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Motivation 1-1

Copula vs Normal Distribution

1. The empirical marginal distributions are skewed and fat tailed.

2. Multivariate normal distribution does not consider the
possibility of extreme joint co-movement of asset returns.
The dependency structure of portfolio asset returns is different
from the Gaussian one.
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Motivation 1-2

Advantages

1. Copulae are useful tools to simulate asset return distributions
in a more realistic way.

2. Copulae allow to model the dependence structure
independently from the marginal distributions

» construct a multivariate distribution with different margins
» the dependence structure is given by the copula.

Applications of Copulae for the calculation of VaR ——



Motivation 1-3

Dependency Structures

Figure 1: Scatter plots of bivariate samples with different dependency struc-
tures and equal correlation coefficient.
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Motivation 1-4

Varying Dependency

Figure 2: Standardized log returns of Bayer and Siemens 20000103-
20020101 (left) and 20040101-20060102 (right).
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Motivation 1-5
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Copulae 2-1
Copulae

A copula is a multivariate distribution function defined on the unit
cube [0,1]9, with uniformly distributed margins.

P(Xlgxl,...,X,,gxd) = C{P(Xlgxl),...,P(ngxd)}
= C{F(x1),...,Fa(xq)}
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Copulae 2-2

Bivariate Copulae

A 2-dimensional copula is a function C : [0,1]? — [0, 1] with the
following properties:

1. For every u € [0,1], C(0,u) = C(u,0) =0 (grounded)

2. Forevery ue[0,1], C(u,1)=u and C(l,u)=u

3. For every (u1, u2), (v1, v2) € [0,1] x [0,1] with u; < vq and
up < va: C(vi,vo) — C(v1, u2) — C(ug, v2) + C(ug, u2) >0
(2-increasing)
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2-3

Copulae
Multivariate Copula

A d-dimensional copula is a function C : [0,1]¢ — [0, 1]:
1. C(u1, ..oy ui—1,0,Uj41,...,uq) = 0 (at least one u; is 0);
2. vuel0,1], C(1,...,1,u;,1,...,1) = u; (all coordinates except
ui is 1)
3. For each u< v € [0,1]7 (u; < v;)

Velu,v] = sgn(a)C(a) > 0

where a is taken over all vertices of [u, v]. sgn(a) =1 if
ax = uy for an even number of k’s and sgn(a) = —1 if
ay = ug for an odd number of k’s (d-increasing)
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Copulae 2.4

Sklar’'s Theorem

For a distribution function F with marginals Fx, ..., Fx,. There
exists a copula C : [0,1]¢ — [0, 1], such that
F(Xl,...,Xd): C{FXI(Xl),...,FXd(Xd)} (1)

forall x;eR,i=1,...,4d. If Fx,,...,Fx, arects, then C is
unique. If Cis a copula and Fyg,..., Fx, are cdfs, then the
function F defined in (1) is a joint cdf with marginals Fx,, ..., Fx,.

Applications of Copulae for the calculation of VaR




Copulae 2-5

(] a copula C and marginal distributions can be " coupled”
together into a distribution function:

FX(X1; e 7Xd) = C{FXI(X1)7 ey de(Xd)}

(J a (unique) copula is obtained from " decoupling” every
(continuous) multivariate distribution function from its
marginal distributions:

Clu, ..., ug) = Fx{Fx (u), ..., Fx(ua)}

uj:FXj(xj), j:].,...,d

Applications of Copulae for the calculation of VaR



Copulae 2-6

(] if C is absolute continuous there exists a copula density

. 8dC(u1, ceey Ud)
N 8u1...8ud

C(U]_, cee Ud)

(] the joint density fx is

d
f(x1, .. xg) = c{Fx (x), -, Fx,(xa)} [ ] i)
j=1
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Copulae

2-7

Fréchet-Hoeffding Bounds, Product Copula

1. every copula C satisfies

W(u,..

2. upper and lower bounds
M(ul,...,ud) =
W(u,...,ug) =

3. product copula

|_|(U1, e

Applications of Copulae for the calculation of VaR

.,Ud) < C(ula"

.,Ud)SM(U]_,...,Ud)
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max (Zu;—d+1,0>

i=1

min(uy, . ..




Copulae 2-8

Fréchet Copulae

Mixy) Wicy) Titcy)

Figure 3: M(u, v) = min(u, v), W(u,v) = max(u+ v —1,0)
and M(u,v) = uv

M. Fréchet on BBI: I_&-
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Copulae 2-9

Product Copula

Let X7 and X5 be random variables with continuous distribution
functions F1 and F, and joint distribution function H.

Then X; and X; are independent if and only if Cx,x, = 1.
According to Sklar's Theorem, there exists a unique copula C with

P(Xl S X1,X2 S X2) = H(Xl,XQ)
C{F(x), F2(x2)}
= Fi(xa) R(x)

Applications of Copulae for the calculation of VaR



Copulae 2-10

Gauss Copula

Clup,up) = {0 H(w),® (o)}

O™ (uy) 07 (1) ) )
xS =2pxy +y

1
exp
2my/1 — p? { 2(1—p?)

} dx dy

— o0 — o0

Gaussian Copula Density, r=0.4

Figure 4: Gauss copula density, parameter p = 0.4.

C. Gauss on BBI: [&
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Copulae 2-11

t-Student Copula

Clum, ) = toufty ()t (1)}
£ () 67 (u2)
1 X2 — 2pxy + y? }—(v+2)/2
= —————expyl+ ———— dx d
2m\/1— p2 { v(1—p?) d

t:Student Copula Density, v=3, r=0.4

W. Gosset on BBI: I&
Applications of Copulae for the calculation of VaR




Copulae 2-12

Archimedean Copulae

Archimedean copula:

C(u,v) = Ty () + ¢(v)}

for a continuous, decreasing and convex v, (1) = 0.
-1 <t<
¢[_1](t) — (0 (t)7 0<t< 1/}(0)7
0, P(0) < t < o0.
The function 1 is a generator of the Archimedean copula.
For ¢(0) = oo: 171 = 4)~1 and the ¥ is called a strict generator.
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Copulae 2-13

Gumbel Copula

C(u,v) = exp [— {(—Iog u)? 4 (—log v)g}%]

Gumbel Copula Density, 6 =2

20

Figure 6: Gumbel copula density, parameter 6 = 2.

E. Gumbel on BBI: l&
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Copulae 2-14

Clayton Copula

C(u,v) = max{(u_e +v - 1)%,0}

Clayton Copula Density, 0 =2

30~

20+

Figure 7: Clayton copula density, parameter 6 = 2.
Applications of Copulae for the calculation of VaR




Copulae 2-15

Frank Copula

Clu,v) = _% log {1 L (e (e - 1)}

Frank Copula Density, 0 = 2

Figure 8: Frank copula density, parameter 6 = 2.
Applications of Copulae for the calculation of VaR




Copulae 2-16

Multivariate Elliptical Copulae

CJ Gauss
*~ () &7 (ug) Y L
[ ... [ @m)z|R| 2exp(—3r"R7r) dn...dr,
—o0 —00
where r = (r1,..., )"
[} t-Student
to (u)  to(ua) -
[ (2n) 4RI (1 + %) > dn...drg
where r = (r1,...,r,)"
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Copulae 2-17

Multivariate Archimedean Copulae

L Gumbel

D=
| IS |

Clu,...,ug) =exp [—{(—Iogul)9+...—i—(—IOgud)G}

[0 Cook-Johnson

C(ug,...,uq) = Zuj*equLl

J Frank

—Ou; —Oug __
C(ul,...,ud):—;log{1+ (e (6_19);.1()3_1 1)}
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Parameter Estimation 3-1

Dimensionality

In d-dimension

1. Elliptical Copulae: correlation matrix with d(d2—1) parameters

2. Archimedean Copulae: 1 parameter
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Parameter Estimation 3-2

Parameter Estimation

(J Full Maximum Likelihood (FML)
[J Method of Inference Functions for Margins (IFM)
[ Canonical Maximum Likelihood (CML) method

Applications of Copulae for the calculation of VaR




Parameter Estimation 3-3

Copula Estimation

Given observations {x;},_; the log-likelihood function for a copula
Cy, marginal distributions Fj(x;) and parameters
o = ((51,...,(5d,9)T is

la;x1,...,xT) =

T T d
= Z log c{Fx,(x1,t;61), .., Fx,(Xd,t: 0d); 0}—1—2 Z log fi(xj ¢ 0;)
t=1 t=1 j=1

Applications of Copulae for the calculation of VaR



Parameter Estimation 3-4

Full Maximum Likelihood - FML

The parameters are estimated through

apmL = argmax {(«)
[e%

The estimates &gy = (31, )04, g)T solve

(0£/851, . ..,00/D84,00/00) = 0

Applications of Copulae for the calculation of VaR



Parameter Estimation 3-5

Inference Functions for Margins - IFM

1. step:
Estimating the parameters 0;, j = 1, ..., d of the marginal
distributions Fx; using the ML method

T
0; = arg max £;(6;) = argmaxz log fi(xj.¢; 6}),
5+

j J t=1

where /; is the log-likelihood function of the marginal distribution
Fx; with density f;.

Applications of Copulae for the calculation of VaR



Parameter Estimation 3-6

Inference Functions for Margins - IFM

2. step:
Estimating the copula parameters 6,
T
0 = argmax ((0) = arg maXZ log c(Fx, (x1,¢;01), - - -, Fx,(Xd,t:04); 6),
0 0 —1

where £ is the log-likelihood function of the copula.
The estimates &;ry = (01,...,04,0) " solve

(00161, ..,004/954,00/90) = 0

Applications of Copulae for the calculation of VaR




Parameter Estimation 3-7

Canonical Maximum Likelihood

In the CML method no assumptions are made about the
parametric form of the marginal distributions.

The CML estimator maximizes the pseudo log-likelihood function
with empirical marginal distributions I:_J

;
(0) = log c{Fi(x1),..., Fa(xa); 0}
t=1
O = arg maxg £(0)
where

N

T
1 .
/:J(X):Ti_HZI(Xhtgx),j:l,,d

t=1

Applications of Copulae for the calculation of VaR



Sampling from Copulae

Multivariate Gaussian Copula

Algorithm of simulating pseudo rvs from Gaussian copula with
correlation matrix R

1. Perform a Cholesky decomposition R = AT A.

2. Simulate n independent rvs z = z, ..., z, from N(0,1).
3. Set (x1,...,%n) = x = Az.

4. Set uj=d(x;), i=1,..., n

(u1,...,up) " ~ CS2uss.

Applications of Copulae for the calculation of VaR

4-1




Sampling from Copulae 4-2

Multivariate t-Student

Algorithm of simulating pseudo rvs from t-Student copula with
correlation matrix R and v degrees of freedom

1. Perform a Cholesky decomposition R = AT A.

2. Simulate n independent rvs z = z, ..., z, from N(0,1).
3. Simulate a random variate s from 2 independent of z.
4. Set (y1,...,yn) =y = Az.
5. Set x = Liy.
6. Set uj =t,(x;), i=1,...,n

(ug,...,up)" ~ Cr

Applications of Copulae for the calculation of VaR



Sampling from Copulae 4-3

Conditional Inverse Method

The method is based on the conditional distributions of a random
vector U = (U4, ..., Uy).

Let Uy, ..., Uy have joint distribution function C. Then
conditional distribution of Uy given the values of Uy, ..., Uk_1 is
given by

Nuk) = Cluklug,...,ux—1) = P(Ux < ug|Ur = w1, ..., U1 = ug—_1)
o Clug, ..., uk,1,...,1)

ouy...0ux_1
ok—1 .
mC(Ul,...,Uk,l,l,...,l)

Applications of Copulae for the calculation of VaR



Sampling from Copulae 4-4

Conditional Inverse Method

The generation follows the steps:

1. generate vy, ..., vy independent and uniformly distributed in
[0, 1].

2. for n=1,...,d generate u, = A" 1(v,).
u, ..., uq have uniform marginal distributions in [0,1] and

dependence structure given by copula C.
3. set x, = F, Y (uy).
X1,...,Xq4 have the desired marginal distributions.

Applications of Copulae for the calculation of VaR ——



Sampling from Copulae 4-5

Laplace Transform Archimedean Copulae

The considered copulae — Gumbel, Clayton and Frank — fall into
the class of Laplace transform Archimedean copulae.

For this class, the inverse of the generator ¢ has a representation
of a Laplace transform G of some distribution function G:

YL(1) /e ™dG(x), t>0.
0

We set G(oc0) = 0.
G(t) is continuous and strictly decreasing function.

Applications of Copulae for the calculation of VaR



Sampling from Copulae 4-6

Laplace Transform Algorithm
(Marshal-Olkin Method)

1. Generate a pseudo rv V with cdf G
» For a Clayton copula, V is gamma distributed, Ga(%), and
G(t)=(1+1t)"1/°
» For a Gumbel copula V is stable distributed, St(é, 1,7,0) with
v = {cos(35)}? and G(t) = exp(—t'/%)
» For a Frank copula, V is discrete with
P(V=k)=(1-e 9 /(k) fork=1,2, ...

2. Generate iid uniform pseudo rvs Xy, ..., Xy
3. Return U; = G(—"%), i=1,..., d.

Applications of Copulae for the calculation of VaR




Sampling from Copulae 4-7

Clayton Gumbel

Figure 9: Monte Carlo sample of 10.000 realizations of pseudo random
variable with uniform marginals in [0,1] and dependence structure given
by Clayton (left) and Gumbel (right) copula with § = 3.

Applications of Copulae for the calculation of VaR




Tail Dependence 5-1

Tail Dependence

(] Risk behavior is determined by tails large losses that can occur
jointly.

(] Pearson’s correlation can not capture joint large loss events.

(] Tail dependence describes the limiting proportion that one

margin exceeds a certain threshold given that the other
margin has already exceeded that threshold.

Applications of Copulae for the calculation of VaR



5-2

Tail Dependence

Upper tail Dependence

Volkswagen

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
BMW

Figure 10: UTD for standardized log-returns of BMW vs Volkswagen trans-
formed by t-Student cdf.
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Tail Dependence 5-3

Upper tail Dependence

Let (X1, X2) ~ F with margins F1 and F;.
Coefficient of upper tail dependence (UTD):

Ay = |i;11 P{Y > F; Hu)|X > F i (w)).

Asymptotical upper tail dependence: \y € (0, 1].
Asymptotical upper tail independence: Ay = 0.
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Tail Dependence 5-4

Lower tail dependence

Let (X1, X2) ~ F with margins F1 and F;.
Coefficient of lower tail dependence:

A = |iq10 P{Y < F, Hu)|X < Fi(w)}).

Asymptotical lower tail dependence: \; € (0,1].
Asymptotical lower tail independence: Ay = 0.

Applications of Copulae for the calculation of VaR




Tail Dependence 5-5

Tail Dependence and Copulae

Tail dependence is a copula property:

1-2v+C(v,v)

Au = \!911 1—v
C(v,v)
= lim ———=. 2
AL v{no v ( )

Applications of Copulae for the calculation of VaR




Tail Dependence 5-6

Copula )\U )\L
Gauss 0forp<l1 0forp<1
lforp=1 lforp=1
ty 2El/+1 < (l/—i-lll_(;—p)> )\U
Gumbel 220 0
Clayton 0 2= %
Frank 0 0

Table 1: TDCs for various selected copulae.

Applications of Copulae for the calculation of VaR ——




VaR and Copulae 6-1

Risk Measures

1. Value-at-Risk (negative)
VaR{—a = Qc)f = _ql_—ch
» QX =inf{xeR: Fx(x) > a},
» gX =inf{x € R: Fx(x) > a}.
2. Expected Shortfall

ESX ., = E(X|X < VaR{* ).

Applications of Copulae for the calculation of VaR




VaR and Copulae 6-2

Value-at-Risk with Copulae

For a sample of log-returns {X;:}/ 1, j=1, ..., d

1.

o

specification of marginal distributions Fx;(x;; ;)

2. specification of copula C(u1,.. ., uq; 0) where u; = Fx.(x;)
3.
4

. generation of n Monte Carlo data

fit of the copula C (estimation the copula parameters)

Uri1~C{Fi(x1),. .., Fa(xq); 0}
generation of a sample of portfolio profits L111(X741)

6. estimation of VaR;_,, the empirical quantile from L14;.

Applications of Copulae for the calculation of VaR




VaR and Copulae 6-3

Estimation of VaR

— L
VaRl—a = L( lan|+1):n

where L is Profit and Loss function

d d
Leyn = Z Sjt+1 — Z Sjt
j=1 j=1

I
MQ

5j,t(EXP(Xj,t+1) - 1)

-
Il
—

and X1 = log Sty1 — log S;.
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VaR and Copulae 6-4
Generation of Possible Scenarios

Assume that the standardized returns of margin j, j =1, ..., d,
are modeled with t-Student distribution with v; degrees of freedom.
Generation of possible values of change of the portfolio at time

T + 1 follows the steps:

1. sampling n = 10.000 pseudo rvs for each U; 141, ..., Ug, 741
2. generation t-distributed rvs by Vj 741 = tinv(Uj 741, 7))
3. generation of the values of possible log-returns
Xj 7+1 = Vj 741 - std; + mean;
4. determinig values of profit and loss function
Lry1= 27:1 Sj,1(exp(Xj,m41) — 1)

Applications of Copulae for the calculation of VaR ——



VaR and Copulae 6-5

Moving Window

[J Specify the subsets of size h = 250: {u;¢};_;_4 1
fors=h, ..., T.

[J Obtain the sequence {VaR’l J 7"and {9

Applications of Copulae for the calculation of VaR




VaR and Copulae 6-6

Moving window

For a sample of log-returns {X;}_,

1.
2.

Applications of Copulae for the calculation of VaR

specification of marginal distributions Fx.(x;; ;)
specification of returns’ subsets of size h: {y;+};_. .1
fors=h, ..., T—1

specification of copulae Cs(u1, ..., uq;0) for every subset
{yf7t}§:s—h+1

fit of the copulae Cs, s=h, ..., T —1

generation of Monte Carlo data

Usy1~C{Fi(x1), ..., Fa(xq); 0} fors=h, ..., T—1
generation of a samples of portfolio profits Lsi1(Xs+1)

estimation of {Vale_a J.T:_lh.




VaR and Copulae 6-7

Backtesting

The estimated VaR values are compared with true realizations
{L+} of the Profit and Loss function.

. —t
An exceedance occurs when L; is smaller than VaR,_,.
The ratio of the number of exceedances to the number of
observations gives the exceedances ratio:

1 T
P=7—% 2 lu<wm .y
t=h+1

Applications of Copulae for the calculation of VaR
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Application

Closing Prices for German Companies
140 T T T

0 500 1000 1500 2000

Figure 11: Closing prices of stocks: BMW, Bayer, Siemens, Volkswagen.
Time period: 1st January 1999 — 1st September 2006, 2000 data points.
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Application 7-2

Returns

Let Py, ..., P, be a time series of stock’s prices.

(1 Simple return is defined as

R _ Pi — Pe_q
' Pi_1

[ Logarithmic return (log-return) is defined as

P
Pi_q

re = log

Applications of Copulae for the calculation of VaR



Application 7-3

Daily Standardized Log-Returns of BMW. Daily Standardized Log-Returns of Bayer

0 500 1000 500 2

Daily Standardized Log-Returns of Siemens Daily Standardized Log-Returns of Volkswagen

“0 500 1000 1500 2

Figure 12: Daily stock standardized log-returns: BMW, Bayer, Siemens,
Volkswagen.
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7-4

Application

Margins

t-pdf, DoF=4
t-pdf, DoF=15

=20 -15 -10 -5

xot

Figure 13: Standardized margins are modeled with t-Student distribution
with degrees of freedom equal 7 for BMW, 6 for Bayer, 5 for Siemens, 8

for Volkswagen.
Applications of Copulae for the calculation of VaR




Application 7-5

Value-at-Risk Estimation

Copula BAY - SIE BMW - VOW SIE - VOW
Gauss 0.0320 0.0394 0.0366
t-Student 0.0314 0.0405 0.0371
Gumbel 0.0360 0.0400 0.0394
Clayton 0.0308 0.0348 0.0354
Frank 0.0337 0.0400 0.0366
Normal distribution | 0.1216 0.0999 0.1182

Table 2: Backtesting results for Value-at-Risk estimation at 0.05 level for 3
portfolios, w = (1,1)7, size of moving window 250, Monte Carlo samples
of 10.000 realizations of pseudo random variable. Standardized margins
modeled with t-distribution.
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Application 7-6

ProfitiLoss
vaR

ProfitLoss
VaR . 5
- Exceedances X - Exceedances

Jan 2000 Jan2001 Jan 2002 Jan2003 Jan 2004 Jan2005 Jan 2006 Jan 2000 Jan2001 Jan 2002 Jan2003 Jan 2004 Jan2005 Jan 2006
Figure 14: VaR, P&L and exceedances estimated with ¢-Student copula

(& = 0.0405) and bivariate normal distribution (& = 0.0999) for BMW
and Volkswagen.
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Application -7

Gumbel Copula for BAY-SIE Frank Copula for BAY-SIE

-15 -15
Jan 2000 Jan 2001 Jan 2002 Jan 2003 Jan 2004 Jan 2005 Jan 2006 Jan 2000 Jan 2001 Jan 2002 Jan 2003 Jan 2004 Jan 2005 Jan 2006

Figure 15: VaR, P&L and exceedances estimated with Gumbel copula
(& = 0.0360) and Clayton copula (& = 0.0308) for Bayer and Siemens.
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Application 7-8

Conclusions

Pluses of copulae
] flexible and wide range of dependence
[] easy to simulate, estimate, implement
[ explicit form of densities of copulae
(] modelling of fat tails, assymetries
Minuses of copulae
(] Elliptical: correlation matrix, symmetry
(1 Archimedean: too restrictive, single parameter, exchangable

(] selection of copula

Applications of Copulae for the calculation of VaR ——
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