≥ cE
Ni∑

j=1

B4
J
(
Ti j

)
≥ ch−1

s ,
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and

E
(
ζi,J

)2 ≤ E (Sill ′′)
2 4C2

G,l ′′E

⎧
⎨

⎩

Ni∑

j=1

BJ
(
Ti j

)
⎫
⎬

⎭

4

≤ cE

⎡

⎣ N 3
1

Ni∑

j=1

EB4
J
(
Ti j

)
∣∣∣∣∣∣

N1

⎤

⎦ ≤ cEN 4
1 EB4

J
(
Ti j

)
≤ ch−1

s .

Define a sequence Dn = nα that satisfies α (2 + η/4) > 1, Dnn−1/2h−1/2
s (log(n))1/2

→ 0, n1/2h1/2
s D−(1+η/4)

n → 0, which requires η > 4 provided by Assumption (A5).
We make use of the following truncated and tail decomposition

Sill ′′ =
d∑

l ′=1

d∑

l ′′′=1

zll ′ zll ′′′ Xil ′ Xil ′′′ X
2
il ′′ = SDn

ill ′′,1 + SDn
ill ′′,2,

where

SDn
ill ′′,1 =

d∑

l ′=1

d∑

l ′′′=1

zll ′ zll ′′′ Xil ′ Xil ′′′ X
2
il ′′ I

{∣∣∣Xil ′ Xil ′′′ X
2
il ′′

∣∣∣ > Dn

}
,

SDn
ill ′′,2 =

d∑

l ′=1

d∑

l ′′′=1

zll ′ zll ′′′ Xil ′ Xil ′′′ X
2
il ′′ I

{∣∣∣Xil ′ Xil ′′′ X
2
il ′′

∣∣∣ ≤ Dn

}
.

Define correspondingly the truncated and tail parts of ζi,J as

ζi,J,m = SDn
ill ′′,m

Ni∑

j=1

Ni∑

j ′=1

BJ
(
Ti j

)
BJ

(
Ti j ′

)
Gl ′′

(
Ti j , Ti j ′

)
, m = 1, 2.

According to Assumption (A5), for any l ′, l ′′, l ′′′ = 1, . . . , d,

∞∑

n=1

P
{∣∣∣Xnl ′Xnl ′′′ X

2
nl ′′

∣∣∣ > Dn

}
≤

∞∑

n=1

E
∣∣Xnl ′ Xnl ′′′ X2

nl ′′
∣∣2+η/4

D2+η/4
n

≤Cη
∞∑

n=1

D−(2+η/4)
n <∞.

Borel–Cantelli Lemma implies that

P
{
ω

∣∣∣∃N (ω) ,
∣∣∣Xnl ′ Xnl ′′′ X

2
nl ′′ (ω)

∣∣∣ ≤ Dn for n > N (ω)
}

= 1,

P
{
ω

∣∣∣∃N (ω) ,
∣∣∣Xil ′ Xil ′′′ X

2
il ′′ (ω)

∣∣∣ ≤ Dn, i = 1, . . . , n for n > N (ω)
}

= 1,

P
{
ω

∣∣∣∃N (ω) , I
{∣∣∣Xil ′ Xil ′′′ X

2
il ′′ (ω)

∣∣∣> Dn

}
=0, i =1, . . . , n for n > N (ω)

}
= 1.
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Furthermore, one has

n−1
n∑

i=1

⎧
⎨

⎩SDn
ill ′′,1

Ni∑

j=1

Ni∑

j ′=1

BJ
(
Ti j

)
BJ

(
Ti j ′

)
Gl ′′

(
Ti j , Ti j ′

)
⎫
⎬

⎭ = 0, a.s.

Therefore, one has

sup
J,l,l ′′

∣∣∣∣∣n
−1

n∑

i=1

ζi,J,1

∣∣∣∣∣ = Oa.s.

(
n−k

)
, k ≥ 1.

Notice that

E
(

SDn
ill ′′,1

)
= E

[
d∑

l ′=1

d∑

l ′′′=1

zll ′ zll ′′′ Xil ′ Xil ′′′ X
2
il ′′ I

{∣∣∣Xil ′ Xil ′′′ X
2
il ′′

∣∣∣ > Dn

}]

≤ D−(1+η/4)
n

d∑

l ′=1

d∑

l ′′′=1

zll ′ zll ′′′E
∣∣∣Xil ′ Xil ′′′ X

2
il ′′

∣∣∣
2+η/4

≤ cD−(1+η/4)
n .

So for large n,

E
(
ζi,J,1

)
= E

(
SDn

ill ′′,1

)
E

⎧
⎨

⎩

Ni∑

j=1

Ni∑

j ′=1

BJ
(
Ti j

)
BJ

(
Ti j ′

)
Gl ′′

(
Ti j , Ti j ′

)
⎫
⎬

⎭

≤ cD−(1+η/4)
n 2CG,l ′′E

⎧
⎨

⎩

Ni∑

j=1

BJ
(
Ti j

)
⎫
⎬

⎭

2

≤ cD−(1+η/4)
n E

(
N 2

1

)
EB2

J
(
Ti j

)

≤ cD−(1+η/4)
n .

Next we considerate the truncated part ζi,J,2. For large n, E
(
ζi,J,2

)
= E

(
ζi,J

)
−

E
(
ζi,J,1

)
∼ 1, E

(
ζi,J,2

)2 = E
(
ζi,J

)2 − E
(
ζi,J,1

)2 ∼ h−1
s . Define ζ ∗

i,J,2 = ζi,J,2 −
E

(
ζi,J,2

)
, then Eζ ∗

i,J,2 = 0, and there exist cζ , Cζ > 0 such that for r > 2 and large n,

E
(
ζ ∗

i,J,2
)2 = E

∣∣∣SDn
ill ′′,2

∣∣∣
2

E

∣∣∣∣∣∣

Ni∑

j=1

Ni∑

j ′=1

BJ
(
Ti j

)
BJ

(
Ti j ′

)
Gl ′′

(
Ti j , Ti j ′

)
∣∣∣∣∣∣

2

−
(
Eζi,J,2

)2

≥
{

E |Sill ′′ |2 − E
∣∣∣SDn

ill ′′,1

∣∣∣
2
}

1
4

c2
G,l ′′E

⎧
⎨

⎩

Ni∑

j=1

BJ
(
Ti j

)
⎫
⎬

⎭

4

− U(1)
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≥
{
E |Sill ′′ |2 − U(1)

} 1
4

c2
G,l ′′E

⎧
⎨

⎩

Ni∑

j=1

B4
J
(
Ti j

)
⎫
⎬

⎭ − U(1)

≥ 1
2

E |Sill ′′ |2
1
4

c2
G,l ′′EN1EB4

J
(
Ti j

)
− U(1)

≥ cζE |Sill ′′ |2 h−1
s ,

and

E
∣∣ζ ∗

i,J,2

∣∣r = E
∣∣ζi,J,2 − E

(
ζi,J,2

)∣∣r ≤ 2r−1 (
E

∣∣ζi,J,2
∣∣r +

∣∣E
(
ζi,J,2

)∣∣r )

= 2r−1

⎧
⎨

⎩E
∣∣∣SDn

ill ′′,2

∣∣∣
r

E

∣∣∣∣∣∣

Ni∑

j=1

Ni∑

j ′=1

BJ
(
Ti j

)
BJ

(
Ti j ′

)
Gl ′′

(
Ti j , Ti j ′

)
∣∣∣∣∣∣

r

+U(1)

⎫
⎬

⎭

≤ 2r−1

⎡

⎢⎣(cDn)r−2 E |Sill ′′ |2
(
2CG,l ′′

)r E

⎧
⎨

⎩

Ni∑

j=1

BJ (Ti j )

⎫
⎬

⎭

2r

+ U(1)

⎤

⎥⎦

≤ 2r−1
[
(cDn)r−2 E |Sill ′′ |2

(
2CG,l ′′

)r
(
EN 2r

1

)
CBh1−r

s + U(1)
]

≤ 2r (cDn)r−2 (
2CG,l ′′

)r cr
N r !CBh2−r

s c−1
ζ E

(
ζ ∗

i,J,2
)2

≤
(

Cζ Dnh−1
s

)r−2
r !E

(
ζ ∗

i,J,2
)2

,

which implies that
{
ζ ∗

i,J,2

}n

i=1
satisfies Cramér’s condition. Applying Lemma 1 to

∑n
i=1 ζ

∗
i,J,2, for r > 2 and any large enough δ > 0,

P

{∣∣∣∣∣n
−1

n∑

i=1

ζ ∗
i,J,2

∣∣∣∣∣ ≥ δ(nhs)
−1/2(log(n))1/2

}

≤ 2 exp

{
−δ2 log(n)

4 + 2Cζ Dnh−1
s δ (log(n))1/2 n−1/2h1/2

s

}

≤ 2n−8.

Hence

∞∑

n=1

P

{

sup
J,l ′′,l

∣∣∣∣∣n
−1

n∑

i=1

ζ ∗
i,J,2

∣∣∣∣∣ ≥ δ (nhs)
−1/2 (log(n))1/2

}

< ∞.

Thus, supJ,l ′′,l

∣∣∣n−1 ∑n
i=1 ζ

∗
i,J,2

∣∣∣ = Oa.s.
{
(nhs)

−1/2 (log(n))1/2} as n → ∞ by the
Borel–Cantelli lemma. Furthermore, we have

An,ξ ≤ sup
J,l,l ′′

∣∣∣∣∣n
−1

n∑

i=1

ζi,J,1

∣∣∣∣∣ + sup
J,l ′′,l

∣∣∣∣∣n
−1

n∑

i=1

ζ ∗
i,J,2

∣∣∣∣∣ + sup
J,l ′′,l

∣∣E
(
ζi,J,1

)∣∣
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= Ua.s.

(
n−k

)
+ Oa.s.

{
(nhs)

−1/2 (log(n))1/2
}

+ U
(

D−(1+η/4)
n

)

= Oa.s.

{
(nhs)

−1/2 (log(n))1/2
}

.

The properties of Ri j,ε,J,l are obtained similarly. ⊓5

Next define two d × d matrices

+ξ,n(t) = c−1
J (t),n N−2

T

d∑

l ′′=1

n∑

i=1

∞∑

k=1

⎧
⎨

⎩

Ni∑

j=1

BJ (t)(Ti j )φk,l ′′
(
Ti j

)
⎫
⎬

⎭

2

X2
il ′′Xi XT

i ,

+ε,n(t) = c−1
J (t),n N−2

T

n∑

i=1

Ni∑

j=1

B2
J (t)(Ti j )σ

2 (
Ti j

)
Xi XT

i .

Lemma 6 For any t ∈ R, the conditional covariance matrices of ξ̂ (t) and ε̂ (t) on(
Ti j , Ni , Xil

)n,Ni ,d
i=1, j=1,l=1 are

,ξ,n(t) = E
{
ξ̂ (t) ξ̂

T
(t)

∣∣∣
(
Ti j , Ni , Xil

)n,Ni ,d
i=1, j=1,l=1

}
= H−1+ξ,n(t)H−1,

,ε,n(t) = E
{
ε̂ (t) ε̂T (t)

∣∣∣
(
Ti j , Ni , Xil

)n,Ni ,d
i=1, j=1,l=1

}
= H−1+ε,n(t)H−1,

and with ,n(t) defined in (7),

sup
t∈[0,1]

∥∥{
,ξ,n(t) +,ε,n(t)

}
−,n(t)

∥∥
∞ = Oa.s.

{
n−3/2h−3/2

s (log(n))1/2
}

. (33)

Proof Note that

ξ̂ (t) ξ̂
T

(t) = c−1
J (t),nH−1

⎧
⎨

⎩
1

N 2
T

n∑

i=1

Ni∑

j=1

BJ (t)(Ti j )Xil

d∑

l ′′=1

∞∑

k=1

ξik,l ′′φk,l ′′
(
Ti j

)
Xil ′′

×
n∑

i=1

Ni∑

j=1

BJ (t)(Ti j )Xil ′

d∑

l ′′=1

∞∑

k=1

ξik,l ′′φk,l ′′
(
Ti j

)
Xil ′′

⎫
⎬

⎭

d

l,l ′=1

H−1.

Thus,

,ξ,n(t) = E
{
ξ̂ (t) ξ̂

T
(t)

∣∣∣
(
Ti j , Ni , Xil

)n,Ni ,d
i=1, j=1,l=1

}
= c−1

J (t),nH−1

×

⎡

⎢⎣N−2
T

d∑

l ′′=1

n∑

i=1

∞∑

k=1

⎧
⎨

⎩

Ni∑

j=1

BJ (t)(Ti j )φk,l ′′
(
Ti j

)
⎫
⎬

⎭

2

X2
il ′′Xi XT

i

⎤

⎥⎦ H−1

= H−1+ξ,n(t)H−1.
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Similarly, we can derive the conditional covariance matrix of ε̂ (t). Next let

8ik,ξ,J,l,l ′,l ′′ =

⎧
⎨

⎩

Ni∑

j=1

BJ (Ti j )φk,l ′′
(
Ti j

)
⎫
⎬

⎭

2

X2
il ′′ Xil Xil ′ ,

8i j,ε,J,l,l ′ = B2
J (Ti j )σ

2 (
Ti j

)
Xil Xil ′ .

Similar to the proof of Lemma 5,

E

( ∞∑

k=1

8ik,ξ,J,l,l ′,l ′′

)

= c−1
J,nE

(
X2

il ′′ Xil Xil ′
) [

(EN1)

∫

χJ

Gl ′′ (u, u) f (u) du

+E {N1(N1 − 1)}
∫

χJ ×χJ

Gl ′′ (u, v) f (u) f (v) dudv

]
,

E8i j,ε,J,l,l ′ = c−1
J,nE (Xil Xil ′)

∫

χJ

σ 2 (u) f (u) du,

and as n → ∞,

sup
J,l,l ′,l ′′

∣∣∣∣∣n
−1

n∑

i=1

∞∑

k=1

8ik,ξ,J,l,l ′,l ′′ − E

( ∞∑

k=1

8ik,ξ,J,l,l ′,l ′′

)∣∣∣∣∣

= Oa.s.

{
(nhs)

−1/2 (log(n))1/2
}

,

sup
J,l,l ′

∣∣∣∣∣∣
N−1

T

n∑

i=1

Ni∑

j=1

8i j,ε,J,l,l ′ − E8i j,ε,J,l,l ′

∣∣∣∣∣∣
= Oa.s.

{
(nhs)

−1/2 (log(n))1/2
}

.

Furthermore,

sup
J,l,l ′,l ′′

∣∣∣∣∣N
−2
T

n∑

i=1

∞∑

k=1

8ik,ξ,J,l,l ′,l ′′ − n−1 (EN1)
−2 E

( ∞∑

k=1

8ik,ξ,J,l,l ′,l ′′

)∣∣∣∣∣

≤ sup
J,l,l ′,l ′′

n−1 (EN1)
−2

{∣∣∣∣∣

(
nEN1

NT

)2

− 1

∣∣∣∣∣

∣∣∣∣∣n
−1

n∑

i=1

∞∑

k=1

8ik,ξ,J,l,l ′,l ′′

∣∣∣∣∣

+
∣∣∣∣∣n

−1
n∑

i=1

∞∑

k=1

8ik,ξ,J,l,l ′,l ′′ − E

( ∞∑

k=1

8ik,ξ,J,l,l ′,l ′′

)∣∣∣∣∣

}

= Oa.s.

{
n−3/2h−1/2

s (log(n))1/2
}

,
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and

sup
J,l,l ′

∣∣∣∣∣∣
N−2

T

n∑

i=1

Ni∑

j=1

8ik,ε,J,l,l ′ − (nEN1)
−1 E8ik,ε,J,l,l ′

∣∣∣∣∣∣

≤ sup
J,l,l ′

(nEN1)
−1

⎧
⎨

⎩

∣∣∣∣
nEN1

NT
− 1

∣∣∣∣

∣∣∣∣∣∣
N−1

T

n∑

i=1

Ni∑

j=1

8ik,ε,J,l,l ′

∣∣∣∣∣∣

+

∣∣∣∣∣∣
N−1

T

n∑

i=1

Ni∑

j=1

8ik,ε,J,l,l ′ − E8ik,ε,J,l,l ′

∣∣∣∣∣∣

⎫
⎬

⎭

= Oa.s.

{
n−3/2h−1/2

s (log(n))1/2
}

.

Notice that

,n(t) = H−1c−1
J (t),n (nEN1)

−1

×
{

(EN1)
−1 E

(
d∑

l ′′=1

∞∑

k=1

8ik,ξ,J (t),l,l ′,l ′′

)

+ E8i j,ε,J (t),l,l ′

}d

l,l ′=1

H−1,

,ξ,n(t) +,ε,n(t)

= H−1c−1
J (t),n N−2

T

⎧
⎨

⎩

d∑

l ′′=1

n∑

i=1

∞∑

k=1

8ik,ξ,J (t),l,l ′,l ′′ +
n∑

i=1

Ni∑

j=1

8i j,ε,J (t),l,l ′

⎫
⎬

⎭

d

l,l ′=1

H−1,

and (35) implies supt∈[0,1]
∣∣cJ (t),n

∣∣ = O (hs). Hence (33) holds. ⊓5

Given
(
Ti j , Ni , Xil

)n,Ni ,d
i=1, j=1,l=1, let σ 2

ξl ,n(t) and σ 2
εl ,n(t) be the conditional variances

of ξ̂l(t) and ε̂l(t) defined in (38) and (39), respectively. Lemma 6 implies that

sup
t∈[0,1]

∣∣∣σ 2
ξl ,n(t) + σ 2

εl ,n(t) − σ 2
n,ll(t)

∣∣∣ = Oa.s.

{
n−3/2h−3/2

s (log(n))1/2
}

. (34)

Lemma 7 Under Assumptions (A2)–(A6), for l = 1, . . . , d, ηl(t) defined in (40) is
a Gaussian process consisting of (Ns + 1) standard normal variables

{
ηJ,l

}Ns
J=0 such

that ηl(t) = ηJ (t),l for t ∈ [0, 1], and there exists a constant C > 0 such that for large
n, sup0≤J ̸=J ′≤Ns

∣∣EηJ,lηJ ′,l
∣∣ ≤ Chs.

Proof For any fixed l = 1, . . . , d and 0 ≤ J ≤ Ns,L
{
ηJ,l

∣∣∣
(
Ti j , Ni , Xil

)n,Ni ,d
i=1, j=1,l=1

}

= N (0, 1) by Assumption (A2), so L
{
ηJ,l

}
= N (0, 1), for 0 ≤ J ≤ Ns.

Next we derive the upper bound for sup0≤J ̸=J ′≤Ns

∣∣EηJ,lηJ ′,l
∣∣. Let

R̄ξ,J (t),l = N−1
T

d∑

l ′′=1

n∑

i=1

∞∑

k=1

R2
ik,ξ,J (t),l ′′,l , R̄ε,J (t),l = N−1

T

n∑

i=1

Ni∑

j=1

R2
i j,ε,J (t),l ,
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then we have

σξl ,n(t) =
{

c−1
J (t),n N−2

T

d∑

l ′′=1

n∑

i=1

∞∑

k=1

R2
ik,ξ,J (t),l ′′,l

}1/2

=
{

c−1
J (t),n N−1

T R̄ξ,J (t),l

}1/2
,

σεl ,n(t) =

⎧
⎨

⎩c−1
J (t),n N−2

T

n∑

i=1

Ni∑

j=1

R2
i j,ε,J (t),l

⎫
⎬

⎭

1/2

=
{

c−1
J (t),n N−1

T R̄ε,J (t),l

}1/2
.

For J ̸= J ′, by (31) and the definition of BJ ,

Ri j,ε,J,l Ri j,ε,J ′,l =
(

d∑

l ′=1

zll ′ Xil ′

)2

BJ
(
Ti j

)
BJ ′

(
Ti j

)
σ 2 (

Ti j
)

= 0,

along with the conditional independence of ξ̂l(t), ε̂l(t) on
(
Ti j , Ni , Xil

)n,Ni ,d
i=1, j=1,l=1,

and independence of ξik,l , Ti j , Ni , {Xil}d
l=1, 1 ≤ j ≤ Ni , 1 ≤ i ≤ n, k = 1, 2, . . .,

E
(
ηJ,lηJ ′,l

)
= E

[
(R̄ξ,J,l + R̄ε,J,l)

−1/2(R̄ξ,J ′,l + R̄ε,J ′,l)
−1/2

×N−1
T E

{(
d∑

l ′′=1

n∑

i=1

∞∑

k=1

Rik,ξ,J,l ′′,lξik,l ′′

)(
d∑

l ′′=1

n∑

i=1

∞∑

k=1

Rik,ξ,J ′,l ′′,lξik,l ′′

)

+

⎛

⎝
n∑

i=1

Ni∑

j=1

Ri j,ε,J,lεi j

⎞

⎠

⎛

⎝
n∑

i=1

Ni∑

j=1

Ri j,ε,J ′,lεi j

⎞

⎠

∣∣∣∣∣∣

(
Ti j , Ni , Xil

)n,Ni ,d
i=1, j=1,l=1

⎫
⎬

⎭

⎤

⎦

= ECn,J,J ′,l ,

in which

Cn,J,J ′,l = (R̄ξ,J,l + R̄ε,J,l)
−1/2(R̄ξ,J ′,l + R̄ε,J ′,l)

−1/2

×
{

N−1
T

d∑

l ′′=1

n∑

i=1

∞∑

k=1

Rik,ξ,J,l ′′,l Rik,ξ,J ′,l ′′,l

}

.

Note that according to definitions of Rik,ξ,J,l ′′,l , Ri j,ε,J,l , and Lemma 5, for 0 ≤ J
≤ Ns

R̄ξ,J (t),l + R̄ε,J (t),l ≥ R̄ε,J (t),l ≥ E R2
i j,ε,J,l − An,ε ≥ cR − An,ε,

P

⎡

⎣ inf
0≤J ̸=J ′≤Ns

{
(R̄ξ,J,l + R̄ε,J,l)(R̄ξ,J ′,l + R̄ε,J ′,l)

}
≥

(

cR − δ

√
log(n)

nhs

)2⎤

⎦≥1−2n−8.
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Thus for large n, with probability ≥ 1−2n−8, the denominator of Cn,J,J ′,l is uniformly
greater than c2

R/4. On the other hand, we consider the numerator of Cn,J,J ′,l .

E

(

N−1
T

d∑

l ′′=1

n∑

i=1

∞∑

k=1

Rik,ξ,J,l ′′,l Rik,ξ,J ′,l ′′,l

)

=E

⎧
⎨

⎩N−1
T

d∑

l ′′=1

n∑

i=1

(
d∑

l ′=1

zll ′ Xil ′ Xil ′′

)2

×

⎛

⎝
Ni∑

j=1

Ni∑

j ′=1

BJ
(
Ti j

)
BJ ′

(
Ti j ′

)
Gl ′′

(
Ti j , Ti j ′

)
⎞

⎠

⎫
⎬

⎭∼ hs.

Applying Bernstein’s inequality, there exists C0 > 0 such that, for large n,

P

(

sup
0≤J ̸=J ′≤Ns

∣∣∣∣∣N
−1
T

d∑

l ′′=1

n∑

i=1

∞∑

k=1

Rik,ξ,J,l ′′,l Rik,ξ,J ′,l ′′,l

∣∣∣∣∣ ≤ C0hs

)

≥ 1 − 2n−8.

Putting the above together, for large n, C1 = C0
(
c2

R/4
)−1,

P

(

sup
0≤J ̸=J ′≤Ns

∣∣Cn,J,J ′,l
∣∣ ≤ C1hs

)

≥ 1 − 4n−8.

Note that as a continuous random variable, sup0≤J ̸=J ′≤Ns

∣∣Cn,J,J ′,l
∣∣ ∈ [0, 1] , thus

E

(

sup
0≤J ̸=J ′≤Ns

∣∣Cn,J,J ′,l
∣∣
)

=
∫ 1

0
P

(

sup
0≤J ̸=J ′≤Ns

∣∣Cn,J,J ′,l
∣∣ > u

)

du.

For large n, C1hs < 1 and then E
(
sup0≤J ̸=J ′≤Ns,l

∣∣Cn,J,J ′
∣∣) is

∫ C1hs

0
P

{

sup
0≤J ̸=J ′≤Ns,l

∣∣Cn,J,J ′,l
∣∣>u

}

du+
∫ 1

C1hs

P

{

sup
0≤J ̸=J ′≤Ns,l

∣∣Cn,J,J ′,l
∣∣ > u

}

du

≤
∫ C1hs

0
1du +

∫ 1

C1hs

4n−8du ≤ C1hs + 4n−8 ≤ Chs

for some C > 0 and large enough n. The lemma now follows from

sup
0≤J ̸=J ′≤Ns

∣∣E
(
Cn,J,J ′,l

)∣∣ ≤ E

(

sup
0≤J ̸=J ′≤Ns

∣∣Cn,J,J ′,l
∣∣
)

≤ Chs.

This completes the proof of the lemma. ⊓5
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Lemma 8 Under Assumptions (A2)–(A6), for ηl(t), σn,ll(t), l = 1, . . . , d, defined in

(40) and (7), one has
∣∣∣σn,ll(t)−1

{
ξ̂l(t) + ε̂l(t)

}
− ηl(t)

∣∣∣ =
∣∣rn,l(t) − 1

∣∣ |ηl(t)|, where

rn,l(t) = σ−1
n,ll(t)

{
σ 2
ξl ,n(t) + σ 2

εl ,n(t)
}1/2

, and as n → ∞,

sup
t∈[0,1]

{
aNs+1

∣∣rn,l(t) − 1
∣∣} = Oa.s.

{
(nhs)

−1/2 (log (Ns + 1) log(n))1/2
}

.

Proof By Lemma 5, σ 2
n,ll(t) in (7) can be rewritten as

σ 2
n,ll(t) = c−1

J (t),n (nEN1)
−1

{

(EN1)
−1

d∑

l ′′=1

E

( ∞∑

k=1

R2
ik,ξ,J (t),l ′′,l

)

+ ER2
i j,ε,J (t),l

}

∼ n−1h−1
s .

Hence, according to (34) and (10),

sup
t∈[0,1]

{
aNs+1

∣∣rn,l(t) − 1
∣∣} = sup

t∈[0,1]

{
aNs+1

∣∣∣∣σ
−1
n,ll(t)

{
σ 2
ξl ,n(t) + σ 2

εl ,n(t)
}1/2

− 1
∣∣∣∣

}

≤ sup
t∈[0,1]

{
aNs+1

∣∣∣σ−2
n,ll(t)

{
σ 2
ξl ,n(t) + σ 2

εl ,n(t)
}

− 1
∣∣∣
}

= sup
t∈[0,1]

{
aNs+1σ

−2
n,ll(t)

∣∣∣σ 2
ξl ,n(t) + σ 2

εl ,n(t) − σ 2
n,ll(t)

∣∣∣
}

= Oa.s.

{
(nhs)

−1/2 (log (Ns + 1) log(n))1/2
}

.

This completes the proof. ⊓5

A.3 Proofs of Propositions 1– 4

Proof of Proposition 1 By Assumption (A3) on the continuity of functions φk,l(t),
σ 2(t) and f (t) on [0, 1] and Assumption (A4), for any t, u ∈ [0, 1] satisfying
|t − u| ≤ hs,

|Gl(t, t) − Gl(u, u)| ≤
∞∑

k=1

∣∣∣φ2
k,l(t) − φ2

k,l(u)
∣∣∣ ≤ 2

∞∑

k=1

∥∥φk,l
∥∥

∞ ω
(
φk,l , hs

)
≤ Chr

s .

Furthermore,
∣∣∣∣∣

∫

χJ (t)

{Gl(t, t) f (t) − Gl(u, u) f (u)} du

∣∣∣∣∣ ≤ Ch1+r
s = O

(
h1+r

s

)
,

∣∣∣∣∣

∫

χJ (t)×χJ (t)

{
Gl(t, t) f 2(t) − Gl (u, v) f (u) f (v)

}
dudv

∣∣∣∣∣ ≤ Ch2+r
s = O

(
h2+r

s

)
,
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∣∣∣∣∣

∫

χJ (t)

{
σ 2(t) f (t) − σ 2 (u) f (u)

}
du

∣∣∣∣∣ ≤ Ch1+r
s = O

(
h1+r

s

)
.

According to the definition of CJ,n in (6),

CJ,n =
∫

[υJ ,υJ+1]
f (x)dx = f (υJ )hs +

∫

[υJ ,υJ+1]
{ f (x) − f (υJ )}dx, (35)

thus, |CJ,n − f (υJ )hs| ≤ w( f, hs)hs for all J = 0, . . . , Ns. Therefore,

+n(t) =
{

f (t)hs + U
(

h1+r
s

)}−2
(nEN1)

−1 E

[{

σ 2
Y (t, X) f (t) hs + Up

(
h1+r

s

)

+E {N1(N1 − 1)}
EN1

d∑

l=1

X2
l Gl (t, t) f 2 (t) h2

s + Up

(
h2+r

s

)}

XXT

]

= E

[

XXTσ 2
Y (t, X)

{
f (t)hsnEN1

}−1 {
1 + E {N1(N1 − 1)}

EN1

×
∑d

l=1 X2
l Gl (t, t) f (t) hs

σ 2
Y (t, X)

}
{
1 + Up

(
hr

s
)}

]

= +̃n(t) + U
(

n−1hr−1
s

)
,

establishing the proposition. ⊓5

Proof of Proposition 2 The result follows from standard theory of kernel and spline
smoothing, as in Wang and Yang (2009), thus omitted. ⊓5

Proof of Proposition 3 According to the result on page 149 of de Boor (2001), there
exist functions gl ∈ G(−1) [0, 1] that satisfies ∥ml − gl∥∞ = O (hs) for l = 1, . . . , d.
By the definition of m̃l (t) in ( 22),

m̃(t) = (m̃1(t), . . . , m̃d(t))T = c−1/2
J (t),n

(
γ̃J (t),1, . . . , γ̃J (t),d

)T = c−1/2
J (t),n γ̃J (t),

where γ̃J = V̂−1
J

{
N−1

T
∑n

i=1
∑Ni

j=1 BJ (Ti j )Xil
∑d

l ′=1 ml ′(Ti j )Xil ′
}d

l=1
for V̂J

defined in (18).
Let g̃(t) = (g̃1 (t) , . . . , g̃d (t))T, then m̃l (t) − g̃l (t) equals to

c−1/2
J (t),nV̂−1

J (t)

⎡

⎣ 1
NT

n∑

i=1

Ni∑

j=1

BJ (t)(Ti j )Xil

d∑

l ′=1

{
ml ′(Ti j ) − gl ′(Ti j )

}
Xil ′

⎤

⎦
d

l=1

.

Observing that g̃l ≡ gl as gl ∈ G(−1) [0, 1], there is a decomposition similar to (24),
m̃l (t) = m̃l (t) − g̃l (t) + gl (t), l = 1, . . . , d.
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By (35), supt∈[0,1]
∣∣cJ (t),n

∣∣ = O (hs). Next E|BJ (Ti j )| = c−1/2
J,n

∫
bJ (x) f (x)dx ∼

h1/2
s , thus supt∈[0,1]

∣∣BJ (t)(Ti j )
∣∣ = Op(h

1/2
s ). Then it is easy to show that

∥m̃l − g̃l∥∞ = Op

(
h−1/2

s h1/2
s hs

)
= Op (hs). Hence, for l = 1, . . . , d,

∥m̃l − ml∥∞ ≤ ∥m̃l − g̃l∥∞ + ∥ml − gl∥∞ = Op (hs) ,

which completes the proof. ⊓5

Note that BJ (t) ≡ bJ c−1/2
J,n , t ∈ [0, 1], so the terms ξ̃l(t) and ε̃l(t), l = 1, . . . , d,

defined in (23) are

ξ̃(t) =
(
ξ̃1(t), . . . , ξ̃d(t)

)T
= c−1/2

J (t),n

(
α̃J (t),1, . . . , α̃J (t),d

)T = c−1/2
J (t),nα̃ J (t), (36)

ε̃(t) = (ε̃1(t), . . . , ε̃d(t))T = c−1/2
J (t),n

(
θ̃J (t),1, . . . , θ̃J (t),d

)T
= c−1/2

J (t),n θ̃ J (t), (37)

where

α̃J = V̂−1
J

⎧
⎨

⎩N−1
T

n∑

i=1

Ni∑

j=1

BJ (Ti j )Xil

d∑

l ′′=1

∞∑

k=1

ξik,l ′′φk,l ′′
(
Ti j

)
Xil ′′

⎫
⎬

⎭

d

l=1

,

θ̃J = V̂−1
J

⎧
⎨

⎩N−1
T

n∑

i=1

Ni∑

j=1

BJ (Ti j )Xilσ
(
Ti j

)
εi j

⎫
⎬

⎭

d

l=1

.

According to Lemma 3, the inverse of the random matrix V̂J can be approximated
by that of a deterministic matrix H = E(XXT). Substituting V̂J with H in (36) and
(37), we define the random vectors

ξ̂(t) = c−1/2
J (t),nH−1

⎧
⎨

⎩
1

NT

n∑

i=1

Ni∑

j=1

BJ (t)(Ti j )Xil

d∑

l ′′=1

∞∑

k=1

ξik,l ′′φk,l ′′
(
Ti j

)
Xil ′′

⎫
⎬

⎭

d

l=1

,

(38)

ε̂(t) = c−1/2
J (t),nH−1

⎧
⎨

⎩
1

NT

n∑

i=1

Ni∑

j=1

BJ (t)(Ti j )Xilσ
(
Ti j

)
εi j

⎫
⎬

⎭

d

l=1

. (39)

Proof of Proposition 4 Given
(
Ti j , Ni , Xil

)n,Ni ,d
i=1, j=1,l=1, let σ 2

ξl ,n(t) and σ 2
εl ,n(t) be the

conditional variances of ξ̂l(t) and ε̂l(t) defined in ( 38) and (39), respectively. Define

ηl(t) =
{
σ 2
ξl ,n(t) + σ 2

εl ,n(t)
}−1/2 {

ξ̂l(t) + ε̂l(t)
}

. (40)
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By Lemma 7, ηl(t) is a Gaussian process consisting of (Ns + 1) standard normal
variables

{
ηJ,l

}Ns
J=0 such that ηl(t) = ηJ (t),l for t ∈ [0, 1]. Thus, for any τ ∈ R,

P

(

sup
t∈[0,1]

|ηl(t)| ≤ τ/aNs+1+bNs+1

)

= P
(
| max{η0,l , . . . , ηNs,l}| ≤ τ/aNs+1+bNs+1

)
.

By Theorem 1.5.3 in Leadbetter et al. (1983), if ξ0, . . . , ξNs are i.i.d. standard normal
r.v.’s, then for τ ∈ R

P
(
| max{ξ0, . . . , ξNs}| ≤ τ/aNs + bNs) → exp(−2e−τ ) .

Next by Lemma 11.1.2 in Leadbetter et al. (1983),

P
(
| max{η0,l , . . . , ηNs,l}| ≤ τ/aNs+1 + bNs+1

)

−P
(
| max{ξ0, . . . , ξNs}| ≤ τ/aNs+1 + bNs+1

)

≤ 4
2π

∑

0≤J<J ′≤Ns

|EηJ,lηJ ′,l |(1 − |EηJ,lηJ ′,l |2)−1/2 exp
{−(τ/aNs+1 + bNs+1)

2

1 + EηJ,lηJ ′,l

}
.

According to Lemma 7, there exists a constant C > 0 such that sup0≤J ̸=J ′≤Ns∣∣EηJ,lηJ ′,l
∣∣ ≤ Chs for large n. Thus, as n → ∞,

P
(
| max{η0,l , . . . , ηNs,l}| ≤ τ/aNs+1 + bNs+1

)

−P
(
| max{ξ0, . . . , ξNs}| ≤ τ/aNs+1 + bNs+1

)
→ 0.

Therefore, for any τ ∈ R,

lim
n→∞ P

(

sup
t∈[0,1]

|ηl(t)| ≤ τ/aNs+1 + bNs+1

)

= exp
(
−2e−τ ) . (41)

By Lemma 8, we have

aNs+1

(

sup
t∈[0,1]

σ−1
n,ll(t)

∣∣∣ξ̂l(t) + ε̂l(t)
∣∣∣ − sup

t∈[0,1]
|ηl(t)|

)

= Op

{
log (Ns + 1) (nhs)

−1/2 (log(n))1/2
}

= Op (1) .
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On the other hand, Lemma 4 ensures that

aNs+1

(

sup
t∈[0,1]

σ−1
n,ll(t)

∣∣∣ξ̃l(t) + ε̃l(t)
∣∣∣ − sup

t∈[0,1]
σ−1

n,ll(t)
∣∣∣ξ̂l(t) + ε̂l(t)

∣∣∣

)

= Op

{
(log (Ns + 1) nhs)

1/2n−1h−3/2
s log(n)

}

= Op

{
n−1/2h−1

s (log (Ns + 1))1/2 log(n)
}

= Op (1) .

Then the proof follows from (41) and Slutsky’s Theorem. ⊓5

A.4 Proof of Theorem 1

For any vector a = (a1, . . . , ad)T ∈ Rd , E
[∑d

l=1 al

{
ξ̂l (t) + ε̂l (t)

}]
= 0. Using the

conditional independence of ξ̂l(t), ε̂l(t) on
(
Ti j , Ni , Xil

)n,Ni ,d
i=1, j=1,l=1, we have

Var

[
d∑

l=1

al

{
ξ̂l (t) + ε̂l (t)

}∣∣∣∣∣
(
Ti j , Ni , Xil

)Ni ,n,d
j=1,i=1,l=1

]

=
d∑

l=1

d∑

l ′=1

alal ′E
{
ξ̂l (t) ξ̂l ′ (t) + ε̂l (t) ε̂l ′ (t)

∣∣∣
(
Ti j , Ni , Xil

)Ni ,n,d
j=1,i=1,l=1

}

= aT {
,ξ,n(t) +,ε,n(t)

}
a .

Meanwhile, Assumption (A2) entails that for any t ∈ [0, 1], given(
Ti j , Ni , Xil

)Ni ,n,d
j=1,i=1,l=1, the conditional distribution of

[
aT {

,ξ,n(t)+,ε,n(t)
}

a
]−1/2

∑d
l=1 al

{
ξ̂l (t) + ε̂l (t)

}
is a standard normal distribution. So we have

[
aT {

,ξ,n(t) +,ε,n(t)
}

a
]−1/2 d∑

l=1

al

{
ξ̂l (t) + ε̂l (t)

}
∼ N (0, 1) .

Using (33), we have as n → ∞

[
aT,n(t)a

]−1/2 d∑

l=1

al

{
ξ̂l (t) + ε̂l (t)

} L−→ N (0, 1) .

Therefore,
[
aT,n(t)a

]−1/2 ∑d
l=1 al

{
m̂l (t) − ml (t)

} L−→ N (0, 1) follows from
(24), Proposition 3, Lemma 4 and Slutsky’s Theorem. Applying Cramér–Wold’s

device, we obtain,−1/2
n (t)

{
m̂l (t) − ml (t)

}d
l=1

L−→ N (0, Id×d), and consequently,

σ−1
n,ll(t)

{
m̂l(t) − ml(t)

} L−→ N (0, 1) for any t ∈ [0, 1] and l = 1, . . . , d. ⊓5
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A.5 Proof of Theorem 2

By Proposition 3, ∥m̃l − ml∥∞ = Op (hs) , l = 1, . . . , d, so

aNs+1

{

sup
t∈[0,1]

σ−1
n,ll(t) |m̃l(t) − ml(t)|

}

=Op

{
(nhs)

1/2 (log (Ns+1))1/2hs

}
=Op (1) .

According to (24), it is easy to show that

aNs+1

{

sup
t∈[0,1]

σ−1
n,ll(t)

∣∣m̂l(t) − ml(t)
∣∣ − sup

t∈[0,1]
σ−1

n,ll(t)
∣∣∣ξ̃l(t) + ε̃l(t)

∣∣∣

}

= Op (1) .

Meanwhile, Proposition 4 entails that, for any τ ∈ R,

lim
n→∞ P

{

aNs+1

(

sup
t∈[0,1]

σ−1
n,ll(t)

∣∣∣ξ̃l(t) + ε̃l(t)
∣∣∣ − bNs+1

)

≤ τ

}

= exp
(
−2e−τ ) .

Thus Slutsky’s Theorem implies that

lim
n→∞ P

{

aNs+1

(

sup
t∈[0,1]

σ−1
n,ll(t)

∣∣m̂l(t) − ml(t)
∣∣ − bNs+1

)

≤ τ

}

= exp
(
−2e−τ ) .

Let τ = − log
{
− 1

2 log (1 − α)
}
, the definition of QNs+1 (α) in (9) entails

lim
n→∞ P

{
ml(t) ∈ m̂l(t) ± σn,ll(t)QNs+1 (α) ,∀t ∈ [0, 1]

}

= lim
n→∞ P

{

sup
t∈[0,1]

σ−1
n,ll(t)

∣∣m̂l(t) − ml(t)
∣∣ ≤ QNs+1 (α)

}

= 1 − α.

Theorem 2 is proved. ⊓5
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Using a dynamic semiparametric factor model (DSFM) we investigate the term structure of interest rates.
The proposed methodology is applied to monthly interest rates for four southern European countries:
Greece, Italy, Portugal and Spain from the introduction of the Euro to the recent European sovereign-debt
crisis. Analyzing this extraordinary period, we compare our approach with the standard market method
– dynamic Nelson–Siegel model. Our findings show that two nonparametric factors capture the spatial
structure of the yield curve for each of the bond markets separately. We attributed both factors to the slope
of the yield curve. For panel term structure data, three nonparametric factors are necessary to explain 95%
variation. The estimated factor loadings are unit root processes and reveal high persistency. In comparison
with the benchmarkmodel, theDSFM technique shows superior short-term forecasting in times of financial
distress.

Keywords: yield curve; term structure of interests rates; semiparametric model; factor structure;
prediction; European sovereign debt crisis

JEL Classification: G12; G17; C5; C4

1. Introduction

Modeling and forecasting the term structure of interest rates are important in financial economics.
Pricing financial assets and their derivatives, allocating portfolios, managing financial risk, con-
ducting monetary policy are the essential challenges which involve interest rates and dynamic
evolution of the yield curve. For that reason researchers have developed a large toolbox of models
and techniques. The most popular approaches are equilibrium and no-arbitrage models. The no-
arbitrage models follow the Black–Scholes framework and ensure correct pricing of derivatives;
the main contributions for no-arbitrage models are Hull and White (1990) and Heath, Jarrow,
and Morton (1992). The equilibrium framework provides exact fits to the observed term structure
(Longstaff and Schwartz 1992). However both approaches do not provide a good predictive per-
formance, since forecasting is not the main goal of these approaches. To this end, Diebold and Li
(2006) proposed the Nelson–Siegel (NS) curve with time varying parameters. The dynamic NS
model has gained popularity among financial market practitioners and central banks. This rela-
tively new dynamic factor model provides a remarkably good fit to the term structure of interest
rates, where the given factors of the exponential form have a standard interpretation of level,
slope and curvature. Parametric structure of dynamic NS model leads to easy estimation and

∗Corresponding author. Email: majerpio@cms.hu-berlin.de

© 2014 Taylor & Francis
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2 W.K. Härdle and P. Majer

displays empirical tractability. In the same spirit generalizations of the NS approach were intro-
duced by Svensson (1995) and Christensen, Diebold, and Rudebusch (2009). Dynamic factor
models for yield curve modeling are reported to be extremely useful in practice (e.g. Federal
Reserved Board Gürkaynak, Sack, and Wright 2010; European Central Bank Coroneo, Nyhlon,
and Vidova-Koleva 2008).
In this paper we go beyond the NS structure by proposing a dynamic semiparametric factor

model (DSFM). The paper’s major idea is to capture the shape of the yield curve by a lower-
dimensional factor representation. The latent factors are estimated non-parametrically by tensor
B-splines avoiding specification issues (e.g. exponential form imposed in the NS model). The
choice of the B-splines series expansion is motivated by Vasicek and Fong (1982), who first
implemented it in a term structure model. Since that time B-splines series has attracted much
research attention and serves as flexible yield curve modeling approach (Krivobokova, Kauer-
mann, and Archontakis 2006; Bowsher and Meeks 2008). Similarly to parametric NS models
and functional principal component analysis (FPCA, Ramsay and Silverman 1997), yield curve
is represented as a linear combination of latent factors. The evolution in time is driven by time-
varying factor loadings (in FPCAdefined as scores), which aremodeled parametrically employing
a multivariate autoregressive approach. The factor decomposition is obtained by the DSFM also
analyzed in Fengler, Härdle, andMammen (2007), Brüggemann et al.(2008) and Park et al. (2009).
Accordingly, the term structure of interests rates is modeled in terms of underlying latent factors,
which are defined on the time to maturity grid space and may depend on additional explanatory
variables. The inclusion of additional regressors is motivated by Taylor’s rule (Taylor 1992) and
was also picked up by Diebold, Rudebusch, and Aruoba (2006), Ang and Piazzesi (2003). The
main idea is to incorporate the macroeconomic activity as a determinant of the yield curve. The
connection between yield curve dynamics and contemporaneous macroeconomic fundamentals is
investigated in terms of the extracted loadings.We analyze the effect of the harmonized consumer
price index (INF), the manufacturing capacity utilization (CU), the unemployment rate (EMP),
industrial production (IP) and the real gross domestic product (!GDP). We evaluate the short-
and long-run prediction power of the underlying macroeconomic fundamentals for the extracted
time series.
We focus on the recent European sovereign-debt crisis.The last fewyears have challenged all the

standardmodels and have revealed an urge for alternative statistical tools.Our attention is drawnby
the bond markets of southern European countries, the epicenter of the recent European sovereign-
debt crisis. The DSFM approach is first applied as a domestic term structure model for each yield
curve separately. Yield curve factor models differ with respect to the number of latent factors.
Increasing the number of factors leads to better in-sample fit but might weaken the forecasting per-
formance and parsimony of the model. The NSmodel assumes three factors whereas its extension
proposed by Svensson (1995) consists of four factors. To this end we investigate the number of
factors required tomodel the yield curve reasonablywell, particularly in times of financial turmoil.
We select the optimal complexity of themodel by statistical criteria. Flexibility of ourmodel allows
us to investigate the spatial structure of factors in dependence of additional explanatory variables.
In the next step we extend our analysis to the panel data. Modeling the joint term structure of
interest rates is a task of extreme importance nowadays, when financial markets have become
increasingly globalized. Moreover all the countries share the same currency and monetary policy.
They are members of one economic bloc and often grouped together as Euro-zone peripheral
states. The joint yield curves are modeled by the panel DSFM (PDSFM) technique, presented in
Appendix A.1.
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The European Journal of Finance 3

This paper is structured as follows: in Section 2 we describe the data set. The DSFM and the
dynamic NS model are introduced in Section 3. Empirical results and comparison of forecasting
performance are provided in Sections 4, 5 and 6. In Section 7 we summarize the main contribution
of the paper.

2. Data

In this section, we provide summary statistics on the term structure data. Our primary data sample
consists of the monthly end-of-day government zero-coupon bond prices of Greece (GR), Italy
(IT), Portugal (PT) and Spain (ES). We focus our analysis on the south-European states starting
from the introduction of the European currency, the Euro. Our data set covers the period from
January 1999 through to March 2012. Specifically, we consider the interest rates with 11 different
times to maturity Xt,j ranging from 1 year to 15 years. In Figure 1 we provide a time series plots
of Italian and Spanish zero-coupon yield curves. The summary statistics for all zero-curves are
shown inTablesA2 andA3. The interest rate data set consists of 160 observations for each country.
To investigate the relation between term structure and macroeconomic activity we study the

harmonized consumer price index (INF), CU, unemployment rate (EMP), IP and the real GDP
(!GDP), observed monthly. This data are from Ecowin.

3. Factor models

Factor models describe fluctuations over time in high-dimensional objects by a small set of
factors. For analytical tractability and asymptotic properties a sub-additive structure of the model
is assumed. In this framework factors are characterized up to scale and rotation transformations
and contain the most underlying information. For instance, Yt = (Yt,1,Yt,2, . . . ,Yt,J) ∈ RJ can be
represented as an (orthogonal) L-factor model

Yt,j = m0,j + Zt,1m1,j + · · · + ZL,1mL,j + εt,j, (1)

whereml,j are common factors, Zt,l are factor loadings and εt,j are specific errors which explain the
residual part. The time evolution of Yt is represented by Zt , t = 1, . . . ,T . The factors ml may be
represented as a function of explanatory variable Xt,j. In the context of yield curve modeling, Yt,j,
j = 1, . . . , J , denotes the observed term structure of interests rates observed on day t = 1, . . . ,T .
Xt,j denotes the maturity time of the rate Yt,j. Factor models have gained popularity in the 1990s
and the prominent example is the dynamic NS model.

0
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Figure 1. Zero-curves of Italy (left panel) and Spain (right panel) from 1 January 1999 to 31 March 2012.
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4 W.K. Härdle and P. Majer

3.1 Dynamic NS model

The NS model fits the yield curve with

Yt,j = β0 + β1

{
1− exp(−λXt,j)

λXt,j

}
+ β2

{
1− exp(−λXt,j)

λXt,j
− exp(−λXt,j)

}
+ εt,j, (2)

whereXt,j denotes the time tomaturity and β0,β1,β2 and λ are parameters. Parsimonious structure
and an ability to provide a good fit to the cross-section of yields at a given point in time is a key
reason for its popularity. To understand the evolution of the interest rates over time, a dynamic
representation was proposed by Diebold and Li (2006), replacing the above parameters with
time-varying ones

Yt,j = Lt + St
{
1− exp(−λXt,j)

λXt,j

}
+ Ct

{
1− exp(−λXt,j)

λXt,j
− exp(−λXt,j)

}
+ εt,j (3)

= Z⊤
t m(Xt,j) + εt,j, (4)

where Zt = (Lt , St ,Ct)⊤ are the loadings, m(·) = (1, (1− exp(−λ(·)))/λ(·), (1− exp(−λ(·)))/
λ(·) − exp(−λ(·))) common factors and Xt,j – time to maturity. Note that the decay factor λt = λ

is tied down to a constant, since time variability of λt has a negligible impact on the model fit and
forecasting performance. The NS factors, with country-specific λ, stemming from our estimation
results, are plotted in Figures 4 and 5. The yield latent factors Lt , St and Ct correspond to a level,
slope and curvature of the yield curve, respectively. A first-order vector autoregressive (VAR)
process models the time evolution of a vector of latent factor loadings Zt

Zt = µ + AZt−1 + ηt , (5)

whereA is (3× 3) parameter matrix,µ denotes a (3× 1) parameter vector and the (3× 1) vector
ηt ∼ N(0,H), H is the conditional variance which is assumed to be diagonal and constant over
time. The estimation of the NSmodel follows a two-step procedure. Fixing the λ to predetermined
value, the latent factor loadings Zt are estimated separately at each time point using ordinary least
squares (OLS). Then, in a second step, the estimated factors can be used in a autoregressive (AR)
models as represented in Equation (5).

3.2 Dynamic semiparametric factor model

The DSFM generalizes the factor models given in Equations (1) and (4) to functions of the
covariates Xt,j. Therefore the model takes the form

Yt,j =
L∑

l=0
Zt,lml(Xt,j) + εt,j. (6)

We assume that the processes Xt,j, εt,j and Zt are independent. The number of underlying factors
L should be smaller than the number of grid (maturity) points. The functions ml(·) are nonpara-
metric, while the factors Zt,l represent the parametric part. Following Vasicek and Fong (1982),
Krivobokova, Kauermann, and Archontakis 2006 and Lin (2002), we select a tensor B-spline
basis to approximate ml(·), l = 0, . . . ,L. More formally, the factors ml(·) are represented by
Aψ(·), where A = (al,k) ∈ R(L+1)K denotes a coefficient matrix and ψ(·) = (ψ1, . . . ,ψK)⊤ is a
vector of selected basis functions. K stands for the number of knots of the tensor B-splines func-
tions. The number of knots K corresponds to a bandwidth parameter if compared to the kernel
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The European Journal of Finance 5

Table 1. Explained variation in percent of the model with different numbers of factors L for the DSFM.

L = 1 L = 2 L = 3 L = 4 L = 5 L = 6

Separated DSFM
GR 0.9349 0.9872 0.9985 0.9990 0.9995 0.9999
IT 0.7544 0.9899 0.9952 0.9968 0.9994 0.9995
PT 0.7936 0.9763 0.9961 0.9987 0.9990 0.9999
ES 0.8329 0.9874 0.9934 0.9963 0.9978 0.9983

smoothing technique of Fengler, Härdle, and Mammen (2007). Moreover, the functions ml(·) are
orthonormalized (∥ml(·)∥ = 1 and ⟨ml,mk⟩ = 0 for l ̸= k) and identifiable up to scale and rotation
transformation.
The model (6) can be rewritten in terms of B-splines basis and coefficient matrix A as follows:

L∑

l=0
Zt,lml(Xt,j) =

L∑

l=0
Zt,l

K∑

k=1
al,kψk(Xt,j) = Z⊤

t Aψ(Xt,j). (7)

Estimation of B-splines coefficient matrix A and low-dimensional factor loadings Zt is achieved
via least-squares method. Thus, the estimates Â and Ẑt are given by the following formula:

(Ẑt , Â) = arg min
Zt ,A

T∑

t=1

J∑

j=1
{Yt,j − Z⊤

t Aψ(Xt,j)}2. (8)

The non-linear optimization problem stated inEquation (8)might be solved by aNewton–Raphson
iterative algorithm. Some weak conditions on the initial choice of {vec(A(0)),Z (0)

t } ensure the
convergence to the true unknown parameters matrix A and factor loadings Zt . It was proved by
Park et al. (2009) that the differences between the estimates Ẑt and the true, unobserved loadings
Zt can be asymptotically neglected. This fact allows us to model the dynamics of factor loadings
based on estimated time series and therefore study the dynamics of the main, high-dimensional
object of interest (Table 1).

3.3 DSFM L selection

An important parameter in our model is the number of factors (and corresponding factor loadings)
L. The choice of L here is based on the explained variance by factors

EV(L) = 1−
∑T

t=1
∑J

j=1{Yt,j −
∑L

l=0 Zt,lml(Xt,j)}2
∑T

t=1
∑J

j=1{Yt,j − Ȳ}2
. (9)

In the PDSFM the number of factors is based on the model’s explained variance EV which is
an average of EV of all analyzed countries. We evaluate the model’s goodness-of-fit by the root
mean squared error (RMSE) criterion

RMSE =

√√√√√ 1
TJ

T∑

t=1

J∑

j=1

{

Yt,j −
L∑

l=0
Zt,lml(Xt,j)

}2
. (10)
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6 W.K. Härdle and P. Majer

4. Estimation results

To model the yield curve dynamics we implement both DSFM as a domestic model and the
panel version PDSFM applied to all states simultaneously. We model first the term structure as a
function of time to maturity solely. Second, following Diebold, Rudebusch, and Aruoba (2006),
Ang and Piazzesi (2003) and Hautsch and Ou (2012) we include macroeconomic variables such
as the inflation rate and the IP, which may have an impact on the term structure.

4.1 Domestic yield curve modeling

In a first step, the DSFM was calibrated to the data set comprising the entire period for the term
structures domestically (for Greece the period was truncated to 30 June 2011 due to extraordinary
high observations). The curve dynamics are modeled in dependence of one regressor: the maturity
time. As described in Section 2 the members of the yield curve are fixed across time. Thus, we
specify the knots as the time to maturity grid and the order of tensor B-splines is set to 1. The
results of the selection of factors L are reported in Table 1. The higher the number of factors, the
better is the general fit, however at the cost of parsimony and robustness of the model. In order
to choose the optimal L one proceeds similarly to principal component analysis by selecting the
number of factors according to their contribution to the total variation. For domestically modeled
curves a two-factor DSFM specification is sufficient (Figures 2 and 3).
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Figure 2. The term structure of interest rates (dotted black) observed on 20100331, DSFM (blue) and the
NS fitted data. We use a DSFM specification with two factors.

D
ow

nl
oa

de
d 

by
 [H

um
bo

ld
t-U

ni
ve

rs
it&

au
m

l;t
 z

u 
Be

rli
n 

U
ni

ve
rs

it&
au

m
l;t

sb
ib

lio
th

ek
] a

t 0
1:

06
 0

8 
Fe

br
ua

ry
 2

01
6 



The European Journal of Finance 7

0 5 10 15

3

4

5

6

Time to Maturity

GR

0 5 10 15

3

4

5

6

Time to Maturity

IT

0 5 10 15

3

4

5

6

Time to Maturity

PT

0 5 10 15

3

4

5

6

Time to Maturity

ES

Figure 3. Estimated constant factors M̂0 of the yield curve depending on time to maturity (years) using the
domestic DSFM approach with two factors.

4.1.1 Estimated factors
Figure 4 depicts the estimated first factor. The first factor represents the slope similar to Diebold
and Li (2006). We find out that the corresponding NS slope factor is strikingly different. The
shape of the DSFM slope is remarkably similar across countries. The slope is steeper though
for short maturities (especially for Greece), more weight is attributed to shorter maturities (1–3
years). We attribute it to the economic stagnation that depressed the short rates relative to the
benchmark 10 year rate (although overall rates are high). The first factor for Greece is convex
and increases slightly for the long maturities. For the remaining countries the slopes are almost
identical. The second factor m̂2 across countries is shown in Figure 5. We observe that they are
different from the NS factors, decrease with the maturity, and exhibit a country-specific peak. The
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Figure 4. Estimated first factor of the yield curve depending on time to maturity (years) using the domestic
DSFM approach (blue line) with two factors and Nelson–Sigel slope factor (red line) with λGR = 0.049,
λIT = 0.127, λPT = 0.109 and λES = 0.174, respectively.
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Figure 5. Estimated second factor of the yield curve depending on time tomaturity (years) using the domestic
DSFM approach (blue line) with two factors and Nelson–Sigel curvature factor (red line) with λGR = 0.049,
λIT = 0.127, λPT = 0.109 and λES = 0.174.
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8 W.K. Härdle and P. Majer

DSFM second factor decreases, but for Portugal it increases with the time to maturity. We also
attribute the second factor to the slope of the yield curve.
These findings can be summarized as follows.The nonparametric estimates are similar to theNS

slope factor. There is no curvature factor present for the southern European yield curve dynamics.
Their term structure of interest rates and extracted model factors are similar, just as characteristics
of their economies are. The impact of the crisis is reflected by the steepness of the first DSFM
factor, especially for severely struck Greece.

4.1.2 Factor loadings and yield curve dynamics
Figure 6 displays the extracted time series Ẑt for the entire calibration period.The series shows high
persistency and unit root I(1) behavior. This observation is in line with the general dynamics of
the yield curve which does not change substantially over a small (monthly) time period. In Table 2
we report the stationarity and unit root tests on the first differences of extracted yield curve factor
loadings.!Ẑt

def= Ẑt − Ẑt−1 are (weak) stationary processes (H0 is not rejected at significance level
α = 5%) for all analyzed countries. Based on those diagnostics we consider VAR as a suitable
model for dynamics of the extracted!Ẑt . The order p of VAR(p) is determined by Schwarz (SC)
and Hannan-Quinn (HQ) information criteria (see Table A4). The selected specification will be
kept for the reminder of the analysis.

4.1.3 Yield curve modeling in dependence of further explanatory variables
Dynamic term structure models assume that the time evolution of the yield curve is driven by a
(finite) number of latent state variables. A large body of literature studies the economic cause of
yield curve factors, see Diebold, Piazzesi, and Rudebusch (2005) and Hautsch and Ou (2012).

1999 2006 2012
−5

0

5

10

1515

−5

0

5

10

1515

−5

0

5

10

1515

−5

0

5

10

1515
GR

1999 2006 2012

IT

1999 2006 2012

PT

1999 2006 2012

ES

Figure 6. Estimated factor loadings Ẑt of the yield curve over whole sample using the domestic DSFM with
two factors; blue line corresponds to Ẑt,1, green to Ẑt,2.

Table 2. KPSS, ADF for estimated first differences of factor loadings !Ẑt,1 (upper
panel) and !Ẑt,2 (lower panel).

GR IT PT ES

KPSS 0.427 0.060 0.075 0.062
ADF −2.492 −10.901 −15.454 −12.334
KPSS 0.209 0.068 0.068 0.072
ADF −3.6425 −13.282 −11.502 −12.323

Note: Kwiatkowski–Phillips–Schmidt–Shin (KPSS): H0: weak stationarity, critical values at
0.10, 0.05, 0.01 are 0.119, 0.146 and 0.216; augmented Dickey–Fuller (ADF): H0: unit root,
critical values at 0.01, 0.05, 0.10 are −1.61, −1.94 and −2.58.
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The European Journal of Finance 9

The explicit relation between term structure and fundamental macroeconomic variables led to
the Taylor rule (Taylor 1992; Ang and Piazzesi 2003). This approach provides a convenient
way to relate yield curve dynamics with macro data. There are however residual variations in
the term structure that are not captured and explained via the inclusion of macro variables. To
this end we exploit the DSFM and implement additional regressors. The B-splines knots are an
equally spaced grid (six knots). The lowest (highest) knot equals a minimum (maximum) of the
explanatory variable, corrected by 2% and the quadratic B-splines basis is used. The results show
stable behavior regarding the choice of the knots, see TableA5. In Figure 7 we show the estimated
first factor m̂1((), (t

def= (Xt,j, INFt) for domestic DSFM with harmonized consumer price index
(INF) as a regressor. First, the structure of the factor does not differ much across countries, the
impact of the inflation rate is similar for all states. Second, the highest impact is observed on the
short rather than on the long rates with a peak at inflation rate around 2%. This central peakmay be
attributed to the target inflation rate of the central bank. For all countries we observe the decaying
impact of the inflation rate for higher maturities; what is in line with expectations. Though the
term structure and the harmonized consumer price index are interconnected, it does not improve
the model’s goodness-of-fit (see Table 3) due to complicity and computational limitations.
Figure 8 depicts the first factor m̂1((),(t

def= (Xt,j, IPt) for domestic DSFMas a function of time
to maturity and IP. We can summarize that the estimates does not differ much across countries
and the changes in the production levels mainly affect the shorter maturities. As expected the
impact of the current IP is decaying with time to maturity, slowly for Italy, Portugal and Spain
and more rapidly for Greece. We observe that for Greece this dependence on long-term rates is
almost negligible. Similarly to the results on the inflation as the additional regressor, the model’s
goodness-of-fit is not improved, see Table 3.
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Figure 7. Estimated factors with respect to maturity and inflation rate using domestic DSFM approach with
two factors.
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10 W.K. Härdle and P. Majer

Table 3. RMSEderived byNSmodel (NS), domestic DSFM,DSFMwith inflation
rate in dependence on time to maturity.

GR IT PT ES

NS 0.5600 0.0685 0.2009 0.0636
DSFM 0.2886 0.0872 0.4195 0.0695
DSFM(INF) 0.6813 0.1550 0.5520 0.2110
DSFM(IP) 0.6361 0.5141 0.7630 0.2423
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Figure 8. Estimated factors with respect to maturity and IP using domestic DSFM approach with two factors.

Table 3 presents the RMSE calculated for domestic, PDSFM approach and the NS model. One
observes that the in-sample fit of the domestic DSFM and the dynamic NS model are remarkably
similar. This stays in favor of the domestic DSFM approach, which captures the yield curve
dynamics with just two dynamic factors. Second, the PDSFM (presented in Appendix A.1) fit is
weaker. Thus, we concentrate on the domestic DSFM technique.

5. Factors and macroeconomic fundamentals

In this section we examine the relationship between the factor loadings and the macroeconomic
environment. For simplicity of presentation we focus on Italy, which is the third largest bond mar-
ket in the world and the largest economy among the countries considered. Our analysis is based
on fivemacroeconomic variables: the harmonized consumer price index (INF), the manufacturing
CU, the unemployment rate (EMP), IP and the real GDP (!GDP). The variable selection is moti-
vated by Diebold, Rudebusch, andAruoba (2006) and Hautsch and Ou (2012). The analysis of the
contemporaneous correlation between extracted yield curve factor loadings and macroeconomic
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variables (observed monthly) is done by the regression

!Ẑt = C + β1INFt + β2CUt + β3EMPt + β4IPt + β5!GDPt + εt . (11)

The results reported in Table 4 show that the differentiated estimated yield curve first factor
loading is driven by the macroeconomic. The explanatory power of macroeconomic variables on
the second factor reaches just 6%. We have to note here that both factor loadings and macro-
economic variables are relatively persistent what might cause spurious correlation effects. Thus,
before analysis, the time series are detrended. Moreover, as expected, the Chow test (Chow 1960)
for the regressionmodels (for!Ẑt,1 and!Ẑt,2) before and after the bankruptcy of LehmanBrothers
confirmed the structural break in the data at significance level α = 0.05. The first factor is mainly
driven by the inflation rate, real GDP and the IP (at a significance level α = 0.05). The positive
signs of the INF and !GDP coefficients are economically plausible and in line with the theory.
For the second factor, due to the obvious structural break within the analyzed period, the shape
of the yield curve cannot be explained by the macroeconomic fundamentals.
To investigate the predictability of the DSFMyield factors and their dynamic interdependencies

between macroeconomic activity measures, we estimate a VAR(1) model of the yield factors and
macroeconomic fundamentals

Ft = µ + AFt−1 + εt , (12)

where Ft
def= (!Ẑt,1,!Ẑt,2, INFt , CUt , EMPt , IPt ,!GDPt). The estimation results are shown in

Table 5. We can summarize that the factor loadings primarily depend on their own lags and on
those of other factors. Second, it is shown that factor loadings are not predictable, based on
macroeconomic variables. The coefficients in the estimated VAR(1) matrices are significantly
different than 0 for diagonal elements. We analyze the long-term relations between the yield
curve factor loadings and macroeconomic variables by prediction error variance decomposition
implied by theVAR estimates.We can summarize the following results. First, in the long perspec-
tive, prediction error variances of factor loadings Ẑt are not explainable by the macroeconomic
fundamentals. The contribution is only up to 10%, see Figure A4. Hence, in line with Diebold,
Rudebusch, and Aruoba (2006) we report that yield curve factor loadings are not predicable by
the given macroeconomic data set.

6. Forecasting

6.1 Setup

The aim of this section of the paper is to analyze the model’s forecasting performance, especially
in comparison to the dynamic NS model as a natural competitor. We focus our analysis on the

Table 4. Linear regressions of monthly changes factor loadings Ẑt (separate approach) on (normalized)
changes of the harmonized consumer price index (INF), log changes of the CU, changes of unemployment
rate (EMP), changes of IP and the monthly changes in real log GDP (!GDP).

CONST INF CU EMP IP !GDP R2

!Ẑ ITt,1 −0.018 0.8353∗ −0.018 −0.147 −0.621∗ 0.732∗ 0.16

!Ẑ ITt,2 0.002 0.035 0.854 0.004 −0.202∗ 0.029 0.06

∗Significant at α = 0.05.
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12 W.K. Härdle and P. Majer

Table 5. VAR(1) estimates of monthly IT data set: factor loadings Ẑt (domestic approach), (normalized)
changes of the harmonized consumer price index (INF), log changes of the CU, changes of unemployment
rate (EMP), changes of IP and the monthly changes in real GDP (!GDP).

Zt,1 Zt,2 INFt CUt EMPt IPt !GDPt

Zt−1,1 0.158 −0.171 0.243 −0.021 −0.014 −0.154 0.179
Zt−1,2 0.161 −0.076 −0.049 −0.137 −0.002 −0.242 0.034
INFt−1 0.029 −0.107 0.306 −0.034 0.072 0.130 0.170
CUt−1 0.068 −0.039 0.105 0.774 −0.001 0.036 0.020
EMPt−1 −0.023 0.099 0.011 −0.029 −0.205 0.087 −0.315
IPt−1 −0.070 0.030 0.019 0.036 −0.067 −0.383 0.297
!GDPt−1 −0.0323 0.123 −0.003 0.0927 −0.009 0.037 0.810

Note: Sample period January 1999–March 2012.

Italian and Spanish term structure data, the countries that kept access to the financial markets and
were not bailed out. We undertake a short-term forecasting exercise in deriving term structure of
interest rates monthly, in times of financial distress July 2007–March 2012 and January 2003–
June 2007. The models are re-estimated every month exploiting the past information over a whole
analyzed period. In accordance with our in-sample analysis reported in the previous section, the
domestic DSFM approach with two factors without additional explanatory variables is applied.
Second, the specified VAR(p) model for domestic term structure is used to forecast. As reported
in Table A4 the order p = 1 is chosen for both, Italy and Spain. A natural benchmark is the
dynamic NS model, where the factor loadings are modeled by AR(1) processes (addressing high
persistency and random-walk behavior, see Diebold and Li (2006); Diebold, Rudebusch, and
Aruoba (2006)). The forecasting horizon is up to 12 months (observations) ahead. The prediction
quality is measured using the RMSPE given by

RMSPE =

√√√√√ 1
hJ

h∑

t=1

J∑

j=1

{

Yt,j −
L∑

l=0
Ẑt,lm̂l(Xt,j)

}2
. (13)

The prediction performance regarding particular maturities j is compared using the following
formula:

RMSPE(j) =

√√√√1
h

h∑

t=1

{

Yt,j −
L∑

l=0
Ẑt,lm̂l(Xt,j)

}2
. (14)

6.2 Forecasting results

The forecasting measures are displayed in Figures 9 andA5 for both the domestic DSFM and the
dynamic NS model and show that the domestic DSFM does better than the dynamic NS model
in a short-term forecasting exercise in times of financial distress. In the long horizon though, the
dynamic NSmodel is a serious competitor.As expected, the term structure of interest rates cannot
be well predicted based on its past observations in the long horizon. Second, the forecasting
performance is better for short and long maturities in the crisis period. The non-parametrically
estimated factors and parsimony of the model pay off, especially in times of financial distress.We
refer here to the famous rule introduced by Zellner, Keuzenkamp, and McAleer (2002): ‘Keep
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Figure 9. Root mean squared prediction error (RMSPE) derived by the domestic DSFM approach with two
factors (blue) and by the dynamic NS for all forecasting horizons (in months) for Italy (left)and Spain (right);
forecasting periods: 2007–2012 (upper panel) and 2003–2007 (lower panel).

it Sophisticatedly Simple’ (KISS). The inferior forecasting performance of dynamic NS model
for long maturities might be explained by its general difficulty to fit for longer maturities. In the
non-crisis period 2003–2007 we report comparable performance in the short and long forecasting
horizon. The DSFM approach does not improve prediction power and both models can be used
equivalently.
Table 6 shows theRMSPE averaged over short-term forecasting periods for the domesticDSFM

approach and the dynamic NS model in the financial distress. Summarizing one concludes that
the overall prediction performance of the DSFM approach is improved compared to the market
benchmark for the crisis period 2007–2012. Nevertheless, both model perform comparably in
low-volatile market conditions, as reported in Table 7 (Figure 10).

Table 6. Averaged RMSPE over six month forecasting horizon for the domestic DSFM
approach and the dynamic NS model for 1, 5, 8, 10 year maturities and for the entire yield
curve for Italy and Spain; forecasting period 2007–2012.

1-year 5-year 8-year 10-year Overall

Italy
DSFM 0.8600 0.6893 0.5778 0.6575 0.6309
NS 1.2682 0.6379 0.6564 0.7191 0.7052

Spain
DSFM 0.5142 0.7011 0.5940 0.5635 0.6123
NS 0.5595 0.7174 0.6250 0.6169 0.6569
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14 W.K. Härdle and P. Majer

Table 7. Averaged RMSPE over six month forecasting horizon for the domestic DSFM approach and the
dynamic NSmodel for 1, 5, 8, 10 year maturities and for the entire yield curve for Italy and Spain; forecasting
period 2003–2007.

1-year 5-year 8-year 10-year Overall

Italy
DSFM 0.3161 0.3383 0.3505 0.3286 0.3355
NS 0.3098 0.3455 0.3274 0.3189 0.3312

Spain
DSFM 0.3385 0.3472 0.3256 0.3212 0.3385
NS 0.3134 0.3622 0.3426 0.3311 0.3434
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Figure 10. Term structure of interest rates (dotted black) observed on 30 October 2009 (left) and 30 June
2010 (right) for Italy with the DSFM (blue) and the dynamic NS (red) forecasts.

7. Conclusion

We propose a DSFM to model the term structure of interest rates. The DSFM approach was
encouraged by the success of factor models. The assumption of parametric, exponential form of
the NS factors is relaxed, they are estimated nonparametrically. Our framework is flexible and
parsimonious. That makes it a useful tool, when standard models fail. The time evolution of south
European zero-curves is described by two dynamic factor loadings and one constant function that
corresponds to the ‘averaged’ yield curve.
The model is applied to four southern European bond markets over the period January 1999–

March 2012. The focus is on the recent European sovereign-debt crisis. It is shown that two
underlying factors can explain more than 95% of in-sample variations of the domestic zero-curve
dynamics. Both factors (ordered in terms of explained variance) correspond to the yield curve’s
slope. The proposed model achieves an explanatory power of 98%, where the inclusion of the
third factor does not lead to a significantly better in-sample fit. The extracted factor loadings are
unit root processes and reveal high persistency, similar to the zero-curves. The contemporaneous
relation with macroeconomic fundamentals is not clearly revealed by the regression analysis due
to a structural break in the data. We reported the R2 criterion 16% for the first factor and 6% for
the second one. Though it is known that yield curves are driven by explanatory variables, i.e. the
inflation rate, those variables do not improve the model’s goodness-of-fit.
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Appendix

A.1 Panel DSFM
Dynamics of the term structure of interest rates can be modeled separately for each country, similarly to other DSFM
applications (Borak andWeron 2008; Härdle and Trück 2010. However, following the spirit of NS model we wish to have
common factors for all the analyzed data, and the monetary-specific behavior captured by factor loadings Zit , where i is
the country index. Therefore, to analyze all investigated yield curves i simultaneously, we extend Equation (7) to a panel
dynamic semiparametric factor model (PDSFM) van Bömmel et al. 2013:

Yit,j = m0(Xt,j) +
L∑

l=1
Zit,lm̄l(Xt,j) + εit,j , 1 ≤ j ≤ J , 1 ≤ t ≤ T , 1 ≤ i ≤ I . (A1)

Zit,l is the fixed individual effect for country i on function m̄l at time point t.
The PDSFM (A1) ensures exactly the same spatial structure of factors among all investigated bond markets. The joint

spatial factors are denoted as m̄l , l = 1, . . . ,L. The term structure differences between the countries and time evolution
are captured by their loading time series Zit,l . The model estimation procedure is similar to DSFM estimation, however
instead of Equation (8), similarly to common panel data models the sum of squared residuals is minimized

S(Z1, . . . ,ZI ,A)
def=

I∑

i=1

T∑

t=1

J∑

j=1
{Yit,j − Zi⊤t Aψ(Xt,j)}2. (A2)

It is worth noting that given (Z1, . . . ,ZI ) or A, function S in Equation (A2) is quadratic with respect to
other variables and therefore the solution can be found by OLS method. To find the solution (Ẑ1t , . . . , Ẑ It , Â) =
arg minZ1t ,...,ZIt ,AS(Z

1, . . . ,ZI ,A) we adopt the following iterative algorithm, similarly to Fengler, Härdle, and Mammen
(2007). (i) Given the initial choice of (Z1,(0), . . . ,ZI ,(0)) minimize S(Z1,(0), . . . ,ZI ,(0),A) with respect to A, the explicit
solution is given by OLS estimate A(1). (ii) given the A(1) minimize S(Z1, . . . ,ZI ,A(1)) with respect to (Z1, . . . ,ZI ). (iii)
iterate (i) and (ii) until convergence. The algorithm runs until only minor changes occur.

A.2 Panel yield curve modeling
The domestic interest rate data are demeaned by the country-specific constant factor m̂0. For the PDSFMmodel selection
the one-factor model achieves an explanatory power of 78%, while the inclusion of the second and third factors improves
the fit to 94% and 98%, respectively. The marginal contribution of the fourth factor is relatively small, thus from now on
we only consider results for PDSFM specification with L = 3. The sample period was truncated to 30 June 2011 due to
extraordinary high observations.
The estimated three factors of PDSFM are depicted in Figure A1. The first factor is almost constant over all different

maturities, thus one can attribute it to the overall level of the yield curve. The slope structure of the second PDSFM factor
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Figure A1. Estimated factors of the yield curve depending on time to maturity (years) using PDSFM with
three factors.
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is noticeably similar to the NS framework. The third function though does not have a counterpart in the NS model. It is
decreasing for the short maturities and has a bump around the six year rate. It is worth noting that the overall performance
of the PDSFM is worse than the domestic DSFM approach. One has to include additional factor to explain the same
proportion of variation in the data. As expected, the analyzed countries, while sharing some common characteristics,
are remarkably different with respect to the bond market (volume, liquidity) and economic policy. Those differences are
reflected by the higher order of the model.

A.3 Descriptive statistics and sensitivity analysis

Table A1. Explained variation in percent of the model with different numbers of factors L for the PDSFM.

L = 1 L = 2 L = 3 L = 4 L = 5 L = 6

PDSFM
GR 0.9347 0.9782 0.9970 0.9984 0.9998 0.9999
IT 0.8529 0.9088 0.9857 0.9946 0.9967 0.9982
PT 0.9108 0.9507 0.9883 0.9957 0.9973 0.9973
ES 0.8529 0.9088 0.9857 0.9946 0.9968 0.9976
EV 0.8999 0.9431 0.9896 0.9963 0.9906 0.9983

1999 2006 2012
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1999 2006 2012
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Figure A2. Estimated NS factors: Lt level (blue), St slope (green) and Ct curvature (red) for Greece, Italy,
Portugal and Spain with λGR = 0.049, λIT = 0.127, λPT = 0.109 and λES = 0.174, respectively.

Table A2. Statistical summary of the level and change series of 1, 3, 5, 10-year zero-coupon bond yields.

Mean Median SD Skewness Kurtosis

Greece
Levels
1-year 4.6969 3.6245 4.1007 4.7708 37.7046
3-year 5.3384 4.1219 4.2326 3.1321 13.9549
5-year 5.3026 4.3569 2.9831 2.4804 8.7310
10-year 5.7074 5.1632 2.0136 2.0951 7.4392

Changes in
1-year −0.0009 0.0155 1.9473 −8.4143 89.4413
3-year −0.0008 0.0265 1.0061 −2.9892 24.7871

(Continued).
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18 W.K. Härdle and P. Majer

Table A2. Continued.

Mean Median SD Skewness Kurtosis

5-year −0.0002 0.0175 0.6759 −2.3611 17.9979
10-year −0.0001 0.0012 0.3936 −2.3989 13.6143

Italy
Levels
1-year 2.8736 2.7843 1.1719 0.0523 2.1771
3-year 3.5394 3.4493 0.9836 0.4591 3.0203
5-year 3.9361 3.8228 0.8649 0.6655 3.5370
10-year 4.6039 4.4694 0.6801 0.5987 3.4534

Changes in
1-year 0.0066 −0.0164 0.3646 1.3801 12.7428
3-year −0.0048 −0.0056 0.3826 0.1485 9.5065
5-year −0.0085 0.0062 0.3453 −0.0403 8.8564
10-year −0.0101 0.0151 0.2476 −0.0234 7.2980

Note: The sample of Greek data is from January 1999 to June 2011; the sample for Italy is from January 1999 to March
2012; SD denotes standard deviation.

Table A3. Statistical summary of the level and change series of 1, 3, 5, 10-year zero-coupon bond yields.

Mean Median SD Skewness Kurtosis

Portugal
Levels
1-year 3.5353 3.1029 2.1676 2.3915 10.3401
3-year 4.5377 3.7105 3.3085 2.9769 11.9225
5-year 4.8341 4.0366 2.9935 2.9600 11.7316
10-year 5.2021 4.5398 2.1242 2.6980 10.3645

Changes in
1-year −0.0039 −0.0136 0.7707 3.5002 28.6326
3-year −0.0679 −0.0120 0.9918 0.2136 22.5985
5-year −0.0669 0.0075 0.8773 −0.4221 20.3009
10-year −0.0512 0.0002 0.4856 −0.6836 15.7143

Spain
Levels
1-year 2.8556 2.8062 1.1540 0.0056 2.0978
3-year 3.4844 3.4875 0.8802 0.1938 2.0900
5-year 3.8672 3.7370 0.7923 0.2639 2.0215
10-year 4.4929 4.3304 0.6960 0.2219 2.1219

Changes in
1-year 0.0049 −0. 0300 0.3226 1.6994 12.8158
3-year −0.0050 0.0048 0.3662 0.6379 12.3061
5-year −0.0087 0.0150 0.3364 0.0259 11.7166
10-year −0.0124 0.0074 0.2611 0.0387 9.4403

Note: The sample is from January 1999 to March 2012.
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Table A4. HQ and SC information criteria for the VAR(p) model for Italy and Spain.

IT p 1 2 3 4

SC −8.04 −7.98 −7.90 −7.83
HQ −8.11 −8.10 −8.07 −8.04
ES p 1 2 3 4

SC −7.65 −7.53 −7.48 −7.40
HQ −7.73 −7.68 −7.63 −7.61

1999 2003 2007 2011
−5

0

5

10

15

1999 2003 2007 2011
−2

0

2

4

1999 2003 2007 2011

−1

0

1

Figure A3. Estimated factor loadings Ẑt,1 (top), Ẑt,2 (middle) and Ẑt,2 (bottom) of the yield curve over the
whole sample using PDSFM with three factors; blue lines corresponds to ẐGRt , red to ẐESt , green to ẐPTt and
black to Ẑ ITt .
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Figure A4. Prediction error decomposition of the first factor loadings Ẑt,1 (left panel) and Ẑt,2 (right panel).
Based on a VAR(1) model of yield factors and macro factors using a Cholesky decomposition of the
covariance. Extracted factor loadings and macroeconomic fundamentals for Italy.
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FigureA5. Root mean squared prediction errors (RMSPE(j)) derived by the domestic DSFM approach with
two factors (blue) and by the dynamic NS for all forecasting horizons (in months) for Italy (upper panel) and
Spain (lower panel) for maturities: 2 years (1st column), 7 years (2nd column) and 15 years (3rd column);
forecasting period: 2007–2012.
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Table A5. Explained variation in percent of the model with different numbers of
knots for the DSFM with inflation rate and IP.

GR IT PT ES

INF
4 0.9466 0.9765 0.9597 0.9781
6 0.9523 0.9804 0.9611 0.9785
8 0.9597 0.9823 0.9645 0.9789

IP
4 0.9355 0.9698 0.9422 0.9645
6 0.9408 0.9780 0.9451 0.9657
8 0.9437 0.9796 0.9477 0.9676
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Abstract Porter hypothesis states that environmental regulation may lead to win-
win opportunities, that is, improve the productivity and reduce the undesirable output
simultaneously. Based on directional distance function, this paper proposes a novel
dynamic activity analysis model to forecast the possibilities of win-win development
in Chinese industry between 2011 and 2050. The consistent bootstrap estimation pro-
cedures are also developed for statistical inference of the point forecasts. The evidence
reveals that the appropriate energy-saving and emission-abating regulation will sig-
nificantly result in both the net growth of potential output and the increasing growth
of total factor productivity for most industrial sectors in a statistical sense. This favors
Porter hypothesis.

Keywords Dynamic activity analysis model · Win win development · Environmental
regulations · China industry

1 Introduction

In the recent 20 years, the relationship among energy, environment and economy
(3E) has always been a focal topic of scholars and policy makers. The traditional
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1544 S. Chen, W. K. Härdle

established notion on environmental protection is that the extra costs government
imposes on the firms can jeopardize their international competitiveness. Porter, how-
ever, first challenged this argument in his one-page paper published in 1991 (Porter
1991). He regarded large energy consumption and pollutant emission as a form of
economic waste and a sign of incompletion and inefficiency of resources using. In
his opinion, the amelioration of this inefficiency will provide firms with the win-win
opportunity of improving both the productivity and environment. And the efforts of
environmental protection can help firms to identify and eliminate the production inef-
ficiency and regulatory disincentives that prevent the simultaneous improvements in
both productivity and environmental quality. Thus, whether these types of environmen-
tal policy initiatives are successful depends on the extent to which such inefficiencies
are widespread in the sub-industries, particularly in the energy/pollution intensive
industries. However, due to deficient management systems, firms are not aware of cer-
tain opportunities and that environmental policy might open the eyes. Porter and Linde
(1995) further emphasized that properly designed environmental protection policy in
the form of economic incentives can trigger innovation that may partially or fully off-
set the costs of complying with them. Such innovation offsets occur mainly because
pollution regulation is often coincident with improved efficiency of resource usage and
the inference is that stiffer environmental regulation results in greater productivity and
competence. These arguments are titled as Porter hypothesis (Ambec and Barla 2002).
Admittedly, many scholars criticize Porter hypothesis, arguing that it is a fundamental
challenge to efficient market hypothesis and neoclassical theory, and if it does exist
it will be unnecessary for the government to impose extra environmental protective
costs on the firms. They question why firms do not see these win-win opportunities by
themselves, which at least implies that the argument does not have a general validity
(Palmer et al. 1995; Jaffe et al. 1995; Faucheux and Nicolaï 1998).

Empirical researches have provided arguments for both positions and have not been
conclusive so far.1 There are very rare studies to investigate the validness of Porter
hypothesis in China, though it is critically important, too. Now China is the largest
energy consumer and CO2 emitter in the world, which brings China much abatement
pressure from the outside world. The limited energy resources and serious pollution
emissions have also made the traditional growth model in China unsustainable. To
transform the economic growth model and challenge the climate change, in 2009 China
decided to abate the CO2 intensity by 40–45 % till 2020 as opposed to the benchmark
level in 2005. Though it is only the relative carbon abatement, rather the absolute
reduction employed by most countries, it is still challenging for China to realize it due
to its coal oriented energy consumption structure and extensive factor-driving growth
model. In particular, environment regulations will use up the limited resources which
may be put into other productions and very likely influence the economic growth.
Hence, an in-depth analysis is needed on both the positive and negative influence of

1 Many empirical researches support Porter hypothesis, such as Karvonen (2001); Mohr (2002); Murty
and Kumar (2003); Beaumont and Tinch (2004); Cerin (2006); Greaker (2006); Kuosmanen et al. (2009);
Groom et al. (2010); Zhang and Choi (2013) There are also a few papers whose conclusion is neutral or
against Porter hypothesis, see Boyd and McClelland (1999); Xepapadeas and Zeeuw (1999); Feichtinger
et al. (2005).
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environment regulations on China’s economy, including the output and productivity
growth. It is also a quite practical and edging issue to search for an optimal energy-
saving and emission-abating path that can induce a win-win development for China in
the following decades. Both motivate the research in this paper. As is known to all, on
average, the industry counts for near 70 % of total energy consumption and over 80 %
of the total CO2 emission in China, which makes it the primal target to save energy and
abate emissions. However, China is currently in the middle stage of industrialization,
in which energy and emission intensive sectors such as iron and steel, cement and
chemistry industries will continue to play pivotal roles in future economic growth.
Thus, we can foresee there will be more negative impact brought by energy-saving
and emission-abating activities on China’s industry. Therefore, this paper focuses on
the win-win forecasting in China’s industrial economy.

As denoted above, the empirical results on win-win development possibilities are
conflicting, which may be due to different dataset for analysis, the regulatory regime in
a country, different cultural setting, the customer behavior, the type of industries or size
of companies to be analyzed, and the time span and so on. However, the main reason
may be the lack of a reasonable theoretical framework within which to investigate the
links between environmental regulation and economic performance (Schaltegger and
Synnestvedt 2002). For example, the commonly used CGE model fits static analy-
sis well but its dynamic extension in empirical study is still rather scarce and too
simple. Parametric econometric model is restricted to its priori functional form and
distribution assumption. Traditional data envelopment analysis (DEA) and Shepherd
distance function cannot distinguish the different characteristics between desirable
output like GDP and undesirable output such as pollutions. Not until the presence of
directional distance function (DDF) do we find a reasonable framework to capture
the difference between desirable and undesirable outputs, and to model the behavior
of increasing desirable output while decreasing undesirable output simultaneously.
DDF allows for the type of inefficiency that is typified by Porter hypothesis, providing
the most appropriate approach to examine Porter hypothesis. By following Boyd et
al. (2002), this paper makes use of two types of DDF based on the strong and weak
disposability assumption of pollution emissions to measure the potential output gain
and loss, and uses the standard DDF based Malmquist–Luenberger Productivity Index
(MLPI) to forecast the change of total factor productivity (TFP) and its components.
In order to forecast the win-win development possibility from now on to the year
of 2050 and find the optimal environment regulatory path, this paper designs differ-
ent energy-saving and emission-abating paths and proposes a new dynamic activity
analysis model (AAM) in which the different paths are introduced into the direction
vector of DDF to examine the influence of different regulation paths on the win-win
development possibilities in China in the following 40 years. However, there clearly
exists the uncertainty surrounding these forecasts due to sampling variation. It is not
enough to know whether the forecasts indicate increases or decreases in efficiency and
productivity, but whether the indicated changes are significant in a statistical sense.
This paper develops a consistent bootstrap estimation procedure to obtain the con-
fidence intervals for potential net output gain and the index of productivity and its
decompositions. The bootstrap methodology is an extension of earlier work by Simar
and Wilson (1998, 1999).
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The rest of this paper is organized as below: Sect. 2 introduce the dynamic activity
analysis model firstly proposed in this paper. How to measure the potential output
gain and loss and the specification of the Malmquist–Luenberger productivity index
are also illustrated in the section. Section 3 firstly designs different energy-saving
and emission-abating paths, which will be added into the direction vector of DDF so
as to extend the AAM into dynamic version. The section also designs the bootstrap
procedure that allows us to make the distinctions between a real change in potential
output and productivity and an artifact of sampling noise. Section 4 selects an optimal
environment regulatory path for China’s industrial win-win development during 2011
and 2050, and discusses the corresponding forecasts of potential output gain and loss,
the evolution of productivity, technique and efficiency change among a set of sectors,
and their statistical significance. Section 5 concludes this paper.

2 Dynamic activity analysis model

In the section, a novel dynamic activity analysis model (DAAM for short), not
addressed so far, is proposed to forecast the effect of energy-saving and emission-
abating regulations on economy in the long run, which is extended from the stan-
dard DDF-based AAM provided by Chambers et al. (1996) and Chung et al. (1997)
and applied by Färe et al. (2001); Jeon and Sickles (2004) etc. How to simulate
the potential output gain, output loss and the change of productivity, technique and
efficiency by using the newly proposed DAAM approach is also introduced in the
section. In the study, the decision-making units (DMU) are 38 two-digit indus-
trial sectors (i = 1, 2, . . . , 38). The forecasting time span is from 2011 to 2050
(t = 2011, . . . , 2050). For each sector, there are three types of input ( j = 1, 2, 3,
corresponding to capital, labor and energy), one type of desirable output (gross indus-
trial output value, GIOV), and one type of undesirable output (carbon dioxide emission,
CO2). The historical dataset between 1980 and 2010 used for simulation is from Chen
(2013). The panel data for 38 industrial sectors, rather than aggregate data, signif-
icantly enhances the information that could be obtained to analyze microeconomic
performance, particularly when examining the efficiency of each unit.

For i th industrial sector, the column vectors of xi , yi and bi represent the inputs,
desirable output and undesirable output, respectively. Then the production technology
for i th sector at time point t can be described by its output set:

P
(

xi
)

=
{(

yi , bi ,−xi
)

: xi can produce
(

yi , bi
)}

(1)

Same as Shephard distance function, DDF is also the representative function to
describe such a production technology. The principle of DDF is illustrated in Fig. 1.
The technology is represented by the output set P (x) to which the output vector of A
point (y, b) belongs. Shephard’s output distance function radially scales the original
vector from point A proportionally to point D to describe the simultaneous increase
of desirable and undesirable output. In contrast to this, the DDF starts at A and scales
in the direction along ABC to capture the increase of desirable outputs (or goods) and
decrease of undesirable outputs (or bads) simultaneously, which make it possible to
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Fig. 1 Principle of directional output distance function

investigate Porter hypothesis that allow for the possibility of crediting units for the
reduction of pollutions. Formally, DDF is defined as

D⃗o

(
xi , yi , bi ; gi

)
= sup

{
β :

(
yi , bi

)
+ βgi ∈ P

(
xi

)}
(2)

where g is the direction vector in which outputs are scaled. In standard case, g =
(y,−b), as shown in Fig. 1. β is the maximum feasible expansion of the desirable
outputs and contraction of the undesirable outputs when the expansion and contraction
are identical proportions for a given level of inputs, which amounts to the value of
DDF to be measured.

2.1 Production inefficiency and loss due to environmental regulation

As shown in Fig. 1, because the point A remains within the efficient production fron-
tier, the inefficiencies resulted from such factors as wasteful energy consumption and
serious pollution emissions give the producer the potential room to increase the out-
put, given the inputs and current output, by saving energy and abating emission.2 But
whether the observation vector projects from the point A to point B or C depends on
the weak or free disposal assumption of undesirable output. If assume that the unde-
sirable output is strongly or freely disposal, that is, the disposability costs nothing,
the producers will voluntarily get rid of the unwanted by-products, then the growth of
potential output based on current desirable output will be maximized which amounts
to the distance function value βs (i.e., the ratio of AC/Og). In this case, energy and
environment do not impose any restriction on output, then the production in point C
is the most efficient. However, it’s impossible to cost nothing to reduce undesirable
output in reality. The producers therefore are not willing to reduce the undesirable

2 In this case, the value of β is greater than zero which tell us the sizes of inefficiencies for the unit.
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1548 S. Chen, W. K. Härdle

outputs because it makes use of the important inputs and then translates into the loss
of desirable outputs given inputs. The reduction of undesirable outputs only can be
achieved by environment regulations. Accordingly, the more appropriate assumption
is weak disposability of undesirable output, the point A projecting into B on the fron-
tier, which is the standard DDF, or referred to as environment regulatory AAM. Its
value equals βw or the ratio of AB/Og in the figure. In this case, the potential goods
growth is a tradeoff between more goods and less bads, bound to below the maximized
βs under the strong disposability of bads.

The difference between βw and βs reflects the potential output loss caused by
the observable lack of free disposability (more vividly, due to enforced environment
regulations), i.e., l = βw − βs < 0 (Boyd et al. 2002). The value of l is analogous
to the hyperbolic output loss measure introduced by Färe et al. (1989) and used by
Boyd and McClelland (1999). The potential output loss l and potential output growth
βw reveal the extent of the win-win potential for each industrial sector, given current
output at some time point. If potential βw exceeds or equals the absolute value of
l, |l|, from the perspective of output, the win-win opportunity due to environment
regulations that is described by Porter hypothesis happens, to some extent suggesting
that improved production efficiency can make up for the losses imposed by regulations.
If βw < |l|, it indicates that environmental regulations will not lead to the win-win
development. This paper will make use of this method to find the best energy-saving
and emission-abating path that leads to the win-win development potentials in China.

2.2 Dynamic activity analysis model (DAAM)

As stated previously, the direction vector in DDF is g = (y,−b), and the value of DDF,
β, captures the maximum feasible proportion that the goods y expand while the bads b
contract based on current output level (y, b), the negative sign of b indicating the reduc-
tion of bads. To simulate the dynamic process of energy-saving and emission-reducing
activity, in this paper, we introduce the time factor into the direction vector and re-
define the output direction vector as gt =

(
yt ,−bt) =

[
(1 + u) yt−1,− (1 + v) bt−1],

where u and v represent the changing rate of current industrial output (goods) and CO2
emissions (bads) relative to previous time point during the forecasting period, corre-
spond to the different energy-saving and emission-abating paths to be designed in
Sect. 3.1. Similarly, the dynamic changing path for the j th input vector is defined as
xt

j =
(
1 + σ j

)
xt−1

j , where σ j is the changing rate of the j th input to be discussed
also in Sect. 3.1. In terms of the defined dynamic direction vector, the technology in t
period and observation also in t period, the linear programming of two types of DDF,
the assumption of weak and strong disposability of undesirable output, is specified
respectively for i th sector as below.

Directional distance function (weakly disposable bads)

D⃗t
o

(
xi,t , yi,t , bi,t ; yi,t ,−bi,t

)
= Max

λ,β
βw

s.t.
38∑

i=1

λi yi,t ≥ (1 + βw) (1 + u) yi,t−1
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38∑

i=1

λi bi,t = (1 − βw) (1 + v) bi,t−1

38∑

i=1

λi xi,t
j ≤

(
1 + σ j

)
xi,t−1

j ( j = 1, 2, 3)

β, λi ≥ 0 (i = 1, 2, . . . , 38) (3)

In linear programming (3), β = 0 means that the industrial sector lies on the pos-
sibility frontier and its production is efficient; while β > 0 implies that the sector
is inefficient in production. The proportion of the sectors with β > 0 to all sectors
shows us how widespread the inefficiencies are in the industry, which is related to the
win-win opportunities by environmental regulation. The inequality for goods in (3)
makes it freely disposable which means that the goods can be disposed of without the
use of any inputs and then without the decrease of bads. The bads is modelled with
equality that makes it weakly disposable. The inequality specification of inputs illus-
trates also that the inputs are strongly disposable; that is, the increase of inputs will not
cause the decrease of output. The intensity variable λi is the weight assigned to each
sector when constructing the production frontier. As shown in linear programming
(3), novel definition of dynamic output and input direction vector not only introduces
many possible energy-saving and emission-abating paths into DDF in order to capture
the regulatory behavior but also makes it possible to forecast the dynamic impact of
energy-saving and emission-abating activity on economy in the following decades.
Therefore, we abuse terminology and refer to the extended DDF as dynamic (environ-
mental regulatory) activity analysis model (DAAM), which distinguishes itself from
the standard DDF and AAM in that it has introduced the time lag operator into the
direction vector.

Directional distance function (strongly disposable bads)

D⃗t
o

(
xi,t , yi,t , bi,t ; yi,t ,−bi,t

)
= Max

λ,β
βs

s.t.
38∑

i=1

λi yi,t ≥ (1 + βs) (1 + u) yi,t−1

38∑

i=1

λi bi,t ≥ (1 − βs) (1 + v) bi,t−1

38∑

i=1

λi xi,t
j ≤

(
1 + σ j

)
xi,t−1

j ( j = 1, 2, 3)

β, λi ≥ 0 (i = 1, 2, . . . , 38) (4)

From the mathematical perspective, the equality constraint of undesirable output in lin-
ear programming (3) is changed into the same inequality constraint as on the desirable
output to reveal the strong disposability of undesirable output in linear programming
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(4). As mentioned above, the difference of solutions between (3) and (4) measures the
potential production loss due to energy-saving and emission-reducing activity.

2.3 Malmquist–Luenberger Productivity Index (MLPI)

The DAAM approach summarized in linear programming (3) with the weak dis-
posal assumption of undesirable output models the energy-saving and emission-
abating activity; therefore, it can be used to measure the change of total fac-
tor productivity (TFP) and its decomposition under environmental regulations by
calculating the Malmquist–Luenberger Productivity Index (MLPI). To the end,
four different types of DDF must be solved for each sector: two use observa-
tions and technology at time period t and t + 1, D⃗t

o
(
xi,t , yi,t , bi,t ; yi,t ,−bi,t

)
and

D⃗t+1
o

(
xi,t+1, yi,t+1, bi,t+1; yi,t+1,−bi,t+1); and two use adjacent period, for exam-

ple, D⃗t
o
(
xi,t+1, yi,t+1, bi,t+1; yi,t+1,−bi,t+1) calculated from t period technology

with the t + 1 period observation, and D⃗t+1
o

(
xi,t , yi,t , bi,t ; yi,t ,−bi,t) calculated from

t+1 period technology with the t period observation. Then the Malmquist–Luenberger
Productivity Index (MLPI) defined by Chung et al. (1997) can be computed using the
following formulas:

M L P I t,t+1 =
[

1 + D⃗t
o
(
xi,t , yi,t , bi,t ; yi,t ,−bi,t)

1 + D⃗t
o
(
xi,t+1, yi,t+1, bi,t+1; yi,t+1,−bi,t+1

)

× 1 + D⃗t+1
o

(
xi,t , yi,t , bi,t ; yi,t ,−bi,t)

1 + D⃗t+1
o

(
xi,t+1, yi,t+1, bi,t+1; yi,t+1,−bi,t+1

)

]1/2

(5)

The Malmquist–Luenberger index is the most widely used productivity index and is
particularly attractive when constructing it since it does not rely on prices, particularly
the price of CO2 appeared in this study. The MLPI can be decomposed as the product
of two terms: the index of Malmquist–Luenberger technical change (MLTCH) and
Malmquist–Luenberger efficiency change (MLECH); that is

M L P I t,t+1 = M LT C Ht,t+1 · M L EC Ht,t+1 (6)

where,

M LT C Ht,t+1 =
(

1 + D⃗t+1
o

(
xi,t+1, yi,t+1, bi,t+1; yi,t+1,−bi,t+1)

1 + D⃗t
o
(
xi,t+1, yi,t+1, bi,t+1; yi,t+1,−bi,t+1

)

·1 + D⃗t+1
o

(
xi,t , yi,t , bi,t ; yi,t ,−bi,t )

1 + D⃗t
o
(
xi,t , yi,t , bi,t ; yi,t ,−bi,t

)

)1/2

(7)

M L EC Ht,t+1 = 1 + D⃗t
o
(
xi,t , yi,t , bi,t ; yi,t ,−bi,t )

1 + D⃗t+1
o

(
xi,t+1, yi,t+1, bi,t+1; yi,t+1,−bi,t+1

) (8)
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If MLPI > 1, it means that TFP grows over the adjacent period; while M L P I < 1
indicates that TFP declines.

3 Forecasting scheme

3.1 Design energy-saving and emission-abating paths

Different energy-saving and emission-abating paths will have obviously different
impact on economy (Lee et al. 2007; Kuosmanen et al. 2009). This paper designs
three energy-saving scenarios and seven emission-reducing scenarios, totally twenty
one combinations of environment regulatory paths. By introducing different regula-
tory paths into the DAAM approach proposed in Sect. 2.2, this paper will forecast
their effect on the potential growth of output and productivity in the following four
decades so as to look for the best regulatory path leading to a win-win development
possibility for Chinese industry.

Before the design of changing paths of energy and emission, we firstly specify
the changing patterns for industrial output and other inputs such as capital stock and
labor in the future. According to Chen and Golley (2014), between 1981 and 2010
the historical average growth rate of total industry is about 12.6, 9.3 and 2.6 % for
output, capital and labor, respectively. Their growth rates in 2010 are 20.4, 14.1 and
5.3 %, higher than their historical average growth. However, after 30 years of rapid
economic growth since the reform in 1978, China is facing a long-term decline in
its economic growth rate, given its latest records. Thus, we assume that the growth
rate of output, capital and labor will decreases from their respective growth rate in
2010 evenly to one third of their historical average growth in 2050 for each industrial
sector and the aggregate industry. The design of energy saving scheme is based on
the promissory targets to save energy stipulated by China government. Specifically,
China central government promise to decrease the energy consumption per unit of
output (i.e., energy intensity) by 20 and 16 %, respectively, during the period of 11st
and 12nd five-year-plan, translating into 4.36 and 3.43 % annual reducing rate of
energy intensity. In fact, during the 11st five-year-plan period, China decreased the
energy intensity by 19%, 1% below the target rate. Therefore, this paper designs three
scenarios for energy save; that is, the energy intensity will decrease by 3, 4, 5 % per
year in the following 40 years. According to the annual growth rate of industrial output
specified already, this can be translated into three paths of energy save between 2011
and 2050.

This paper designs the emission abatement scheme according to two specification
of relative and absolute abatement, the former of which caters to the state condition
that China is a developing country whose major task is to develop. If output experi-
ences a rapid growth, CO2 emission may have a not low growth, too. As mentioned
in introduction part, China officially announced that it will abate the CO2 intensity
by 40–45 % in 2020 as opposed to the intensity in 2005. That means China should
decrease the CO2 intensity by 3.4–3.9 % per year during that period. During the period
of 12nd five-year-plan, China plans to reduce the CO2 intensity by 17 %, i.e. 3.66 %
per year. Based on this, we will design three scenarios for CO2 relative abatement;
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Fig. 2 Carbon dioxide abatement paths (1–7) for Chinese industry (2011–2050)

that is, CO2 intensity will decrease annually by 3, 4 and 5 %, respectively. As depicted
in Fig. 2, given specified declining growth of industrial output, this will also leads
to three decreasing emission paths (1–3 path). Most countries adopt the strategy of
absolute abatement of CO2 emissions. As illustrated in Fig. 2, this paper designs four
scenarios for absolute abatement, which is attributable to the generalized understand-
ing of emission abatement concept that emission reduction does not necessarily refers
to the absolute decline in emission level; a declining emission growth rate or declin-
ing relative to BaU is also a type of emission abatement. Specifically, four scenarios
include: (1) the growth rate of CO2 for different sectors decreases from their respec-
tive growth in 2010 evenly to zero growth in 2050 (that is, the emission peak will
appear in mid of this century); (2) the emission growth of all sectors reduces from the
growth rate in 2010 to zero growth in 2039 and, after the emission peak, continuously
decreases to −1 % growth rate in 2050; the 3rd and 4th path are similar to the 2nd path
but the emission peak is moved on to the year of 2030 and 2020, respectively. The
twenty one energy-saving and emission-abating paths, together with the varying paths
of industrial output, capital and labor, will be introduced into the dynamic activity
analytical model (DAAM) mainly through direction vector so as to forecast the effect
of environment regulations on output and productivity in the following decades.

3.2 Bootstrapping potential output gain, productivity change and its components

Lovell (1993) have labeled the nonparametric DEA and its variants as the deterministic
approaches, which seems to suggest that they do not have statistical underpinnings
and are sensitive to the sampling variations. Since the pioneering work by Efron
(1979) and its extensions in the frontier framework by Hall et al. (1995), the bootstrap
methodology is often used to undertake the statistical inferences on distance function
of DEA approach. The key to obtaining consistent bootstrap estimates of distance
function lies in consistent replication of the data generating process. Simar and Wilson
(1998) argued that resampling from the empirical distribution of the data (i.e., drawing
with replacement from the set of original distance function estimates) will lead to
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inconsistent bootstrap estimation. They proposed the smooth bootstrap to overcome
this problem and yield consistent estimates of distance function. Simar and Wilson
(1999) applied the principle to bootstrap the Malmquist productivity index. Following
this, this paper extends the ideas to directional distance function and the Malmquist–
Luenberger productivity index and its components.

Bootstrapping the distance function specified in the linear programming (3) is firstly
exemplified. Its complete bootstrap algorithm could be summarized by the following
steps:

1) By using the linear programming (3), compute {βk
w, k = 1, 2, . . . , n};

2) Define the empirical distribution function for efficiency scores by putting mass 1
n

on β i
w, i = 1, 2, . . . , n;

3) By using the univariate kernel density estimator and the reflection method
described in Simar and Wilson (1998), generate a random sample {β i∗

w,b, i =
1, 2, . . . , n} 3from the empirical distribution function defined in 2);

4) Compute the pseudo-sample
{(

xi , yi∗
b , bi∗

b

)
, i = 1, 2, . . . , n

}
,

where yi∗
b = yi (

1 + β i
w

)
/
(

1 + β i∗
w,b

)
and bi∗

b = bi (
1 − β i

w

)
/
(

1 − β i∗
w,b

)
;

5) By using the pseudo-sample produced in 4) and the linear programming (3), com-
pute the bootstrap estimate of βk

w : {βk∗
w,b, k = 1, 2, . . . , n}

6) Repeat 3)-5) B times to obtain a set of estimates

{βk∗
w,b, k = 1, 2, . . . , n, b = 1, . . . , B}

In this study, n = 38, B = 2,000, and h = 0.02.4

Bootstrapping for the distance function β f specified in the linear programming
(4) in this study largely involves a straightforward translation of the notation in above
steps. Once the bootstrap values have been computed, we can construct the confidence
intervals of the distance function and its linear combinations at the desired level of
significance.

The methodology for bootstrapping distance function in linear programming
(3) and (4) could be easily adapted to the productivity index, except that the
time-dependence structure of the panel data must be taken into account. Accord-
ing to formulas (5)–(8), we firstly obtain the point forecasts of Malmquist–

3 The random sample is generated according to

βi∗
w,b =

{
β

i,0∗
w,b + hεi∗

b i f β
i,0∗
w,b + hεi∗

b ≤ 1

2 − β
i,0∗
w,b − hεi∗

b otherwise

where
{
β

i,0∗
w,b , i = 1, 2, . . . , n

}
is a simple bootstrap sample from

{
βi
w, i = 1, 2, . . . , n

}
, that is, obtained

by drawing with replacement from
{
βi
w, i = 1, 2, . . . , n

}
, εi∗

b is a random drawn from a standard normal,
and h is the smoothing parameter of bandwidth.
4 As Daraio and Simar (2007) denoted, B should be greater than 2,000. The choice of kernel bandwidth
controls the smoothness of the probability density curve. Following Simar and Wilson (1998), we choose
h = 0.02 in this paper which provides a reasonably smooth estimate of the distribution function of efficiency
scores.
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Luenberger productivity index and its components in adjacent period of t1 and
t2,

{(
M L P I k,t1,t2 , M LT C Hk,t1,t2 , M L EC Hk,t1,t2

)
, k = 1, 2, . . . , n

}
. To bootstrap

the productivity index and its components, we need the data in adjacent time periods
to consider the possibility of temporal correlation. To preserve any temporal correla-
tion present in the data, following Simar and Wilson (1999), we make use of bivariate
kernel density estimator and reflection method to generate two joint random samples of{
β

i,t1,∗
w,b

}
and

{
β

i,t2,∗
w,b

}
i = 1, . . . , n, and then compute two adjacent pseudo-samples

of
{

xi,t1 , yi,t1,∗
b , bi,t1,∗

b

}
and

{
xi,t2 , yi,t2,∗

b , bi,t2,∗
b

}
i = 1, 2, . . . , n. Based on two

pseudo-samples and formulas (5)–(8), we could compute one bootstrap estimate of
Malmquist–Luenberger productivity index and its components of technical and effi-
ciency change. This step will be repeated for B times to provide a set of estimate of{(

M L P I k,t1,t2,∗
b , M LT C Hk,t1,t2,∗

b , M L EC Hk,t1,t2,∗
b

)
, k =1, 2, . . . , n, b=1, . . . , B

}
.

Likely, in this paper, n = 38, B = 2,000, and the smoothing parameter for bivariate
bivariate normal kernel h = (4/5n)1/6.5 The bootstrapping values of MLPI, MLTCH
and MLECH could be used to test if there is a real change in productivity, technique
and efficiency in the following 40 years from a statistical perspective.

4 Forecasting analysis

4.1 Simulate the win-win prospect under different environment regulatory paths

Table 1 reports the potential industrial output growth βw, output loss l and corre-
sponding net output gain averaged over the entire forecasting period under twenty one
environmental regulatory paths combined by three energy-saving scenarios and seven
emission-reducing scenarios.

As shown in Table 1, the former three emission abating paths are designed in terms
of CO2 intensity reduction targets and classified into the relative abatement group and
the latter four paths into the absolute abating group. On the whole, considering the fact
of priority in development for China, seven emission abating paths specified in both
groups are modest. On average, the abating path 1 in relative abatement group will not
lead to the emission inflexion during entire forecasting period, while the emission peak
appear in 2050 and 2048 for abating path 2 and 3, similar to the case in path 4 in absolute
abating group, indicating that the emission abatement specified in relative abatement
group is more modest than that in absolute group. Mostly, the distribution of the values
of potential output growth, output loss and net gain display a quite regular varying
pattern as shown in the table. For three energy saving paths, the potential output growth
increases as the abating rate of emission intensity increases from 3 to 5 % (path 1–path
3); for first two energy saving paths, the potential output growth increases first and then
turns to fall from abatement path 4 to path 7, and, corresponding to third energy saving
path, the potential output growth always increases in the absolute abatement group. For
three energy saving paths, the potential output loss exhibit a consistently deterioration

5 Silverman (1978, 1986) and Härdle (1990) discuss considerations relevant to the choice of h. In the paper,
we use Silverman (1986) suggestion for h setting since we are using a bivariate normal kernel.
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Table 1 Potential output gain-loss analysis corresponding to 21 energy-saving and emission-abating paths
(%)

Energy saving
and emission
abating paths

Relative abatement Absolute abatement

Path 1 Path 2 Path 3 Path 4 Path 5 Path 6 Path 7
Emission
intensity,
3 %

Emission
intensity,
4 %

Emission
intensity,
5 %

Emission
peak in
2050

Emission
peak in
2040

Emission
peak in
2030

Emission
peak in
2020

Energy intensity, 3 %

βW 17.43 18.27 18.98 17.73 18.40 17.74 16.60

l = βW − β f −23.64 −23.74 −24.35 −24.76 −25.41 −26.04 −26.09

Net gain −5.50 −5.47 −5.60 −5.80 −5.94 −6.16 −6.25

Energy intensity, 4 %

βW 19.21 19.48 20.23 17.18 18.91 18.70 17.88

l = βW − β f −26.50 −26.67 −26.89 −26.67 −27.20 −29.70 −30.29

Net gain −6.19 −6.22 −6.23 −6.37 −6.41 −7.13 −7.35

Energy intensity, 5 %

βW 17.62 18.99 20.19 17.60 17.81 18.57 18.73

l = βW − β f −30.44 −32.43 −32.98 −33.43 −33.72 −34.71 −35.04

Net gain −7.41 −7.88 −7.95 −8.26 −8.33 −8.56 −8.64

from the emission abating path 1 to path 7, except the value of −26.89 and −26.67 %
in path 3 and path 4 in the second energy path. Accordingly, the averaging net output
gain also consistently increases from emission abating path 1 to path 7 no matter what
kind of scenario for the energy save (with one exception of −5.50 % in first path of
both energy save and emission abatement), implying that the optimal energy-saving
and emission-abating path must be in the relative abating group. From the dimension
of energy save, with the increasing of intensity of energy save the potential output
growth does not exhibit a regular changing pattern but the potential output loss does
experience the deteriorating process for all the seven emission abating paths, leading
to a similarly deteriorating net output gain for all the abating scenarios. It is thus clear
that appropriately decreasing the intensity of energy save will reduce the widespread
extent of production inefficiencies, leading to the shrinking of improving space for
potential output growth. Taken together, on average, the lowest potential net output
gain is −5.47 %, appearing in the combination of first energy saving path and second
emission abating path in relative abatement group. This is the optimal energy-saving
and emission abating path we select for further investigation next; that is, according
the scenarios simulation, the optimal environment regulatory path is to decrease the
energy intensity by 3 % per year and decrease the CO2 emission intensity by 4 % per
year in the following 40 years. Since all the potential net gain shown in Table 1 are
negative, it seems that all paths cannot lead to the win-win development suggested
by Porter hypothesis, even though the best energy-saving and emission-abating path
chosen above.
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The findings in Table 1 are consistent with most other researches. Schaltegger and
Synnestvedt (2002) argue that not merely the level of environmental performance, but
mainly the kind of environmental management approach with which a certain level is
achieved, influences the economic outcome, thus, the economic success resulted from
the environmental protection finally depends on the chosen kind of regulatory approach
rather the level. It’s suggestion that research and business practice should focus more
on the effect of different environmental management approaches on economic per-
formance is consistent with the methodology used in our studies. Roughgarden and
Schneider (1999) use a dynamic integrated climate-economy model to calculate an
optimal rate of carbon tax and suggest that an efficient policy for slowing global warm-
ing would incorporate only a relatively modest amount of abatement of greenhouse
gas emissions, via the mechanism of a small carbon tax. Chen et al. (2004) find that
the earlier the emission reducing policy is implemented the greater the GDP loss will
be. If the start of the emission reductions is the year of 2030, 2020 or 2010 instead of
2040, then the undiscounted total GDP losses in the whole planning horizon would be
0.58–0.74, 1.00–1.32, or 1.10–1.83 times higher. Kuosmanen et al. (2009) suggest that
if one is only interested in greenhouse gases abatement at the lowest economic cost,
then equal reduction of emissions over time is preferred. These researches all support
the strategy of gradual and modest emission abatement. Similar to the idea of our paper
that there is a close relationship between emission reduction and development, Reddy
and Assenza (2009) also suggest that the integration of climate policies with those of
development priorities that are vitally important for developing countries and stress the
need for using sustainable development as a framework for climate change policies.

4.2 The influence of environment regulation on future potential output

Murty and Kumar (2003) pointed out that the win-win opportunities under the envi-
ronmental regulations could be found more in some industries and less in others, and
the studies for specific industries could help us to identify the industries with no such
opportunities so that the monitoring and enforcement could be directed to those indus-
tries in which incentives are absent. As a matter of fact, it is also the reason why we
focus on the analysis of China’s industrial sectors instead of merely the aggregated
industry. Therefore, under the optimal path of energy save and emission reduction
chosen in previous subsection, this subsection further simulates the potential output
growth, output loss and net output gain for all sectors in the following 40 years. Table 2
illustrates the forecasting prospects for each sector in the first forecasting year 2011,
the win-win turning year and the last forecasting year of 2050 with the bootstrapping
confidence interval for the net output gain. Specifically, the second and third column
contains the original estimate of βw and output loss of l = βw − β f in 2011; the
following three columns show the win-win turning year in which the potential output
growth exceeds the output loss firstly in the forecasting period; the potential output
gain, output loss, net gain and its confidence interval in 2050 are reported after the
win-win information.

Table 1 has shown that the averaged net output gains brought by different regulatory
paths are all negative, even though by the best energy-saving and emission-abating
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path. However, if we look at the simulation results for 38 industrial sectors reported in
Table 2 rather the aggregated industry only, the situation will be totally another story.
Overall, the potential output loss exhibits an obviously declining trend for all sectors
and the potential output growth of most sectors has a modest decline or does not change
much. Except for six sectors such as extraction of petroleum and natural gas, mining
and processing of ferrous metal ores, apparel manufacturing, leather manufacturing,
printing, and plastic manufacturing, the potential output loss for all the other sectors
appears to be smaller than potential output growth at some time point before 2050.
Table 2 has listed the respective turning year for the remaining sectors in which the
potential output growth exceeds the output loss firstly in the entire forecasting period.
Note that two sectors such as medicine manufacturing and manufacture of computers,
communication equipment and other electronic equipment have higher output growth
than output loss even from the first forecasting year of 2011. This indicates that for
most sectors, the energy-saving and emission-abating activity can bring the win-win
development opportunity in the forecasting period. Even to the above exceptional six
sectors, their potential output losses tend to decline, too, and are bound to be lower
than the potential growth at certain time after the year of 2050, leading to an expected
win-win development.

The reason why the averaged net gain for all paths, even the optimal path, is negative
in Table 1 is that most sectors have large potential loss in the nearer future, as shown
in Table 2. It is thus clear that the aggregation analysis is undependable and even
leads you to the opposite conclusion. Particularly, the potential output loss of those
energy and emission intensive sectors such as extraction of petroleum and natural
gas, mining and processing of ferrous metal ores, exploiting of wood and bamboo,
processing of petroleum and coking are extremely large, which should be one of the
causes of the negative weighted potential net gain for aggregated industry. Moreover,
what we care about the energy save and emission reduction is its final influential
level instead of accumulative effect; hence, the high potential output loss in the nearer
future is just meaningful for that period and useless for the analysis on the future
opportunity of win-win development. The last three columns in Table 2 report the
net output gain βw − l = 2βw − β f in the last forecasting year of 2050 and its
confidence interval at 5 % significance level, estimated according to two independently
bootstrap estimate of both βw and β f . This allows us to appreciate the sensitivity of the
simulated win-win development possibility with respect to the sampling variations.
Specifically, for the net output gain, we say it is significantly greater than zero (which
would indicate the win-win development) if the confidence interval does not include
zero and values below zero. As reported in Table 2, except six sectors denoted above
that do not approach the turning point in the forecasting period and six sectors with
confidence interval including negative values and zero,6 the remaining twenty six
industrial sectors, 68.4 % of all sectors, enjoy a significant potential net output gain, a
certain win-win development prospect without sample noise, in the last forecastingyear

6 They are wood processing, general machinery manufacturing, special machinery manufacturing, transport
equipment manufacturing, manufacturing of measuring instruments and machinery, and others.
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Fig. 3 Averaged win-win development forecasting under the best energy-saving and emission-abating path
for light, heavy industry and the industry as a whole (2011–2050)

of 2050. All in all, the sectoral simulation results shown in Table 2 manifests that, from
the perspective of potential output, environment regulations can bring costs on output
which means that Porter hypothesis will not be satisfied in the very nearer future, but
when the time moves on, it will lead to the win-win development prospect for most
industrial sectors, finally supporting the Porter hypothesis.

According to the theory in Chenery et al. (1986) and current empirical work in
Chen et al. (2011), the standard perception of industrialization is a general shift in
relative importance from light to heavy industry. Light industry is of great importance
normally at the early stage of industrialization and labor-intensive in nature with
relatively low ratios of capital to labor; while heavy industry is at the middle or late
stage and capital-intensive with relatively high ratios of capital to labor. Therefore,
we divide all industrial sectors into light and heavy industrial groups according to
the ranking of capital to labor ratio (K/L) in 2008. That is, the light industrial group
corresponds to the top half of sectors with the lower K/L ratio, and the heavy industry
to the last half of sectors with the larger K/L ratio. We refer to them as light industry
and heavy industry in brief from now on in this paper. This is because 38 sectoral
patterns of potential output growth and loss are too complicated to see clearly all at
once, and sometimes we want to observe the difference just between the light and
heavy industry instead. Figure 3 depicts the weighted average potential output loss
(red bar) and output growth (blue bar) for light and heavy industry and aggregated
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industry, under the best environmental regulatory path, in which the sectoral weight
is its respective share of gross industrial output value.

Seen from Fig. 3, in light industry, the averaged potential output loss declines
prominently from −112.76 % in 2011 to −6.35 % in 2050 while the potential out-
put growth decreases less evidently from 41.78 % in 2011 to 10.26 % in 2050; in
heavy industry, the corresponding varying range is (−74.03 %, −0.97 %) for averaged
potential output loss and (48.16 %, 4.88 %) for output growth. Basically, the poten-
tial output loss in light industry is higher than that in heavy industry over the entire
forecasting time span while the output growth in light industry is lower than that in
heavy industry before 2025 and exchanges the position since then. The light industry
does not reach a comparable level for potential output loss and output growth until
2035 and keeps the similar situation to the beginning of 2040s, just right meeting the
win-win development condition. But for the heavy industry, the win-win situation is
reached even since the earlier year of 2023 and the potential output growth holds a
relatively large advantage over the output loss since that year. Therefore, heavy indus-
try is obviously the beneficiaries of energy save and emission reduction, but light
industry is also not the losers. For the aggregated industry, the potential output loss
declines from −89.69 % in 2011 to −2.62 % in 2050, the potential output growth
decreases from 45.58 % in 2011 to 6.53 % at the end of the forecasting period-being
between that of light and heavy industry. Since heavy industrial sectors have larger
weights, the varying pattern of the potential output in aggregated industry looks more
similar to that in heavy industry—realizing the win-win development in the year of
2027.

4.3 The influence of environment regulation on future industrial productivity

Sickles and Streitwieser (1998) have once investigated the impact of regulatory envi-
ronment such as partial and gradual decontrol of natural gas prices on output change,
technology and productivity in the interstate natural gas pipeline industry. Following
this, this subsection also addresses the impact of optimal energy-saving and emission-
abating activity on the foreseeable change of productivity, technique and efficiency in
Chinese industry. Adopting the same group classification and weights as in Figs. 3, 4
exhibits the averaged changing trends of total factor productivity (TFP, i.e. MLPI) and
its decompositions of MLTCH and MLECH under the optimal path of environment
regulation for light, heavy and aggregated industry. Three subfigures show a similar
pattern. That is, China’s industrial TFP is firstly influenced by the efficiency change
in which the catching-up effect of adoption of the frontier technologies due to the
environment regulation is very obvious. When the efficiency attaches its utmost limits
and the catching-up energy is almost released, the technical progress begins to serve
as the major propelling force of industrial TFP through gradual accumulation and
assimilation. The improvement of overall TFP index also reveals that the industrial
development has generally shifted in a win-win fashion.

More specifically, at the early stage, energy-saving and emission-abating policy
mainly negatively affects the industrial technical progress, and a little more on light
industry than on heavy industry. For instance, for light industry, the level of techni-
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Fig. 4 Averaged productivity forecasting and its decomposition under the optimal energy-saving and
emission-abating path (2011–2050)

cal progress in 2022 and 2028 is similarly 98.03 % of previous year, attaching the
largest backward magnitude of production frontier, −1.97%, over the whole forecast-
ing period; the largest backward extent of technical progress for heavy industry is
−0.98 % in 2018 and the largest one for the aggregated industry is −1.16 % in 2019.
However, due to the obvious catching-up effect and the improvement of production
efficiency (at the efficiency peak, the value of MLECH is 1.048 in 2022 for light indus-
try, 1.033 in 2017 for heavy industry, and 1.033 in 2021 for aggregated industry), the
TFP growth will keep an increasing trend at the earlier forecasting phase. The negative
effect of environmental regulation on technical progress fades gradually and turns to
be positive in the year of 2034, 2022 and 2023 for light, heavy and aggregated industry,
respectively; at the same time, the catching-up effect turns to decline and begins to
be lower than the effect of technical progress in 2036, 2024 and 2035 for light, heavy
and aggregated industry. The technical progress then gradually reaches its peak due
to the long-term introduction, absorption, adoption and innovation of the advanced
technologies—say, the technical progress attains the highest value of 1.021 in 2038,
1.021 in 2027, and 1.013 in 2037 for light, heavy and aggregated industry. After that,
the efficiency continues to decrease while the industrial technique and its dominated
productivity keep a steady growth till the end of forecasting period.
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In a word, the optimal energy-saving and emission-abating activity plays a positive
role in improving industrial productivity, though different role in technical progress
and efficiency change in different period. For example, the TFP of light industry
grows steadily to the first peak in 2024 (1.030) and attains the second peak in 2037
(1.033); while the TFP of heavy and aggregated industry increases first and turns to
decline after reaching its peak in 2027 (1.032) and 2025 (1.029); in 2050 the TFP
growth is 1.94, 0.97 and 1.27 % for light, heavy and aggregated industry, respectively.
During the entire forecasting period from 2011 to 2050, on average the TFP growth of
light, heavy and aggregated industry attains 1.80, 1.73 and 1.74 %, and the aggregated
industrial technical progress and efficiency change reach to 0.34 and 1.42 %. This
is a win-win development prospect since the productivity, technique and efficiency
are growing and the targets to save energy and reduce emission are also achieved.
As Chen and Golley (2014) denoted, the traditionally estimated TFP that does not
take the energy and environment into account often overestimates the real TFP. In
this paper, we also choose another model, named basic DEA approach to forecast the
change of productivity, technique and efficiency in the same forecasting period, in
which the CO2 emission will not be considered. The averaged change of productivity,
technique and efficiency estimated by DEA approach over the entire forecasting time
span is 2.34, 0.66 and 1.66 %, higher than their counterparts estimated by DAAM
approach. To check the difference between basic DEA and DAAM measurements, we
run the non-parametric Kolmogorov-Smirnov Z test in which the null hypothesis is
that the DEA estimates are the same as the DAAM estimates. The test rejects the null
hypothesis at the 0.000, 0.0108 and 0.005 significance level for series of productivity,
technique and efficiency, respectively.

To investigate the heterogeneity and sensitivity of the estimates, we applied the
bootstrap methods specified in Sect. 3.2 to test for significant differences from unity of
sectoral Malmquist–Luenberger productivity index and its decomposition of technique
and efficiency index, referring to Tables 3, 4 and 5, in which values greater than
unity denote progress while values less than unity denote regress. Five adjacent time
periods are exemplified. In 2011/2010, the original estimates tell us that the numbers
of sectors that progress in productivity, technique and efficiency are 29, 24 and 33;
while the bootstrapping test reveals that among them only 16, 5 and 15 sectors have a
significant progress. Nine sectors regress in productivity in which only two of nonmetal
products manufacturing and ferrous metals pressing are significant; 14 sectors decrease
in technique and only 3 are significant (nonmetal ores mining, nonmetal products
manufacturing, ferrous metals pressing); five sectors decrease in efficiency while only
the sector of ferrous metals pressing is significant. In 2020/2019, twenty two sectors
regress in technique and eighteen of them are significant, while sixteen sectors seem to
progress in which there are only four to be significant, indicating a negative influence
resulted from environment regulations. For change in efficiency, the original estimates
tell us that thirty four sectors progress and the bootstrapping test denotes twenty seven
of them are significant; four sectors that regress are all insignificant. Driven more by
the efficiency, the performance of productivity looks not bad, in which twenty three
sectors progress and only five are insignificant; fifteen sectors regress but only three
are significant (textile manufacturing, leather manufacturing, and printing).
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Table 3 Sectoral changes in productivity in selected years

Sectors 2011/2010 2020/2019 2030/2029 2040/2039 2050/2049

Coal 1.0051 0.9960 0.9971 1.0304* 1.0806**

Petroleum Ext. 1.0034* 1.0023* 0.9893 0.8551** 1.0000

Ferrous Mi. 0.9985 0.9930 1.0179* 0.9522* 0.9484**

Non-ferrous Mi. 1.0034 1.0093* 0.9982 0.9941 1.0053*

Nonmetal Mi. 0.9936 0.9866 0.9867 1.0002* 1.0017**

Wood Exp. 0.9920 0.9857 0.9865 0.9980 0.9990

Food Prod. 1.0031 1.0049 1.0031 1.0157** 1.0076*

Food Ma. 1.0021 1.0062 0.9989 1.0070* 0.9989

Beverage 1.0096 1.0097 1.0027 1.0038* 1.0024

Tobacco 1.0584** 1.0433** 1.0692*** 1.0583** 1.0639***

Textile 1.0069* 0.9927* 0.9792* 0.9902 1.0076**

Apparel 1.0100* 0.9956 0.9886* 0.9887 0.9952

Leather 1.0037* 0.9933* 0.9923 1.0036* 1.0030

Wood Prod. 1.0012 0.9904 0.9859** 0.9907 0.9721

Furniture 1.0047 0.9953 0.9943* 0.9892 0.9723

Paper 1.0027 1.0063 0.9995 1.0086* 0.9909

Printing 1.0033 0.9935* 0.9907 1.0049** 1.0055*

Cultural articles 1.0069* 0.9971 0.9937* 1.0078** 1.0107**

Petroleum Prod. 0.9939 1.0049** 1.0038** 0.9973 1.0057*

Chemical products 1.0142** 1.0550*** 1.0518*** 1.0066* 1.0368**

Medicine 1.0025* 1.0059* 1.0030* 1.0066* 1.0075**

Fibers 1.2570*** 1.0097** 1.0025* 1.0025* 1.0011*

Rubber 0.9999 0.9897 0.9866 1.0003* 1.0010

Plastic 1.0020 0.9916 0.9949* 1.0031* 0.9934

Nonmetal Ma. 0.9654** 1.0117** 0.9944 1.0355*** 1.0348**

Ferrous press 0.8613*** 1.0016* 1.1040** 1.0001 0.9799

Non-ferrous press 1.0030 1.0074* 1.0071* 0.9535* 0.9310*

Metal products 1.0037 0.9927 0.9909 1.0270** 1.0618***

General machinery 1.0081 1.0264** 1.0314** 1.0676** 1.0501**

Special machinery 1.0082* 1.0074* 1.0385** 1.0270** 1.0135*

Transport equipment 1.0358*** 1.0308*** 1.0314*** 1.0202* 1.0133*

Electrical equipment 1.0508*** 1.0532*** 1.0098* 1.0092* 1.0029**

Computer 1.0095* 1.0157** 1.0142** 1.0017 1.0023**

Measuring instrument 1.0145** 1.0057* 1.0063* 1.0166** 1.0076*

Electric power 0.9983 0.9953 1.1336*** 1.0079* 1.0866**

Gas Prod. 1.0030* 1.0056* 1.0026* 1.0038 1.0023*

Water Prod. 0.9994 1.0031 1.0609** 1.0775** 1.3265**

Others 1.0439** 1.0482** 1.0216** 1.0219** 1.0236*

Single, double and triple asterisks (*, **, ***) indicate significant differences from unity at 0.10, 0.05 and
0.01 level, respectively
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Table 4 Sectoral changes in technique in selected years

Sectors 2011/2010 2020/2019 2030/2029 2040/2039 2050/2049

Coal 1.0049 1.0053 0.9958 1.0278* 1.0555**

Petroleum Ext. 1.0024 1.0044 0.9925 0.8612** 0.9656*

Ferrous Mi. 0.9978 0.9924 1.0005* 0.9791* 0.9482**

Non-ferrous Mi. 1.0023 1.0082 0.9993 0.9953 1.0003

Nonmetal Mi. 0.9934* 0.9864 0.9861 1.0003 1.0000

Wood Exp. 0.9918 0.9856* 0.9863 1.0002 1.0002*

Food Prod. 1.0027 1.0055 1.0006 1.0118** 1.0181**

Food Ma. 1.0016 1.0052* 0.9969* 1.0024* 0.9988

Beverage 1.0028 1.0054 1.0003 1.0007 0.9996

Tobacco 1.0029 1.0096 1.0776** 1.0526** 1.0544**

Textile 1.0059* 0.9917* 0.9844** 1.0004 1.0053*

Apparel 1.0072* 0.9928* 0.9858** 0.9882 0.9950

Leather 1.0001 0.9894** 0.9896* 1.0032* 1.0028*

Wood Prod. 1.0000 0.9893** 0.9856** 0.9880 0.9770

Furniture 0.9975 0.9883** 0.9864** 0.9835 0.9699*

Paper 1.0032 1.0055 1.0009 1.0094* 1.0134**

Printing 0.9983 0.9886* 0.9858* 1.0049* 1.0058*

Cultural articles 0.9986 0.9888* 0.9859** 1.0088** 1.0090*

Petroleum Prod. 0.9998 1.0035 0.9991 0.9606* 0.9531*

Chemical products 0.9994 1.0477** 1.0300** 1.0134** 1.0318**

Medicine 1.0012 1.0046** 1.0011 1.0037* 1.0048*

Fibers 1.0642** 1.0068 1.0000 0.9997 0.9997

Rubber 0.9991 0.9890* 0.9858 1.0004 1.0008

Plastic 1.0000 0.9897 0.9888 1.0041* 1.0058*

Nonmetal Ma. 0.9783** 0.9753** 0.9791** 1.0332** 1.0367**

Ferrous press 0.9147** 0.9583** 1.0623** 1.0010 0.9629*

Non-ferrous press 1.0029 1.0059 0.9846* 0.9675* 1.0226**

Metal products 1.0008 0.9898* 0.9879* 1.0321** 1.0605***

General machinery 0.9998 0.9852** 0.9877** 1.0396** 1.0400**

Special machinery 1.0071 0.9506*** 0.9833** 1.0300** 1.0121**

Transport equipment 1.0013 0.9547** 1.0262** 1.0143** 1.0075*

Electrical equipment 1.0014 0.9960* 0.9875** 1.0053* 1.0022*

Computer 0.9995 1.0056 1.0096* 1.0007 0.9997

Measuring instrument 1.0129** 0.9492** 0.9865* 1.0111** 1.0065*

Electric power 1.0037 1.0015 1.0872*** 1.0127** 1.0766***

Gas Prod. 1.0030* 1.0056** 1.0006* 0.9998 0.9996

Water Prod. 0.9988 0.9973 1.0497** 1.0744** 1.1519**

Others 1.0001 0.9693* 0.9902 1.0171* 1.0236*

Single, double and triple asterisks (*, **, ***) indicate significant differences from unity at 0.10, 0.05 and
0.01 level, respectively
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Table 5 Sectoral changes in efficiency in selected years

Sectors 2011/2010 2020/2019 2030/2029 2040/2039 2050/2049

Coal 1.0002 0.9908 1.0013 1.0026** 1.0238**

Petroleum Ext. 1.0010 0.9980 0.9968 0.9929 1.0357**

Ferrous Mi. 1.0008 1.0006 1.0173 0.9725 1.0002

Non-ferrous Mi. 1.0011* 1.0011* 0.9989 0.9988 1.0050*

Nonmetal Mi. 1.0002 1.0002 1.0006 0.9999 1.0017

Wood Exp. 1.0002 1.0002* 1.0002 0.9978 0.9987

Food Prod. 1.0004 0.9995 1.0025* 1.0039 0.9897

Food Ma. 1.0004 1.0010* 1.0020* 1.0045* 1.0001

Beverage 1.0067* 1.0042* 1.0024* 1.0031* 1.0027

Tobacco 1.0554** 1.0334** 0.9922 1.0054* 1.0090

Textile 1.0010 1.0010 0.9947 0.9898 1.0023

Apparel 1.0028 1.0028* 1.0028* 1.0005 1.0002

Leather 1.0036** 1.0039** 1.0027** 1.0004 1.0002

Wood Prod. 1.0012 1.0012 1.0004 1.0027 0.9949

Furniture 1.0071** 1.0071** 1.0081** 1.0058* 1.0025

Paper 0.9995 1.0008* 0.9986 0.9992 0.9777

Printing 1.0050* 1.0050** 1.0050** 1.0000 0.9997

Cultural articles 1.0083** 1.0085** 1.0079** 0.9990 1.0017

Petroleum Prod. 0.9941 1.0013* 1.0047 1.0381** 1.0553**

Chemical products 1.0147** 1.0070* 1.0212** 0.9933 1.0048*

Medicine 1.0013 1.0013 1.0020 1.0029 1.0028

Fibers 1.1812** 1.0029* 1.0025 1.0028 1.0013

Rubber 1.0008* 1.0008* 1.0008 0.9999 1.0002

Plastic 1.0020* 1.0020* 1.0061 0.9990 0.9877

Nonmetal Ma. 0.9868 1.0373** 1.0157** 1.0022 0.9982

Ferrous press 0.9416** 1.0452*** 1.0393** 0.9991 1.0177**

Non-ferrous press 1.0000 1.0015* 1.0229** 0.9855 0.9104**

Metal products 1.0029 1.0029 1.0031 0.9950 1.0012

General machinery 1.0083 1.0418** 1.0442** 1.0269** 1.0097

Special machinery 1.0011 1.0597*** 1.0562*** 0.9971 1.0015

Transport equipment 1.0344** 1.0797*** 1.0051 1.0059* 1.0057

Electrical equipment 1.0493** 1.0574** 1.0226** 1.0039* 1.0007

Computer 1.0101* 1.0100* 1.0045 1.0010 1.0026

Measuring instrument 1.0016 1.0595** 1.0201** 1.0055 1.0011

Electric power 0.9947 0.9938 1.0427* 0.9953 1.0093*

Gas Prod. 1.0000 1.0000 1.0020 1.0041 1.0026

Water Prod. 1.0006 1.0058** 1.0106 1.0030* 1.1516*

Others 1.0438** 1.0814* 1.0318 1.0047 1.0000

Single, double and triple asterisks (*, **, ***) indicate significant differences from unity at 0.10, 0.05 and
0.01 level, respectively
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In 2030/2029, twenty four sectors regress in technique and half of them are signifi-
cant in which ten sectors belong to light industry except for nonmetal products manu-
facturing and non-ferrous metals pressing; fourteen sectors progress in technique and
nine of them are significant (six sectors belong to heavy industry such as ferrous ores
mining, chemical products manufacturing, ferrous metals pressing, electric power pro-
ducing, gas producing, and water producing). Efficiency performs not bad; say, thirty
three sectors increase in efficiency and seventeen of them are significant; while five
sectors that regress are all insignificant. Thus, twenty sectors progress in productivity
in which only two of them are insignificant, and eighteen sectors decrease in productiv-
ity with six being significant—such as textile manufacturing, apparel manufacturing,
wood processing, furniture manufacturing, cultural articles manufacturing and plas-
tic manufacturing, most of them belonging to light industry. In 2040/2039, twenty
eight sectors progress in productivity, twenty six of which being significant; ten sector
decrease in productivity with only three heavy industrial sectors being significant (i.e.,
petroleum extraction, ferrous ores mining, non-ferrous metals). For technique change,
twenty eight sectors also progress in which only seven sectors are insignificant, ten
sectors regress with only four sectors being significant. There are only ten sectors
that have significant change in efficiency, and all the sectors that regress in efficiency
are not significant. In 2050/2049, the sectors with significant efficiency change are
very rare. Specifically, only nine sectors are significant in the change of efficiency,
one of which regresses. There are twenty seven sectors that progress in technique and
only three of which are insignificant; eleven sectors decrease in technique with only
five sectors are significant. As for productivity change, twenty eight progress with
only four sectors being insignificant; ten sectors regress in which only two of ferrous
ores mining and non-ferrous metals pressing are significant. Obviously, the bootstrap-
ping estimates reveal more accurate forecasting of sectoral change of productivity,
technique and efficiency in the following 40 years than original point prediction.

5 Conclusion

To challenge the climate change and boost the transformation of development model,
developing the low carbon economy under the appropriate environment regulations
have become the necessary approach for most countries to achieve the sustainable
economic development (Chen 2011). However, both energy save and environment
protection will seize the important materials originally planned to normal production,
causing the declination of the desirable output and competitiveness. The conflicting
views are also reflected in academic area, i.e., if in favor or against the Porter hypothe-
sis. This paper makes use of the directional distance function that precisely embodies
the spirit of Porter hypothesis in which the goods increase and bads decrease simul-
taneously and proposes a novel dynamic activity analysis model (DAAM) to forecast
the win-win development possibilities for Chinese industrial sectors between 2011
and 2050, to investigate the existence of Porter hypothesis in China. To overcome the
sample variation, the consistent bootstrapping estimates are developed for forecast-
ing both potential output and change of productivity, technique and efficiency in the
following decades.
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From the perspective of potential output, the empirical results show that, on average,
energy save and emission reduction will cause relatively large potential output loss in
an early stage; but in long run, the loss will decline gradually and become lower than
potential output growth finally, achieving the win-win development prospect stated
in Porter hypothesis. Specifically, the bootstrapping estimates reveal that twenty six
industrial sectors, 68.4 % of all sectors, enjoy a statistically significant potential net
output gain, a certain win-win development prospect without sample noise, in the last
forecasting year of 2050. From the viewpoint of productivity, the prediction analysis
manifests that energy-saving and emission-reducing policy will have a larger negative
impact on industrial technical progress at an early stage, especially for light industry;
however, due to the obvious catching-up effect and increasing production efficiency
in the early forecasting period and the rising technical progress dominated in the latter
period, the industrial TFP is not negatively influenced by the environment regulation
and always maintains an increasing trend. During the entire forecasting period from
2011 to 2050, on average the TFP growth of light, heavy and aggregated industry attains
1.80, 1.73 and 1.74 %, respectively. The bootstrapping estimates also support that
most sectors experience a progress in productivity, technique and efficiency. Overall,
although energy-saving and emission-abating regulation will cause certain loss at an
early stage, in the long run, it will not only reach the target of improving environment
quality but also increase the output and productivity, finally leading to the win-win
development in the following 40 years. Our forecasting analysis in this paper favors
the Porter hypothesis.
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Summary High-dimensional non-stationary time series, which reveal both complex trends
and stochastic behaviour, occur in many scientific fields, e.g. macroeconomics, finance,
neuroeconomics, etc. To model these, we propose a generalized dynamic semi-parametric
factor model with a two-step estimation procedure. After choosing smoothed functional
principal components as space functions (factor loadings), we extract various temporal trends
by employing variable selection techniques for the time basis (common factors). Then, we
establish this estimator’s non-asymptotic statistical properties under the dependent scenario
(β-mixing and m-dependent) with the weakly cross-correlated error term. At the second step,
we obtain a detrended low-dimensional stochastic process that exhibits the dynamics of the
original high-dimensional (stochastic) objects and we further justify statistical inference based
on this. We present an analysis of temperature dynamics in China, which is crucial for pricing
weather derivatives, in order to illustrate the performance of our method. We also present a
simulation study designed to mimic it.

Keywords: Asymptotic inference, Factor model, Group Lasso, Periodic, Seasonality, Semi-
parametric model, Spectral analysis, Weather.

1. INTRODUCTION

Over the past few decades, high-dimensional data analysis has attracted increasing attention in
various fields. We often face a high-dimensional vector of observations evolving in time (a very
large interrelated time process), which is also possibly controlled by an exogenous covariate.
For example, in macroeconomic forecasting, people use very large dimensional economic and
financial time series (Stock and Watson, 2005b). In meteorology and agricultural economics,
one of the primary interests is to study the fluctuations of temperatures at different nearby
locations; for a recent summary, see Gleick et al. (2010). Such an analysis is also essential
for pricing weather derivatives and hedging weather risks in finance (Odening et al., 2008). In

C⃝ 2013 The Author(s). The Econometrics Journal C⃝ 2013 Royal Economic Society. Published by John Wiley & Sons Ltd, 9600 Garsington
Road, Oxford OX4 2DQ, UK and 350 Main Street, Malden, MA, 02148, USA.
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neuroeconomics, high-dimensional functional magnetic resonance imaging (fMRI) data are used
to analyse the brain’s response to certain risk-related stimuli, as well as to identify its activation
area (Worsley et al., 2002). In financial engineering, the dynamics of the implied volatility
surface (IVS) are studied for risk management, calibration and pricing purposes (Fengler et al.,
2007). Other examples include mortality analysis (Lee and Carter, 1992), bond portfolio risk
management or derivative pricing (Nelson and Siegel, 1987, and Diebold and Li, 2006), limit
order book dynamics (Hall and Hautsch, 2006), yield curves (Bowsher and Meeks, 2006), and
so on.

Empirical studies in economics and finance often involve non-stationary variables, such
as real consumer price index, individual consumption, exchange rates, real gross domestic
product, etc. For example, the large panel macroeconomic data, provided by Stock and Watson
(2005a), contain some complex non-stationary behaviour, such as normal seasonality, large
economic cycle and upward trend representing economic growth, etc. However, some studies
have produced counterintuitive and contradictory results; see Campbell and Yogo (2006), Cai
et al. (2009), Xiao (2009) and Wang and Phillips (2009a,b). This might partly be attributed
to the use of methods that cannot capture non-stationarity or non-linear structural relations. In
fact, in the econometrics literature, the study of such non-stationary time series is dominated by
linear or, at most, parametric models, restricting non-stationarity to the unit root or long-memory
autoregressive fractionally integrated moving average (ARFIMA) types of non-stationarity and
restricting structural relations to linear or parametric types of cointegration models. General
processes can be characterized by certain recurrence properties. These processes contain
stationary, long-memory and unit-root type or nearly integrated processes as subclasses, and
are more general than the class of locally stationary processes. As pointed out in the recent
econometrics literature, when some covariates are non-stationary, conventional statistical tests
are invalid, even though the predictive power in a non-parametric regression model can be
improved if some covariates are non-stationary. While some asymptotic results for general
non-parametric estimation methods for low-dimensional non-stationary time series have been
obtained, semi-parametric modelling has hardly been investigated so far, especially for high-
dimensional non-stationary time series. For the i.i.d. case, there have been many studies in the
literature, including but not limited to Horowitz and Lee (2005), Horowitz et al. (2006) and
Horowitz (2006) for the moderate-dimension case and Horowitz and Huang (2012) and Huang
et al. (2010) for the high-dimension case.

In such situations, if we still use either high-dimensional static methods, which are initially
designed for independent data or low-dimensional multivariate time series techniques (on a few
concentrated series through naı̈ve aggregation), we might lose potentially relevant information,
such as the time dynamics or the space dependence structure. This might produce suboptimal
forecasts and would be extremely inefficient. In macroeconomics studies, this potentially creates
an omitted variable bias with adverse consequences for both structural analysis and forecasting.
Christiano et al. (1999) has pointed out that the positive reaction of prices in response to a
monetary tightening, the so-called price puzzle, is an artefact resulting from the omission of
forward-looking variables, such as the commodity price index. The more scattered and dynamic
the information is, the more severe this loss will be. To this end, an integrated solution addressing
both issues is appealing. We need to analyse jointly time and space dynamics by simultaneously
fitting a time series evolution and by fine tuning the factors involved. The solution we are seeking
helps us to understand the spatial pattern, to gain strength from the different time points and, at
the same time, to analyse the non-stationary temporal behaviour of the value at each spatial point.
In this paper, we present and investigate the so-called generalized dynamic semi-parametric

C⃝ 2013 The Author(s). The Econometrics Journal C⃝ 2013 Royal Economic Society.
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factor model (GDSFM), together with its corresponding panel version, in order to address this
problem.

Panel data have attracted much attention in econometrics; see, e.g. Baltagi (2005), Frees
(2004) and Hsiao (1986). To address the above challenges in a large panel of economic and
financial time series, some recent studies have proposed ways to impose restrictions on the
covariance structure in order to limit the number of parameters to be estimated. Dynamic factor
models introduced by Forni et al. (2000) and Stock and Watson (2002a,b), also discussed by
Forni et al. (2005) and Giannone et al. (2005), have drawn upon the idea that the intertemporal
dynamics can be explained and represented by a few common factors (low-dimensional time
series). Another approach in this field has been presented by Park et al. (2009), where a
latent L-dimensional process, Z1, . . . , ZT , is introduced, and the J -dimensional random process
Yt = (Yt,1, . . . , Yt,J )⊤, t = 1, . . . , T , is represented as

Yt,j = Zt,1m1,j + · · · + Zt,LmL,j + εt,j , j = 1, . . . , J, t = 1, . . . , T . (1.1)

Here, Zt,l are the common factors depending on time, εt,j are errors or specific factors, and
the coefficients ml,j are factor loadings. The index t = 1, . . . , T reflects the time evolution,
{Zt }Tt=1 (Zt = (Zt,1, . . . , Zt,L)⊤) is assumed to be a stationary random process, and ml =
(ml,1, . . . , ml,J )⊤ captures the spatial dependency structure. The study of the time behaviour
of the high-dimensional Yt is then simplified to the modelling of Zt , which is more feasible
when L ≪ J . Model (1.1) reduces to a special case of the generalized dynamic factor model
(approximate factor model) considered by Forni et al. (2000, 2005) and Hallin and Liska
(2007), when Zt,l = al,1(B)Ut,1 + · · · + al,q(B)Ut,q . Here, the q-dimensional vector process
Ut = (Ut,1, . . . , Ut,q )⊤ is an orthonormal white noise and B denotes the lag operator. In
this case, model (1.1) is expressed as Yt,j = m0,j +

∑q
k=1 bk,j (B)Ut,k + εt,j , where bk,j (B) =∑L

l=1 al,k(B)ml,j . Less general models in the literature include the static factor models proposed
by Stock and Watson (2002a,b) and the exact factor models suggested by Sargent and Sims
(1977) and Geweke (1977).

Our goal of modelling high-dimensional non-stationary time series is achieved by using a
sparse representation approach to regression. In fact, we combine spatio-temporal modelling
with group Lasso (Yuan and Lin, 2006). We approximate both the temporal common factors
and spatial factor loadings by a linear combination of series terms. Because the temporal
non-stationarity behaviour might result from different sources, the choice of basis functions is
important. We start by introducing an overparametrized model, which can capture (almost) any
type of temporal behaviour, such as cyclic behaviour plus linear or quadratic trends, by utilizing
series basis, such as powers, trigonometrics, local polynomials, periodic functions and B-splines.
Then, we select a sparse submodel, using penalizing-Lasso and group-Lasso techniques.

In practice, there might be multiple subjects, each of which by itself corresponds to a set of
high-dimensional time series. For example, in international economies, industrial organizations
or financial studies, there are data for many countries, firms or assets, all of which are high-
dimensional. Thus, we also need to provide a panel version of the high-dimensional time series
model to address this issue. Compared with previous studies in the literature, the novelty of this
paper lies in the following aspects.

1. When the time process is not stationary (i.e. the process has a non-linear, non-parametric
temporal structure in time), using a skilful selection of time basis, we can handle such
complex time series. To achieve a successful selection, the key assumption is that the
initially proposed time basis should not be too dependent, even though the number can

C⃝ 2013 The Author(s). The Econometrics Journal C⃝ 2013 Royal Economic Society.
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be large (i.e. we should include as many orthogonal time basis functions as possible for
the automatic selection). From the point of view of large panel time series modelling, we
incorporate non-stationarity and non-linearity (complex trends) into time dynamics. We
deviate from most of the current body of literature that still requires Zt to be stationary
and still needs a large number of observations (relative to dimensionality) to establish
asymptotic properties.

2. The contribution lies in the way the time dynamics is introduced for variable selection
and regularization methods. Under the assumption that the product of the time basis,
space basis and error term has a bounded second moment, and the error term εt is only
weakly cross-correlated, the non-asymptotic theoretical properties of existing methods are
established under the scenario of independence. We extend it to a dependent scenario
(β-mixing and m-dependent process) with the weakly cross-correlated error term (the
details are specified in Assumption 3.2), and we derive oracle sparsity inequalities (non-
asymptotic risk bounds). The key assumption is that the temporal dependence level of the
error term is controlled within some level. Also, this result is not built upon any specific
forms of time and space basis.

3. When the space structure of ml is complex, the low-dimensional parametrizations do not
capture it properly. We employ a data-driven semi-parametric method, introduced by Hall
et al. (2006), to capture the spatial dependence structure.

4. For the case that there might be multiple subjects, each of which corresponds to a
set of high-dimensional time series, we provide a panel version of the model with a
corresponding estimation method.

In a variety of applications, we have explanatory variables Xt,j ∈ Rd at hand, e.g. the
geo coordinates of weather stations, the voxels (volume elements, representing values on
regular grids) of fMRI, or the moneyness and time-to-maturity variables for implied volatility
modelling, which can influence the factor loadings ml . An important refinement of model
(1.1) is to incorporate the existence of observable covariates Xt,j from Park et al. (2009).
The factor loadings are then generalized to functions of Xt,j . In the following, we write
Xt = (Xt,1, . . . , Xt,J )⊤ and consider the generalization of (1.1),

Yt,j = ZT
t m(Xt,j ) + εt,j , t = 1, . . . , T , (1.2)

where Ytj , εtj ∈ R, Xtj ∈ Rd , m : Rd → RL and Zt ∈ R1×L.
Our motivating example is from temperature analysis for pricing weather derivatives.

The data set is taken from the Climatic Data Center (CDC) of the China Meteorological
Administration (CMA). It contains daily observations from 159 weather stations across China
from 1 January 1957 to 31 December 2009. We would not only like to address the question
of whether there is a change in time, but also to permit a different trend in time, in different
climate types, as shown by Figure 1 (left), which shows a map of the network of China’s weather
stations. Besides the well-known seasonality effect, we can expect a trend related to climate
change. In Figure 1 (right), we show the moving average (of 730 nearby days) of temperatures in
China from 1 January 1957 to 31 December 2009, which is (159 × 730)−1 ∑+365

s=−354

∑159
j=1 Yt+s,j ,

where Yt,j is the temperature of the j th weather station at time t . From this figure, we can
see that there is a large period (around 10 years) between peaks and an upward trend for
China’s temperatures. Besides these trends, there is also stochasticity inherent in the remaining
time dynamics, which is essential for pricing weather derivatives and hedging weather risks.
By simultaneously studying the dynamics of temperatures in various places w.r.t. Xt,j = Xj

C⃝ 2013 The Author(s). The Econometrics Journal C⃝ 2013 Royal Economic Society.
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Figure 1. Map of China’s weather stations and moving averages of temperature.

(the three-dimensional geographical information of the j th weather station), we will be able to
estimate, forecast and price temperatures in time and space.

The rest of the paper is organized as follows. In the next section, we present details of
the GDSFM, together with the corresponding basis selection and panel model. We present
the estimator’s properties under various scenarios in Section 3. In Section 4, we apply the
method to the motivating problem: the dynamic behaviour of temperatures. In Section 5, we
present the results of simulation studies that mimic the previous empirical example. Section 6
contains concluding remarks. The estimation procedure and all technical proofs are sketched in
Appendices A and B, respectively.

2. GENERALIZED DYNAMIC SEMI-PARAMETRIC FACTOR MODELS

We observe (Xt,j , Yt,j ) for j = 1, . . . , J and t = 1, . . . , T , Ytj ∈ R, Xtj ∈ Rd , εtj ∈ R generated
by

Y⊤
tj = Z⊤

t A∗#(Xtj ) + ε′
tj =

(
U⊤

t $∗ + Z⊤
0,t

)
A∗#(Xtj ) + ε′

tj ,

where A∗ and $∗ are the L × K and R × L (unknown) underlying coefficient matrices and
Zt has two components $∗TUt and Z0,t . Let Yt = (Yt,1, . . . , Yt,J )⊤, Xt = (Xt,1, . . . , Xt,J )⊤,
ε′
t = (ε′

t,1, . . . , ε
′
t,J )⊤ and #(Xt ) = (#(Xt1), . . . ,#(XtJ )) (abbreviated as #t ). We rewrite this

in compact form as

Y⊤
t =

(
U⊤

t $∗ + Z⊤
0,t

)
A∗#(Xt ) + ε′⊤

t

= U⊤
t $∗A∗#(Xt ) + Z⊤

0,tA
∗#t + ε′⊤

t . (2.1)

Again, by introducing β∗T = $∗A∗ (the R × K unknown underlying coefficient matrices
consisting of βrk) and εt = ZT

0,tA
∗#t + ε′

t , we could further simplify this as

Y⊤
t

def= U⊤
t β∗⊤#t + ε⊤

t . (2.2)
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Note the following.

1. Time evolution/common factors. Zt = (Zt,1, . . . , Zt,L)⊤ is an unobservable
L-dimensional process consisting of both a deterministic portion, $∗⊤Ut , and a
stochastic portion, Z0,t . Here, {Z0,t }Tt=1 is a stationary process (to be detailed later).
A key difference between our method and that of Park et al. (2009) is this additional
non-stationary component $∗⊤Ut .

2. Factor loading functions and error terms. m(Xtj ) = A∗#(Xtj ) is an L-tuple (m1, . . . , mL)
of unknown real-valued functions ml defined on a subset of Rd and ε′

t = (ε′
t,1, . . . , ε

′
t,J )⊤

are the errors. Throughout the paper, we assume that the covariates Xt,j have support
[0, 1]d . The error terms εt and ε′

t only need to satisfy some mild condition (details specified
in Assumptions 3.2 and 3.3(c)), which allows them to be weakly dependent (over time) and
cross-correlated (over space).

3. Time and space basis. We use a series expansion to capture the time trend and the
space-dependent structure. Let U⊤

t = (u1(t), . . . , uR(t)) be the 1 × R vector of time basis
functions (polynomial and trigonometric functions, etc.), which are selected and weighted
by the matrix $∗. For the space basis, we take #t = (ψ1(Xt ), . . . ,ψK (Xt ))⊤ (K × J

matrix). For every β matrix, we introduce βr = (βkr , 1 ≤ k ≤ K), which is the column
vector formed by the coefficients corresponding to the rth time basis. Additionally, we

define the mixed (2, 1) norm ∥β∥2,1 =
∑R

r=1

√∑K
k=1 β2

rk . Finally, we set R(β) = {r :
βr ̸= 0} and M(β) = |R(β)|, where |R(β)| denotes the cardinality of set R(β). For the
sake of simplicity and convenience, we use | · | to denote the L1 norm for vectors and ∥ · ∥
to denote the L2 norm for vectors or the mixed (2, 1) norm for matrices.

Because the non-stationary behaviour might be very complex, to ensure that all the trends
causing the non-stationarity are considered, the dimension R of the initially included time
basis might be large. For example, in the temperature analysis, because we never know the
exact frequency (frequencies) of the period(s), at the beginning, we include all the basis
functions. We think that this might be useful for capturing the non-stationary behaviour, e.g. 16
trigonometric functions w.r.t. different frequencies and 53 × 3 (year by year) cubic polynomial
basis. Consequently, we end up with R = 175. However, to avoid overfitting, variable selection
with regularization techniques is necessary. A popular variable selection method is the Lasso
(Tibshirani, 1996). An extension for factor-structured models is the group Lasso (Yuan and Lin,
2006), in which the penalty term is a mixed (2, 1) norm of the coefficient matrix. Here, we assume
that the vectors βr are not only sparse, but also have the same sparsity pattern across different
factors. We study the estimator’s theoretical sparsity properties related to the time basis selection,
and we take (2.1) to be the true model. Because group LASSO permits overparametrization, this
is a mild assumption. We would also like to emphasize that our non-asymptotic sparse oracle
inequality results are independent of specifications of time and space basis. They apply equally
to local polynomials, periodic functions, such as sin and cos, and B-splines, etc., while we just
assume that there is no additional approximation error for obtaining the space basis at this non-
asymptotic analysis step.

2.1. A panel version with multiple individuals

Here, we just present a panel version of (2.1) based on assumptions closely related to the fMRI
neuroeconomics study (Mohr et al., 2010). It is reasonable to assume that different subjects have
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different patterns of brain activation (to the external stimuli) represented by the time series Zt , but
they (and all human beings) share essentially the same spatial structure of the brain represented
by the space function A∗#t . With a panel of I subjects, we formulate the following generalization
of (2.1) and (2.2),

Y i
t,j =

L∑

l=1

(
Zi

0,t,l + U⊤
t $i

l

)
ml(Xt,j ) + εi

t,j , 1 ≤ j ≤ Jt , 1 ≤ t ≤ T , 1 ≤ i ≤ I, (2.3)

where the fixed effects Zi
0,t,l and $i

l are the individual effects on functions ml for subject i at
time point t . For identification purposes, assume

E[
I∑

i=1

L∑

l=1

Zi
0,t,l ml(Xt,j )|Xt,j ] = 0.

For this data structure, we use Y t,j to denote the average of Y i
t,j across different subjects i. Thus,

from (2.3), we have

Y t,j =
L∑

l=1

(
U⊤

t $l

)
ml(Xt,j ) + εt,j 1 ≤ j ≤ J.

The two-step estimation procedure for the panel version model is as follows.

STEP 1. Take the average of Y i
t,j across different subjects i, and estimate the common basis

function in space m̂l as in the original approach; see Appendix A for more details.
STEP 2. Given the common m̂l , estimate subject-specific time factors Zi

t,l :

Y i
t,j =

L∑

l=1

(
Zi

0,t,l + U⊤
t $i

l

)
m̂l(Xt,j ) + εi

t,j .

Next, we discuss the choice of time basis Ut , space basis #t and the estimation procedure for
(2.2).

2.2. Choice of time basis

To capture the global trend in time, we can use any orthogonal polynomial basis, e.g.
u1(t) = 1/C1, u2(t) = t/C2, u3(t) = (3t2 − 1)/C3, . . . (where Ci are generic constants with
T −1 ∑T

t=1 u2
r (t)/C2

r = 1). We can also use the fact that there are natural frequencies in the
data, and thus start with a few trigonometric functions. In the temperature example, the
yearly cycle and a large period are two clear phenomena. To capture these periodic variations,
we can use trigonometric functions, u4(t) = sin(2π t/p)/C4, u5(t) = cos(2π t/p)/C5, u6(t) =
sin(2π t/(p/2))/C6, u7(t) = cos(2π t/(p/2))/C7, . . ., with the given period p: 365 and 10 for the
yearly cycle and large period, respectively. In the fMRI application of Myšičková et al. (2013),
the basic experiment is repeated every 29.5 seconds, and we have the period p = 11.8 (there
is a fMRI scan every 2.5 seconds). In general, to adopt various types of non-linearities, various
basis functions could be employed, such as powers, trigonometrics, local polynomials, periodic
functions, B-splines, etc. The theory to be presented later for selecting the significant time basis
selection is actually independent of their specific forms, and thus is very useful in practice.
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2.3. Choice of space basis

There are various choices for space basis. Park et al. (2009) have proposed a multidimensional
B-spline basis. Alternatively, functional principal component analysis (PCA; Hall et al., 2006)
can be employed, which combines smoothing techniques with ideas related to functional PCA.
The basic steps are as follows.

STEP 1. Calculate the covariance operator (in a functional sense). Denote Xtj = (X1
tj , . . . , X

d
tj ),

u = (u1, . . . , ud ) and v = (v1, . . . , vd ) (as for b, b̂, b1, b̂1, b2 and b̂2). Given u ∈ [0, 1]d ,
and bandwidths hµ and hφ , define (̂a, b̂) to minimize

min
a,b

T∑

t=1

Jt∑

j=1

(
Ytj − a − bT(u − Xtj )

)2
K(

Xtj − u

hµ

),

and take µ̂(u) = â. Then, given u, v ∈ [0, 1]d , choose (̂a0, b̂1, b̂2) to minimize

T∑

t=1

∑

1!j ̸=k!Jt

(
YtjYtk − a0 − bT

1(u − Xtj ) − bT
2(v − Xtk)

)2
K(

Xtj − u

hφ

)K(
Xtj − v

hφ

).

Denote â0 by φ̂(u, v) and construct µ̂(v) similarly to µ̂(u). The estimate of the
covariance operator is then

ψ̂(u, v) = φ̂(u, v) − µ̂(u)µ̂(v). (2.4)

STEP 2. Compute the principal space basis. Obtain from (2.4) the largest K eigenvalues
and corresponding orthonormal eigenfunctions as the basis ψ̂1(x), . . . , ψ̂K (x). For
computational methods and practical considerations, we refer to Section 8.4 of Ramsay
and Silverman (2005).

As remarked by Hall et al. (2006), the operator defined by (2.4) is not necessarily positive
semi-definite, but it is assured to have real eigenvalues. Theorem 1 of Hall et al. (2006) provides
theoretical foundations that the bandwidths hµ and hφ should be chosen as O(T −1/5) to minimize
the distance between the estimates ψ̂ and the corresponding true ψ̂ . In Section 4 (details
presented later), we find that the performance of β̂ is very robust to the choice of the smoothing
parameter.

We would like to emphasize that the space basis function #̂t is only an estimator of the true
(unobservable) #t . However, in proving the properties of the time basis selection, as in Theorem
3.2 and Corollary 3.1, we assume that this space basis estimation does not affect the study of
selecting the temporal basis, because, otherwise, the non-asymptotic theoretical deviation will
be too complex. If we still stick to the B-spline basis as in Park et al. (2009), all the proofs
afterwards do not need to be modified. For simplicity of notation, we continue to use #t to
denote this estimate of space basis from now.

We apply this method to the implied volatility modelling problem, which has been discussed
in detail by Park et al. (2009). Figure 2 displays the space basis modelling using the functional
PCA approach, which could capture the special ‘smiling’ effect well, while the spline basis
modelling cannot.
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Figure 2. Space basis using the functional PCA approach for IVS modelling.

3. PROPERTIES OF ESTIMATES

In this section, we study sparse oracle inequalities for the estimate β̂ defined in (A.1), assuming
that the errors εt are dependent (β-mixing in Theorem 3.2 and m-dependent in Corollary 3.1).
This work extends those of Lounici et al. (2009), Bickel et al. (2009) and Lounici (2008)
concerning upper bounds on the prediction error and the distance between the estimator and
the true matrix β∗.

For the second step of the estimation procedure, an important question arises: is it justified,
from an inferential point of view, to base further statistical inference on the detrended stochastic
time series? Theorem 3.4 shows that the difference between the inference based on the estimated
time series and true unobserved time series is asymptotically negligible.

Before stating the first theorem, we make the following assumption.

ASSUMPTION 3.1. There exists a positive number κ = κ(s) such that

min(

√∑
t ∥#⊤

t )Ut∥2

√
T ∥ )R ∥

: |R| ! s,) ∈ RK×R\{0},

∥ )Rc ∥2,1! 3 ∥ )R ∥2,1) " κ,

where Rc denotes the complement of the set of indices R and )R denotes the matrix formed by
stacking the rows of matrix ) w.r.t. row index set R.
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Assumption 3.1 is essentially a restriction on the eigenvalues of
∑T

t=1 UtU
⊤
t as a function of

sparsity s. In fact, it requires that the initially involved time basis is not too dependent, which is
naturally satisfied by orthogonal polynomials and trigonometric functions. Low sparsity means
that s is big and therefore κ is small. Thus, κ(s) is a decreasing function of s; see also Lemma
4.1 of Bickel et al. (2009) for more details and related discussions.

THEOREM 3.1 (DETERMINISTIC PART). Consider the model (2.2). Assume that #t#
⊤
t = IK

(orthonormalized space basis), T −1 ∑T
t=1 U⊤

t Ut/R = 1, and the number of true non-zero time
basis M(β∗) ! s. If the random event

A = (2T −1 max
1!r!R

T∑

t=1

K∑

k=1

J∑

j=1

#⊤
tkjεtjUtr ! λ) (3.1)

holds for some λ > 0 and Assumption 3.1 is satisfied, then, for any solution β̂ of (A.1), we have

T −1
T∑

t=1

∥ #⊤
t (β̂ − β∗)Ut ∥2 ! 16sλ2κ−2, (3.2)

K−1/2∥ β̂ − β∗ ∥2,1 ! 16sλK−1/2κ−2, (3.3)

M(β̂) ! 64φ2
maxsκ

−2. (3.4)

Note that Theorem 3.1 is valid for any J,R, T and any type of distribution of εt , and yields
non-asymptotic bounds.

Because the standard assumption that εt is independent is often unsatisfied in practice, it
is important to understand how the estimator behaves in a more general situation (i.e. with
dependent error terms). As far as we know, our result is one of the first attempts to deal
with dependent error terms for (group) Lasso variable selection techniques. We build it w.r.t.
β-mixing, which is an important measure of dependence between σ -fields (for time series). A
detailed definition can be found in Appendix B (before Proof of Theorem 3.2). A very natural
question to ask is, to what extent the degree of dependence (in terms of β-mixing coefficients) is
allowed, while we can still obtain certain sparse oracle inequalities (i.e. to study the relationship
among high dimensionality R, moderate sample size T and β-mixing coefficients β).

We use the following mild technical assumption similar to the typical bounded second-
moment requirement for i.i.d. data.

ASSUMPTION 3.2. The matrices #t and Ut and random variables εt are such that for

Vt
def= K−1/2 ∑K

k=1

∑J
j=1 #tkjεtjUtr , ∃σ 2 such that ∀n,m, m−1E[Vn + · · · + Vn+m]2 ! σ 2 and

∀t , |Vt | ! C ′′, ∀ r and some constants σ 2, C ′′ > 0, t = 1, . . . , T .

Note that because Vt (as a function of εtj ) is defined as a sum over j , it also indicates that the
error term εt could be weakly cross-correlated. We can now state our main result.

THEOREM 3.2 (β-MIXING). Consider the model (2.2). Assume the sequence {Vt }Tt=1 satisfies
Assumption 3.2 and the β-mixing condition with the β-mixing coefficients
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β(((3/8)σε2T 1/2(1 − ε)1/2C ′′−1 log R−(1+δ′)/2) − 1)

! (24σ (1 − ε)1/2(R1+δ′√
log R1+δ′

T C ′′)−1),

for any ε > 0, some δ′ > 0 and λ defined below. #t#
⊤
t = IK , T −1 ∑T

t=1 U⊤
t Ut/R = 1, and

M(β∗) ! s. Furthermore, let κ be defined as in Assumption 3.1 and let φmax be the maximum
eigenvalue of the matrix

∑T
t=1 UtU

⊤
t /T . Let

λ =

√
16 log R1+δ′

Kσ 2

T (1 − ε)
.

Then, with a probability of at least 1 − 3R−δ′
, for any solution β̂ of (A.1), we have

T −1
T∑

t=1

∥ #⊤
t (β̂ − β∗)Ut ∥2 ! 256s

(
log R1+δ′

Kσ 2

T (1 − ε)

)

κ−2, (3.5)

K−1/2∥ β̂ − β∗ ∥2,1 ! 96s

√
log R1+δ′

σ 2

T (1 − ε)
κ−2, (3.6)

M(β̂) ! 64φ2
maxsκ

−2. (3.7)

REMARK 3.1. Before explaining the results, as also mentioned in Song and Bickel (2011),
we would first like to discuss some related results. For technical simplicities, we consider the
following simplest linear regression model with R → ∞:

et = xt1θ1 + . . . , xtRθR + ϵt = x⊤
t θ + ϵt , (3.8)

with the regressors (xt1, . . . , xtR) = x⊤
t , the coefficients (θ1, . . . , θR) = θ⊤ and the error term ϵt .

Suppose x in (3.8) has full rank R and ϵt is N (0, σ 2). Consider the least-squares estimate (R !
T ) θ̂OLS = (xx⊤)−1xe. Then, from standard least-squares theory, we know that the prediction
error ∥x⊤(θ̂OLS − θ∗)∥2

2/σ
2 is χ2

R-distributed, i.e.

E[
∥x⊤(θ̂OLS − θ∗)∥2

2

T
] = σ 2

T
R. (3.9)

In the sparse situation, if ϵt is N (0, σ 2) (different from our case), Corollary 6.2 of Bühlmann and
van de Geer (2011) shows that the Lasso estimate obeys the following oracle inequality:

∥x⊤(θ̂Lasso − θ∗)∥2
2

T
! C0

σ 2 log R

T
M(θ∗), (3.10)

with a large probability and some constant C0. The additional log R factor here could be seen as
the price to pay for not knowing the set {θ∗

p, θ∗
p ̸= 0} (Donoho and Johnstone, 1994). Similar to

the i.i.d. Gaussian situation discussed above, the term (log R)1+δ′
in (3.5) could be interpreted as

the price to pay for not knowing the set {β∗
r , θ∗

r ̸= 0}. Here, we have (log R)1+δ′
instead of log R

because we deviate from the typical i.i.d. Gaussian situation and establish the results under the
more general Assumption 3.2, which can be thought of as the finite second-moment condition.
Also, the δ′ term is the price to pay for this deviation.

C⃝ 2013 The Author(s). The Econometrics Journal C⃝ 2013 Royal Economic Society.



S112 S. Song, W. K. Härdle and Y. Ritov

REMARK 3.2. Because

β(((3/8)σε2T 1/2(1 − ε)1/2C ′′−1 log R−(1+δ′)/2) − 1)

! (24σ (1 − ε)1/2(R1+δ′√
log R1+δ′

T C ′′)−1)

is required, when dimensionality R increases, the allowed dependence level reflected by the β-
mixing coefficients must decrease fast enough so that we still achieve similar risk bounds as
in the independent case. Intuitively, this makes sense because if the dependence level inherent
in Z0,t (or εt equivalently) is too strong (i.e. β exceeds some level), then the amount of
information provided by these observations is less, and therefore the estimate does not perform
well. However, strong dependence in Z0,t might be caused by some trend, which should be
included in U⊤

t $, but is not, which results in the increased dependence. This tells us that at the
beginning, we should include a large enough number R of pre-specified time basis functions such
that it could include most of the deterministic (even though it could be segment by segment) time
evolution and the remaining dependence level in Z0,t is controlled.

COROLLARY 3.1 (m-DEPENDENT). Consider the model (2.2). Assume that the sequence {Vt }Tt=1
is an m-dependent process with order k (k " 1) and satisfies the following conditions for some
constants σ 2

0 , C ′′ > 0, t = 1, . . . , T : (a) ∀t , E[V 2
t ] ! σ 2

0 , |Vt | ! C ′′; (b) ((3/8)σε2T 1/2(1 −
ε)1/2C ′′−1 log R−(1+δ′)/2) − 1 " k + 1 for any ε > 0 and some δ′ > 0. Also, #t#

⊤
t = IK ,

T −1 ∑T
t=1 U⊤

t Ut/R = 1, and M(β∗) ! s. Furthermore, let κ be defined as in Assumption 3.1, let
φmax be the maximum eigenvalue of the matrix

∑T
t=1 UtU

⊤
t /T and let λ be defined as in Theorem

3.2. Then, with a probability of at least 1 − 3R−δ′
, for any solution β̂ of (A.1), we have

T −1
T∑

t=1

∥ #⊤
t (β̂ − β∗)Ut ∥2 ! 512s

(
log R1+δ′

Kkσ 2
0

T (1 − ε)

)
κ−2, (3.11)

K−1/2∥ β̂ − β∗ ∥2,1 ! 96
√

2s

√
log R1+δ′

kσ 2
0

T (1 − ε)
κ−2, (3.12)

M(β̂) ! 64φ2
maxsκ

−2. (3.13)

REMARK 3.3. We can see that when k increases (i.e. the dependence in {Vt }Tt=1 beco-
mes stronger and stronger), the risk bounds become larger and larger. To ensure
((3/8)σε2T 1/2(1 − ε)1/2C ′′−1) − 1 " k + 1, approximately we need T 1/2 log R−(1+δ′)/2 "
((3/4)σ0ε

2√(1 − ε))−1C ′′√k, which gives the requirement on the sample size T (relative to
the high dimensionality) and the amount of information from the data. Similar results could also
be separately obtained for the generalized m-dependent process based on fractional cover theory
and the (extended) McDiarmid inequality; see Theorem 2.1 of Janson (2004). At the second
step, Z0,t is estimated based on β̂ instead of β∗, so we need to show that the influence of this
plug-in estimate is negligible. Our result relies on the following assumptions, which are similar
to Assumptions (A1)–(A8) in Park et al. (2009).

ASSUMPTION 3.3. (a) The sets of variables (X1,1, . . . , XT,J ), (ε′
1,1, . . . , ε

′
T ,J ) and (Z0,1,

. . . , Z0,T ) are independent of each other; (b) for t = 1, . . . , T , the variables Xt,1, . . . , Xt,J
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are identically distributed, have support [0, 1]d and a density ft that is bounded from below
and above on [0, 1]d , uniformly over t = 1, . . . , T ; (c) we assume that E[ε′

t,j ] = 0 for 1 ≤ t ≤
T , 1 ≤ j ≤ J , and for c > 0 small enough, sup1≤t≤T ,1≤j≤J E[exp(c(ε′

t,j )2)] < ∞; (d) the vector
of functions m = (m1, . . . , mL)⊤ can be approximated by #k , i.e.

δK
def= sup

x∈[0,1]d
inf

A∈RL×K
∥m(x) − A#(x)∥ → 0

as K → ∞, and we denote A that fulfils supx∈[0,1]d ∥m(x) − A#(x)∥ ≤ 2δK by A∗; (e) there
exist constants 0 < CL < CU < ∞ such that all eigenvalues of the matrix T −1 ∑T

t=1 Z0,tZ
⊤
0,t lie

in the interval [CL,CU ] with probability tending to one; (f) for all β and A (β⊤ = $A) in (A.1),
with probability tending to one, we have

sup
x∈[0,1]d

max
1!t!T

∥∥Z⊤
0,tA#(x)

∥∥ ! MT ,

where the constant MT satisfies max1!t!T ∥Z0,t∥ ! MT /Cm for a constant Cm such that
supx∈[0,1]d ∥m(x)∥ < Cm; (g) it holds that ρ2 = (K + T )M2

T log(JT MT )/(JT ) → 0, and the
dimension L is fixed.

Assumption 3.3(f) and the additional bound MT in the minimization are introduced purely
for technical reasons. They are similar to the assumption that Vt is upper bounded in Assumption
3.2 by noticing Vt = K−1/2 ∑K

k=1

∑J
j=1 #tkjεtjUtr and εt = ZT

0,tA
∗#t + ε′

t . Recall that given β,
the number of parameters still needing to be estimated equals KT ({Z0,t }Tt=1) and KL (A) (given
β, if A is fixed, $ is also fixed). Because L is fixed, Assumption 3.3(g) basically requires that,
neglecting the factors M2

T log(JT MT ), the number of parameters grows slower than the number
of observations JT .

THEOREM 3.3. Suppose that model (2.1), all assumptions in Theorem 3.2 and Assumption 3.3
hold. Then, we have

1
T

∑

1≤t≤T

∥∥Ẑ⊤
0, t Â − Z⊤

0,tA
∗∥∥2 = OP

(
ρ2 + δ2

K

)
. (3.14)

In the following, we discuss how statistical analysis differs if the inference of stochasticity
on Z0,t is based on Ẑ0,t instead of using the (unobserved) process Z0,t . We establish theoretical
properties under a strong mixing condition, which is more general than the β-mixing considered
in Theorem 3.2. For the statement of the theorem, we need the following assumptions, which are
similar to Assumptions (A9)–(A11) in Park et al. (2009).

ASSUMPTION 3.4. (a) (i) Z0,t is a strictly stationary sequence with E[Z0,t ] = 0, E[∥Z0,t∥γ ] <

∞ for some γ > 2; (ii) it is α-mixing with
∑∞

i=1 α(i)(γ−2)/γ < ∞; (iii) the matrix E[Z0,tZ0,t ]⊤

has full rank; (iv) the process Z0,t is independent of X11, . . . , XT J , ε′
11, . . . ,ε

′
T J . (b) It holds that

(log(KT )2((KMT /J )1/2 + T 1/2M4
T J−2 + K3/2J−1 + K4/3J−2/3T −1/6) + 1)T 1/2(ρ2 + δ2

K ) =
O(1).

Assumption 3.4(b) imposes a very weak condition on the growth of J , K and T . Suppose,
for example, that MT is of logarithmic order and that K is of order (JT )1/5, then the condition
requires that T/J 2 times a logarithmic factor converges to zero. As remarked by Doukhan (1994),
if a stochastic process is β-mixing, then it is also α-mixing with 2α(A,B) ! β(A,B). If the
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requirement on the β-mixing coefficient in Theorem 3.2 is satisfied, then the requirement on the
α-mixing coefficient in Assumption 3.4(a) is usually satisfied.

Furthermore, note that the minimization problem (A.1) only has a unique solution in β,
but not in $ and A. If (Ẑ0,t , Â) is a minimizer, then so is (B⊤Ẑ0,t , B

−1A), where B is an
arbitrary invertible matrix. With the choice B = (

∑T
t=1 Z0,t Ẑ

⊤
0,t )

−1 ∑T
t=1 Z0,tZ

⊤
0,t , we obtain

∑T
t=1 Z0,t (Z̃0,t − Z0,t )⊤ = 0, where Z̃0,t

def= B⊤Ẑ0,t and Ã
def= B−1A. Without loss of generality,

we can assume T −1 ∑T
s=1 Ẑ0,s = T −1 ∑T

s=1 Z0,s = 0. Additionally, we define

Z̃n,t =
(
T −1

T∑

s=1

Z̃0,s Z̃
⊤
0,s

)−1/2
Z̃0,t ,

Zn,t =
(
T −1

T∑

s=1

Z0,sZ
⊤
0,s

)−1/2
Z0,t .

THEOREM 3.4. Suppose that model (2.1) holds. Besides all assumptions in Theorem 3.2, also
let Assumptions 3.3 and 3.4 be satisfied. Then, there exists a random matrix B specified above
such that, for h ≥ 0,

T −1
T −h∑

t=1

Z̃0,t

(
Z̃0,t+h − Z̃0,t

)⊤ − Z0,t

(
Z0,t+h − Z0,t

)⊤ = OP (T −1/2)

and

T −1
T −h∑

t=1

Z̃n,t Z̃
⊤
n,t+h − Zn,tZ

⊤
n,t+h = OP (T −1/2).

In Theorem 3.4, we consider the autocovariances of the estimated stochastic process Ẑ0,t and
the (unobserved) process Z0,t , and we show that these estimators differ only by second-order
terms. Thus, the statistical analysis based on Ẑ0,t is equivalent to that based on the (unobserved)
process Z0,t .

4. DYNAMICS OF TEMPERATURE ANALYSIS

Since the first transaction in the weather derivatives market in 1971, the market has expanded
rapidly. Many companies, who faced the possibility of significant declines in earnings because
of abnormal weather fluctuations, decided to hedge their seasonal weather risk. Thus, weather
derivative contracts have become particularly attractive. One essential task is to model the
fluctuations of temperatures at many different weather stations. Thus, in this section, we
present the application to the analysis of temperature dynamics by fitting the daily temperature
observations provided by the CDC of the CMA; see Figure 1. To capture the upward trend,
seasonal and large-period effects, similar to Racsko et al. (1991), Parton and Logan (1981) and
Hedin (1991), we propose the following initial choice of time basis (rescaling factors omitted) in
Table 1.

For the space basis, when we consider the relative proportion of variance explained by the first
K basis (eigenvalues of the smoothed covariance operator) and the five climate types of China,
as shown in Figure 3, the number of space basis K = 5 is appealing. As we discuss in Appendix
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Table 1. Initial choice of 53 × 3 + 16 = 175 time basis.

Factors Factors

Trend (year by year) 1 Large period sin 2π t/(365 × 15)

t cos 2π t/(365 × 15)

3t2 − 1 sin 2π t/(365 × 10)

Seasonal effect sin 2π t/365 cos 2π t/(365 × 10)

cos 2π t/365 sin 2π t/(365 × 5)

. . . cos 2π t/(365 × 5)

cos 10π t/365

(a) (b)

Figure 3. Relative proportion of variance and China’s climate types.

A, the choice of tuning parameter λ is crucial here. Figure 4 presents the solution path of four
different selection criteria, Cp, GCV, AIC and BIC, evaluated on 500 equally spaced values of λ,
where the minimizer is marked as the red dot. As we can see, the minimizers of Cp, GCV and AIC
are significantly smaller than that of BIC, which confirms previous discussions in the literature
that the AIC-type criterion (including GCV and Cp) tends to overestimate the model size and
thus overfits. Our estimate also involves the smoothing bandwidth in the smoothed functional
PCA step, which, by Theorem 1 of Hall et al. (2006), should be chosen as O(T −1/5) in order to
minimize the distance between the estimates of the ψ̂ eigenfunctions and the corresponding true
ones. Figure 5 presents the BIC solution path w.r.t. four different (by a constant factor) values of
the smoothing parameter for the same 500 values of λ as above. As we can see, the solution path
is very stable w.r.t. the choice of the smoothing parameter.

Figure 6 displays the estimated coefficients of the first factor with respect to the 54 × 3
yearly polynomial time basis w.r.t. k = 1 under the optimal choice of λ selected by the
BIC criterion. The coefficients of constant, linear and quadratic terms are displayed as solid,
dashed and dotted lines, respectively, and they are also coupled with the corresponding 90%
confidence intervals (based on year-by-year ordinary least-squares (OLS) estimates) represented

C⃝ 2013 The Author(s). The Econometrics Journal C⃝ 2013 Royal Economic Society.



S116 S. Song, W. K. Härdle and Y. Ritov

Figure 4. Comparison of Cp , GCV, AIC and BIC.

Figure 5. BIC solution path.

by the thin lines (with the same colour and style). The fact that all these coefficients are
non-negative indicates that over the past 50 years, there might have been a warming effect
across China. The confidence intervals are computed using OLS polynomial fitting to the
year-by-year time series after removing the normal seasonality and large-period effects. We
observe an unusual large positive (w.r.t. the linear term) and negative (w.r.t. the quadratic term)
variation for the OLS estimates at the end of the 1960s, caused by the extreme temperatures
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Figure 6. Estimated coefficients of the 54 × 3 yearly polynomial time basis.

Table 2. Estimated coefficients of the five factors.

Basis Estimates

sin 2π t/365 −25.4922 1.1059 2.4129 −2.6985 1.2320

cos 2π t/365 −87.3303 1.8228 5.3358 −5.0823 1.6284

sin 4π t/365 0.0000 0.0000 0.0000 0.0000 0.0000

cos 4π t/365 −4.5532 0.8761 0.6752 −0.6709 0.9163

. . . 0.0000 . . .

cos 10π t/365 0.0000 . . .

sin 2π t/(365 × 15) 11.7818 −0.0053 −1.4026 0.4743 −0.0214

cos 2π t/(365 × 15) 0.0000 . . .

. . . 0.0000 . . .

cos 2π t/(365 × 5) 0.0000 . . .

in China at that time. By employing shrinkage techniques, we can remove this disadvantage
and produce stabler estimates. The estimated coefficients of the five factors w.r.t. the 16
trigonometric functions time basis corresponding to the optimal λ are displayed in Table 2. It
clearly indicates that the 15-year period effect, as some meteorologists claim, is related to solar
activity.

Because the eigenvalues of β̂β̂⊤ are (10140, 208, 118, 44, 14, 0, 0, . . .) (with the first five
being non-zero and the rest being zero), we choose L = 5 and obtain the remaining five-
dimensional random process Ẑ0,t , which could be further modelled by using multivariate time

C⃝ 2013 The Author(s). The Econometrics Journal C⃝ 2013 Royal Economic Society.



S118 S. Song, W. K. Härdle and Y. Ritov

series techniques. For example, if we use a VAR(1) process, Ẑ0,t = SẐ0,t−1 + ε0,t , where ε0,t is
a random vector, then the estimated coefficient matrix is

⎛

⎜⎜⎜⎜⎝

0.7703 0.0103 0.0007 0.0015 0.0005
−0.0552 0.1449 −0.1841 −0.0285 0.0003
−0.3047 −0.3419 0.3877 −0.0436 −0.0020

0.2078 −0.1717 −0.1337 0.8431 0.0071
0.6345 −0.0484 −0.0447 0.0184 0.8338

⎞

⎟⎟⎟⎟⎠
.

Compared with the existing temperature modelling (pricing weather derivatives) techniques (e.g.
Benth and Benth, 2005), our approach possesses the following advantages. First, based on high-
dimensional time series data, it offers integrated analysis considering space (high dimensionality)
and time (dynamics) parts simultaneously, while forecasting at different places other than the
existing weather stations is also possible because the space basis is actually a function of the
geographical location information. Second, it extracts the trend more clearly. Third, it provides
theoretical justification for further inferential analysis of Ẑ0,t instead of Z0,t .

5. SIMULATION STUDY

Because the simulation results about the performance of the group-Lasso estimator have been
well illustrated in the literature, to evaluate the overall fitting performance of the GDSFM, we
conduct a Monte Carlo experiment designed to mimic the previous empirical example.

We generate random variables β1, . . . , β175 ∈ R4 such that all coordinates are i.i.d. standard
normal random variables. We randomly pick 80% of the βr coefficients from β1, . . . , β175 and
assign them to be 0 ∈ R4. We choose the same time basis as in Table 1 with p = 365 and T =
19345. For the space part, inspired by Park et al. (2009), we consider d = 2 and the following
tuples of two-dimensional functions:

m1(x1, x2) = 1, m2(x1, x2) = 3.46 (x1 − 0.5),

m3(x1, x2) = 9.45
(
(x1 − 0.5)2 + (x2 − 0.5)2) − 1.6,

m4(x1, x2) = 1.41 sin(2πx2).

These functions are chosen to be close to orthogonal. The design points Xt,j are independently
generated from a uniform distribution on the unit square. We generate Y⊤

t = U⊤
t β⊤#t + εt ,

t = 1, . . . , T with the following three types of error distributions:

1. all coordinates of ε1, . . . , εT are i.i.d. N (0, 0.05) random variables;
2. εt are generated from a centred VAR(1) process εt = Sεt−1 + ηt , where S is a diagonal

matrix with all diagonal entries equal to 0.4 and all entries of ηt are N (0, 0.84 × 0.05)
random variables (such that Var(εt ) is still the same as that of the independent case);

3. the same as above except that all diagonal entries of S equal 0.8 (i.e. a stronger dependence
level and ηt are N (0, 0.36 × 0.05) random variables).

The algorithm presented in (B.3) converges fast (with a tolerance of 10−3). The values of
β are estimated by the group-Lasso technique as in (A.1) with tuning parameter λ selected by
the BIC-type criterion, as in (A.2). After obtaining β̂, we further estimate the stochastic process
Z0,t by a VAR(1) model. We take the remaining variation (1 − R2) as a measure of the fitting
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Table 3. Average values of 1 − R2.

Independent Weakly dependent Strongly dependent

1 − R2 5.30% 5.32% 5.40%

performance, where

1 − R2 =
∑T

t=1

∥∥Y⊤
t −

(
U⊤

t $̂ + Ẑ⊤
0,t

)
Â#̂t

∥∥2
2∑T

t=1

∥∥Y⊤
t −

∑T
t=1

∑J
j=1 Yt,j /JT

∥∥2
2

(5.1)

is the proportion of the remaining variation not explained by the model among total variation.
We repeat this experiment 100 times and present the average values of 1 − R2 in Table 3 for
the independent, weakly dependent and strongly dependent cases. As we can see, when the
dependence level (in εt ) increases, even though the remaining variation slightly increases because
of the worse estimates of β, overall it is still relatively good.

6. CONCLUDING REMARKS

In this paper, we provide an integrated and yet flexible model for high-dimensional non-
stationary time series that reveals both complex trends and stochastic components. When
applying GDSFMs, we employ a non-parametric series expansion for both temporal and spatial
components. After choosing smoothed (non-parametric) functional principal components as a
space basis and extracting temporal trends utilizing time basis function selection techniques,
the estimate’s properties are investigated under the dependent scenario, together with the weakly
cross-correlated error term. This is not built upon any specific forms of time and space basis. This
enables us to explore the interplay among the degree of time dependence, high dimensionality
and moderate sample size (relative to dimensionality). The presented theory is an extension to
the current regularization techniques. We further justify statistical inference, e.g. estimation and
classification based on the detrended low-dimensional stochastic process. Applications to the
dynamic behaviour analysis of temperatures confirm its power.
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APPENDIX A: ESTIMATION PROCEDURE

First, we present the estimation method.

STEP 1. Given the pre-specified time and space basis, find significantly loaded time basis functions (i.e.
coefficients β) utilizing the group-Lasso technique by minimizing

minβT −1
T∑

t=1

(Y ⊤
t − U⊤

t β⊤#t )(Y ⊤
t − U⊤

t β⊤#t )⊤ + 2λ∥β∥2,1. (A.1)

Here, we use T −1 instead of (JT )−1 because the space basis has been orthonormalized (#̂t #̂
⊤
t =

IK ).
STEP 2. Split the joint matrix β̂ into two separate coefficient matrices $̂ and Â by taking $̂ as the

L eigenvectors of β̂β̂⊤ (w.r.t. the L largest eigenvalues) and Â = $̂⊤β̂. Given Y ⊤
t − U⊤

t β̂⊤#t

and Â, #t , estimate Z0,t by the OLS method.

It is worth noting that both $ (and Z0,t , respectively) and A are unidentifiable in model (2.1), because
trivially $∗A∗ = ($∗B)(B−1A∗). However, if we concentrate on prediction, the identification of β (as a
product of $ and A, as in (A.1)) is enough. Additionally, we show that for any version of {Z0,t }, there exists
a version of {Ẑ0,t } whose lagged covariances are asymptotically the same as those of {Z0,t }.

The group-Lasso estimates depend on the tuning parameter λ. We implement an easily computable BIC-
type criterion. The solution path is computed by evaluating some criteria on equally spaced λ’s between 0
and λmax = maxr ∥

∑
t #t YtUtr ∥. We select the λ that minimizes

BIC(λ) = log (
∑

t

∥ Y ⊤
t − U⊤

t β̂⊤#t ∥2/T ) + log T · df/T , (A.2)

df =
∑

r

1(∥ β̂r ∥> 0) +
∑

r

∥ β̂r ∥
∥ β̂OLS ∥

(K − 1).

For reference purposes, we also list the formulae of the Cp , GCV and AIC criteria:

Cp(λ) =
∑

t

∥ Y ⊤
t − U⊤

t β̂⊤#t ∥2/σ̃ 2 − T + 2df ;

σ̃ 2 =
∑

t

∥ Y ⊤
t − U⊤

t β̂⊤
OLS#t ∥2/(T − df );
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GCV(λ) =
∑

t

∥ Y ⊤
t − U⊤

t β̂⊤#t ∥2/(1 − df/T )2;

AIC(λ) = log(
∑

t

∥ Y ⊤
t − U⊤

t β̂⊤#t ∥2 /T ) + 2df/T .

As pointed out by Yuan and Lin (2006) (for i.i.d. data), the performance of this approximate information
criterion is generally comparable with that of the computationally much more expensive (especially for
the massive data) fivefold cross-validation. More importantly, because the data here are observed in time,
the order of observations is significant, and hence a simple cross-validation procedure is inappropriate in a
time series context. Besides BIC, there are other parameter selection criteria, such as Cp , GCV and AIC. In
terms of variable selection, Wang and Leng (2008) have found that BIC is superior to Cp . The reason for
this is that when there exists a true model, AIC-type criteria (including GCV and Cp) tend to overestimate
the model size; see, e.g. Leng et al. (2006), Wang et al. (2007a) and Wang et al. (2007b). Subsequently,
estimation accuracy using Cp can suffer. Wang et al. (2007b) have given a theoretical justification showing
that GCV overfits the smoothly clipped absolute deviation (SCAD) method (Fan and Li, 2001). Analogous
arguments also apply to the Cp methods.

APPENDIX B: TECHNICAL PROOFS

In order to study the statistical properties of this estimator, it is useful to derive some optimality conditions
for a solution of (A.1). Our implementation of group-Lasso-type estimator comes from Yuan and Lin (2006),
which is an extension of the shooting algorithm of Fu (1998). As a direct consequence of the Karush–Kuhn–
Tucker conditions, we have a necessary and sufficient condition for β̂ to be a solution of (A.1):

T −1
T∑

t=1

(#t (Yt − #⊤
t β̂Ut )U⊤

t )r = λ
β̂r

∥β̂r∥
, if β̂r ̸= 0; (B.1)

T −1∥
T∑

t=1

(#t (Yt − #⊤
t β̂Ut )U⊤

t )r∥ ! λ, if β̂r = 0. (B.2)

Recall that #t#
⊤
t = IK . It can be easily verified that the solution to (B.1) and (B.2) is

β̂r = (1 − λ/∥Sr∥)+Sr, (B.3)

where Sr =
∑T

t=1(#t (Yt − #⊤
t β̂−rUt )U⊤

t )r with β̂−r = (β̂1, . . . , β̂r−1, 0, β̂r+1, . . . , β̂R). The solution to
expression (A.1) can therefore be obtained by applying (B.3) to r = 1, . . . , R iteratively.

LEMMA B.1. Consider model (2.2). Assume that #t#
⊤
t = IK , T −1 ∑T

t=1 U⊤
t Ut/R = 1, and M(β∗) ! s.

If the random event

A = (2T −1 max
1!r!R

T∑

t=1

K∑

k=1

J∑

j=1

#⊤
tkjεtjUtr ! λ) (B.4)

holds with high probability for some λ > 0. Then, for any solution β̂ of problem (A.1) and ∀β, we have

T −1
T∑

t=1

∥ #⊤
t (β̂ − β∗)Ut ∥2 + λ∥β̂ − β∥2,1
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! T −1
T∑

t=1

∥ #⊤
t (β − β∗)Ut ∥2 + 4λ

∑

r∈R(β)

∥β̂r − βr∥, (B.5)

T −1 max
1!r!R

∥
T∑

t=1

(
#t#

⊤
t (β̂ − β∗)UtU

⊤
t

)
r
∥ ! 3λ/2, (B.6)

M(β̂) ! 4φ2
max

λ−2T −2

T∑

t=1

∥ (β̂ − β∗)Ut ∥2
2, (B.7)

where φmax is the maximum eigenvalue of the matrix
∑T

t=1 UtU
⊤
t /T .

Proof: The proof involves similar thoughts given in Lemma 3.1 of Lounici et al. (2009). By the definition
of β̂ as a minimizer of (A.1), ∀β we have

T −1
T∑

t=1

∥ #⊤
t β̂Ut − Yt ∥2 + 2λ

R∑

r=1

∥β̂r∥

! T −1
T∑

t=1

∥ #⊤
t βUt − Yt ∥2 + 2λ

R∑

r=1

∥βr∥, (B.8)

which, using Yt = #⊤
t β∗Ut + εt , is equivalent to

T −1
T∑

t=1

∥ #⊤
t (β̂ − β∗)Ut ∥2 ! T −1

T∑

t=1

∥ #⊤
t (β − β∗)Ut ∥2

+2T −1
T∑

t=1

ε⊤
t #⊤

t (β̂ − β)Ut + 2λ

R∑

r=1

(∥βr∥ − ∥β̂r∥). (B.9)

Using the Hölder inequality, we have

2T −1
T∑

t=1

ε⊤
t #⊤

t (β̂ − β)Ut ! 2T −1
T∑

t=1

∥#tεtU
⊤
t ∥2,∞∥β̂ − β∥2,1, (B.10)

where ∥
∑T

t=1 #tεtU
⊤
t ∥2,∞ ! max1!r!R

∑T
t=1

∑K
k=1

∑J
j=1 #⊤

tkjεtjUtr .
If the random event

A = (2T −1 max
1!r!R

T∑

t=1

K∑

k=1

J∑

j=1

#⊤
tkjεtjUtr ! λ) (B.11)

holds with high probability for some λ > 0, which we specify afterwards, then it follows from (B.9) and
(B.10), on the event A, that

T −1
T∑

t=1

∥#⊤
t

(
β̂ − β∗)Ut∥2 + λ

R∑

r=1

∥β̂r − βr∥

! T −1
T∑

t=1

∥#⊤
t (β − β∗) Ut∥2 + 2λ

R∑

r=1

(∥β̂r − βr∥ + ∥βr∥ − ∥β̂r∥)
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! T −1
T∑

t=1

∥#⊤
t (β − β∗) Ut∥2 + 2λ

∑

r∈R(β)

(∥β̂r − βr∥ + ∥βr∥ − ∥β̂r∥)

+2λ
∑

r∈Rc(β)

(∥β̂r − βr∥ + ∥βr∥ − ∥β̂r∥)

! T −1
T∑

t=1

∥#⊤
t (β − β∗) Ut∥2 + 4λ

∑

r∈R(β)

∥β̂r − βr∥. (B.12)

This proves (B.5).
To prove (B.4), we use (B.1) and (B.2), which yield the inequality

T −1 max
1!r!R

∥
T∑

t=1

(
#t (Yt − #⊤

t β̂Ut )U⊤
t

)
r
∥ ! λ. (B.13)

Then

T −1∥
T∑

t=1

(
#t#

⊤
t (β̂ − β∗)UtU

⊤
t

)
r
∥

! T −1∥
T∑

t=1

(
#t (#⊤

t β̂Ut − Yt )U⊤
t

)
r
∥ + T −1∥

T∑

t=1

(
#tεtU

⊤
t

)
r
∥, (B.14)

where we use Yt = #⊤
t β∗Ut + εt and the triangle inequality. Then, the bound (B.4) follows by combining

(B.14) with (B.13) and using the definition of the event A.
Finally, we show (B.7). First, observe that

T∑

t=1

#t

(
Yt − #⊤

t β∗Ut

)
U⊤

t =
T∑

t=1

#t#
⊤
t (β̂ − β∗)UtU

⊤
t +

T∑

t=1

#tεtU
⊤
t .

On the event A, utilizing (B.1) and the triangle inequality, we have

T −1∥
T∑

t=1

(
#t#

⊤
t (β̂ − β∗)UtU

⊤
t

)
r
∥ " λ/2, if β̂r ̸= 0.

The following arguments yield the bound (B.7) on the number of non-zero rows of β̂⊤
r :

M(β̂) ! 4
λ2T 2

∑

r∈R(β̂)

∥
T∑

t=1

(
#t#

⊤
t (β̂ − β∗)UtU

⊤
t

)
r
∥2

! 4
λ2T 2

R∑

r=1

∥
T∑

t=1

(
#t#

⊤
t (β̂ − β∗)UtU

⊤
t

)
r
∥2

= 4
λ2T 2

∥
T∑

t=1

(
#t#

⊤
t (β̂ − β∗)UtU

⊤
t

)
∥2

2

! 4φ2
max

λ2T

T∑

t=1

∥(β̂ − β∗)Ut∥2
2.

Here, we use the fact that #t#
⊤
t = IK and φmax is the maximum eigenvalue of the matrix

∑T
t=1 UtU

⊤
t /T .

#
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Proof of Theorem 3.1: We proceed along the lines of Theorem 6.2 of Bickel et al. (2009) and Theorem
3.1 of Lounici et al. (2009). Let R = R(β∗) = {r : β∗

r ̸= 0}.
Using inequality (B.5) in Lemma B.1 with β = β∗, on the event A defined in (3.1), we have

T −1
T∑

t=1

∥#⊤
t (β̂ − β∗)Ut∥2 ! 4λ

∑

r∈R

∥β̂r − β∗
r ∥ ! 4λ

√
s∥(β̂ − β∗)R∥. (B.15)

Moreover, by the same inequality, on the event A, we have
∑R

r=1 ∥β̂r − β∗
r ∥ ! 4

∑
r∈R ∥β̂r − β∗

r ∥, which
implies that

∑
r∈Rc ∥β̂r − β∗

r ∥ ! 3
∑

r∈R ∥β̂r − β∗
r ∥. Thus, by Assumption 3.1 with ) = (β̂ − β∗),

∥(β̂ − β∗)R∥2 !
T∑

t=1

∥#⊤
t (β̂ − β∗)Ut∥2/(κ2T ). (B.16)

Now, T −1 ∑T
t=1 ∥#⊤

t (β̂ − β∗)Ut∥2 ! 16sλ2κ−2 (3.2) follows from (B.15) and (B.16).
Inequality (3.3) follows by noting that

K−1/2
R∑

r=1

∥β̂r − β∗
r ∥ ! 4K−1/2

∑

r∈R

∥β̂r − β∗
r ∥ ! 4K−1/2√s∥(β̂ − β∗)R∥ ! 16sλκ−2K−1/2, (B.17)

and then using (3.2). Inequality (3.4) follows from (B.7) and (3.2). #

Definition of β-mixing: Following Doukhan (1994), let (3,F, P ) be a probability space and let A and B
be two sub-σ algebras of F . Various measures of dependence between A and B have been defined as

β(A,B) = sup
1
2

I∑

i=1

J∑

j=1

|P (Ai∩Bj ) − P (Ai)P (Bj )|, (B.18)

α(A,B) = sup |P (A ∩ B) − P (A)P (B)|, A ∈ A, B ∈ B, (B.19)

where the supremum is taken over all pairs of (finite) partitions {A1, . . . , AI } and {B1, . . . , BJ } of 3 such
that Ai ∈ A for each i and Bj ∈ B for each j . Now suppose {Vt }t∈T is a (not necessarily stationary) sequence
of random variables. For −∞ ! i ! j ! ∞, define the σ -field σ

j
i = σ (Vt , i ! t ! j, t ∈ T ). For each

a " 1, define the following dependence coefficients:

β(a) = sup
t∈T

β(σ t
−∞, σ∞

t+a), α(a) = sup
t∈T

α(σ t
−∞, σ∞

t+a).

In the special case where the sequence {Vt }t∈T is strictly stationary, they simply become

β(a) = β(σ t
−∞, σ∞

t+a), α(a) = α(σ t
−∞, σ∞

t+a).

A stochastic process is said to be β-mixing (or α-mixing) if β(a) → 0 (or α(a) → 0) as a → ∞. By
definition, when σ t

−∞ and σ∞
t+a are independent of each other, β(a) = 0; the closer β(a) gets to 0, the more

independent the time series is.

Proof of Theorem 3.2: The proofs of this theorem are similar to those of Theorem 3.1 up to a specification
of the bound on P (Ac) in Lemma B.1. Consider the event

A = (2T −1 max
1!r!R

T∑

t=1

K∑

k=1

J∑

j=1

#⊤
tkjεtjUtr ! λ).
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Observe that

P (Ac) ! RP (
T∑

t=1

K∑

k=1

J∑

j=1

#tkjεtjUtrK
−1/2 > 2−1λT K−1/2)

def= RP (
T∑

t=1

Vt > 2−1λT K−1/2).

Because Assumption 3.2 holds, applying the Bernstein-type inequality for β-mixing random variables
{Vt }T

t=1 (Theorem 4 of Doukhan, 1994, p. 36) yields that ∀ε > 0 and ∀ 0 < q ! 1,

P (
T∑

t=1

Vt " 2−1λT K−1/2) ! 2 exp
(

− (1 − ε)3(1 + ε2/4)λ2T K−1

4(6(1 + ε2/4)σ 2 + qC ′′λT K−1/2)

)

︸ ︷︷ ︸
def=T1

+ (1 + ε2/4)β((qT ε2/(4 + ε2)) − 1)
q︸ ︷︷ ︸

def=T2

.

To make T1 ! R−(1+δ′), δ′ > 0 and T2 ! R−(1+δ′), we choose

λ =

√
16 log R1+δ′

Kσ 2

T (1 − ε)
, qC ′′λT K−1/2 = 6(1 + ε2/4)σ 2

and

β((qT ε2/(4 + ε2)) − 1) ! qR−(1+δ′)/(1 + ε2/4) = (24σ (1 − ε)1/2(R1+δ′
√

log R1+δ′
T C ′′)−1),

with qT ε2/(4 + ε2) = (3/8)σε2T 1/2(1 − ε)1/2C ′′−1 log R−(1+δ′)/2. Then, we have

P (Ac) ! RP (
T∑

t=1

Vt > λT/K) ! 3R−δ′
. #

Proof of Corollary 3.1: To prove this corollary, we need to show that Assumption 3.2 is satisfied, i.e. for
an m-dependent process with order k, σ 2 in Assumption 3.2 is equal to 2kσ 2

0 . For simplicity, we assume
that n = 1 and that m is divisible by 2k. Then,

E[
m∑

i=1

Vi]2 = E[
k∑

i=1

Vi +
2k∑

i=k+1

Vi + · · · +
m∑

i=m−k

Vi]2

= E[
m/2k−1∑

j=0

2jk+k∑

i=2jk+1

Vi

︸ ︷︷ ︸
def=C

+
m/2k−1∑

j=0

2(j+1)k+k∑

i=2jk+k+1

Vi

︸ ︷︷ ︸
def=D

]2

! 2E[C2] + 2E[D2].

C⃝ 2013 The Author(s). The Econometrics Journal C⃝ 2013 Royal Economic Society.
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Because for j = 0, . . . , m/2k − 1,
∑2jk+k

i=2jk+1 Vi are independent of each other by the definition of Vt

and the same argument holds for
∑2(j+1)k+k

i=2jk+k+1 Vi , we have

2E[C2] + 2E[D2] = 2
m/2k−1∑

j=0

E[
2jk+k∑

i=2jk+1

Vi]2 + 2
m/2k−1∑

j=0

E[
2(j+1)k+k∑

i=2jk+k+1

Vi]2

! m/kk2σ 2
0 + m/kk2σ 2

0 = 2mkσ 2
0 . #

Proof of Theorem 3.3: Similar to ̂̃Y
⊤
t

def= Y ⊤
t − U⊤

t β̂#t , define Ỹ ⊤
t

def= Y ⊤
t − U⊤

t β∗#t with the
corresponding estimate Z̃0,t . Thus,

1
T

∑

1≤t≤T

∥Ẑ⊤
0,t Â − Z⊤

0,tA
∗∥2 ! 1

T

∑

1≤t≤T

∥Ẑ⊤
0,t Â − Z̃⊤

0,t Â∥2 + 1
T

∑

1≤t≤T

∥Z̃⊤
0,t Â − Z⊤

0,tA
∗∥2,

where the second term is bounded by OP (ρ2 + δ2
K ) by Theorem 2 of Park et al. (2009). For the first term,

because

Ẑ0,t =
(
Â#t#

⊤
t Â⊤)−1

Â#t
̂̃Yt ,

Z̃0,t =
(
Â#t#

⊤
t Â⊤)−1

Â#t Ỹt ,

Z̃0,t − Ẑ0,t =
(
Â#t#

⊤
t Â⊤)−1

Â#t

(
#⊤

t (β̂ − β∗)Ut

)
,

Theorem 3.2 tells us that T −1 ∑T
t=1 ∥ #⊤

t (β̂ − β∗)Ut ∥2
is bounded by O(T −1). From the definitions of ρ2

and δK , we know that the first term is dominated by the second term. #

Proof of Theorem 3.4: The proof shares ideas with Park et al. (2009). We prove the first equation of
the theorem for h ̸= 0. The second equation follows from the first. We start by proving that the matrix
T −1 ∑T

t=1 Z0,t Ẑ
⊤
0,t is invertible. Suppose that the assertion is not true, then we can choose a random vector

e such that ∥e∥ = 1 and e⊤ ∑T
t=1 Z0,t Ẑ

⊤
0,t = 0. Note that

∥T −1
T∑

t=1

Z0,t Ẑ
⊤
0,t Â − T −1

T∑

t=1

Z0,tZ
⊤
0,tA

∗∥

! T −1
T∑

t=1

∥Z0,t (Ẑ⊤
0,t Â − Z⊤

0,tA
∗)∥

! (T −1
T∑

t=1

∥Z0,t∥2)1/2(T −1
T∑

t=1

∥Ẑ⊤
0,t Â − Z⊤

0,tA
∗∥2)1/2

= OP (ρ + δK ), (B.20)

because of Assumption 3.3(e) and Theorem 3.3. Thus, with f = T −1 ∑T
t=1 Z0,tZ

⊤
0,t e, we obtain

∥f ⊤m∥ = ∥f ⊤(A∗#)∥ + OP (δK )

= ∥e⊤T −1
T∑

t=1

Z0,tZ
⊤
t Â#∥ + OP (ρ + δK )

= OP (ρ + δK ).
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This implies that m1, . . . , mL are linearly dependent, contradicting the construction that all space basis are
independent.

Note that Z̃0,t = B⊤Ẑ0,t and Ã = B−1A. With (B.20) this gives

∥Ã − A∗∥ = ∥T −1
T∑

t=1

Z0,tZ
⊤
t (Ã − A∗)∥OP (1)

= ∥T −1
T∑

t=1

Z0,t Z̃
⊤
0,t Ã − T −1

T∑

t=1

Z0,tZ
⊤
0,tA

∗∥OP (1)

= OP (ρ + δK ). (B.21)

From Assumptions 3.3(d), (B.21) and Theorem 3.3, we obtain

T −1
T∑

t=1

∥Z̃⊤
t − Z0,t∥2

= T −1
T∑

t=1

∥Z̃⊤
t (m1, . . . , mL)⊤ − Z⊤

0,t (m1, . . . , mL)⊤∥2OP (1)

= T −1
T∑

t=1

∥Z̃⊤
t A∗ − Z̃⊤

t Ã∥2OP (1)

+T −1
T∑

t=1

∥Z̃⊤
t Ã − Z⊤

0,tA
∗∥2OP (1) + OP (δ2

K )

! T −1
T∑

t=1

∥Z̃0,t − Z0,t∥2∥Ã − A∗∥2OP (1)

+T −1
T∑

t=1

∥Z0,t∥2∥Ã − A∗∥2OP (1)

+T −1
T∑

t=1

∥Z̃⊤
t Ã − Z⊤

0,tA
∗∥2OP (1) + OP (δ2

K )

= OP (ρ2 + δ2
K ). (B.22)

We show that for h ̸= 0,

T −1
T∑

t=h+1

(
(Z̃0,t+h − Z0,t+h) − (Z̃0,t − Z0,t )

)
Z⊤

0,t = OP (T −1/2). (B.23)

This implies the first statement of Theorem 3.4 because by (B.22),

T −1
T∑

t=−h+1

(Z̃0,t − Z0,t )(Z̃0,t+h − Z0,t+h) = OP (b2) = OP (T −1/2).

To prove (B.23), define

S̃t,Z = J −1
J∑

j=1

Ã#(Xt,j )#(Xt,j )⊤Ã⊤,
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St,Z = A∗E[#(Xt,j )#(Xt,j )⊤]A∗⊤,

S̃α = (JT )−1
T∑

t=1

J∑

j=1

(#(Xt,j ) ⊗ Z̃0,t )(#(Xt,j ) ⊗ Z̃0,t )⊤,

Sα = T −1
T∑

t=1

E[(#(Xt,j ) ⊗ Z0,t )(#(Xt,j ) ⊗ Z0,t )⊤|Z0,t ],

S = J −1A∗(#(Xt,j )#(Xt,j )⊤e − E[#(Xtj )#(Xtj )⊤e]),

where e ∈ RK with ∥e∥ = 1. Let ã be the stack form of Ã. It can be verified that

Z̃0,t = S̃−1
t,ZJ −1

J∑

j=1

(Yt,jA#(Xt,j )), (B.24)

ã = S̃−1
α (JT )−1

T∑

t=1

J∑

j=1

(#(Xt,j ) ⊗ Z̃0,t )Yt,j . (B.25)

Let γ = T −1/2/b. We argue that

sup
1≤t≤T

∥S̃t,Z − St,Z∥ = OP (γ ), ∥S̃α − Sα∥ = OP (γ ). (B.26)

We show the first part of (B.26), and the second part can be obtained analogously. Because

Ã#t#
⊤
t Ã⊤ = (Ã − A∗ + A∗)(#t#

⊤
t − E[#t#

⊤
t ] + E[#t#

⊤
t ])(Ã − A∗ + A∗)⊤,

in order to prove the first part, it suffices to show that, uniformly for 1 ! t ! T ,

J −1
J∑

j=1

A∗(#(Xt,j )#(Xt,j )⊤ − E[#(Xt,j )#(Xt,j )⊤])(Ã − A∗)⊤ = OP (γ ), (B.27)

J −1
J∑

j=1

(Ã − A∗)(#(Xt,j )#(Xt,j )⊤ − E[#(Xt,j )#(Xt,j )⊤])(Ã − A∗)⊤ = OP (γ ), (B.28)

J −1
J∑

j=1

A∗(#(Xt,j )#(Xt,j )⊤ − E[#(Xt,j )#(Xt,j )⊤])A∗⊤ = OP (γ ), (B.29)

J −1
J∑

j=1

A∗E[#(Xt,j )#(Xt,j )⊤](Ã − A∗)⊤ = OP (γ ), (B.30)

J −1
J∑

j=1

(Ã − A∗)E[#(Xt,j )#(Xt,j )T ](Ã − A∗)⊤ = OP (γ ). (B.31)

C⃝ 2013 The Author(s). The Econometrics Journal C⃝ 2013 Royal Economic Society.
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The proof of (B.27)–(B.29) follows by simple arguments. We now show (B.30). Claim (B.31) can be shown
similarly. To prove (B.30), we use the Bernstein inequality for the following sum:

P

(
|

J∑

j=1

Wj | > x

)
! 2 exp

(
− 1

2
x2

V + Mx/3

)
. (B.32)

For t with 1 ≤ t ≤ T , the random variable Wj is an element of the L × 1-matrix S =
J −1A∗

(
#(Xt,j )#(Xt,j )⊤e − E[#(Xtj )#(Xtj )⊤e]

)
, where e ∈ RK with ∥e∥ = 1. In (B.32), V is an upper

bound for the variance of
∑J

j=1 Wj , and M is a bound for the absolute values of Wj (i.e. |Wj | ≤ M for
1 ≤ j ≤ J , a.s.). With some constants C1 and C2 that do not depend on t and the row number, we obtain
V ≤ C1J

−1 and M ≤ C2K
1/2J −1. The application of the Bernstein inequality gives that, uniformly for

1 ≤ t ≤ T and e ∈ RK with ∥e∥ = 1, all L elements of S are of order OP (γ ). This completes the proof of
claim (B.27).

From (B.21), (B.22) and (B.24)–(B.26), it follows that uniformly for 1 ! t ! T ,

Z̃0,t − Z0,t = S−1
t,ZJ −1

J∑

j=1

ε′
t,jA

∗#(Xt,j )

+S−1
t,ZJ −1

J∑

j=1

ε′
t,j (Ã − A∗)#(Xt,j ) + OP (T −1/2)

def= )t,1,Z + )t,2,Z + OP (T −1/2). (B.33)

To prove the theorem, it remains to show that for 1 ! j ! 2,

T −1
T∑

t=−h+1

()t+h,j,Z − )t,j,Z)Z⊤
0,t = OP (T −1/2). (B.34)

This can be checked easily for j = 1. For j = 2, it follows from ∥Ã − A∗∥ = OP (ρ + δK ) and

E[∥(JT )−1
T∑

t=1

J∑

j=1

ε′
t,j S

−1
t,ZM#(Xt,j )∥2] = O(K(JT )−1),

for any L × K matrix M with ∥M∥ = 1. #

C⃝ 2013 The Author(s). The Econometrics Journal C⃝ 2013 Royal Economic Society.
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Comment
Wolfgang Karl HÄRDLE

Center for Applied Statistics and Economics, Humboldt-Universität zu Berlin, Unter den Linden 6,
10099 Berlin, Germany; Singapore Management University, 50 Stamford Road, Singapore 178899
(haerdle@wiwi.hu-berlin.de)

Weining WANG
Center for Applied Statistics & Economics School of Business and Economics, Humboldt-Universität
zu Berlin, Unter den Linden 6, 10099 Berlin, Germany (wangwein@cms.hu-berlin.de)

The authors are to be congratulated for a timely and impor-
tant contribution. The article proposes a novel principal volatil-
ity component (PVC) technique based on a generalized kurto-
sis matrix in a time series context. The proposed test statistics
allow deep insight into higher moments and tail behavior of
multivariate time series. The article considers a weak stationary
multivariate time series yt (k × 1) with finite fourth moments,
the lag l generalized kurtosis matrix is defined as

γl
def=

∑

i

∑

j

cov2 (
yty⊤

t , xij,t−l

) def=
∑

i

∑

j

γl,ijγ
⊤
l,ij , (1)

where

γl,ij
def= cov

(
yty⊤

t , xij,t−l

)
. (2)

The PVCs are then defined as linear combinations m⊤
v yt , where

the mv’s are the vth eigenvectors of the cumulative general-
ized kurtosis matrix Γ∞ for general multivariate GARCH-type
models (Γm for ARCH(m) effects in yt ) with Γ∞

def=
∑∞

l=1 γl

(Γm
def=

∑m
l=1 γl ). Note that xij,t−l is a function of yi,t−lyj,t−l .

The kurtosis matrix indicates the correlations and cross-
correlations between the current variance–covariance matrix
and its lagged one, and thus would be a four-dimensional object
(k × k × k × k). Nevertheless, the authors consider a k × k gen-
eralized kurtosis matrix, which sums up all the effects of a lagged
variance–covariance matrix. In some cases, one might like to
look at the componentwise effects, which requires alternatives
of defining a generalized kurtosis matrix. For example, one can
analyze the variance–covariance matrix between vec(yty⊤

t ) and
vec(yt−ly⊤

t−l), whose dimension is k2 × k2 matrix. Moreover,
to generalize the idea of impulse response functions, one can
look at the matrix

∑
j cov2(yty⊤

t , xi0j,t−l) to isolate the lagged
variable i0’s(i0 = 1, . . . , k) contribution.

The article employs Huber’s function which is symmet-
ric. One might by an asymmetric clip function address the
well-known leverage effect, which means that negative returns
increase future volatility by a larger amount than positive re-
turns of the same magnitude. In particular, to model asymmetry
in the ARCH process, for example, as in GJRGARCH models
introduced by Glosten, Jagannathan, and Runkle (1993). For
instance, setting xij,t−l = y−

i,t−ly
−
j,t−l may serve this propose,

where y−
j,t−l = yj,t−l only when yj,t−l < 0 (negative part of

yj,t−l).
The idea of PVC is a decomposition of a (mixed) moment

matrix. In PCA, one considers the variance–covariance matrix,

which falls short on modeling a nonlinear and asymmetric
multivariate distribution. This fact reminds us of a strand of
literature on independent component analysis (ICA); see, for
example, Chen, Härdle, and Spokoiny (2007); Chen et al.
(2014). ICA looks for a projection that maximizes a non-
Gaussianity measure. Similarly, a generalized kurtosis matrix
in PVC is connected to measuring non-Gaussianity. However,
kurtosis does not provide the whole picture of a distribution
function, and therefore other perspectives of the conditional
distribution (e.g., conditional skewness and conditional quan-
tile) may also be of interest, see, for example, Lanne and Pentti
(2007).

Another issue is possible nonstationarity in yt . In this situa-
tion, the nonstationarity can be modeled via switching parame-
ters of a stationary model, see Härdle, Herwartz, and Spokoiny
(2003). The eigenvectors mv’s would then be time varying
mvt . Accordingly, at time t one can adopt local adaptive tech-
niques (see Spokoiny, Wang, and Härdle 2013) to identify a
local homogeneous interval [t − t0, t], in which one may apply
PVC.

Once more we would like to congratulate the authors for
this great advance. We are sure that this work will create a
new strand of literature with implications on asset allocation:
portfolio choice and factor models. If one is interested in the
factors that have no ARCH effects, one can certainly employ
the presented technique. The factors isolated can be used as
factors in asset pricing model, taking into account of rare events
as in Martin (2013).
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meinschaft via SFB 649 “Ökonomisches Risiko,” Humboldt-
Universität zu Berlin and IRTG 1972 “High Dimensional Non
Stationary Time Series” is gratefully acknowledged.

© 2014 American Statistical Association
Journal of Business & Economic Statistics

April 2014, Vol. 32, No. 2
DOI: 10.1080/07350015.2014.898585

D
ow

nl
oa

de
d 

by
 [H

um
bo

ld
t-U

ni
ve

rs
it&

au
m

l;t
 z

u 
Be

rli
n 

U
ni

ve
rs

it&
au

m
l;t

sb
ib

lio
th

ek
] a

t 0
1:

12
 0

8 
Fe

br
ua

ry
 2

01
6 



174 Journal of Business & Economic Statistics, April 2014

REFERENCES
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DISCUSSION

It is a pleasure to provide some comments on the excellent
and topical article by Hu and Tsay (2014).

The article extends principal component analysis (PCA) to
principal volatility component analysis (PVCA), and should
prove to be an invaluable addition to the existing multivariate
models for dynamic covariances and correlations that are es-
sential for sensible risk and portfolio management, including
dynamic hedging.

One of the key obstacles to developing multivariate covari-
ance and correlation models is the “curse of dimensionality,”
namely the number of underlying parameters to be estimated,
the article is concerned with dimension reduction through the
use of PCA, which is possible if there are some common volatil-
ity components in the time series.

In particular, the method searches for linear combinations
of a vector time series for which there are no time-varying
conditional variances or covariances, and hence no time-varying
conditional correlations.

The authors extend PCA to PCVA in a clear, appealing, and
practical manner. Specifically, they use a spectral analysis of a
cumulative generalized kurtosis matrix to summarize the volatil-
ity dependence of multivariate time series and define the prin-
cipal volatility components for dimension reduction.

The technical part of the article starts in Section 2 with a
vectorization of the volatility matrix, and a connection to the
BEKK model of Engle and Kroner (1995).

However, because a primary purpose of PCVA is to search
for the absence of multivariate time-varying conditional het-
eroskedasticity in vector time series, it would have been helpful
to see how PCVA might be connected to the conditional covari-
ances arising from various specializations of BEKK (for further
details, see below).

Theorem 1 assumes the existence of fourth moments of
a weakly stationary vector time series, but Theorems 2 and

3 assume the existence of sixth moments. The latter two
theorems beg the question as to whether the assumption is
testable.

Interestingly, in the simulation study, the four simple ARCH
models considered are understood to “not satisfy the moment
condition of Theorems 2 and 3,” with a reference to Box and
Tiao (1977) that traditional PCA works well in finite samples
for nonstationary time series.

However, the purported connection between PCA for non-
stationary time series, on the one hand, and time-varying con-
ditional covariances and correlations for a weakly stationary
vector time series, on the other, is not entirely clear.

The empirical analysis considers a dataset of weekly log re-
turns of seven exchange rates against the U.S. dollar from March
2000 to October 2011, giving 605 observations, which would
be considered a relatively small number of observations for pur-
poses of estimating dynamic vector covariance and correlation
matrices.

The simple GARCH(1,1) model is used to estimate the con-
ditional volatility models for the first six principal volatility
components. It would have been useful to compare the GARCH
estimates with the univariate asymmetric GJR and (possibly)
leverage-based EGARCH alternatives.

A simple comparison is made of the PVCA results with the
varying conditional correlation (VCC) model of Tse and Tsui
(2002), though VCC is referred to as a “dynamic conditional
correlation (DCC) model” (see Engle 2002).

As the effect of “news” in the VCC model has an estimated
coefficient of 0.013 and a standard error of 0.004, it is stated
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Abstract The behaviour of market agents has been extensively covered in the liter-
ature. Risk averse behaviour, described by Von Neumann and Morgenstern (Theory
of games and economic behavior. Princeton University Press, Princeton, 1944) via
a concave utility function, is considered to be a cornerstone of classical economics.
Agents prefer a fixed profit over an uncertain choice with the same expected value,
however, lately there has been a lot of discussion about the empirical evidence of
such risk averse behaviour. Some authors have shown that there are regions where
market utility functions are locally convex. In this paper we construct a test to verify
uncertainty about the concavity of agents’ utility function by testing the monotonicity
of empirical pricing kernels (EPKs). A monotonically decreasing EPK corresponds
to a concave utility function while a not monotonically decreasing EPK means non-
averse pattern on one or more intervals of the utility function. We investigate the EPKs
for German DAX data for the years 2000, 2002 and 2004 and find evidence of non-
concave utility functions: the null hypothesis of a monotonically decreasing pricing
kernel is rejected for the data under consideration. The test is based on approximations
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of spacings through exponential random variables. In a simulation we investigate its
performance and calculate the critical values (surface).

Keywords Monotonicity · Pricing kernel · Risk aversion

JEL Classification C12 · G12

1 Introduction

The behaviour of market agents has always been in focus in economic literature.
Von Neumann and Morgenstern (1944) describe risk averse behaviour using concave
utility functions. Agents prefer a fixed profit over an uncertain choice with the same
expected value, however, lately there has been a lot of discussion about the empirical
evidence of such risk averse behaviour. Recent studies by Jackwerth (2000) showed
that there is a reference point near the initial wealth where market utility functions
are convex. Rosenberg and Engle (2002) also observed a region of negative absolute
risk aversion for the pricing kernel constructed using an orthogonal polynomial. A
formal test procedure has not been given though. We want to fill this gap by testing
the concavity of the utility function and thus checking the monotonicity of the corre-
sponding empirical pricing kernel (EPK). A strictly decreasing EPK corresponds to
a concave utility function which is consistent with the classic theory of risk averse
behaviour, while rejection of a monotonically decreasing EPK would indicate non-
riskaverse pattern of the utility function. By analysing empirical pricing kernels we can
also identify on which interval or intervals the monotonicity of the EPK was rejected.
Non-monotonicity of the pricing kernel for the S&P 500 was also shown in more
recent research by Constantinides et al. (2009), Bakshi et al. (2010) and Chaudhuri
and Schroder (2010).

The construction and estimation of empirical pricing kernels has been well
described by Ait-Sahalia and Lo (2000). They analyze the concept of economic risk
containing investors’ preferences and statistical risk which provides information on
the dynamics of the data generating process (DGP). Both these risk measures can
be identified via distributions (risk neutral (Q), physical (P)). The pricing kernel K
is the Radon Nikodym derivative dQ/dP of these two measures. Economic risk is
well approximated by Arrow-Debreu prices and can be estimated by the risk neu-
tral density q obtained from the derivative market. By looking at option prices we
can find out what stock prices or returns investors expect at time to maturity. Several
accurate estimators of q using, for example, the Black and Scholes (1973) model or
nonparametric estimators exist. In this paper the risk neutral density q is derived from
the Heston model. Stochastic volatility models provide better results by fitting the
observed volatility smile. Due to the large number of observations in the derivative
option market, the risk neutral density q can be precisely estimated. Statistical risk is
related to the properties of the DGP and is given by the pdf p of future prices con-
ditional on current prices. The main difficulty for the estimation of p is, of course,
that an assumption about the model for the underlying process St has to be made (e.g.
geometric Brownian motion under the Black and Scholes model). The density p can
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Fig. 1 Classical utility function produced from Black Scholes model (left) and market utility function
estimated from empirical pricing kernel on 06/30/2000 (right)

be estimated in several ways, for example, using a nonparametric diffusion model as
in Ait-Sahalia and Lo (2000) or a GARCH model as in Rosenberg and Engle (2002).
The historical density p can only be estimated using the past of the time series St and
hence is influenced by model specification and data scarcity. The differences in the
form of the EPK by various authors might occur due to uncertainty in the estimation
of p. Therefore, we would like to test monotonicity of a pricing kernel constructed as
a ratio of estimated q and unknown p.

In Fig. 1 we compare the market utility function obtained from the DAX index
in the year 2000 and the utility function derived from the Black and Scholes model.
In both cases the risk neutral density q was obtained via the option market: the state
price density that replicates observed option prices is derived to fit the option pricing
model (Black and Scholes). This setup provides us with the lognormal density. The
historical density p was assumed to be lognormal for the Black and Scholes model,
and nonparametric density estimation over historical time series of the DAX index was
used to obtain q in case of the market utility function. The Black and Scholes model
produces an increasing and concave utility function, while the market utility function
has a slight bump over the region of zero returns. The aim of this paper is to find
out whether observed non-concavity is significant. Obviously, the form of the utility
function depends on choice of the DGP for St . As mentioned before, we would like
to test monotonicity of the EPK for a general class of DGPs and, therefore, consider
p unknown.

Ait-Sahalia and Lo (2000) in their paper offer another test for risk neutrality and
specific preferences. Depending on the form of preferences they define H0 hypothesis
as a relationship between the estimated neutral density q and the historical density
p. We do not make any assumptions about the form of preferences and also consider
the historical density p unknown. In our test the H0 hypothesis of a monotonically
decreasing EPK is compared to a general class of functions under H1. The test is
constructed as follows: first the spacing method is used to reduce the problem to an
exponential model. On the basis of this model a likelihood ratio test is applied for a
fixed interval, then using intersection of tests for different intervals it is expanded to
a test independent of intervals. Finally, the test statistics calculated on observed data
are compared to simulated critical values, and a final decision about monotonicity is
taken.
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308 Y. Golubev et al.

The paper is organized as follows. In Sect. 2 we introduce important notations
and problem setup which is then reduced to an exponential model using the spacing
method. In Sect. 3 we formulate the hypotheses, construct a likelihood test for a
fixed interval [I, J ] and then expand it to an independent test using the multiple
testing technique. We also describe how to simulate critical values using the Monte-
Carlo method. Section 4 provides empirical results on DAX data for 2000, 2002 and
2004.

2 Conceptual thoughts

2.1 Problem setup

Let [0, T ] be the interval of investment in the financial market, where t = 0 denotes the
present time and t = T ∈]0,∞[ the time of maturity. Furthermore, it is assumed that a
riskless bond and a risky asset are traded in the financial market as basic underlyings.
The price process (Bt )t∈[0,T ] of the riskless bond is defined by

dBt

Bt
= rt dt,

via a deterministic Riemannian-integrable interest process (rt )t∈[0,T ]. The price
process (St )t∈[0,T ] of the risky asset is assumed to be a nonnegative semimartingale
with a constant S0 and continuously distributed marginals St , t ∈ [0, T ]. Furthermore,
let us suppose that the financial market is arbitrage free in the sense that there exists
at least one equivalent martingale measure. Throughout the paper we assume that the
risk valuation principle is valid for a nonnegative payoff ψ(ST ). That means that
there is a Radon-Nikodym density π of a martingale measure such that the price of
any ψ(ST ) is characterized by

EP

{
e−

∫ T
0 rt dtψ(ST )π

}
= EP

{
e−

∫ T
0 rt dtψ(ST )EP (π |ST )

}
.

By factorization we may find some Borel-measurable Kπ with E(π |ST ) = Kπ , so
that

EP

{
e−

∫ T
0 rt dtψ(ST )π

}
=

∞∫

0

e−
∫ T

0 rt dtψ(ST )Kπ (x)pST (x)dx,

where pST denotes the density of the distribution of ST . The last formula allows

us to call Kπ the pricing kernel (w.r.t. π ). Here the distribution QST
def=∫ ST

−∞ Kπ (z)pST (z)dz, plays an important role. It is a continuous distribution with
pdf qST and is called the risk neutral distribution of ST (w.r.t. π ). Since

EP

{
e−

∫ T
0 rt dtψ(ST )π

}
= EP

{
e−

∫ T
0 rt dtψ(x)qST (x)dx

}
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holds for any nonnegative payoff ψ(ST ), the pricing kernel Kπ = qST
pST

a.s.
(w.r.t. P).

Let us further assume that investors of the financial market are consumers whose
consumptions depend on the price ST of the stock at maturity only. Within the classi-
cal framework, where investors’ preferences may be represented by expected utilities,
there exists a link between the risk attitude of the investors and the pricing rule in the
financial markets. It relies on the assumption of a representative agent whose indirect
utility U {ē(ST )} which is dependent on the aggregated market endowment ē(ST ) has
expected utility representation U {ē(ST )} = E{u(ST )} with concave Von Neumann-
Morgenstern utility index u. Under further technical conditions on the investors pref-
erences, see Härdle et al. (2012), Grith et al. (2013), and ē(ST ) = ST there is a positive
β such that

du
dx

|x=sT = βKπ (sT )

for almost any realization sT of ST . For a rigorous derivation we refer to Karatzas
and Shreve (1998), sections 4.4 and 4.5. Without loss of generality consider q and
K = Kπ on a scale of regular returns X = ST −S0

S0
, where S0 is the known current

price.
The concavity of utility U can be, therefore, tested by checking monotonicity of

K : a strictly decreasing K corresponds to a concave utility function, while a non-
monotone K would indicate a non-concave pattern. Our test idea is based on intervals
[a, b], where K is not monotonically decreasing.

Denote by X(1), . . . X(n) the order statistics related to a sequence of X1, . . . , Xn of
returns X i.e.

X(1) ≤ X(2), . . . ,≤ X(n).

With these notations we can rephrase the monotonicity testing problem: find (if pos-
sible) integers I, J such that the sequence

Kk = K (X(k)) = q(X(k))

p(X(k))
, I ≤ k ≤ J

is not monotonically decreasing.
The principal difficulty in this testing procedure is related to the fact that p is

unknown and that violation of monotonicity may occur at different sub-intervals [a, b].
To solve this challenge we will use three basic ingredients:

1. the spacing method to reduce the stochastics to a simpler exponential model
2. the maximum likelihood test to check monotonicity of Kk for given I and J
3. the multiple-testing procedure to find I and J on the basis of the data at hand.
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2.2 The spacing method

Our method is based on Pyke’s lemma about the distribution of order statistics, see
Pyke (1965). It describes various ways of constructing the spacings, the differences
between consecutive observations, in the context of distribution-free tests of fit. The
distribution-free assumption is vital for our monotonicity test. Not assuming any form
for p, q makes this test very general and allows to imply strong conclusions on the eco-
nomic risk of market participants. Pyke’s Lemma is based on the following thoughts.

Let U1, . . . , Un be i.i.d random variables with the uniform distribution on [0, 1]
and U0 = 0, Un+1 = 1. Then the uniform spacings associated with these random
variables are defined as

Sk = U(k) − U(k−1), k = 1, . . . , n + 1,

where U(k) are the order statistics 0 ≤ U(1) ≤ U(2), . . . ,≤ U(n) ≤ 1.
The uniform spacings can be represented as exponential random variables propor-

tional to their sum, Pyke (1965).

Lemma 2.1 Let e1, . . . , en+1 be i.i.d. standard exponentially distributed random vari-
ables and D = e1 + e2 + · · · + en+1 be the sum of them. Then the joint distribution
of {ek/D}n+1

k=1 coincides with the distribution of the set of n + 1 uniform spacings.
Using the fact that E(ek) = 1, with the law of large numbers for D, i.e. D =

n + Op(n−1/2), we obtain the following approximation:

n
{
U(k) − U(k−1)

}
= n · Sk

L= n · ek/D = n · ek/n + Op(n−1/2)

= ek + Op(n−1/2) ≈ ek, k = 1, . . . , n + 1. (1)

We now apply (1), showing the approximation of spacings by a standard exponen-
tial random variable, to the problem of the pricing kernel. Let X1, X2 . . . , Xn+1
be i.i.d. random variables (returns) with a historical density p(x), x ∈ R1 and
X(1) ≤ X(2), . . . ,≤ X(n+1) are the corresponding order statistics. By P(x) we denote
the cdf associated with p(x). The i.i.d. assumption might be seen as a too strong
one, since log returns show volatility clustering effects. These occur though more fre-
quently in highly sampled financial time series. In our case the frequency is low and
therefore the identical marginal distribution appears to be justifiable.

The first order Taylor approximation P(x) at point X(k) can be calculated using the
value of the function at point X(k−1);

P(X(k)) ≈ P(X(k−1)) + P ′(X(k−1)){X(k) − X(k−1)}

Note that the spacings are of order Op(n−1) by Lemma 2.1.
Using the probability integral transformation we see that the random variables

P(Xi ) are uniformly distributed over (0, 1). Combining first order Taylor approxima-
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tion with (1) we obtain

ek ≈ n{U(k)−U(k−1)} = n{P(X(k))− P(X(k−1))} ≈ n · p(X(k−1))·
{

X(k) − X(k−1)

}
.

(2)
Equation (2) is the representation of the spacing of the historical density p in a form
of exponential variables using ordered returns X(k). This way we do not make any
assumptions about the distribution of X . Yet, in order to apply Pyke’s Lemma 2.1 the
returns are assumed to be i.i.d. implying that in this case we deal with the unconditional
density p. The test of monotonicity of the pricing kernel can now be constructed as
the ratio of the risk-neutral density q and the unconditional historical density p.

Replacing p(x) = K −1(x)q(x) in (2) allows to complete the test with respect to
the pricing kernel K (x):

n ·
{

X(k) − X(k−1)

}
· K −1(X(k−1)) · q(X(k−1)) ≈ ek−1 k = 1, . . . , n + 1 (3)

Let us denote for simplicity K(k−1) = K (X(k−1)) and

Zk−1 = n
{

X(k) − X(k−1)

}
q(X(k−1)), k = 1, . . . , n + 1. (4)

Thus the test problem based on (3) is to check monotonicity of Kk−1 using:

Zk−1 ≈ Kk−1 · ek−1, k = 1, . . . , n + 1. (5)

Here again the approximation (5) is of order Op(n−1/2).

3 Construction of the test

3.1 Local test

The approximation (2), (5) have been made in order to specify the stochastic fluctuation
of Zk as being approximately exponential. This will allow us to continue within a quasi
likelihood framework.

For simplicity, let us first consider a fixed interval [I, J ] of the sequence

Zs ≈ Kses, I ≤ s ≤ J. (6)

where I and J are beginning and ending observation indexes of a selected interval.
The test alternative on interval [I, J ] implies that if K (x) is not decreasing, then one
can find an index s that the subsequence Ks, I ≤ s ≤ J is increasing.

The local test is based on an inverse linear approximation of K (s). The motivation
behind this approach is rather simple: in contrast to the standard linear approximation,
the inverse linear approximation results in quasi-concavity of the log-likelihood and,
thus, permitting to reduce significantly the numerical complexity of the test.
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Fig. 2 Inverse linear approximation for different parameters µ and θ

If Ks, I ≤ s ≤ J is increasing, then the statistical model with the observations

Z̃s = es

µ{1 + θ(s − I )} , I ≤ s ≤ J (7)

with parameters µ and θ and i.i.d. standard exponentially distributed random es ,
approximates the model (6) better with some negative θ than with a positive one.
It is important to notice that since Zs can have only positive values, θ and µ are also
limited.

Excluding the randomness generated by es by substituting it with E(e) = 1 the
approximation (7) takes the form presented in Fig. 2. The plots show different scenarios
depending on parameters µ and θ , where µ is responsible for the starting level and θ
controls the degree of the slope.

Therefore, two composite hypotheses can be formulated. Based on the observed
sequence of Zs from (6) and approximation (7) we have:

H0 : θ > 0

and Ks, I ≤ s ≤ J is monotonically decreasing

H1 : θ ≤ 0

and Ks, I ≤ s ≤ J is not-monotonically decreasing.
The test is constructed using the maximum likelihood principle. Let Pµ,θ (·) be the

joint cdf and pµ,θ (·) be the joint pdf of the observations in (7). Using the fact that the es
are i.i.d. standard exponential distributed, the corresponding log-likelihood function
takes the form:

log
{

pµ,θ (Z̃)
}
=−µ

J∑

s=I

Z̃s{1+θ(s− I )}+(J − I +1) log(µ)+
J∑

s=I

log{1+θ(s− I )}

(8)
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Therefore, we can re-formulate the test hypotheses: accept H0 if

max
µ,θ>0

log pµ,θ (Z̃) − max
µ,θ≤0

log pµ,θ (Z̃) ≥ hα(I, J ),

otherwise H0 is rejected.
Here the critical value hα(I, J ) is computed as a root of equation

P
{

max
µ,θ>0

log pµ,θ (e) − max
µ,θ≤0

log pµ,θ (e) < hα(I, J )

}
= α, (9)

where α is the type I error probability.
Now the problem is reduced to calculate the MLE’s µ̂ and θ̂ for the observed data

sequence {Zs}. Fortunately, the numerical complexity of this test is not very high.
First of all, the maximum in µ of pµ,θ (·) may be computed very easily. By calculating
∂ log pµ,θ (Z)/∂µ = 0 we obtain the optimal value of µ̂

µ̂ = J − I + 1
∑J

s=I Zs{1 + θ(s − I )}

which results in the maximum of the log-likelihood function in µ

max
µ

pµ,θ (Z) =
J∑

s=I

log{1 + θ(s − I )} − (J − I + 1) log

[
J∑

s=I

Zs{1 + θ(s − I )}
]

+(J − I + 1) log
J − I + 1

exp(1)
(10)

Due to quasi-concavity property, the function maxµ pµ,θ has a maximum in θ . In order
to find the optimal value θ̂ the part which contains θ and the rest of the equation should
be separated. Denote for brevity

L I,J
θ (Z) =

J∑

s=I

log
{
1 + θ(s − I )

}
− (J − I + 1) log{1 + θRI,J (Zs)}, (11)

where

RI,J = RI,J (Z) =
J∑

s=I

Zs(s − I )
/ J∑

s=I

Zs . (12)

is a random field.
By (10), it is easy to see that

max
µ

pµ,θ (Z) = L I,J
θ (Zs) − (J − I + 1) log

J − I + 1
exp(1)

+ (J − I + 1) log
J∑

s=I

Zs .

(13)
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Since only L I,J
θ (Z) depends on θ , the optimal value can be found as:

θ̂ = arg max
θ

L I,J
θ (Zs)

The simplest way to find the maximum of the function is to use the Newton-Raphson
algorithm:

θ̂k+1 = θ̂k + dL I,J
θ (Zs)/dθ̂k

d2 L I,J
θ (Zs)/dθ̂2

k

(14)

So, the final decision about monotonicity on interval [I, J ] is based on:

max
θ>0

L I,J
θ (Z) − max

θ≤0
L I,J
θ (Z) = L I,J

θ̂
(Z)1

{
θ̂ > 0

}
− L I,J

θ̂
(Z)1

{
θ̂ ≤ 0

}

= L I,J
θ̂

(Z) sign(θ̂).

With the above argument in mind, we propose the following local test on [I, J ] for
checking monotonicity of Ks I ≤ s ≤ J in (6):

1. compute

θ̂(Z) = arg max
θ

Lθ (Z)

with the help of the Newton-Raphson method (14),
2. accept the hypothesis that Ks, I ≤ s ≤ J is decreasing if

L I,J
θ̂(Z)

(Z) sign{θ̂(Z)} − hα(I, J ) ≥ 0 (15)

otherwise reject the hypothesis.

Notice that the critical value hα(I, J ) may be computed with the help of the Monte-
Carlo method as a root of the equation

P
[

L I,J
θ̂(e)

(e) sign{θ̂(e)} − hα(I, J ) < 0
]

= α, (16)

where e = (e1, . . . , eJ−I ) is the sequence of i.i.d. standard exponential random vari-
ables.

3.2 Global test

The previously described approach considers each interval [I, J ] separately, whereas
the decision about monotonicity should be taken for all possible combinations of I
and J . Therefore, the next step is to join the local tests described above in a global
setup. The approach is related to a natural modification of the Bonferroni method
which is also used in adaptive estimation in computing nearly optimal penalties for
the empirical risk minimization method, see e.g. Cavalier and Golubev (2006). In
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order to join the local tests, notice that if the underlying sequence is decreasing, then
(15) must hold true for any I, J or equivalently

min
I,J

[
L I,J
θ̂(Z)

(Z) sign{θ̂(Z)} − tα(I, J )
]

≥ 0. (17)

Therefore we may use this relation as a test prototype. To construct the final test,
it remains to redefine the critical values tα(I, J ). Obviously, we cannot stick with
hα(I, J ) defined by (16) because it does not control anymore the type I error probabil-
ity. In fact, the critical values describe a surface tα(I, J ) that must satisfy the following
equation:

P
(

min
I,J

[
L I,J
θ̂(e)

(e) sign{θ̂(e)} − tα(I, J )
]

< 0
)

= α. (18)

In contrast to (15), this equation has no unique solution. Intuitively, to maximize
the power of the test, i.e. the type II error probability, we should chose tα(I, J ) as
a “maximal” function satisfying (18). Unfortunately, the problem of computation of
such a “critical surface” is extremely difficult from theoretical and numerical view-
points. Therefore, we provide only an approximate solution of this problem. The main
step in computing a nearly optimal tα(I, J ) is to find out the probabilistic structure
of L I,J

θ̂(e)
(e) sign{θ̂(e)}. Notice that the stochastic part in this field is completely deter-

mined by the random field RI,J given in (12). Therefore, we first focus on probabilistic
properties of this field. Using Taylor expansion and the central limit theorem, RI,J

can be approximated as:

RI,J ≈ J − I
2

+
√

J − I
12

ξ (19)

where ξ ∼ N(0, 1). Let us show the approximation for L I,J
θ̂(e)

(e) sign{θ̂(e)} in more

details. Recall the defination of RI,J in (12).
Using Taylor expansion and the central limit theorem RI,J :

RI,J =
J∑

s=I

es(s − I )
/ J∑

s=I

es

=
J∑

s=I

{
(es − 1)(s − I ) + (S − I )

}/ J∑

s=I

{
(es − 1) + 1

}

=
{

(J − I )(J − I +1)

2
+

J∑

s=I

(s − I )(es −1)

}{
(J − I +1)+

J∑

s=I

(es −1)

}−1

=
{

(J − I )
2

+ 1
J − I +1

J∑

s=I

(s − I )(es −1)

}{
1+ 1

J − I +1

J∑

s=I

(es − 1)

}−1
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Assuming that J − I is sufficiently large:

{
1 + 1

J − I + 1

J∑

s=I

(es − 1)

}−1

= 1 − 1
J − I + 1

J∑

s=I

(es − 1)

/[
1 −

{ 1
J − I + 1

J∑

s=I

(es − 1)
}2

]

≈ 1 − 1
J − I + 1

J∑

s=I

(es − 1)

which then results in:

RI,J ≈
{

(J − I )
2

+ 1
J − I + 1

J∑

s=I

(s − I )(es − 1)

}{
1 − 1

J − I + 1

J∑

s=I

(es − 1)

}

= (J − I )
2

+ 1
(J − I + 1)

J∑

s=I

(
s − J − I

2

)
(es − 1)

− 1
(J − I + 1)2

J∑

s=I

(es − 1)

J∑

s=I

(s − I )(es − 1)

≈ J − I
2

+ 1
(J − I + 1)

J∑

s=I

(
s − I + J

2

)
(es − 1).

Using the CLT RI,J is approximated:

RI,J = µI,J + σ I,J ξ,

where µI,J and σ I,J are the mean and variance of RI,J and ξ ∼ N(0, 1).
Note that:

µI,J = E
{

J − I
2

+ 1
(J − I + 1)

J∑

s=I

(
s − I + J

2

)
(es − 1)

}
= J − I

2

σ 2 I,J = Var
{

J − I
2

+ 1
(J − I + 1)

J∑

s=I

(
s − I + J

2

)
(es − 1)

}

= Var(es − 1)

(J − I + 1)2

J∑

s=I

(
s − I + J

2

)2

= 1
(J − I + 1)2

J∑

s=I

(
s − I + J

2

)2
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Using the fact that
∑n

i=k i2 = ∑n−k+1
i=1 (i + k − 1)2, we can derive:

J∑

s=I

(
s − J − I

2

)2
=

J−I+1∑

s=1

(
s − I + J

2
+ I − 1

)2

=
J−I+1∑

s=1

(
s − I + J

2
+ I − 1

)2

=
J−I+1∑

s=1

(
s − J − I

2
− 1

)2

Furthermore, as
∑n

i=1 i2 = n(n + 1)(2n + 1)/6 the variance σ 2 I,J converges as
follows:

σ 2 I,J = 1
(J − I + 1)2

J−I+1∑

s=1

(
s − J − I

2
− 1

)2

= 1
(J − I +1)2

{
J−I+1∑

s=1

s2−2
J−I+1∑

s=1

s
( J − I − 2

2

)
+

J−I+1∑

s=1

( J − I − 2
2

)2
}

= (J − I +1)(J − I +2)(2(J − I )+3)

6(J − I +1)2 − (J − I +2)(J − I +1)(J − I −2)

2(J − I +1)2 +

+ (J − I + 1)(J − I − 2)2

4(J − I + 1)2

≈ J − I
3

− J − I
2

+ J − I
4

= J − I
12

Therefore, RI,J can be approximated as:

RI,J (es) ≈ J − I
2

+
√

J − I
12

ξ

Next, combining (20) with the Taylor expansion for L I,J
θ (e), we obtain

L(e) ≈ −θ
√

(J − I )3

12
ξ − θ2 (J − I )3

24

Again all these approximations are of order Op(n−1/2).
Thus, with simple algebra we arrive at the limit distribution of the test statistics

L θ̂ (e) sign{θ̂(e)} ≈ −1
2
ξ2 sign (ξ).

123



318 Y. Golubev et al.

The equation for the critical surface (18) therefore takes the following form

P
[
max
I,J

{1
2
ξ2 sign (ξ) + tα(I, J )

}
> 0

]
= α. (20)

In order to find a solution, we assume for a moment that the maximum in the above
display is computed over couples Ik, Jk , k = 1, . . . , (n −1)/d, where Ik = 1+d(k −
1), Jk = Ik +d and d is a given integer. Thus, we are looking for a minimal tα(Ik, Jk)

satisfying

P
[

max
k≤n/d

{1
2
(ξ Ik ,Jk )2 sign (ξ Ik ,Jk ) + tα(Ik, Jk)

}
> 0

]
= α.

Since the random variables (ξ Ik ,Jk )2 sign (ξ Ik ,Jk ), k = 1, . . . , n/d are i.i.d., it is clear
that tα(Ik, Jk) is a constant depending only on α, n, and d. Finally notice that

max
k≤n/d

(ξ Ik ,Jk )2 sign (ξ Ik ,Jk ) ≈ 2 log
n
d

because ξ Ik ,Jk are i.i.d. and nearly Gaussian N(0, 1). Therefore it is clear that

tα(Ik, Jk) = −t̃α log
n
d

,

where t̃α is a constant close to 1. This argument prompts the following form of the
critical surface (18):

tα(I, J ) = −t̃α log
n

J − I
. (21)

The exact constant t̃α is finally computed with the help of the Monte-Carlo as a root
of the equation:

P
(

min
|I−J |≥M

[
L I,J
θ̂(e)

(e) sign{θ̂(e)} + t̃α log
n

J − I

]
< 0

)
= α. (22)

Hence the critical surface tα(I, J ) in (21) is approximated as a function of a scalar
critical value t̃α , sample size n and significance level α, which definitely reduces the
complexity of the computation.

Here M > 2 is an integer which is needed to guarantee that the asymptotic approx-
imation (22) holds true. Typically, M ≈ 10. The inaccuracies due to small M and
other approximations applied to derive the final results are compensated by t̃α critical
value.

More precisely the calculation of the critical value t̃α is done in the following steps:

1. Generation of Zgen as exp(1) for a given sample size n.
2. Calculation of optimal parameters θ̂(I, J ) and resulting L θ̂ (I, J ) over generated

sequences Zgen for all possible intervals [I, J ], 1 ≤ I < J ≤ n
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Table 1 Simulated critical
values for different sample sizes
and t̃α

α (%) n = 50 n = 100 n = 255

20 2.5010 1.8003 1.2934

10 2.5789 1.8257 1.3065

5 2.6163 1.8358 1.3087

4 2.6229 1.8381 1.3093

3 2.6363 1.8414 1.3102

2 2.6425 1.8437 1.3111

1 2.6530 1.8453 1.3117

3. Calculation of the corresponding t̃α as a root of equation

P
(

min
|I−J |≥M

[
L I,J
θ̂(Zgen)

(Zgen) sign{θ̂(Zgen)} + t̃α log
n

J − I

]
< 0

)
= α (23)

by repeating steps 1 and 2 using simulated data.

For reader’s convenience Table 1 provides the critical values t̃α for α = 0.01, 0.02,

0.03, 0.04,

0.05, 0.1, 0.2 and sample sizes n = 50, 100, 255. As can be seen for smaller size
n the critical values t̃α are larger to counterbalance the inaccuracies in the estimation
of L θ̂(Zgen).

With the given t̃α the monotonicity test on the observed data Z takes the following
form: we accept the hypothesis that Ks is a decreasing sequence if

min
|I−J |≥M

[
L I,J
θ̂(Z)

(Z) sign{θ̂(Z)} + t̃α log
n

J − I

]
> 0. (24)

4 Empirical results

4.1 Data and estimation of risk neutral density

For the analysis we take the data used in Detlefsen et al. (2007) where the pricing
kernels and the risk aversion are analysed in years 2000, 2002 and 2004 in order
to consider different market regimes (30th of June, 28th of June and 25th of June
correspondingly). These dates were selected in such a way that the DAX index was
rising, remained stable and was falling during one year period prior to these dates.
According to our test design the decision about monotonicity is made on the basis of
(4): Zk = n · (X(k+1) − X(k)) · q(X(k)) where X(k) are the order statistics of DAX
returns and q is an estimate of the risk neutral density.

The DAX returns St −St−126
St−126

are calculated on half a year basis, where St are daily
index observations. They are ordered into X(k). We started 1.5 year back from the dates
mentioned above which resulted in exactly n = 255 observations. The corresponding
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ordered returns differences X(k+1) − X(k) for 2000, 2002 and 2004 are displayed in
Fig. 3.

The risk neutral density q aggregates economic information about the prices by
replicating observed option prices. An estimate of q can be found as the second deriv-
ative of the call price with respect to the strike. The estimation of q is then reduced
to the problem of a proper option-pricing formula. Under the hypothesis of Black
and Scholes (1973) we obtain a log-normal density q. A closed form solution can be
also obtained under more general class of models. Here we use the Heston (1993)
model calibrated to fit the observed smile in implied volatility surfaces (IVS) using
the absolute error between observed and modeled quantities:

ASEt =
√∑n

i=1
n−1{IVmod

i (t) − IVmar
i (t)}2

where mod refers to a model quantity, mar to a quantity observed on the market and
IV(t) to an implied volatility on day t . The index i runs over all n observations of the
surface on day t . Daily EUREX-settlement prices of European options on the DAX
index are used to obtain observed option prices and corresponding implied volatilities.
The model parameters are calibrated for each of three dates using the whole surface of
implied volatilities, but we exclude observations that are deep out of the money because
of illiquidity of these products. More precisely, we consider for the calibration only
options with more than 1 month time to maturity and restrict ourselves to strikes 50 %
above or below the spot in the moneyness direction. For each trading day there are
about 250 points in the volatility surface available for the calibration. Having obtained
the model parameters we can estimate the risk neutral density for any time to maturity
τ . In this paper we analyse semiannual returns, therefore, we obtain the density q by
fixing τ = 0.5 years. The corresponding densities for 2000, 2002 and 2004 can be
seen in Fig. 4. The risk free interest rates are approximated by the EURIBOR. On each
trading day we use the yields corresponding to the maturities of the implied volatility
surface. As the DAX is a performance index it was adjusted to dividend payments.
Thus, we do not have to consider dividend payments explicitly. For more details on
the estimation of the risk neutral density refer to Detlefsen and Härdle (2007). Similar
density q can be obtained using the minimization procedure mentioned in Jackwerth
(2000). Alternatively, the density q(x) can be estimated semiparametrically or even
nonparametrically, see Ait-Sahalia and Lo (2000).

4.2 Monotonicity of DAX EPKs

The final goal is to test an empirical pricing kernel obtained from observed data. Having
obtained q and X(k), Zk can be calculated and the monotonicity testing becomes a
technical exercise. Resulting values of Zk are displayed in Fig. 5.

The calculated Zk correspond to one year risk neutral density q and can be tested
with the corresponding critical values for n = 255 from Table 1. Similarly to the graphs
showing the test ideas a minimum distance of 10 observations between I and J was set.
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Table 2 min|I−J |≥M [L I,J
θ̂(Z)

(Z) sign{θ̂(Z)} + t̃α log n
J−I ] for α = 10, 5 and 1 %

α (%) min[L I,J
θ̂(Z)

(Z) sign{θ̂(Z)} + t̃α log n
J−I ]

2000 2002 2004

10 0.5038 −0.005 0.2114

5 0.5046 0.0021 0.2017

1 0.5058 0.0118 0.1946

The results are summarized in Table 2, the surfaces L I,J
θ̂(Z)

(Z) sign{θ̂(Z)}+ t̃α log n
J−I

are given in Fig. 6.
The analysis of the DAX data in years 2000, 2002 and 2004 showed that H0

(monotonic pattern of the pricing kernel) is rejected under 90 % significance level
in year 2002.

5 Conclusion

We describe a test that checks monotonicity of pricing kernels. By testing monotonicity
of a pricing kernel we can determine whether the corresponding utility function is
concave or not. A strictly decreasing pricing kernel corresponds to a concave utility
function, while a non-decreasing EPK means that the utility function contains non-
concave regions.

Pricing kernels are constructed as a ratio of the risk neutral density q and the
historical density p. Investors’ assessment of the future distribution of asset prices
under risk neutral measure (density q) can be estimated via the derivative market. By
looking at option prices we can find out what stock prices or returns investors expect
at the time of maturity. Due to the large number of observations q can be precisely
estimated. The actual movement of St is described by the historical density p which
is estimated using the time series of St . The main difficulty for the estimation of p
is, of course, that an assumption about the model for the underlying process St has
to be made. Due to scarcity of data and specification difficulties p is considered to
be unknown. We, therefore, test the monotonicity via the ratio q/p of two densities,
where q is given and p is unknown.

The test is constructed as follows: first the spacing method is used to reduce the
problem to an exponential model. Using Pyke’s lemma of order statistics, a pricing
kernel K is represented as a sequence of observed values Zk and standard exponential
variables ek . Based on this simple exponential model we construct the likelihood ratio
test for a fixed interval [I, J ]. A global test is built by the simultaneous testing on all
possible intervals [I, J ], where the main difficulty is to calculate the corresponding
critical surfaces for given I , J , sample size n and confidence level α. The critical
surfaces can be nearly approximated with a scalar critical value t̃α dependent only on
sample size n and significance level α, which significantly reduces the complexity of
the text. The problem is then reduced to the simulation of the critical value t̃α for n
and α using the Monte-Carlo technique.
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We investigated the EPKs for German DAX data for the years 2000, 2002 and 2004
and found evidence of non-concave utility behaviour for the data under consideration.
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HÄRDLE ET AL. | Uniform Confidence Bands for PKs 377

A challenging task in financial econometrics is to understand investors’ attitudes
toward market risk in its evolution over time. Such a study naturally involves
stochastic discount factors, empirical pricing kernels (EPK), and state price den-
sities, see Cochrane (2001). Asset pricing kernels (PKs) summarize investors’ risk
preferences and the so called “EPK paradox” exhibits when PKs are estimated from
data, as several studies including Aït-Sahalia and Lo (2000), Rosenberg and Engle
(2002), Brown and Jackwerth (2004) have shown. Although in all these studies
the EPK paradox (nonmonotonicity) became evident, a test for the nonmonotone
behavior of the pricing kernel has not been devised yet. A uniform confidence band
is a very simple tool for such shape inspection. Confidence bands drawn around
an EPK based on asymptotic theory and bootstrap is the subject of our study. In
addition, we relate critical values of our test to changing market conditions given
by exogenous time series.

The common difficulty is that the investors’ preference is implicit in the goods
traded in the market and thus can not be directly observed from the path of returns.
A profound martingale-based pricing theory provides us one approach to tackle
the problem from a probabilistic perspective. An important concept involved is
the State Price Density (SPD) or Arrow-Debreu prices reflecting fair prices of one
unit gain or loss for the whole market. Under no arbitrage assumption, there exists
at least one SPD, and when a market is complete, this SPD is unique. Assuming a
market is complete, pricing is done by taking expected payoff under the risk neutral
measure, which is related to the pdf of the historical measure by multiplying with a
stochastic discount factor, see Section 1 for a detailed illustration. From an economic
perspective, the price is formed according to the utility maximization theory, which
admits that the risk preference of consumers is connected to the shape of utility
functions. Specifically, a concave, convex, or linear utility function describes the risk
averse, risk seeking, or risk neutral behavior. Importantly, a stochastic discount
factor can be expressed via a utility function (Marginal Rate of Substitution),
which links the shape of pricing kernel to the risk patterns of investors, see
Kahneman and Tversky (1979), Jackwerth (2000), Rosenberg and Engle (2002) and
others.

The above mentioned theory allows us to relate price processes of assets
to risk preference of investors. This amounts to fitting a flexible model and
making inference on the dynamics of EPKs over time. A well-known but
restrictive approach is to assume the underlying following a geometric Brownian
motion. In this setting, SPDs and HDs are log normal distributions with
different drifts, and the parametrization of PK coincides with the conditional
expectation of marginal utilities when assuming a power utility function. Thus
it is decreasing in return and implies overall risk-averse behavior. However, across
different markets, one observes quite often a nondecreasing pattern for EPKs, a
phenomenon called the EPK paradox, see Chabi-Yo, Garcia, and Renault (2008),
Christoffersen, Heston, and Jacobs (2011).

Two plots of pricing kernels are shown in Figures 1 and 2. Figure 1 depicts
inter-temporal pricing kernels with fixed maturity, while Figure 2 depicts pricing
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378 Journal of Financial Econometrics

Figure 1 Examples of estimated inter-temporal pricing kernels (as functions of moneyness) with
fixed maturity 0.00833 (3 days) in years respectively on January 17, 2006 (dashed), April 18, 2006
(light gray), May 16, 2006 (dark gray), June 13, 2006 (dash-dotted), see Grith, Härdle, and Park
(2013).

kernels with two different maturities and their confidence bands. The figures are
shown on return scale. The curves present a bump in the middle and a switch from
convexity to concavity in all cases. Especially, this shows that very unlikely the
bands contain a monotone decreasing curve.

Besides the shape of the confidence bands, the time varying coverage
probability of a uniform confidence band has implications on risk attitudes of
investors. At a fixed point in time, it helps us to test against alternatives for a
PK and thus yields insights into time varying risk patterns. The extracted time
varying parameter, realized either from a low-dimensional model for PKs or given
by the coverage probability, may thus be economically analyzed in connection
with exogenous macroeconomic business cycle indicators, e.g., credit spread, yield
curve, etc., see also Grith, Härdle, and Park (2013).

To our knowledge, there are no comparable approaches developed for
uniform testing of the shape of EPK or of any continuous transformations of
it. Golubev, Härdle, and Timofeev (2014) suggest a test of monotonicity of the
PK, while other literature on testing PKs, for example, Jagannathan and Wang
(1996), Wang (2002), Wang (2003), serves different purposes like verifying the
significance of pricing errors. In contrary to these papers we do not address the
issue of mispricing, but provide a solid statistical tool to testing the validity of any
parametric shape of the PK.
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Figure 2 Examples of estimated inter-temporal pricing kernels with various maturities in years:
0.02222 (8 days, gray) 0.1 (36 days, black) on January 12, 2006 and their confidence bands.

Several econometric studies are concerned with estimating PKs by estimating
a SPD and HD separately. See Section 1 for details. It is stressed in Aït-Sahalia and Lo
(1998) that nonparametric inference from pricing kernels gives unbiased insights
into the properties of asset markets. The stochastic fluctuation of EPK as measured
by the maximum deviation has not been studied yet. Nevertheless, the asymptotic
distribution of the maximum deviation and the uniform confidence band linked to
it are very useful for model check.

Uniform confidence bands for smooth curves have first been developed
for kernel density estimators by Bickel and Rosenblatt (1973), extension to
regression smoothing can be found in Liero (1982) and Härdle (1989). But
only recently, the results have been carried over to derivative smoothing by
Claeskens and Van Keilegom (2003). Our theoretical path follows largely their
results, but our results are applied to a ratio estimator instead of a local polynomial
estimator. Also we have a realistic data situation that relates coverage to economic
indicators. In addition we perform the smoothing in an implied volatility space
which brings by itself an interesting modification of the results of that paper.

This article is organized as follows: In Section 1, we describe the theoretical
connection between utility functions and pricing kernels. In Section 2, we present a
nonparametric framework for the estimation of both the HD and the SPD and derive
the asymptotic distribution of the maximum deviation. In Section 3, we simulate
the asymptotic behavior of the uniform confidence band and compare it with the
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bootstrap method. Moreover, we also compare the results with other parametric
estimation procedures. In Section 4, we conclude and discuss our results.

1 EMPIRICAL PRICING KERNEL ESTIMATION

Consider an arbitrary risky financial security with the price process {St}t∈[0,T]. The
interest rate process r is deterministic. We assume that the market is complete, so
there exists a unique risk neutral measure. By the change-of-measure argument the
price at time t for the nonnegative payoff ψ(ST) is

Pt
def= EQ[

e−rτψ(ST)
]
=E

[
e−rτψ(ST)K(ST)

]
, (1)

where K(ST) is defined as the pricing kernel or stochastic discount factor at time t, E
is the expectation under the historical measure PST |St (x) and EQ is the expectation
under the risk neutral measure QST |St (x), τ is the time to maturity. Thus the price
of the security at time point t equals the expected net present value of its future
payoffs, computed with respect to the risk-neutral measure. More explicitly,

Pt =
∫ +∞

0
e−rτψ(x)q(x)dx=

∫ +∞

0
e−rτψ(x)K(x)p(x)dx, (2)

where p(x) and q(x) are the pdf of the historical measure and the risk neutral
density or state price density (SPD) of ST , respectively. Note that p(x) and q(x) are
conditional on the current price St and potentially may depend on other parameters
as discussed below. We skip the indication of conditioning to keep the notation
simple. Thus all expectations hereafter are conditional on St if not stated otherwise.

It follows from (2), that K= q
p and both the pdf of the future payoff and the

SPD are required to compute the pricing kernel. Several approaches are available
to determine the EPK explicitly. First, we can impose strict parametric restrictions
on the dynamics of the asset prices and on the distribution of the future payoff.
Mixture normal distributions are an example, see Jackwerth (2000). In the case
of more complex stochastic processes, usually no explicit solution is available. A
possible technique though is to use the Brownian motion setup as a prior model.
Subsequently the SPD is estimated by minimizing the distance to the prior SPD
subject to the constraints characterizing the underlying securities, see Rubinstein
(1994) and Jackwerth and Rubinstein (1996).

Another important perspective of specifying PK is done via the utility function
in the consumption based pricing model, see Heaton and Lucas (1992).

Let the aim of the investor be to solve the problem:

max
Wt

{u(Wt)+E[βu(WT)]},
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where u(·) denotes the utility function, Wt the wealth and β the subjective discount
factor. The current price of an asset is

Pt =E[βtψ(ST)], (3)

where βt is the stochastic discount factor and it equals the inter-temporal marginal
rate of substitution. If both ways of pricing in (1) and (3) are admissible, then they
lead to the same price in a complete market. Then the stochastic discount factor is
given byβ u′(s)

u′(St)
and is proportional to the PK. This implies that by fixing the utility of

the investor we can determine the PK, which is related to the standard risk aversion
measures. In practice, however, usually the opposite procedure is applied. The PK
is estimated via a ratio of q̂ and p̂ and used to determine the utility function or the
risk aversion coefficient of the investor. Assessment of the temporal dynamics of
the latter allows for inferences on the market risk behavior.

1.1 EPK and Option Pricing

EPK is calibrated from the data via an estimation of the ratio of the SPD q and
the HD p respectively. In this section we describe the details for this calibration.
The latter can easily be estimated either parametrically or nonparametrically from
the time series of payoffs. On the contrary, the SPD depends on risk preferences
and therefore the past observed stock price time series do not contain enough
information. Option prices do reflect preferences and, therefore, can be used to
estimate the SPD q. Let C(St,X,τ,r,σ 2) denote the European call-option price as a
function of the strike price X, price St, maturity τ , interest rate r and volatility σ .
Following Breeden and Litzenberger (1978) the SPD can be determined from the
pricing equation by

q(ST)=erτ ∂
2C
∂X2

∣∣∣
X=ST

. (4)

This result is very general and is valid for all European call options with
the payoff function (ST −X)+ and with the single assumption that the price is
twice differentiable. No additional restrictions on the stochastic process for the
underlying or on the preferences of market participants are needed. In a Black–
Scholes (BS) framework, where the underlying asset price St follows a geometric
Brownian motion, the European options are priced via:

C(St,X,τ,r,σ 2)=St&(d1)−Xerτ&(d2),

where d1 and d2 are known functions of σ 2, τ , X, and St. This implies that both
q(ST) and p(ST) are the densities of lognormal distributions:

q(ST)= 1

ST
√

2πσ 2τ
exp

[

− {log(ST/St)−(r−σ 2/2)τ }2

2σ 2τ

]

(5)

and p(ST) with µ replacing r in (5).
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Figure 3 Plot of call option prices against strike prices on January 17, 2001

The restrictive parametric form of BS model may often induce modeling bias
when fitted to the data, especially it is not possible to reflect the implicit volatility
smile (surface) as a function of X and τ via (5), see Renault (1997). The latter may
be derived in a stochastic volatility model, such as those of Heston or Bates type. In
order to study unbiased risk patterns, we need to guarantee models for the pricing
kernel that are rich enough to reflect local risk aversion in time and space. This
leads naturally to a smoothing approach.

We now describe how to estimate q(·) nonparametrically. Consider call options
with maturity τ . We consider the following heteroscedastic nonparametric model
for the observed option prices Yi

Yi =Cτ (Xi)+σ (Xi)εi, i=1,...,nq, (6)

where Yi denotes the observed option price, Xi the strike price and Cτ (·) is a smooth
function of the strike price. For simplicity of notation, we write C(·) for Cτ (·). The
informational content of the model is similar to that of Yuan (2009). We argue
that the perceived errors are due to neglected heterogeneity factors, rather than
mispricings exploited by arbitrage strategies, see Renault (1997). Thus the pricing
errors εi are assumed to be i.i.d. in the cross section. Figure 3 depicts the call option
prices used to calculate a SPD. The observations are distributed, with different
variances, at discrete grid points of strike prices.

As from (4), estimation of q(·) boils down to the estimation of the second
derivative of C(·). The following local polynomial approach allows us to estimate
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C(·) and the derivatives of C(·) simultaneously. Assuming that C(X) is continuously
differentiable of order d=3, it can be locally approximated by

C(X,X0)=
d∑

j=0

Cj(X0)(X0 −X)j, (7)

where Cj(X)=C(j)(X)/j!, j=0,...,d. See Cleveland (1979), Fan (1992), Fan (1993),
Ruppert and Wand (1994) for more details. By assuming a local Gaussian quasi-
likelihood model with L{Y,C(X)}={Y−C(X)}2/{2σ 2(X)} and maximizing the local
likelihood, the function C(·) can be approximated by Ĉ(X,X0) with:

Ĉ(X)=argmax
C(X)

1
nq

nq∑

i=1

wiKhnq
(Xi −X)L{Yi,C(X,Xi)}, (8)

where C(X)={C0(X),C1(X),...,Cd(X)}⊤, Khnq
(Xi −X)=K{(Xi −X)/hnq}/hnq is a ker-

nel function with bounded support and a bandwidth sequence hnq . Following
Aït-Sahalia and Duarte (2003) and Yuan (2009) the weights wi may reflect the
relative liquidity of different options, putting more weight on more heavily traded
options. To simplify the exposition we assume wi =1 for all i. The above maximum
likelihood approach is equivalent to a minimum weighted square loss approach,
since maximizing the local Gaussian likelihood function leads numerically to the
same solution as minimizing the weighted least squares. The advantage of the
likelihood framework is that it can be easily adapted to non-Gaussian distributions
and to heteroscedastic pricing equations.

Solving the above optimization problem in (8) is equivalent to solving:

Anq (X) def= 1
nq

nq∑

i=1

Khnq
(Xi −X)

∂Q{Yi,C(X,Xi)}
∂C

Xi = 0, (9)

with Xi
def= (1,Xi −X,(Xi −X)2,(Xi −X)3)⊤. We are concerned with 2!Ĉ2(x)=

∂2C(X)
∂X2

∣∣
X=x, which is shown by Breeden and Litzenberger (1978) to be proportional

to q(x). Note that the described procedure does not guarantee the feasibility of
the estimator as a density. The constrained estimator of Aït-Sahalia and Duarte
(2003) makes the large sample results below invalid. Therefore, we rely on the
consistency and asymptotic validity of q̂ as a density estimator. This approach
is justified by large samples available in financial applications. A multiplicative
renormalizing of the estimator will shift the EPK curve and the corresponding
confidence bands, while keeping the results of the monotonicity test unchanged.
Furthermore, the renormalization introduces a bias, which is difficult to tackle
analytically. Additional improvement of the estimator is elaborated in Section 2.1.

Note that we assume the parameter C(·) and σ (·) to be orthogonal to each other.
Thus we can estimate them separately as in a single parameter case. The following
lemma states the results on the existence of the solution and its consistency.
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Lemma 1: Under conditions (A1)−(A7), there exists a sequence of solutions to the
equations

Anq (x)=0,

with x being an element of a compact set E, such that

sup
x∈E

|q̂(x)−q(x)|=O
[
h−2

nq
{lognq/(nqhnq )}1/2 +h2

nq

]
a.s.

Proof. The statement follows from Theorem 2.1 of Claeskens and Van Keilegom
(2003). !

The HD p(x) can be estimated separately from the SPD using historical
prices St,...,St+np+τ−1 (t+np +τ−1<T) of the underlying asset. The nonparametric
kernel estimator of p(x) is given similarly to Aït-Sahalia and Lo (2000) by

p̂return(x)=n−1
p

np−1∑

j=0

Khnp

{
x−log(St+j+τ /St+j)

}
,

where Khnp
is a kernel function with bounded support and the bandwidth hnp . This

kernel should necessarily coincide with the kernel for estimating SPD q(·). Also as
in Aït-Sahalia and Lo (2000), the density of log-returns can be estimated as:

p̂return(x)=St exp(x)p̂{St exp(x)}.

Alternatively, to eliminate the impact of serial dependence of overlapping returns
over τ periods, we can simulate independent pathes of the price process and use it
to estimate the density of ST , then np will become the number of paths simulated
for the time T. Under assumption (A5), we know that

sup
x∈E

|p̂(x)−p(x)|=O{(nphnp/lognp)−1/2 +h2
np

} a.s. (10)

Remark The uniform convergence results for estimation of HD in the i.i.d case
follows from Bickel and Rosenblatt (1973), and recently extended by Liu and Wu
(2010) (Theorem 2.3) to the serial dependent data case.

The EPK is then given by the ratio of the estimated SPD and the HD p(x) i.e.
K̂(x)= q̂(x)/p̂(x). The next lemma provides the linearization of the ratio, which is
important for further statements about the uniform confidence band of the EPK.

Lemma 2: Under conditions (A1)−(A7) it holds

sup
x∈E

|K̂(x)−K(x)|

= sup
x∈E

∣∣ q̂(x)−q(x)
p(x)

− p̂(x)−p(x)
p(x)

· q(x)
p(x)

− {q̂(x)−q(x)}{p̂(x)−p(x)}
p2(x)

∣∣

+O[max{(nphnp/lognp)−1/2 +h2
np

,h−2
nq

{nqhnq/lognq}−1/2 +h2
nq

}] a.s. (11)
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This lemma implies that the stochastic deviation of K̂ from K can be linearized
into a stochastic part containing the estimator of the SPD and a deterministic part
containing E[p̂(x)]. The uniform convergence can be proved by dealing separately
with the two parts. The convergence of the deterministic part is shown by imposing
mild smoothness conditions, while the convergence of the stochastic part is proved
by following the approach of Claeskens and Van Keilegom (2003). Theorem 1
formalizes this uniform convergence of the EPK.

Theorem 1: Under conditions (A1)−(A7), it holds

sup
x∈E

|K̂(x)−K(x)|=O[max{(nphnp/lognp)−1/2 +h2
np

,h−2
nq

{nqhnq/lognq}−1/2 +h2
nq

}] a.s.

The proof is given in the Appendix. The theoretical optimal rate of bandwidth
follows by minimizing the bias and variance term together in Theorem 1 leading
to (nq lognq)−1/9. In our simulation and applications, we use the bandwidth
sequence which minimizes coverage error by performing a grid search, see
Claeskens and Van Keilegom (2003).

2 CONFIDENCE INTERVALS AND CONFIDENCE BANDS

Confidence intervals characterize the precision of the EPK for a given fixed value
of the payoff. This allows to make inference about the PK at each particular strike
price, but does not allow conclusions about the global shape. The confidence bands,
however, characterize the whole EPK curve and offer therefore the possibility to
test for shape characteristics. In particular, it is a way to check the persistence of the
bump as observed. Given a certain shape, one may verify the restriction imposed
by the power utility and obtain insights on the market risk aversion. In addition,
the confidence bands can be used to measure the global variability of the EPK.
Also, the proportion of the BS-based EPK covered in nonparametric bands can be
used as a measure of global risk aversion. The global variability is measured by
the variance function of EPK and the BS-based EPK means the parametric fitting
achieved by assuming that the underlying follows the geometric Brownian motion.

A confidence interval for the EPK at a fixed value x requires the asymptotic
distribution of p̂(x) and q̂(x). Hereafter, we use L to denote the convergence in law.
Under (A1)−(A7):

√
nphnp{p̂(x)−p(x)} L−→N{0,p(x)

∫
K2(u)du} (12)

and √
nqh5

nq
{q̂(x)−q(x)} L−→N{0,σ 2

q (x)}, (13)

where σ 2
q (x)=[B(x)−1L−1TL−1](3,3), with B(x) equal to the product of the density

fX(x) of the strike price and the local Fisher information matrix I{C(x)}. The matrices
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L and T are given by L def= [
∫

ui+jK(u)du]i,j and T def= [
∫

ui+jK2(u)du]i,j with i,j=
0,...,3. This implies the asymptotic normality of the EPK at a fixed payoff x. More
precisely √

nqh5
q{K̂(x)−K(x)} L−→N{0,σ 2

q (x)/p2(x)}. (14)

The variance of K̂= K̂(x) is given by

Var{K̂(x)}≈ {p(x)}−2B−1(x)L−1TL−1. (15)

The above results on the limiting distribution of p̂, q̂, and K̂ can directly used to
establish confidence intervals and the Bonferroni-type confidence bands for the
considered densities. This approach, as argued by Eubank and Speckman (1993),
are asymptotically conservative even though they do not explicitly account for
potential bias. These bands are taken as benchmarks for comparison purposes in
the simulation study.

Let D̂nq (x) be the standardized process with the estimated variance of the EPK:

D̂nq (x) def= n1/2
q hnq

5/2{K̂(x)−K(x)}/ [V̂ar{K̂(x)}]1/2.

Relying on the linearization in Lemma 2, we derive the confidence band for K.

Theorem 2: Under assumptions (A1)-(A5) it follows

P

[

(−2loghnq )1/2

{

sup
x∈E

|D̂nq (x)|−cnq

}

<z

]

−→exp{−2exp(−z)},

where cnq = (−2loghnq )1/2 +(−2loghnq )−1/2{xα+log(R/2π )}.

The (1−α)100% confidence band for the pricing kernel K is thus:

[f :sup
x∈E

{|K̂(x)−f (x)|/ V̂ar(K̂)1/2}≤Lα],

where Lα
def= 2!(nqh5

nq
)−1/2cnq , xα=−log{−1/2log(1−α)} and

R def= (L−1PL−1)3,3/(L−1TL−1)3,3

with P def= [
∫

ui+jK′(u)}2du− 1
2 {i(i−1)+j(j−1)}

∫
ui+j−2K2(u)du]i,j=0,...,3.

For the implementation with real data we need a consistent estimator of Var(K̂).
For fixed τ , we rely on the delta method and use the empirical sandwich estimator,
see Carroll, Ruppert, and Welsh (1998). The latter method provides the variance
estimator for the parameters obtained from estimating equations given by (9).

To estimate the variance function of the EPK we consider time series
of the option prices and the corresponding strike prices, (Xit,Yit), i=1,...,nq;

 at H
um

boldt-U
niversitaet zu Berlin on February 8, 2016

http://jfec.oxfordjournals.org/
D

ow
nloaded from

 



HÄRDLE ET AL. | Uniform Confidence Bands for PKs 387

t= t+1,...,t+τ , we have

V̂ar{K̂(x)}={p̂(x)}−2V (x)−1U(x)V (x)−1, (16)

where

V (x) def= 1
nqτ

nq∑

i=1

t+τ∑

j=t+1

K2
hnq

(Xij −x)
[
∂

∂C
Q{Yij;Ĉ(x,Xij)}

]2
(H−1

nq
Xij)(H−1

nq
Xij)⊤, (17)

U(x) def= 1
nqτ

nq∑

i=1

t+τ∑

j=t+1

K2
hnq

(Xij −x)

[
∂2

∂2C
Q{Yij;Ĉ(x,Xij)}

]

(H−1
nq

Xij)(H−1
nq

Xij)⊤, (18)

where Xij
def= (1,...,(Xij −x)3)⊤ and Hnq

def= diag{1,...,h3
nq

}. The estimator is con-
sistent in our setup as motivated in Appendix A.2 of Carroll, Ruppert, and Welsh
(1998).

It is important to note that the nonparametric estimators are biased, which
leads to potentially wrongly centered confidence bands and misleading coverages.

To overcome this problem we deploy the bias-correcting technique of Xia (1998),
which is based on the local polynomial estimation. It is used to correct the bias
in estimated SPD, while the bias in the HD is corrected using the additive bias
correction method mentioned in Jones, Linton, and Nielson (1995). In the next step
we correct the bias in the EPK using the linearization in Lemma 2. The estimated
leading term bias for EPK consists of the estimated bias of q̂(x) and of p̂(x) with a
bigger bandwidth than what used in estimation. This is the oversmoothing idea
proposed by Eubank and Speckman (1993).

2.1 Bootstrap Confidence Bands

In this subsection, we discuss a bootstrap version of the confidence band to obtain
possibly better finite sample performance. The slow rate of convergence is known to
us by Hall (1991), who showed that for density estimators, the supremum of {̂q(x)−
q(x)} converges at the slow rate (lognq)−1 to the Gumbel extreme value distribution.
Therefore the confidence band may exhibit poor performance in finite samples. An
alternative approach is to use the bootstrap method. Claeskens and Van Keilegom
(2003) used smooth bootstrap for the numerical approximation to the critical value.
Here we consider the bootstrap technique of the leading term in Lemma 2

sup
x∈E

| q̂(x)−q(x)
p(x)

|.

We resample data from the smoothed bivariate distribution of (X,Y) with the
density estimator given by estimator is:

f̂ (x,y)= σ̂X

nqhnq hnq σ̂Y

nq∑

i=1

K
{Xi −x

hnq

,
(Yi −y)σ̂X

hnq σ̂Y

}
,
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where σ̂X and σ̂Y are the estimated standard deviations of the distributions of X and
Y. The motivation of using the smooth bootstrap procedure is that the Rosenblatt
transformation requires the resampled data (X∗,Y∗) to be continuously distributed.

From the re-sampled data sets, we calculate the bootstrap analogue of the
leading term in Lemma 2:

sup
x∈E

| q̂∗(x)− q̂(x)
p̂(x)

|.

One may argue that this resampling technique does not correctly reflect the
bias arising in estimating q. Therefore, Härdle and Marron (1991) use therefore a
resampling procedure based on a larger bandwidth. This refined bias correcting
bootstrap method does not need to be applied in our case, since our bandwidth
conditions ensure a negligible bias.

Correspondingly, we define the one-step estimator for the stochastic deviation:

h2
nq

{K̂∗(x)−K̂(x)}=−{p(x)}−2{U∗(x)−1H−1
nq

A∗
nq

(x)}3,3,

with U∗(x) and A∗
nq

(x) as U(x) and Anq (x) defined previously with bootstrap data
(X∗

i ,Y∗
i ) and the variance given by:

Var{K̂(x)}≈ {p(x)}−2B(x)−1L−1PL−1, (19)

where B(x) is defined after equation (13).

Corollary 1: Assume conditions (A1)-(A7), a (1−α)100% bootstrap confidence band for
the EPK K(x) is:

[f (x) :sup
x∈E

{|K̂(x)−f (x)|V̂ar(K̂)−1/2}≤L∗
α],

where the bound L∗
α satisfies

P∗[−{U(x)−1H−1
nq

A∗
nq

(x)}3,3/{B(x)−1L−1PL−1}3,3 ≤L∗
α]=1−α.

The estimator V̂ar(K̂) is computed in a similar fashion as in the previous section.

2.2 Confidence Bands based on Smoothing Implied Volatility

Although the nonparametric estimator of the PK is reasonable in theoretical
sense, it often fails to provide stable and economically treatable estimators with
real data. One way to stabilizing the empirical SPD is the use of data-driven
local bandwidths (see Vieu 1993) or a multiple-testing-type adaptive technique
of Lepski and Spokoiny (1997). These alternative methods are tools of general
purpose and address the bias-variance trade-off locally. They are known to be either
asymptotically optimal or to have a near oracle property. Although the adaptive
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bandwidth provides us with optimal estimators, it is still possible that the noise
is too large and the algorithm fails to provide a curve with a small bias and easy
interpretation. This point is stressed in Rookley (1997): “implied volatilities on the
other hand tend to be less volatile and differences in implied volatilities convey
much more economic information than option prices alone, as implied volatilities
already embed much of the fundamental information available.”

We follow, however, an alternative approach and stabilize the empirical SPD
by a two-step procedure as in Rookley (1997) and Fengler (2005). At the first step,
we estimate the implied volatility (IV) function by a local polynomial regression.
At the second step, we plug the smoothed IV into the BS formula to obtain a
semiparametric estimator of the option price. This approach relies on a bijective
transformation of the call prices to the IV space and reflects the tendency of
investors to quote the options in terms of IV. Aït-Sahalia and Lo (1998) used a
similar semiparametric technique for dimension reduction purposes. Note that
the procedure does not require the BS model to hold, but leads to finite sample
improvements, while being asymptotically equivalent to the original estimator (see
Theorem 3). Thus we impose more assumptions on the functional form of the
call price function and focus only on the nonparametric structure of the volatility
surface. Thus the noise is relevant only in the estimation of the volatility surface.
However, it is well recognized that the volatility is less noisy and its shape is more
tractable and easy to interpret economically. Moreover, we can improve our two-step
procedure further by adopting adaptive techniques for the volatility surface.

Formally we smooth the IV using a local polynomial regression in moneyness
M, with the implicit assumption on the pricing formula is homogenous of degree 1
w.r.t. the asset price and the strike price as proved in Renault (1997). In the absence
of dividends, the moneyness is defined at time t as Mit =St/Xi. The heteroscedastic
model for the IV is given by:

σi =σ (Mit)+
√
η(Mit)υi, i=1,...,nq, (20)

where υi are the i.i.d. errors with zero mean, unit variance and η(·) is the volatility
function. We make the same assumptions about the implied volatility σ (·) as we
did for the option prices C(·) in Section 1.1.

Defining the rescaled call option price c(Mit)=C(Xi)/St, we obtain from the BS
formula

c(Mit)=c{Mit;σ (Mit)}=&{d1(Mit)}−
e−rτ&{d2(Mit)}

Mit
,

where

d1(Mit)=
log(Mit)+

{
r+ 1

2σ (Mit)2
}
τ

σ (Mit)
√
τ

, d2(Mit)=d1(Mit)−σ (Mit)
√
τ .
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Combining the result of Breeden and Litzenberger (1978) with the expression for
c(Mit) leads to the SPD

q(x)=erτ ∂
2C
∂X2

∣∣∣
X=x

=erτSt
∂2c
∂X2

∣∣∣
X=x

(21)

with
∂2c
∂X2 = d2c

dM2

(
M
X

)2
+2

dc
dM

M
X2 . (22)

As it is shown in the Appendix the derivatives in the last expression can be
determined explicitly and are functions of V def= σ (M), V ′ def= ∂σ (M)/∂M and
V ′′ def= ∂2σ (M)/∂M2. We estimate the latter quantities by the nonparametric local
polynomial regression for the IV of the from

σ (Mit)≈V(M)+V ′(M)(Mit −M)+ 1
2

V ′′(M)(Mit −M)2,

for M near Mit. The respective estimators are denoted by V̂, V̂ ′ and V̂ ′′. Plugging
the results into (21)-(22) we obtain the estimator of SPD in the smoothed IV space.
Assuming that the IV process fulfills the (A1)−(A7) in the appendix instead of C(·),
we conclude that Theorem 2.1 of Claeskens and Van Keilegom (2003) holds also for
V̂, V̂ ′ and V̂ ′′. Note that the convergence rate of V̂ and V̂ ′ is lower than of V̂ ′′. Relying
on this fact, we state the asymptotic behavior of q̂(x)−q(x) in the next theorem.

Theorem 3: Let σ (·) satisfy the assumptions (A1)-(A7). Then with M=St/x it holds
√

nqh5
nq

{q̂(x)−q(x)} L−→N{0,r(M)2σ 2
V(M)}, (23)

where

r(M) def= erτSt
M2

x2

[
ϕ{d1(M)}

{√
τ/2− log(M)+rτ

V(M)2√τ
}

− e−rτ ϕ{d2(M)}
{
−√

τ/2− log(M)+rτ
V(M)2√τ

}
/M

]

and σ 2
V(M) def= [BV(M)−1L−1TL−1](3,3), with σ 2

V(M) defined as in (15).

Proof. The proof is given in the Appendix. !

Theorem 3 allows us to construct the confidence bands of the SPD estimated
semiparametrically using the confidence bands for the IV. The variance of the
estimator is obtained by the delta method in the following way

Var{q̂(x)−q(x)}=
( ∂q
∂V ′′

)2
Var{V̂ ′′(M)−V ′′(M)}.
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The variance Var{V̂ ′′(M)−V ′′(M)} is estimated using a sandwich estimator similarly
to (16), and ∂q

∂V′′ =erτSt
M2

x2

[
ϕ{d1(M)}

{√
τ/2− log(M)+rτ

V(M)2√τ
}
−e−rτ ϕ{d2(M)}

{
−√

τ/2−
log(M)+rτ
V(M)2√τ

}
/M

]
. Here we have proved that it is sufficient to consider only the variance

of the second derivative of V, as the other terms involved are of higher order.

2.3 Extension to Dependent Data

In the previous sections we have assumed independent data in the estimation of
both the historical density and the SPD. Violation of this assumption may lead
to misspecified asymptotic results and wrong confidence bands. The assumption
is, however, feasible in our study for both densities. The confidence bands for a
simple density estimator of time series data are analysed by Liu and Wu 2010, see
Section 2.1 and can be directly transferred to the historical density in our setup.
Note however, that the impact of these results on the confidence bands for the EPK
is flattened by the higher convergence rate of the historical density. Regarding the
SPD note that assuming sufficient liquidity we can use options only with a given
maturity traded on a single day. This implies that the data used to estimate SPD is
not a time series data and there is no need to take the serial correlation into account.

Nevertheless, to serve a general purpose estimation, it is still interesting to
generalize our theoretical results to dependent data. Liu and Wu (2010) developed
uniform confidence bands for kernel density estimators and Nadaraya–Watson
estimation for a general class of time series models. In this section we adopt their
approach to our problem. We extend the setup to time dependence and consider
the model as in (6)

Yi =C(Xi)+σ (Xi)εi, i=1,...,nq,

with the strike prices being a causal stationary process Xi =G(...,ηi−1,ηi), ηi are
i.i.d. and independent with εi.

We focus on the estimation of C(·) as in (8) and keep σ (·) known for the
derivations in this subsection. The physical dependence measure θ(i,γ )

def= ∥Xi −
X′

i∥γ = (E|Xi −X′
i |γ )1/γ , where X′

i is a coupled process of Xi with η0 is replaced by
an i.i.d. copy of η′

0, i.e. X′
i =G(η′

0,...,ηi−1,ηi). Additionally define the dependence
measure with coupled whole past as/i,γ

def= ∥G(η0,...,ηi−1,ηi)−G(η′
0,...,η

′
i−1,η

′
i)∥γ .

Suppose that ||Xi||κ ≤∞ for some κ>0. Let κ ′ =min(κ,2) such that1nq =∑nq
i=1θ

κ ′/2
(i,κ ′).

Define Znq
def= ∑∞

k=−nq
(1nq+k −1k)2 and ξ̃i

def= (...,εi−1,εi,...,ηi−1,ηi).
(A8) Assume (||Xi||κ ≤∞ for κ>0. The density of ηi is positive and uniformly

bounded over its whole support up to the third derivative. There exists a constant
M<∞ such that sup[|fXnq |ξ̃nq−1

(x)|+|f ′
Xnq |ξ̃nq−1

(x)|+|f ′′
Xnq |ξ̃nq−1

(x)|]≤M almost surely.

εi has bounded fourth moments. /nq,γ =O(n−r
q ) for some γ and r>δ1/(1−δ1),
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0<δ1 <1/4. There exists a constant δ such that 0<δ≤δ1 <1 and hnq =O(n−δ
q ),

n−δ
q =O(hnq ). Furthermore θ(nq,κ) =O(ρnq ) for some κ>0 and 0<ρ<1.

Let F̂nq (x) be the standardized process:

F̂nq (x) def= n1/2
q hnq

5/2{q̂(x)−q(x)}/ [σ̂q(x)]1/2.

Theorem 4: Under assumptions (A1)-(A6), (A8), hnq =O{(nq lognq)−1/9}, Znq h3
nq

=
O(nq lognq), it follows

P

[

(−2loghnq )1/2

{

sup
x∈E

|F̂nq (x)|−cnq

}

<z

]

−→exp{−2exp(−z)},

where cnq = (−2loghnq )1/2 +(−2loghnq )−1/2{xα+log(R/2π )}.

Liu and Wu (2010) note an interesting dichotomy phenomenon, where the
rate of convergence is the consequence of an interplay between the strength of
dependency and the bandwidth hnq . Accordingly, we suggest to undersmooth as a
smaller bandwidth would both reduce the bias and the effect of dependency. The
rate of hnq is set to O{(nq lognq)−1/9}.

3 MONTE-CARLO STUDY

The practical performance of the above theoretical considerations is investigated via
two Monto-Carlo studies. The first simulation aims at evaluating the performance
under the BS hypothesis, while the second simulation setup does the same under a
realistically calibrated surface. The confidence bands are applied to DAX index
options. We first study the confidence bands under a BS null model (Section
3.1). Naturally, without volatility smile, both the BS estimator and nonparametric
estimator are expected to be covered by the bands. While in the presence of volatility
smile (Section 3.2), we expect our tests to reject the BS hypothesis in most cases.

3.1 How Well is the BS Model Covered?

In the first setting, we calibrate a BS model on day 20010117 with the interest
rate set equal to the short rate r=0.0481, S0 =6500, strike prices in the interval
[6000,7400]. We refer to Aït-Sahalia and Duarte (2003) on the sources of the noise
and use an identical simulation setting, with the noise being uniformly distributed
in the interval [0,6]. Figure 4 is a scatter plot of generated observations of European
call option prices against strikes, the data is clustered in discrete values of the
strike price. Recall that bandwidths in the following context are all selected to
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Figure 4 Generated noisy BS call option prices against strike prices.

minimize pricing error using a leave-one-out approach on the bivariate grid
[1/np;1]×[1/nq;1].

Figure 5 shows a nonparametric estimator for the SPD and a parametric BS
estimator. The two estimators roughly coincide except for a small wiggle, thus the
bands drawn around the nonparametric curve also fully cover the parametric one.
The accuracy is evaluated by calculating the coverage probabilities and average
area within the bands, see Table 1 (see the rows labeled “null”). The coverage
probabilities is determined via 500 simulations, whenever the hypothesized curve
calculated on a grid of 100. The coverage probability approaches its nominal level
with increasing sample size, but never reaches it. This may well be attributed
to the above mentioned poor convergence of Gaussian maxima to the Gumbel
distribution. The area within the bands reflects the stability of the estimation
procedure. The bands get narrower with increasing sample size.

The bias correction for the SPD follows the approach of Xia (1998). The HD
is corrected as in Jones, Linton, and Nielson (1995). The bias correction for EPK
relies on the linear term from Lemma 2. The correction of the bands mimics
the Bonferroni correction in Eubank and Speckman (1993) and is based on the
asymptotic confidence intervals in (13) and (14). We conclude that the bias correction
approach and the Bonferroni correction are not better than the proposed method
for all sample sizes.

HDs are estimated from simulated stock prices following geometric Brownian
motion with µ=0.23. A BS EPK estimator could be tested using the above
procedure. Due to boundary effects, we concentrate on moneyness (Mt =St/X) in

 at H
um

boldt-U
niversitaet zu Berlin on February 8, 2016

http://jfec.oxfordjournals.org/
D

ow
nloaded from

 



394 Journal of Financial Econometrics

Figure 5 Estimation of SPD (gray), bands (dotted) and the BS SPD (dashed), with hnq =0.085,
α=0.05, nq =300.

[0.95,1.1]. Figure 6 displays the nonparametric EPK with confidence band and the
BS EPK covered in the band. We observe that the BS EPK is strictly monotonically
decreasing. The summary statistics are given in Table 1, due to the additional
source of randomness introduced through the estimation of p(x), the coverage
probabilities are less precise than the corresponding coverage probabilities for SPD.
Nevertheless, the probabilities are getting closer to their nominal values and the
bands get narrower when the sample size increases.

3.2 How Well is the Band in Reality?

Section 3.1 studied the performance of the bands under the null hypothesis with
BS assumption, while this section is designed to investigate the performance of the
bands when the null hypothesis is violated by a realistic volatility smile observed
in the market. Keeping the parameters identical to the setup of the first study, we
generated the data with a smoothed volatility function based on data for or options
traded on 20010117 with τ=3M,6M to maturity.

Figures 7 and 8 report the estimators for SPD and EPK. The bands do not cover
the BS estimator. Correspondingly, Table 1 (see the rows labeled “alter.") show the
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Table 1 Averaged, coverage probability (area) of the uniform confidence band over
500 simulations in different cases

Level Maturity Method nq =300 450 600

5% (null) 3M EPK 0.782 (2.54) 0.798 (2.49) 0.802 (2.38)
EPK (bias) 0.798 (2.51) 0.800 (2.43) 0.802 (2.31)
EPK (Bonfer.) 0.673 (2.98) 0.697 (2.88) 0.754 (2.76)
SPD 0.906 (2.40) 0.914 (2.20) 0.923 (1.99)
SPD (Bonfer.) 0.873 (2.68) 0.924 (2.57) 0.929 (2.44)

6M EPK 0.860 (2.50) 0.875 (2.43) 0.890 (2.41)
EPK (bias) 0.862 (2.53) 0.883 (2.41) 0.899 (2.42)
EPK (Bonfer.) 0.785 (2.90) 0.801 (2.67) 0.824 (2.74)
SPD 0.896 (2.44) 0.906 (2.13) 0.920 (2.07)
SPD (Bonfer.) 0.883 (2.73) 0.894 (2.69) 0.903 (2.52)

10%(null) 3M EPK 0.706 (2.47) 0.736 (2.34) 0.762 (2.23)
EPK (bias) 0.712 (2.45) 0.737 (2.33) 0.771 (2.23)
EPK (Bonfer.) 0.673 (2.33) 0.686 (2.12) 0.734 (2.01)
SPD 0.795 (2.17) 0.812 (2.06) 0.853 (1.88)
SPD (Bonfer.) 0.764 (2.12) 0.801 (2.00) 0.833 (1.98)

6M EPK 0.729 (2.50) 0.774 (2.23) 0.829 (2.31)
EPK (bias) 0.713 (2.47) 0.753 (2.26) 0.835 (2.30)
EPK (Bonfer.) 0.671 (2.86) 0.745 (2.88) 0.798 (2.72)
SPD 0.800 (2.34) 0.814 (2.08) 0.860 (1.94)
SPD (Bonfer.) 0.763 (2.55) 0.800 (2.46) 0.847 (2.36)

5% (alter.) 3M EPK 0.512 (2.43) 0.178 (2.23) 0.050 (2.02)
EPK (bias) 0.543 (2.42) 0.235 (2.27) 0.145 (1.99)
EPK (Bonfer.) 0.372 (2.51) 0.239 (2.37) 0.099 (2.12)

6M EPK 0.592 (2.53) 0.410 (2.17) 0.178 (2.02)
EPK (bias) 0.541 (2.49) 0.349 (2.12) 0.251 (2.01)
EPK (Bonfer.) 0.331 (2.34) 0.136 (2.16) 0.150 (2.15)

10% (alter.) 3M EPK 0.258 (2.12) 0.050 (2.04) 0.030 (2.01)
EPK (bias) 0.268 (2.13) 0.043 (2.01) 0.001 (2.00)
EPK (Bonfer.) 0.148 (2.78) 0.030 (2.61) 0.001 (2.54)

6M EPK 0.375 (2.22) 0.410 (2.13) 0.178 (2.00)
EPK (bias) 0.362 (2.21) 0.432 (2.13) 0.176 (2.01)
EPK (Bonfer.) 0.231 (2.46) 0.221 (2.35) 0.110 (2.25)

(bias) means bias correction, (Bonfer.) means Bonferoni correction.

coverage probabilities, which rapidly decrease when sample sizes are increasing.
However, the area within the bands does not change significantly when compared
with the results of Section 3.1. We conclude that the confidence bands are useful
for detecting the deviation from the BS model.
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Figure 6 Estimation of EPK (gray), bands (dotted), and the BS EPK (dashed), with hnq =0.085,
hnp =0.060 and α=0.05, np =2000, nq =300.

Note that the suggested method works for other processes, for example, the
Heston model, which allows for flexible forms of the pricing kernels. The simulation
study confirms the good performance of the confidence bands. The results are not
reported here for the brevity of presentation.

4 AN ILLUSTRATION WITH DAX DATA

This section aims at illustrating the functionality of our bands by checking the
coverage of BS EPK, which indicates how much the market risk behavior deviates
from the BS model. The procedure can be seen as a test of monotonicity of pricing
kernels. The available tests for monotonicity (Ghosal, Sen, and van der Vaart (2000),
Lee, Linton, and Whang (2009), Chetverikov (2012)) work for (regression) functions
and not for derivative estimation as required here. We take a dynamic point of view
by considering the EPK estimated at different dates.

4.1 Data

In contrast to previous studies that are mainly based on S&P500 data, we
focus on intraday European options on the DAX options. The source is the
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Figure 7 Plot of confidence bands (dotted), nonparametrically estimated SPD (gray), the fitted BS
(dashed) SPD with simulated volatility smile, nq =300, hnq =0.066, α=0.05.

European Exchange EUREX and data available by C.A.S.E., RDC SFB 649
(http://sfb649.wiwi.hu-berlin.de) in Berlin. The extracted observations for our
analysis cover the period between 1998 and 2008. The smoothing in volatility
approach described in Section 2.2 is applied to estimate the EPK (denoted as
Rookley method). As we cannot find traded options with the same maturity on
each day, we consider options with maturity 15 days (10 trading days) across several
years. Specifically, we extract a time series of options for every month from January
2001 to December 2006; this adds up to 63 days.

To make sure that the data correctly represents the market conditions, we
use several cleaning criteria. In our sample, we eliminate the observations with
τ<1D and IV >0.7. Also, we skip the option quotes violating general no-arbitrage
condition i.e., S>C>max{0,S−Xe−rτ }. Due to the put-call parity, both out-of-the-
money call options and in-the-money puts are used to compute the smoothed
volatility surface. The median of intra day stock prices is used to compute the
SPD. We use a window of 500 returns for nonparametric kernel density estimators
of HD.

Figure 9 describes the relative position of the HD and SPD on a specific
day, the EPK peak is apparently created through the different probability mass
contributions at different moneyness states.
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Figure 8 Plot of confidence bands (dotted), nonparametrically estimated EPK (gray), the fitted BS
(dashed) EPK with simulated volatility smile np =2000, nq =300, hnq =0.063, hnp =0.011, α=0.05.

Figure 9 Plot of estimated SPD on February 28, 2006 (Rookley, hnq =0.063, black) and HD (hnp =
0.0106, gray).
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(a) (b)

(c) (d)

(e) (f)

February 14, 2006, March 1, 2006,

April 17, 2006,

April 19, 2006, May 12, 2006,

March 5, 2006,

Figure 10 Estimated BS EPK (dashed), Rookley EPK (gray), uniform confidence band (dotted),
α=0.05.

4.2 Estimation of DAX EPK and its Uniform Confidence Band

We consider two specifications for the pricing kernels. In the first specification,
the BS pricing kernels have a marginal rate of substitution with power utility
function:

K(M)=β0M−β1 , (24)
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Figure 11 Coverage probability (α=0.05) estimated at 63 trading days and the DAX index (gray,
rescaled to [0,1]), τ=3M.

where β0 is a scaling factor and β1 determines the slope of pricing kernel. Thus
the BS calibration is realized by linearly regressing the (ordered) log-EPK on log-
moneyness. In the second specification, we construct the nonparametric confidence
bands as described in Section 2.2. A sequence of EPKs and corresponding bands are
shown in Figure 10. In most of the cases, the BS EPKs are rejected via the confidence
bands. The amount of deviation from the hypothesized BS specification though
provides us valuable information about how risk hungry investors are. Besides,
the area of between the bands varies over time, which gives us insights into the
variabilities of the prevailing risk patterns. In sum, the bands do not only provide
a simple test for hypothesizes EPKs, but also help us to study the dynamics of risk
patterns over time.

4.3 Linking Economic Conditions to EPK Dynamics

We use two different indicators for the deviation from a simple BS model. As
an approximation to the coverage probability, we calculate the proportion of grid
points of the band which covers the BS EPK. As a second measure, we introduce the
average width of the confidence bands over the moneyness interval [0.95,1.1] as a
proxy for the area between the confidence bands. This provides us with a measure
of variability, see also Theorem 2.

The first risk pattern time series is given in Figure 11, where we display the
DAX index (scaled to [0,1]) together with the coverage probability. We discover that

 at H
um

boldt-U
niversitaet zu Berlin on February 8, 2016

http://jfec.oxfordjournals.org/
D

ow
nloaded from

 



HÄRDLE ET AL. | Uniform Confidence Bands for PKs 401

Figure 12 First difference of coverage probability and the DAX index return (gray, standardized).

the coverage probability becomes less volatile when the DAX index level is high.
Figure 12 shows the differenced time series. From a simple correlation analysis, we
argue that the change in coverage probability and DAX return (with a lag of 3M)
are highly negatively correlated (correlation −0.3543) when the DAX index goes
down (200101-200302). On the contrary, in the period when the DAX goes up, one
observes a large positive correlation (0.3151). What does this mean economically?
This implies in a period of worsening economic condition, a positive part of the
monthly DAX returns induces a greater hunger for risk in a delay horizon of 3
months. Positive returns have just the opposite effects. With boosting and bullish
markets, the positive correlation indicates a 3-month horizon of decreasing risk
aversion. The exercise we have done so far support these economic reasoning. Risk
aversion seems to be higher in recessions and lower in boom times. This corresponds
to the findings in the economics literature. Economic agents (e.g., corporate firms,
banks, households) with higher risk aversion tend to hold more liquid assets,
driving down the interest rate. At the same time, the higher risk aversion calls
for a higher rate of return on risky assets. A lower interest rate and a higher rate on
risky assets generate a higher risk premium, Gilchrist and Zakrajšek (2012).

As far as the average width of the bands is concerned, we may conclude from
Figure 13 and Figure 14 that in periods of clearly bullish or bearish momentum, the
volatility of the width of the confidence band is higher. This may be caused by the
uncertainty of the market participants about the long-term persistence of the trend.
The lag effect on risk hunger is also detectable for this constructed indicator. Over
the whole observation interval, the correlation between the monthly DAX return
and the change in the average width is −0.3230 for a 1M lag and −0.2717 for 3M.
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Figure 13 Area of the confidence bands (α=0.05) estimated at 63 trading days and the DAX index
(gray, rescaled to [0,1]).

Figure 14 First difference of area and the DAX index return (gray, standardized).
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5 CONCLUSIONS

Pricing Kernels are important elements in understanding investment behavior since
they reflect the relative weights given by investors’ states of nature (Arrow–Debreu
securities). Pricing kernels may be deduced in either parametric or nonparametric
approaches. Parametric approaches like a simple BS model are too restrictive to
account for the dynamics of the risk patterns, which induces the well-known
EPK paradox. Nonparametric approaches allow more flexibility and reduce the
modeling bias. Simple tools like uniform confidence bands help us to conduct tests
against any parametric assumption of the EPKs i.e., shape inspection. Considering
the numerical stability, we smooth the IV surface via the Rookley’s method, and
obtain SPD estimator.

We have studied systematically the methodology of constructing the uniform
bands for both semiparametric or nonparametric estimators. Based on the
confidence bands, we explored two indicators to measure risk aversion over time
and linked it with DAX index; the first one is the coverage probability measuring
the proportion of the BS curve covered in bands, while the second one is the
area indicator measuring the variability of the estimator. We found out that there
are strong correlations between DAX index and our indicators with lag effects.
The smooth bootstrap is also studied without a significant improvement in finite
sample performance. One interest further extension is employing robust smoothers
to improve the bootstrap performance.

6 APPENDIX

Assumptions:
(A1) hnq →0 in such a way that {lognq/(nqhnq )}1/2 ·h3

nq
→0, and the optimal rate

bandwidth, to guarantee undersmoothing, would be O{(lognq ·nq)−1/9}.
(A2) The kernel functions K ∈C(1)[−1,1] (adopted for estimating both HD p(x)

and SPD q(x)) are symmetric and takes value 0 on the boundary.
(A3) For the likelihood function L∈C(1)(E) it holds that infx∈EL(x)>0. C(x)∈

C(4)(E). Additionally the third partial derivatives of L(Y,C) with respect to C exists
and is continuous in C for every y. The Fisher information I(C(x)) has a continuous
derivative and infx∈EI{C(x)}>0.

(A4) There exists a neighborhood N(C(x)) such that

max
k=1,2

sup
x∈E

|| sup
C∈N{C(x)}

∂k

∂Ck L(y;C)||λ<∞

for some λ∈ (2,∞]. Furthermore

sup
x∈E

E[ sup
C∈N{C(x)}

| ∂
3

∂C3 L(y;C)|]<∞.
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(A5) The HD of underlying p(x) is three times continuously differentiable and
is bounded by a positive constant from below on the compact set E.

(A6) Let anp = (nphnp/lognp)−1/2 +h2
np

from (10) and bnq =h−2
nq

(nqhnq/

lognq)−1/2 +h2
nq

from Lemma 1. We assume that nq/np =O(1), h5
nq

/hnp =O(1).
(A7) The pricing errors εi are independent and identically distributed random

variables.
(A1) is a bandwidth assumption for estimating SPD. We can undersmooth to

reduce the bias. (A2) is the assumption on kernel function which facilitates the
derivation of results. In a typical setting, hnq is chosen to be as in (A1), while hnp is
chosen to be O(n−1/5

p ), and hnq is larger than hnp . (A4) contains moment conditions
defined via likelihood functions. (A5) is an assumption imposed on the smoothness
of p(x). In our empirical setting, nq =715, np =200, thus for a typical data situations,
(A6) is reasonable. The assumptions (A1) and (A2) ensure anp/bnq =O(1).

6.1 Proof of Lemma 2

Recall from Lemma 1 and (10) that

sup
x∈E

|p̂(x)−p(x)|=O{{lognq/(nqhnq )}1/2 +h2
np

}=O(anp ),

sup
x∈E

|q̂(x)−q(x)|=O[h−2
nq

{lognq/(nqhnq )}1/2 +h2
nq

]=O(bnq ).

To determine the order of the EPK we linearize the ratio q(x)/p(x).

K̂(x)−K(x) = q̂(x)
p̂(x)

− q(x)
p(x)

= q̂(x)p(x)− p̂(x)q(x)
p2(x)

· 1

1+ p̂(x)−p(x)
p(x)

. (25)

We decompose the first factor as q̂(x)p(x)− p̂(x)q(x)={q̂(x)−q(x)}p(x)−{p̂(x)−
p(x)}q(x), while for the second factor we use the first order Taylor expansion. Putting
together we obtain

sup
x∈E

|K̂(x)−K(x)| = sup
x∈E

| q̂(x)−q(x)
p(x)

− p̂(x)−p(x)
p(x)

· q(x)
p(x)

− {q̂(x)−q(x)}{p̂(x)−p(x)}
p2(x)

+ {p̂(x)−p(x)}2

p2(x)
· q(x)
p(x)

|.

The first two elements are of order O(bnq ) and O(anp ) respectively, while the last
element is of order O(anp ). Summarizing we conclude that

sup
x∈E

|K̂(x)−K(x)|=O[max{anp ,bnq}].
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6.2 Proof of Theorem 2

The basic idea of the proof is to approximate the process

Dnq (x)=n1/2
q h5/2

nq {K̂(x)−K(x)}/[V̂ar{K̂(x)}]1/2

by a process with nonstochastic variance term, which will then be fur-
ther approximated by a process that can be treated with the tools of
Claeskens and Van Keilegom (2003). Here we have dropped for the simplicity
of notation the q in nq and the nq in hnq . More precisely, we define, as first
approximation,

D(1)
n (x) def= n1/2h5/2{K̂(x)−K(x)}/{Var{K̂(x)}}1/2,

where Var{K̂(x)} is given in (15). Lemma 2 ensures that the approximation by

n1/2h5/2{q̂(x)−q(x)}/{p(x)Var{K̂(x)}1/2} (26)

is uniformly of order Op{(logn)−1/2}. The process in equation (26) can be
approximated as in Claeskens and Van Keilegom (2003) by

2!exp(rτ )h2fX(x)−1/2Var{K̂(x)}−1/2I{C(x)}−1/2
3∑

i=0

fX(x)−1/2I{C(x)}−1/2{L−1}3,i+1An,i(x)

(27)
For the definition of the local Fisher information, I{C(x)}, the matrix L and the
process Ani(x), we refer to Section 2, and Section 6. Define

Zni(x) def= (nh)1/2h−i[I{C(x)}fX(x)]−1/2Ani(x).

Then equation (27) can be written as

Fn(x) def= 2!exp(rτ )h2{fX(x)}−1/2Var{K̂(x)}−1/2I{C(x)}−1/2
3∑

i=0

hi{L−1}3,i+1Zni(x)

Please note that L is not a function of x as Claeskens and Van Keilegom (2003)
erroneously write. Following their line of thoughts, we replace Zni(x) (uniformly)
by

Z′
ni(x)=h1/2

∫
Kh(z−x)

(z−x
h

)
dz

In order to apply corollary A1 of Bickel and Rosenblatt (1973), define the covariance
function r(x) of the Gaussian process Fnq (x), and we know that

r(x) = Cov(Z′
nj(x),Z′

nj(0))

= C1 −C2|x|2 +O(|x|2),

for x∈E, where C1 and C2 are two constants, so the regularity conditions satisfies,
the result follows.
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Finally, we have to show that supx∈E |V̂ar{K̂(x)}−Var{K̂(x)}|=Op(1).

sup
x∈E

|V̂ar{K̂(x)}−Var{K̂(x)}|

= sup
x∈E

|V̂ar
{ q̂(x)−q(x)

p(x)

}
−Var

{ q̂(x)−q(x)
p(x)

}
|+Op{(nh)−(1/2+α)(logn)1+α},

where 0<α<1.
According to corollary 2.1 in Claeskens and Van Keilegom (2003), for j=3,k =3,

sup
x∈E

|V̂ar{q̂(x)}−Var{q̂(x)}|=Op{(nhlogn)−1/2}.

So we have,
sup
x∈E

|V̂ar{K̂(x)}−Var{K̂(x)}|=Op(1).

6.3 Expressions for the Semiparametric Estimator of SPD and Proof
of Theorem 3

To proof the statement we show that
√

nqhnq (q̂(x)−q(x)) has asymptotically the

same distribution as
√

nqhnq{V̂ ′′(M)−V ′′(M)} with proper scaling. Thus we drive
the following equation.

q̂(x)−q(x) = erτSt
M2

x2

[
ϕ{d̂1(M)}

{√
τ/2− log(M)+rτ

V̂(M)2√τ
}

(28)

−e−rτ ϕ{d̂2(M)}
{
−√

τ/2− log(M)+rτ

V̂(M)2√τ
}
/M

]
{V̂ ′′(M)−V ′′(M)}

+O{V̂ ′′(M)−V ′′(M)}, (29)

where d̂i and ĉ are the terms defined in Section 2.2 with V̂(M) replaced by the true
function. We now describe how to derive (29) Taking the derivatives of c(Mit) with
respect to moneyness (M) and noting that both d1(Mit) and d2(Mit) depend on Mit
we obtain

dc
dM

= ϕ(d1)
dd1

dM
−e−rτ ϕ(d2)

M
dd2

dM
+e−rτ &(d2)

M2 ,

d2c
dM2 = ϕ(d1)

{d2d1

dM2 −d1

(
dd1

dM

)2}

− e−rτ ϕ(d2)
M

{d2d2

dM2 − 2
M

dd2

dM
−d2

(
dd2

dM

)2}
− 2e−rτ&(d2)

M3
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Computing the first and second order differentials for d1 and d2 using the notation
V =σ (M), V ′ =∂σ (M)/∂M and V ′′ =∂2σ (M)/∂M2, we obtain

dd1

dM
= 1

MV
√
τ

+
{
− log(M)+rτ

V2√τ +√
τ/2

}
V ′,

dd2

dM
= 1

MV
√
τ

+
{
− log(M)+rτ

V2√τ −√
τ/2

}
V ′,

d2d1

dM2 = − 1
MV

√
τ

{ 1
M

+ V ′

V

}
+V ′′

{√
τ

2
− log(M)+rτ

V2√τ
}

+V ′
{

2V ′ log(M)+rτ
V3√τ − 1

MV2√τ
}
,

d2d2

dM2 = − 1
MV

√
τ

{ 1
M

+ V ′

V

}
+V ′′

{
−

√
τ

2
− log(M)+rτ

V2√τ
}

+V ′
{

2V ′ log(M)+rτ
V3√τ − 1

MV2√τ
}
.

To prove (29), we know from (22) and (21) that

q(x)− q̂(x)=
(

d2c
dM2 − d2ĉ

dM2

)(
M
X

)2
+2

(
dc

dM
M
X2 − dĉ

dM
M
X2

)
. (30)

The stochastic terms involved are

d2c
dM2 − d2ĉ

dM2 =
{
ϕ(d1)

d2d1

dM2 −ϕ(d̂1)
d2d̂1

dM2

}
−

{
ϕ(d1)d1

(
dd1

dM

)2
−ϕ(d̂1)d̂1

(
dd̂1

dM

)2}

−
{ e−rτ ϕ(d2)

M
d2d2

dM2 − e−rτ ϕ(d̂2)
M

d2d̂2

dM2

}
+

{ e−rτ ϕ(d2)
M

2
M

dd2

dM
− e−rτ ϕ(d̂2)

M
2
M

dd̂2

dM

}

+
{ e−rτ ϕ(d2)

M
d2

(
dd2

dM

)2
− e−rτ ϕ(d̂2)

M
d̂2

(
dd̂2

dM

)2}
−

{2e−rτ&(d2)
M3 − 2e−rτ&(d̂2)

M3

}

def= gt1 −gt2 −gt3 +gt4 +gt5 −gt6

and

dc
dM

− dĉ
dM

=
{
ϕ(d1)

dd1

dM
−ϕ(d̂1)

dd̂1

dM

}
−

{
e−rτ ϕ(d2)

M
dd2

dM
−e−rτ ϕ(d̂2)

M
dd̂2

dM

}

+
{

e−rτ &(d2)
M2 −e−rτ &(d̂2)

M2

}

def= g′
t1 −g′

t2 +g′
t3.
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Now we analyze each term obtaining,

gt1 = d2d1

dM2

{
ϕ(d1)−ϕ(d̂1)

}
−ϕ(d̂1)

{d2d̂1

dM2 − d2d1

dM2

}

gt2 = d1

(
dd1

dM

)2{
ϕ(d1)−ϕ(d̂1)

}
+

(
dd1

dM

)2
ϕ(d̂1)

{
d1 − d̂1

}

+d̂1ϕ(d̂1)
{(

dd1

dM

)2
−

(
dd̂1

dM

)2}
,

and similarly for gt3,gt4,gt5,gt6,g′
t1,g

′
t2,g

′
t3. The further analysis of the rate boils

down to the analysis of the rates for dd̂1
dM − dd1

dM , d2d1
dM2 − d2d̂1

dM2 , d1 − d̂1, &(d1)−&(d̂1) and
similar terms for d2, as d2(M)= (d1(M)−σ (M))

√
τ .

By the mean value theorem

&(d1)−&(d̂1) = ϕ(d0)(d1 − d̂1)

d1 − d̂1 = {log(M)+rtτ }(V̂−V)
VV̂

√
τ

+√
τ (V−V̂)/2

dd1

dM
− dd̂1

dM
= V̂−V

MVV̂
√
τ

+
{ (log(M)+rτ )(V2 −V̂2)

V2V̂2√τ
+√

τ/2
}

V ′

+
{ (log(M)+rτ )

V̂2√τ
+√

τ/2
}

(V̂ ′−V ′),

= O(
{ (log(M)+rτ )

V̂2√τ
+√

τ/2
}

(V̂ ′−V ′))

d2d1

dM2 − d2d̂1

dM2 = −
{ 1

M
√
τ

V̂−V

VV̂

1
M

+ 1
M

V̂−V

VV̂
√
τ

V ′

V
+ 1

MV̂
√
τ

V ′(V̂−V)+V(V ′−V̂ ′)
VV̂M

}

+
{

V ′′−V̂ ′′
}{√

τ

2
− log(M)+rτ

V2√τ
}
+V̂ ′′

{
− (log(M)+rτ )(V̂2 −V2)

V2V̂2√τ

}

+2V̂3{V ′2 −V̂ ′2} log(M)+rτ

V3V̂3√τ
+2V̂ ′2{V̂3 −V3} log(M)+rτ

V3V̂3√τ

−
{

V2(V ′−V̂ ′)
1

MV2V̂2√τ
+V̂ ′(V2 −V̂2)

1
MV2V̂2√τ

}

= O(
{

V ′′−V̂ ′′
}{√

τ

2
− log(M)+rτ

V2√τ
}

).

 at H
um

boldt-U
niversitaet zu Berlin on February 8, 2016

http://jfec.oxfordjournals.org/
D

ow
nloaded from

 



HÄRDLE ET AL. | Uniform Confidence Bands for PKs 409

So the dominant term in the equation (30) is Sterτ
(

d2c
dM2 − d2 ĉ

dM2

)(
M
X

)2
and this

term is dominated by gt1 and gt3.

q(x)− q̂(x) = O(Sterτ
(

M
X

)2{
ϕ(d1)

d2d1

dM2 −ϕ(d̂1)
d2d̂1

dM2

}

−
(

M
X

)2
Sterτ

{ e−rτ ϕ(d2)
M

d2d2

dM2 − e−rτ ϕ(d̂2)
M

d2d̂2

dM2

}
)

= O(−Sterτ
(

M
X

)2
ϕ(d̂1)

{d2d̂1

dM2 − d2d1

dM2

}

+Sterτ e−rτ
(

M
X

)2
ϕ(d̂2)/M

{d2d̂2

dM2 − d2d2

dM2

}
)

= O(−Sterτ
(

M
X

)2
ϕ(d̂1)

{
V̂ ′′−V ′′

}{√
τ

2
− log(M)+rτ

V2√τ
}

+St

(
M
X

)2
ϕ(d̂2)/M

{
V̂ ′′−V ′′

}{−√
τ

2
− log(M)+rτ

V2√τ
}

).

6.4 Proof of Theorem 4

Firstly, the expansion under (A8) in Corollary 2.1 in Claeskens and Van Keilegom
(2003) is still valid with remainder term,

Hnq{Ĉ(x)−C(x)}=J(x)−1H−1
nq

Anq (x)+Rnq (x), (31)

where using I{C(x)}, L defined in Section 2,

J(x) def= fX(x)I{C(x)}L (32)

and

Rnq (x) = −B−1
nq

(x)J−1(x){J(x)+Bnq (x)}H−1
nq

Anq (x) (33)

+{B−1
nq

(x)J−1(x)Bnq (x)−J−1(x)}H−1
nq

Anq (x)−B−1
nq

(x)Dnq (x). (34)
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Define

Dnq (x) def= 1
2nq

nq∑

i=1

Khnq
(Xi −x)

∂3

∂C3 logf {Yi;ξ (x,Xi)}(Ĉ(x)−C(x))

X⊤
i Xi(Ĉ(x)−C(x))H−1

nq
Xi

Bnq (x) def= 1
nq

nq∑

i=1

Khnq
(Xi −x)

∂2

∂C2 logf {Yi;C(x,Xi)}H−1
nq

Xi(H−1
nq

Xi)⊤.

where ξ (x,Xi) is in between C(x,Xi) and Ĉ(x,Xi). Masry (1996) proved that
the remainder term is theoretically ignorable uniformly under strong mixing
conditions and under (A8) it can be shown that

sup
x∈E

Rnqj(x)=Op((hnq lognq/nq)1/2). (35)

Thus we concentrate on the scaled first-order term

Snj
def= (nqhnq )1/2h−j

nq {g(x)}−1/2Anqj(x)

with g(x) def= I(C(x))fX(x).
Recall that with a Gaussian likelihood, the components involved in

J(x)−1H−1
n An(x) are

Snqj = −(nq)−1/2h1/2
nq (g(x))−1/2

nq∑

i=1

Kh(Xi −x){(Xi −x)j/hj
nq}{Yi −C(x,Xi)}/σ 2(x)

= Tnq1(x)+Tnq2(x), j=0,...,d,

where

Tnq1
def= −(nq)−1/2h1/2

nq g(x)−1/2
nq∑

i=1

Khnq
(Xi −x){(Xi −x)j/hj

nq}(C(x)−C(x,Xi))/σ 2(x),

Tnq2
def= −(nq)−1/2h1/2

nq g(x)−1/2
nq∑

i=1

Khnq
(Xi −x){(Xi −x)j/hj

nq}(σ (Xi)εi)/σ 2(x).

Then we rely on an easy modification of Theorem 2.4 in Liu and Wu (2010),
which implies

sup
x∈E

|Tnq1(x)|=Op

⎛

⎝hnq

√
lognq +

Z1/2
nq h3/2

nq

n1/2
q

⎞

⎠, (36)

sup
x∈E

|Tnq2(x)−
h1/2

nq

(nqfX(x))1/2

nq∑

i=1

Khnq
(Xi −x)(Xi −x)jεi/hj

nq |=Op(hnq

√
lognq). (37)
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We need a linear combination of the component Snqj to analyze q̂(x)−q(x), in
particular

∑p
j=0L−1

3,j+1Snqj.
The rest of the proof then follows from the modification of the proof of

Proposition 2.1 in Liu and Wu (2010) and is similar to Theorems 4 and 5 in
Zhao and Wu (2008).
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Abstract The behaviour of market agents has been extensively covered in the liter-
ature. Risk averse behaviour, described by Von Neumann and Morgenstern (Theory
of games and economic behavior. Princeton University Press, Princeton, 1944) via
a concave utility function, is considered to be a cornerstone of classical economics.
Agents prefer a fixed profit over an uncertain choice with the same expected value,
however, lately there has been a lot of discussion about the empirical evidence of
such risk averse behaviour. Some authors have shown that there are regions where
market utility functions are locally convex. In this paper we construct a test to verify
uncertainty about the concavity of agents’ utility function by testing the monotonicity
of empirical pricing kernels (EPKs). A monotonically decreasing EPK corresponds
to a concave utility function while a not monotonically decreasing EPK means non-
averse pattern on one or more intervals of the utility function. We investigate the EPKs
for German DAX data for the years 2000, 2002 and 2004 and find evidence of non-
concave utility functions: the null hypothesis of a monotonically decreasing pricing
kernel is rejected for the data under consideration. The test is based on approximations
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of spacings through exponential random variables. In a simulation we investigate its
performance and calculate the critical values (surface).

Keywords Monotonicity · Pricing kernel · Risk aversion

JEL Classification C12 · G12

1 Introduction

The behaviour of market agents has always been in focus in economic literature.
Von Neumann and Morgenstern (1944) describe risk averse behaviour using concave
utility functions. Agents prefer a fixed profit over an uncertain choice with the same
expected value, however, lately there has been a lot of discussion about the empirical
evidence of such risk averse behaviour. Recent studies by Jackwerth (2000) showed
that there is a reference point near the initial wealth where market utility functions
are convex. Rosenberg and Engle (2002) also observed a region of negative absolute
risk aversion for the pricing kernel constructed using an orthogonal polynomial. A
formal test procedure has not been given though. We want to fill this gap by testing
the concavity of the utility function and thus checking the monotonicity of the corre-
sponding empirical pricing kernel (EPK). A strictly decreasing EPK corresponds to
a concave utility function which is consistent with the classic theory of risk averse
behaviour, while rejection of a monotonically decreasing EPK would indicate non-
riskaverse pattern of the utility function. By analysing empirical pricing kernels we can
also identify on which interval or intervals the monotonicity of the EPK was rejected.
Non-monotonicity of the pricing kernel for the S&P 500 was also shown in more
recent research by Constantinides et al. (2009), Bakshi et al. (2010) and Chaudhuri
and Schroder (2010).

The construction and estimation of empirical pricing kernels has been well
described by Ait-Sahalia and Lo (2000). They analyze the concept of economic risk
containing investors’ preferences and statistical risk which provides information on
the dynamics of the data generating process (DGP). Both these risk measures can
be identified via distributions (risk neutral (Q), physical (P)). The pricing kernel K
is the Radon Nikodym derivative dQ/dP of these two measures. Economic risk is
well approximated by Arrow-Debreu prices and can be estimated by the risk neu-
tral density q obtained from the derivative market. By looking at option prices we
can find out what stock prices or returns investors expect at time to maturity. Several
accurate estimators of q using, for example, the Black and Scholes (1973) model or
nonparametric estimators exist. In this paper the risk neutral density q is derived from
the Heston model. Stochastic volatility models provide better results by fitting the
observed volatility smile. Due to the large number of observations in the derivative
option market, the risk neutral density q can be precisely estimated. Statistical risk is
related to the properties of the DGP and is given by the pdf p of future prices con-
ditional on current prices. The main difficulty for the estimation of p is, of course,
that an assumption about the model for the underlying process St has to be made (e.g.
geometric Brownian motion under the Black and Scholes model). The density p can
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Fig. 1 Classical utility function produced from Black Scholes model (left) and market utility function
estimated from empirical pricing kernel on 06/30/2000 (right)

be estimated in several ways, for example, using a nonparametric diffusion model as
in Ait-Sahalia and Lo (2000) or a GARCH model as in Rosenberg and Engle (2002).
The historical density p can only be estimated using the past of the time series St and
hence is influenced by model specification and data scarcity. The differences in the
form of the EPK by various authors might occur due to uncertainty in the estimation
of p. Therefore, we would like to test monotonicity of a pricing kernel constructed as
a ratio of estimated q and unknown p.

In Fig. 1 we compare the market utility function obtained from the DAX index
in the year 2000 and the utility function derived from the Black and Scholes model.
In both cases the risk neutral density q was obtained via the option market: the state
price density that replicates observed option prices is derived to fit the option pricing
model (Black and Scholes). This setup provides us with the lognormal density. The
historical density p was assumed to be lognormal for the Black and Scholes model,
and nonparametric density estimation over historical time series of the DAX index was
used to obtain q in case of the market utility function. The Black and Scholes model
produces an increasing and concave utility function, while the market utility function
has a slight bump over the region of zero returns. The aim of this paper is to find
out whether observed non-concavity is significant. Obviously, the form of the utility
function depends on choice of the DGP for St . As mentioned before, we would like
to test monotonicity of the EPK for a general class of DGPs and, therefore, consider
p unknown.

Ait-Sahalia and Lo (2000) in their paper offer another test for risk neutrality and
specific preferences. Depending on the form of preferences they define H0 hypothesis
as a relationship between the estimated neutral density q and the historical density
p. We do not make any assumptions about the form of preferences and also consider
the historical density p unknown. In our test the H0 hypothesis of a monotonically
decreasing EPK is compared to a general class of functions under H1. The test is
constructed as follows: first the spacing method is used to reduce the problem to an
exponential model. On the basis of this model a likelihood ratio test is applied for a
fixed interval, then using intersection of tests for different intervals it is expanded to
a test independent of intervals. Finally, the test statistics calculated on observed data
are compared to simulated critical values, and a final decision about monotonicity is
taken.
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The paper is organized as follows. In Sect. 2 we introduce important notations
and problem setup which is then reduced to an exponential model using the spacing
method. In Sect. 3 we formulate the hypotheses, construct a likelihood test for a
fixed interval [I, J ] and then expand it to an independent test using the multiple
testing technique. We also describe how to simulate critical values using the Monte-
Carlo method. Section 4 provides empirical results on DAX data for 2000, 2002 and
2004.

2 Conceptual thoughts

2.1 Problem setup

Let [0, T ] be the interval of investment in the financial market, where t = 0 denotes the
present time and t = T ∈]0,∞[ the time of maturity. Furthermore, it is assumed that a
riskless bond and a risky asset are traded in the financial market as basic underlyings.
The price process (Bt )t∈[0,T ] of the riskless bond is defined by

dBt

Bt
= rt dt,

via a deterministic Riemannian-integrable interest process (rt )t∈[0,T ]. The price
process (St )t∈[0,T ] of the risky asset is assumed to be a nonnegative semimartingale
with a constant S0 and continuously distributed marginals St , t ∈ [0, T ]. Furthermore,
let us suppose that the financial market is arbitrage free in the sense that there exists
at least one equivalent martingale measure. Throughout the paper we assume that the
risk valuation principle is valid for a nonnegative payoff ψ(ST ). That means that
there is a Radon-Nikodym density π of a martingale measure such that the price of
any ψ(ST ) is characterized by

EP

{
e−

∫ T
0 rt dtψ(ST )π

}
= EP

{
e−

∫ T
0 rt dtψ(ST )EP (π |ST )

}
.

By factorization we may find some Borel-measurable Kπ with E(π |ST ) = Kπ , so
that

EP

{
e−

∫ T
0 rt dtψ(ST )π

}
=

∞∫

0

e−
∫ T

0 rt dtψ(ST )Kπ (x)pST (x)dx,

where pST denotes the density of the distribution of ST . The last formula allows

us to call Kπ the pricing kernel (w.r.t. π ). Here the distribution QST
def=∫ ST

−∞ Kπ (z)pST (z)dz, plays an important role. It is a continuous distribution with
pdf qST and is called the risk neutral distribution of ST (w.r.t. π ). Since

EP

{
e−

∫ T
0 rt dtψ(ST )π

}
= EP

{
e−

∫ T
0 rt dtψ(x)qST (x)dx

}
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holds for any nonnegative payoff ψ(ST ), the pricing kernel Kπ = qST
pST

a.s.
(w.r.t. P).

Let us further assume that investors of the financial market are consumers whose
consumptions depend on the price ST of the stock at maturity only. Within the classi-
cal framework, where investors’ preferences may be represented by expected utilities,
there exists a link between the risk attitude of the investors and the pricing rule in the
financial markets. It relies on the assumption of a representative agent whose indirect
utility U {ē(ST )} which is dependent on the aggregated market endowment ē(ST ) has
expected utility representation U {ē(ST )} = E{u(ST )} with concave Von Neumann-
Morgenstern utility index u. Under further technical conditions on the investors pref-
erences, see Härdle et al. (2012), Grith et al. (2013), and ē(ST ) = ST there is a positive
β such that

du
dx

|x=sT = βKπ (sT )

for almost any realization sT of ST . For a rigorous derivation we refer to Karatzas
and Shreve (1998), sections 4.4 and 4.5. Without loss of generality consider q and
K = Kπ on a scale of regular returns X = ST −S0

S0
, where S0 is the known current

price.
The concavity of utility U can be, therefore, tested by checking monotonicity of

K : a strictly decreasing K corresponds to a concave utility function, while a non-
monotone K would indicate a non-concave pattern. Our test idea is based on intervals
[a, b], where K is not monotonically decreasing.

Denote by X(1), . . . X(n) the order statistics related to a sequence of X1, . . . , Xn of
returns X i.e.

X(1) ≤ X(2), . . . ,≤ X(n).

With these notations we can rephrase the monotonicity testing problem: find (if pos-
sible) integers I, J such that the sequence

Kk = K (X(k)) = q(X(k))

p(X(k))
, I ≤ k ≤ J

is not monotonically decreasing.
The principal difficulty in this testing procedure is related to the fact that p is

unknown and that violation of monotonicity may occur at different sub-intervals [a, b].
To solve this challenge we will use three basic ingredients:

1. the spacing method to reduce the stochastics to a simpler exponential model
2. the maximum likelihood test to check monotonicity of Kk for given I and J
3. the multiple-testing procedure to find I and J on the basis of the data at hand.
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2.2 The spacing method

Our method is based on Pyke’s lemma about the distribution of order statistics, see
Pyke (1965). It describes various ways of constructing the spacings, the differences
between consecutive observations, in the context of distribution-free tests of fit. The
distribution-free assumption is vital for our monotonicity test. Not assuming any form
for p, q makes this test very general and allows to imply strong conclusions on the eco-
nomic risk of market participants. Pyke’s Lemma is based on the following thoughts.

Let U1, . . . , Un be i.i.d random variables with the uniform distribution on [0, 1]
and U0 = 0, Un+1 = 1. Then the uniform spacings associated with these random
variables are defined as

Sk = U(k) − U(k−1), k = 1, . . . , n + 1,

where U(k) are the order statistics 0 ≤ U(1) ≤ U(2), . . . ,≤ U(n) ≤ 1.
The uniform spacings can be represented as exponential random variables propor-

tional to their sum, Pyke (1965).

Lemma 2.1 Let e1, . . . , en+1 be i.i.d. standard exponentially distributed random vari-
ables and D = e1 + e2 + · · · + en+1 be the sum of them. Then the joint distribution
of {ek/D}n+1

k=1 coincides with the distribution of the set of n + 1 uniform spacings.
Using the fact that E(ek) = 1, with the law of large numbers for D, i.e. D =

n + Op(n−1/2), we obtain the following approximation:

n
{
U(k) − U(k−1)

}
= n · Sk

L= n · ek/D = n · ek/n + Op(n−1/2)

= ek + Op(n−1/2) ≈ ek, k = 1, . . . , n + 1. (1)

We now apply (1), showing the approximation of spacings by a standard exponen-
tial random variable, to the problem of the pricing kernel. Let X1, X2 . . . , Xn+1
be i.i.d. random variables (returns) with a historical density p(x), x ∈ R1 and
X(1) ≤ X(2), . . . ,≤ X(n+1) are the corresponding order statistics. By P(x) we denote
the cdf associated with p(x). The i.i.d. assumption might be seen as a too strong
one, since log returns show volatility clustering effects. These occur though more fre-
quently in highly sampled financial time series. In our case the frequency is low and
therefore the identical marginal distribution appears to be justifiable.

The first order Taylor approximation P(x) at point X(k) can be calculated using the
value of the function at point X(k−1);

P(X(k)) ≈ P(X(k−1)) + P ′(X(k−1)){X(k) − X(k−1)}

Note that the spacings are of order Op(n−1) by Lemma 2.1.
Using the probability integral transformation we see that the random variables

P(Xi ) are uniformly distributed over (0, 1). Combining first order Taylor approxima-
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tion with (1) we obtain

ek ≈ n{U(k)−U(k−1)} = n{P(X(k))− P(X(k−1))} ≈ n · p(X(k−1))·
{

X(k) − X(k−1)

}
.

(2)
Equation (2) is the representation of the spacing of the historical density p in a form
of exponential variables using ordered returns X(k). This way we do not make any
assumptions about the distribution of X . Yet, in order to apply Pyke’s Lemma 2.1 the
returns are assumed to be i.i.d. implying that in this case we deal with the unconditional
density p. The test of monotonicity of the pricing kernel can now be constructed as
the ratio of the risk-neutral density q and the unconditional historical density p.

Replacing p(x) = K −1(x)q(x) in (2) allows to complete the test with respect to
the pricing kernel K (x):

n ·
{

X(k) − X(k−1)

}
· K −1(X(k−1)) · q(X(k−1)) ≈ ek−1 k = 1, . . . , n + 1 (3)

Let us denote for simplicity K(k−1) = K (X(k−1)) and

Zk−1 = n
{

X(k) − X(k−1)

}
q(X(k−1)), k = 1, . . . , n + 1. (4)

Thus the test problem based on (3) is to check monotonicity of Kk−1 using:

Zk−1 ≈ Kk−1 · ek−1, k = 1, . . . , n + 1. (5)

Here again the approximation (5) is of order Op(n−1/2).

3 Construction of the test

3.1 Local test

The approximation (2), (5) have been made in order to specify the stochastic fluctuation
of Zk as being approximately exponential. This will allow us to continue within a quasi
likelihood framework.

For simplicity, let us first consider a fixed interval [I, J ] of the sequence

Zs ≈ Kses, I ≤ s ≤ J. (6)

where I and J are beginning and ending observation indexes of a selected interval.
The test alternative on interval [I, J ] implies that if K (x) is not decreasing, then one
can find an index s that the subsequence Ks, I ≤ s ≤ J is increasing.

The local test is based on an inverse linear approximation of K (s). The motivation
behind this approach is rather simple: in contrast to the standard linear approximation,
the inverse linear approximation results in quasi-concavity of the log-likelihood and,
thus, permitting to reduce significantly the numerical complexity of the test.
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Fig. 2 Inverse linear approximation for different parameters µ and θ

If Ks, I ≤ s ≤ J is increasing, then the statistical model with the observations

Z̃s = es

µ{1 + θ(s − I )} , I ≤ s ≤ J (7)

with parameters µ and θ and i.i.d. standard exponentially distributed random es ,
approximates the model (6) better with some negative θ than with a positive one.
It is important to notice that since Zs can have only positive values, θ and µ are also
limited.

Excluding the randomness generated by es by substituting it with E(e) = 1 the
approximation (7) takes the form presented in Fig. 2. The plots show different scenarios
depending on parameters µ and θ , where µ is responsible for the starting level and θ
controls the degree of the slope.

Therefore, two composite hypotheses can be formulated. Based on the observed
sequence of Zs from (6) and approximation (7) we have:

H0 : θ > 0

and Ks, I ≤ s ≤ J is monotonically decreasing

H1 : θ ≤ 0

and Ks, I ≤ s ≤ J is not-monotonically decreasing.
The test is constructed using the maximum likelihood principle. Let Pµ,θ (·) be the

joint cdf and pµ,θ (·) be the joint pdf of the observations in (7). Using the fact that the es
are i.i.d. standard exponential distributed, the corresponding log-likelihood function
takes the form:

log
{

pµ,θ (Z̃)
}
=−µ

J∑

s=I

Z̃s{1+θ(s− I )}+(J − I +1) log(µ)+
J∑

s=I

log{1+θ(s− I )}

(8)
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Therefore, we can re-formulate the test hypotheses: accept H0 if

max
µ,θ>0

log pµ,θ (Z̃) − max
µ,θ≤0

log pµ,θ (Z̃) ≥ hα(I, J ),

otherwise H0 is rejected.
Here the critical value hα(I, J ) is computed as a root of equation

P
{

max
µ,θ>0

log pµ,θ (e) − max
µ,θ≤0

log pµ,θ (e) < hα(I, J )

}
= α, (9)

where α is the type I error probability.
Now the problem is reduced to calculate the MLE’s µ̂ and θ̂ for the observed data

sequence {Zs}. Fortunately, the numerical complexity of this test is not very high.
First of all, the maximum in µ of pµ,θ (·) may be computed very easily. By calculating
∂ log pµ,θ (Z)/∂µ = 0 we obtain the optimal value of µ̂

µ̂ = J − I + 1
∑J

s=I Zs{1 + θ(s − I )}

which results in the maximum of the log-likelihood function in µ

max
µ

pµ,θ (Z) =
J∑

s=I

log{1 + θ(s − I )} − (J − I + 1) log

[
J∑

s=I

Zs{1 + θ(s − I )}
]

+(J − I + 1) log
J − I + 1

exp(1)
(10)

Due to quasi-concavity property, the function maxµ pµ,θ has a maximum in θ . In order
to find the optimal value θ̂ the part which contains θ and the rest of the equation should
be separated. Denote for brevity

L I,J
θ (Z) =

J∑

s=I

log
{
1 + θ(s − I )

}
− (J − I + 1) log{1 + θRI,J (Zs)}, (11)

where

RI,J = RI,J (Z) =
J∑

s=I

Zs(s − I )
/ J∑

s=I

Zs . (12)

is a random field.
By (10), it is easy to see that

max
µ

pµ,θ (Z) = L I,J
θ (Zs) − (J − I + 1) log

J − I + 1
exp(1)

+ (J − I + 1) log
J∑

s=I

Zs .

(13)
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Since only L I,J
θ (Z) depends on θ , the optimal value can be found as:

θ̂ = arg max
θ

L I,J
θ (Zs)

The simplest way to find the maximum of the function is to use the Newton-Raphson
algorithm:

θ̂k+1 = θ̂k + dL I,J
θ (Zs)/dθ̂k

d2 L I,J
θ (Zs)/dθ̂2

k

(14)

So, the final decision about monotonicity on interval [I, J ] is based on:

max
θ>0

L I,J
θ (Z) − max

θ≤0
L I,J
θ (Z) = L I,J

θ̂
(Z)1

{
θ̂ > 0

}
− L I,J

θ̂
(Z)1

{
θ̂ ≤ 0

}

= L I,J
θ̂

(Z) sign(θ̂).

With the above argument in mind, we propose the following local test on [I, J ] for
checking monotonicity of Ks I ≤ s ≤ J in (6):

1. compute

θ̂(Z) = arg max
θ

Lθ (Z)

with the help of the Newton-Raphson method (14),
2. accept the hypothesis that Ks, I ≤ s ≤ J is decreasing if

L I,J
θ̂(Z)

(Z) sign{θ̂(Z)} − hα(I, J ) ≥ 0 (15)

otherwise reject the hypothesis.

Notice that the critical value hα(I, J ) may be computed with the help of the Monte-
Carlo method as a root of the equation

P
[

L I,J
θ̂(e)

(e) sign{θ̂(e)} − hα(I, J ) < 0
]

= α, (16)

where e = (e1, . . . , eJ−I ) is the sequence of i.i.d. standard exponential random vari-
ables.

3.2 Global test

The previously described approach considers each interval [I, J ] separately, whereas
the decision about monotonicity should be taken for all possible combinations of I
and J . Therefore, the next step is to join the local tests described above in a global
setup. The approach is related to a natural modification of the Bonferroni method
which is also used in adaptive estimation in computing nearly optimal penalties for
the empirical risk minimization method, see e.g. Cavalier and Golubev (2006). In
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order to join the local tests, notice that if the underlying sequence is decreasing, then
(15) must hold true for any I, J or equivalently

min
I,J

[
L I,J
θ̂(Z)

(Z) sign{θ̂(Z)} − tα(I, J )
]

≥ 0. (17)

Therefore we may use this relation as a test prototype. To construct the final test,
it remains to redefine the critical values tα(I, J ). Obviously, we cannot stick with
hα(I, J ) defined by (16) because it does not control anymore the type I error probabil-
ity. In fact, the critical values describe a surface tα(I, J ) that must satisfy the following
equation:

P
(

min
I,J

[
L I,J
θ̂(e)

(e) sign{θ̂(e)} − tα(I, J )
]

< 0
)

= α. (18)

In contrast to (15), this equation has no unique solution. Intuitively, to maximize
the power of the test, i.e. the type II error probability, we should chose tα(I, J ) as
a “maximal” function satisfying (18). Unfortunately, the problem of computation of
such a “critical surface” is extremely difficult from theoretical and numerical view-
points. Therefore, we provide only an approximate solution of this problem. The main
step in computing a nearly optimal tα(I, J ) is to find out the probabilistic structure
of L I,J

θ̂(e)
(e) sign{θ̂(e)}. Notice that the stochastic part in this field is completely deter-

mined by the random field RI,J given in (12). Therefore, we first focus on probabilistic
properties of this field. Using Taylor expansion and the central limit theorem, RI,J

can be approximated as:

RI,J ≈ J − I
2

+
√

J − I
12

ξ (19)

where ξ ∼ N(0, 1). Let us show the approximation for L I,J
θ̂(e)

(e) sign{θ̂(e)} in more

details. Recall the defination of RI,J in (12).
Using Taylor expansion and the central limit theorem RI,J :

RI,J =
J∑

s=I

es(s − I )
/ J∑

s=I

es

=
J∑

s=I

{
(es − 1)(s − I ) + (S − I )

}/ J∑

s=I

{
(es − 1) + 1

}

=
{

(J − I )(J − I +1)

2
+

J∑

s=I

(s − I )(es −1)

}{
(J − I +1)+

J∑

s=I

(es −1)

}−1

=
{

(J − I )
2

+ 1
J − I +1

J∑

s=I

(s − I )(es −1)

}{
1+ 1

J − I +1

J∑

s=I

(es − 1)

}−1
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Assuming that J − I is sufficiently large:

{
1 + 1

J − I + 1

J∑

s=I

(es − 1)

}−1

= 1 − 1
J − I + 1

J∑

s=I

(es − 1)

/[
1 −

{ 1
J − I + 1

J∑

s=I

(es − 1)
}2

]

≈ 1 − 1
J − I + 1

J∑

s=I

(es − 1)

which then results in:

RI,J ≈
{

(J − I )
2

+ 1
J − I + 1

J∑

s=I

(s − I )(es − 1)

}{
1 − 1

J − I + 1

J∑

s=I

(es − 1)

}

= (J − I )
2

+ 1
(J − I + 1)

J∑

s=I

(
s − J − I

2

)
(es − 1)

− 1
(J − I + 1)2

J∑

s=I

(es − 1)

J∑

s=I

(s − I )(es − 1)

≈ J − I
2

+ 1
(J − I + 1)

J∑

s=I

(
s − I + J

2

)
(es − 1).

Using the CLT RI,J is approximated:

RI,J = µI,J + σ I,J ξ,

where µI,J and σ I,J are the mean and variance of RI,J and ξ ∼ N(0, 1).
Note that:

µI,J = E
{

J − I
2

+ 1
(J − I + 1)

J∑

s=I

(
s − I + J

2

)
(es − 1)

}
= J − I

2

σ 2 I,J = Var
{

J − I
2

+ 1
(J − I + 1)

J∑

s=I

(
s − I + J

2

)
(es − 1)

}

= Var(es − 1)

(J − I + 1)2

J∑

s=I

(
s − I + J

2

)2

= 1
(J − I + 1)2

J∑

s=I

(
s − I + J

2

)2
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Using the fact that
∑n

i=k i2 = ∑n−k+1
i=1 (i + k − 1)2, we can derive:

J∑

s=I

(
s − J − I

2

)2
=

J−I+1∑

s=1

(
s − I + J

2
+ I − 1

)2

=
J−I+1∑

s=1

(
s − I + J

2
+ I − 1

)2

=
J−I+1∑

s=1

(
s − J − I

2
− 1

)2

Furthermore, as
∑n

i=1 i2 = n(n + 1)(2n + 1)/6 the variance σ 2 I,J converges as
follows:

σ 2 I,J = 1
(J − I + 1)2

J−I+1∑

s=1

(
s − J − I

2
− 1

)2

= 1
(J − I +1)2

{
J−I+1∑

s=1

s2−2
J−I+1∑

s=1

s
( J − I − 2

2

)
+

J−I+1∑

s=1

( J − I − 2
2

)2
}

= (J − I +1)(J − I +2)(2(J − I )+3)

6(J − I +1)2 − (J − I +2)(J − I +1)(J − I −2)

2(J − I +1)2 +

+ (J − I + 1)(J − I − 2)2

4(J − I + 1)2

≈ J − I
3

− J − I
2

+ J − I
4

= J − I
12

Therefore, RI,J can be approximated as:

RI,J (es) ≈ J − I
2

+
√

J − I
12

ξ

Next, combining (20) with the Taylor expansion for L I,J
θ (e), we obtain

L(e) ≈ −θ
√

(J − I )3

12
ξ − θ2 (J − I )3

24

Again all these approximations are of order Op(n−1/2).
Thus, with simple algebra we arrive at the limit distribution of the test statistics

L θ̂ (e) sign{θ̂(e)} ≈ −1
2
ξ2 sign (ξ).
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The equation for the critical surface (18) therefore takes the following form

P
[
max
I,J

{1
2
ξ2 sign (ξ) + tα(I, J )

}
> 0

]
= α. (20)

In order to find a solution, we assume for a moment that the maximum in the above
display is computed over couples Ik, Jk , k = 1, . . . , (n −1)/d, where Ik = 1+d(k −
1), Jk = Ik +d and d is a given integer. Thus, we are looking for a minimal tα(Ik, Jk)

satisfying

P
[

max
k≤n/d

{1
2
(ξ Ik ,Jk )2 sign (ξ Ik ,Jk ) + tα(Ik, Jk)

}
> 0

]
= α.

Since the random variables (ξ Ik ,Jk )2 sign (ξ Ik ,Jk ), k = 1, . . . , n/d are i.i.d., it is clear
that tα(Ik, Jk) is a constant depending only on α, n, and d. Finally notice that

max
k≤n/d

(ξ Ik ,Jk )2 sign (ξ Ik ,Jk ) ≈ 2 log
n
d

because ξ Ik ,Jk are i.i.d. and nearly Gaussian N(0, 1). Therefore it is clear that

tα(Ik, Jk) = −t̃α log
n
d

,

where t̃α is a constant close to 1. This argument prompts the following form of the
critical surface (18):

tα(I, J ) = −t̃α log
n

J − I
. (21)

The exact constant t̃α is finally computed with the help of the Monte-Carlo as a root
of the equation:

P
(

min
|I−J |≥M

[
L I,J
θ̂(e)

(e) sign{θ̂(e)} + t̃α log
n

J − I

]
< 0

)
= α. (22)

Hence the critical surface tα(I, J ) in (21) is approximated as a function of a scalar
critical value t̃α , sample size n and significance level α, which definitely reduces the
complexity of the computation.

Here M > 2 is an integer which is needed to guarantee that the asymptotic approx-
imation (22) holds true. Typically, M ≈ 10. The inaccuracies due to small M and
other approximations applied to derive the final results are compensated by t̃α critical
value.

More precisely the calculation of the critical value t̃α is done in the following steps:

1. Generation of Zgen as exp(1) for a given sample size n.
2. Calculation of optimal parameters θ̂(I, J ) and resulting L θ̂ (I, J ) over generated

sequences Zgen for all possible intervals [I, J ], 1 ≤ I < J ≤ n
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Table 1 Simulated critical
values for different sample sizes
and t̃α

α (%) n = 50 n = 100 n = 255

20 2.5010 1.8003 1.2934

10 2.5789 1.8257 1.3065

5 2.6163 1.8358 1.3087

4 2.6229 1.8381 1.3093

3 2.6363 1.8414 1.3102

2 2.6425 1.8437 1.3111

1 2.6530 1.8453 1.3117

3. Calculation of the corresponding t̃α as a root of equation

P
(

min
|I−J |≥M

[
L I,J
θ̂(Zgen)

(Zgen) sign{θ̂(Zgen)} + t̃α log
n

J − I

]
< 0

)
= α (23)

by repeating steps 1 and 2 using simulated data.

For reader’s convenience Table 1 provides the critical values t̃α for α = 0.01, 0.02,

0.03, 0.04,

0.05, 0.1, 0.2 and sample sizes n = 50, 100, 255. As can be seen for smaller size
n the critical values t̃α are larger to counterbalance the inaccuracies in the estimation
of L θ̂(Zgen).

With the given t̃α the monotonicity test on the observed data Z takes the following
form: we accept the hypothesis that Ks is a decreasing sequence if

min
|I−J |≥M

[
L I,J
θ̂(Z)

(Z) sign{θ̂(Z)} + t̃α log
n

J − I

]
> 0. (24)

4 Empirical results

4.1 Data and estimation of risk neutral density

For the analysis we take the data used in Detlefsen et al. (2007) where the pricing
kernels and the risk aversion are analysed in years 2000, 2002 and 2004 in order
to consider different market regimes (30th of June, 28th of June and 25th of June
correspondingly). These dates were selected in such a way that the DAX index was
rising, remained stable and was falling during one year period prior to these dates.
According to our test design the decision about monotonicity is made on the basis of
(4): Zk = n · (X(k+1) − X(k)) · q(X(k)) where X(k) are the order statistics of DAX
returns and q is an estimate of the risk neutral density.

The DAX returns St −St−126
St−126

are calculated on half a year basis, where St are daily
index observations. They are ordered into X(k). We started 1.5 year back from the dates
mentioned above which resulted in exactly n = 255 observations. The corresponding
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ordered returns differences X(k+1) − X(k) for 2000, 2002 and 2004 are displayed in
Fig. 3.

The risk neutral density q aggregates economic information about the prices by
replicating observed option prices. An estimate of q can be found as the second deriv-
ative of the call price with respect to the strike. The estimation of q is then reduced
to the problem of a proper option-pricing formula. Under the hypothesis of Black
and Scholes (1973) we obtain a log-normal density q. A closed form solution can be
also obtained under more general class of models. Here we use the Heston (1993)
model calibrated to fit the observed smile in implied volatility surfaces (IVS) using
the absolute error between observed and modeled quantities:

ASEt =
√∑n

i=1
n−1{IVmod

i (t) − IVmar
i (t)}2

where mod refers to a model quantity, mar to a quantity observed on the market and
IV(t) to an implied volatility on day t . The index i runs over all n observations of the
surface on day t . Daily EUREX-settlement prices of European options on the DAX
index are used to obtain observed option prices and corresponding implied volatilities.
The model parameters are calibrated for each of three dates using the whole surface of
implied volatilities, but we exclude observations that are deep out of the money because
of illiquidity of these products. More precisely, we consider for the calibration only
options with more than 1 month time to maturity and restrict ourselves to strikes 50 %
above or below the spot in the moneyness direction. For each trading day there are
about 250 points in the volatility surface available for the calibration. Having obtained
the model parameters we can estimate the risk neutral density for any time to maturity
τ . In this paper we analyse semiannual returns, therefore, we obtain the density q by
fixing τ = 0.5 years. The corresponding densities for 2000, 2002 and 2004 can be
seen in Fig. 4. The risk free interest rates are approximated by the EURIBOR. On each
trading day we use the yields corresponding to the maturities of the implied volatility
surface. As the DAX is a performance index it was adjusted to dividend payments.
Thus, we do not have to consider dividend payments explicitly. For more details on
the estimation of the risk neutral density refer to Detlefsen and Härdle (2007). Similar
density q can be obtained using the minimization procedure mentioned in Jackwerth
(2000). Alternatively, the density q(x) can be estimated semiparametrically or even
nonparametrically, see Ait-Sahalia and Lo (2000).

4.2 Monotonicity of DAX EPKs

The final goal is to test an empirical pricing kernel obtained from observed data. Having
obtained q and X(k), Zk can be calculated and the monotonicity testing becomes a
technical exercise. Resulting values of Zk are displayed in Fig. 5.

The calculated Zk correspond to one year risk neutral density q and can be tested
with the corresponding critical values for n = 255 from Table 1. Similarly to the graphs
showing the test ideas a minimum distance of 10 observations between I and J was set.
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Table 2 min|I−J |≥M [L I,J
θ̂(Z)

(Z) sign{θ̂(Z)} + t̃α log n
J−I ] for α = 10, 5 and 1 %

α (%) min[L I,J
θ̂(Z)

(Z) sign{θ̂(Z)} + t̃α log n
J−I ]

2000 2002 2004

10 0.5038 −0.005 0.2114

5 0.5046 0.0021 0.2017

1 0.5058 0.0118 0.1946

The results are summarized in Table 2, the surfaces L I,J
θ̂(Z)

(Z) sign{θ̂(Z)}+ t̃α log n
J−I

are given in Fig. 6.
The analysis of the DAX data in years 2000, 2002 and 2004 showed that H0

(monotonic pattern of the pricing kernel) is rejected under 90 % significance level
in year 2002.

5 Conclusion

We describe a test that checks monotonicity of pricing kernels. By testing monotonicity
of a pricing kernel we can determine whether the corresponding utility function is
concave or not. A strictly decreasing pricing kernel corresponds to a concave utility
function, while a non-decreasing EPK means that the utility function contains non-
concave regions.

Pricing kernels are constructed as a ratio of the risk neutral density q and the
historical density p. Investors’ assessment of the future distribution of asset prices
under risk neutral measure (density q) can be estimated via the derivative market. By
looking at option prices we can find out what stock prices or returns investors expect
at the time of maturity. Due to the large number of observations q can be precisely
estimated. The actual movement of St is described by the historical density p which
is estimated using the time series of St . The main difficulty for the estimation of p
is, of course, that an assumption about the model for the underlying process St has
to be made. Due to scarcity of data and specification difficulties p is considered to
be unknown. We, therefore, test the monotonicity via the ratio q/p of two densities,
where q is given and p is unknown.

The test is constructed as follows: first the spacing method is used to reduce the
problem to an exponential model. Using Pyke’s lemma of order statistics, a pricing
kernel K is represented as a sequence of observed values Zk and standard exponential
variables ek . Based on this simple exponential model we construct the likelihood ratio
test for a fixed interval [I, J ]. A global test is built by the simultaneous testing on all
possible intervals [I, J ], where the main difficulty is to calculate the corresponding
critical surfaces for given I , J , sample size n and confidence level α. The critical
surfaces can be nearly approximated with a scalar critical value t̃α dependent only on
sample size n and significance level α, which significantly reduces the complexity of
the text. The problem is then reduced to the simulation of the critical value t̃α for n
and α using the Monte-Carlo technique.
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We investigated the EPKs for German DAX data for the years 2000, 2002 and 2004
and found evidence of non-concave utility behaviour for the data under consideration.
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