Textual sentiment and sector-specific reaction

Wolfgang Karl Härdle
Cathy Yi-Hsuan Chen

Elisabeth Bommes

Ladislaus von Bortkiewicz Chair of Statistics Humboldt-Universität zu Berlin http://lvb.wiwi.hu-berlin.de

News moves Markets

\square Zhang et al. (2016): textual sentiment provides incremental information about future stock reactions
\square Sectors react differently to sentiment
\square Unsupervised vs. supervised approach in sentiment projection

But there is a lot of news...

Dimensions of News

\square Source of news

- Official channel: government, federal reserve bank/central bank, financial institutions
- Internet: blog, social media, message board
\square Content of news: signal vs. noise
- Signal: nuance of context
- Noise: increasing imprecision of deep parsing

Dimensions of News ctd

\square Type of news

- Scheduled vs. non-scheduled
- Expected vs. unexpected
- Specific-event vs. continuous news flows

Challenge
\square News are sector-specific
\square How to distill sentiment across various sectors

The Power of Words: Textual Analytics

Articles \longrightarrow Similarity Measure \longrightarrow Herding Behavior

Sentiment Lexica

\checkmark Opinion Lexicon (BL) Hu and Liu (2004)
\checkmark Financial Sentiment Dictionary (LM) Loughran and McDonald (2011)
\checkmark Multi-Perspective Question Answering Subjectivity Lexicon (MPQA) Wilson et al. (2005)

Unsupervised Projection

Figure 1: Example of Text Numerisization
\square Many texts are numerisized via lexical projection
\checkmark Goal: Accurate values for positive and negative sentiment

Supervised Projection

\square Training data: Financial Phrase Bank by Malo et al. (2014)

- Sentence-level annotation of financial news
- Manual annotation of 5,000 sentences by 16 annotators

Research Questions

\square Is the sentiment effect sector specific?
\square Is supervised learning an effective approach in text classification?

Outline

1. Motivation \checkmark
2. Data Collection
3. Sentiment Projection
4. Panel Regression
5. ARIMA-GARCH
6. Outlook

How to gather Sentiment Variables?

Nasdaq Articles

\square Terms of Service permit web scraping
\square Currently > 440k articles between October 2009 and January 2016
■ Data available at \|IIRDC

Sector-specific articles

Sector	Abbr.	\# Articles	\# Comp.
Consumer Discretionary	CD	44,454	84
Consumer Staples	CS	19,435	40
Energy	EN	18,069	43
Financials	FI	37,614	85
Health Care	HC	23,838	55
Industrials	IN	24,124	64
Information Technology	IT	44,967	65
Materials	MA	10,947	30
Telecommunication Services	TE	5,963	5
Utilities	UT	6,078	30

Table 1: Number of Articles per Sector between 10/2009 and 01/2016

Top Word Frequencies

		Sector Freq.	
Word	Freq. (in k)	Top 5	Top 10
free	649	10	10
well	238	9	10
gold	235	1	1
best	207	9	10
fool	200	5	8
strong	196	5	10
like	172	5	10
top	167	3	10
better	162	0	9
motley	152	2	7

Table 2: Most frequent words of either BL or LM

Article Timeline

Figure 2: Number of Sector-specific Articles per Day (no Trading)

Lexicon-based Sentiment

Consider document i, positive sentiment Pos $_{i}$, positive lexicon entries $W_{j}(j=1, \ldots, J)$ and count frequency of those entries w_{j} :

$$
\begin{equation*}
\operatorname{Pos}_{i}=n_{i}^{-1} \sum_{j=1}^{J} \mathbf{I}\left(W_{j} \in L\right) w_{j} \tag{1}
\end{equation*}
$$

with n_{i} : number of words in document i (e.g. sentence)
Equivalent calculation of negative sentiment Neg_{i}

Sentence-level Polarity

$$
\operatorname{Pol}_{i}=\left\{\begin{align*}
1, & \text { if } \operatorname{Pos}_{i}>N e g_{i} \tag{2}\\
0, & \text { if } \operatorname{Pos}_{i}=N e g_{i} \\
-1, & \text { if } \operatorname{Pos}_{i}<N e g_{i}
\end{align*}\right.
$$

for sentence i.
\square Measure sentiment on sentence-level

Regularized Linear Models (RLM)

\square Training data $\left(X_{1}, y_{1}\right) \ldots\left(X_{n}, y_{n}\right)$ with $X_{i} \in \mathbb{R}^{p}$ and

$$
y_{i} \in\{-1,1\}
$$

\square Linear scoring function $s(X)=\beta^{\top} X$ with $\beta \in \mathbb{R}^{p}$

Regularized training error:

$$
\begin{equation*}
n^{-1} \sum_{i=1}^{n} \underbrace{L\left\{y_{i}, s(X)\right\}}_{\text {Loss Function }}+\underbrace{\lambda \underbrace{R(\beta)}}_{\text {Regularization Term }} \tag{3}
\end{equation*}
$$

with hyperparameter $\lambda \geq 0$.

RLM Estimation

\square Optimize via Stochastic Gradient Descent More
\square 5-fold cross validation More
\square Oversampling More
\square Choice of: $L(\cdot), R(\cdot), \lambda, X$ (n-gram range, features) ...
\square Three categories: one vs. all sub-models

Bullishness

$$
\begin{equation*}
B=\log \left[\left\{1+n^{-1} \sum_{j=1}^{n} \mathbf{I}\left(\text { Pol }_{j}=1\right)\right\} /\left\{1+n^{-1} \sum_{j=1}^{n} \mathbf{I}\left(\text { Pol }_{j}=-1\right)\right\}\right] \tag{4}
\end{equation*}
$$

by Antweiler and Frank (2004) with $j=1, \ldots, n$ sentences in document.
$\square B_{i, t}$ accounts for bullishness of company i on day t
\square Consider $\left|B_{i, t}\right|$ and $B N_{i, t}=\mathbf{I}\left(B_{i, t}<0\right) B_{i, t}$

Model Accuracy - Polarity

Supervised Learning
\square Chosen model: Hinge loss, L1 norm, $\lambda=0.0001, \ldots$
\square Mean accuracy (oversampling): 0.80
\square Mean accuracy (normal sample): 0.82

Lexicon-based

- Mean accuracy BL: 0.58
\square Mean accuracy LM: 0.64

Evaluation BL

Pred	-1	0	1	Total
True				
-1	214	268	32	514
0	203	$\mathbf{1 , 7 8 6}$	546	2,535
1	89	627	452	1,168
Total	506	2,681	1,030	4,217

Table 3: Confusion Matrix - BL Lexicon O TXTfpblexical

Evaluation LM

Pred	-1	0	1	Total
-1	213	289	12	514
0	200	2,187	148	2,535
1	111	772	285	1,168
Total	524	3,248	445	4,217

Table 4: Confusion Matrix - LM Lexicon O TXTfpblexical

Evaluation SM

Pred	-1		0	1
	Total			
-1	389	67	58	514
0	96	2,134	305	2,535
1	105	198	916	1,168
Total	539	2,399	1,279	4,217

Table 5: Confusion Matrix - Supervised Learning, estimated with Oversampling and evaluated on total Sample O TXTfpbsupervised

Confusion Matrix with Oversampling
Choice of λ
Results Logistic Loss

Sectors as Panels

$$
\begin{array}{rc}
\log \sigma_{i, t} & =\alpha+\beta_{1}\left|B_{i, t}\right|+\beta_{2} B N_{i, t}+\beta_{3}^{\top} X_{i, t}+\gamma_{i}+\varepsilon_{i, t} \\
R_{i, t} & = \tag{6}\\
\alpha+\beta_{1} B_{i, t}+\beta_{2}^{\top} X_{i, t}+\gamma_{i}+\varepsilon_{i, t}
\end{array}
$$

for stock i on day t with separate estimation of (5) and (6).
$X_{i, t}$ - control variables More Information
γ_{i} - company specific fixed effect satisfying $\sum_{i} \gamma_{i}=0$

Stock Reaction Indicators

Range-based measure of volatility by Garman and Klass (1980)
\square Notation: $\sigma_{i, t}$
Computation
\square Based on open-high-low-close prices
\square Equivalent results to realized volatility

Returns

$$
\begin{equation*}
R_{i, t}=\log \left(P_{i, t}^{C}\right)-\log \left(P_{i, t-1}^{C}\right) \tag{7}
\end{equation*}
$$

with $P_{i, t}^{C}$ as closing price of stock i on day t

Regression - GK Log Volatility

Table 6: Significance codes $\square 0.01 \square 0.05 \square 0.1$
Abbreviations

Sector-specific Sentiment Reaction

Regression - Returns

Table 7: Significance codes $\square 0.01 \square 0.05 \square 0.1$
Abbreviations

S\&P 500 Sector Indices

$\operatorname{AR}(1)-\operatorname{GARCH}(1,1)$ model with control variables

$$
\begin{array}{lc}
R_{i, t}= & c_{i}+\varphi R_{i, t}+\varepsilon_{i, t} \\
\sigma_{i, t}^{2}= & \omega_{i}+\alpha_{i} \varepsilon_{i, t-1}^{2}+\beta_{i} \sigma_{i, t-1}^{2}+\theta_{i} P F_{i, t-1}+\gamma_{i} N F_{i, t-1} \tag{9}
\end{array}
$$

for sector index i on day t.
$P F_{i, t}$ - Fraction of positive words
$N F_{i, t}$ - Fraction of negative words

Why not Bullishness?

\square Financial sector, BL (green), LM (red), SM (blue)
\square Aggregated news for markets are very bullish
\square Potential news bias?

Regression Results

Table 8: Significance codes $\square 0.01 \square 0.05 \square 0.1$

ARIMA-GARCH

Financials Lags

$$
\begin{array}{llllllllll}
-5 & -4 & -3 & -2 & -1 & +1 & +2 & +3 & +4 & +5
\end{array}
$$

Table 9: Significance codes $\square 0.01 \square 0.05 \square 0.1$

What's next?

\square Closer look at sectors : sectoral attributes, concentration, competition...
\square Textual sentiment spillover : network modelling

Textual sentiment and sector-specific reaction

Wolfgang Karl Härdle
Cathy Yi-Hsuan Chen

Elisabeth Bommes

Ladislaus von Bortkiewicz Chair of Statistics Humboldt-Universität zu Berlin http://lvb.wiwi.hu-berlin.de

Bibliography

EAntweiler, W. and Frank, M. Z. Is All That Talk Just Noise?
J. Fin., 2004

E- Garman, M. and Klass, M.
On the Estimation of Security Price Volatilities from Historical Data J. Bus., 1980

Reärdle, W. K. and Lee, Y. J. and Schäfer D. and Yeh Y. R. Variable Selection and Oversampling in the Use of Smooth Support Vector Machines for Predicting the Default Risk of Companies J. Forecast., 2009

國 Hu，M．and Liu，B．
Mining and Summarizing Customer Reviews
10th ACM SIGKDD， 2004
雷 Loughran，T．and McDonald，B．
When is a liability not a liability？
J．Financ．， 2011
（ Malo，Pekka and Sinha，Ankur and Korhonen，Pekka and Wallenius， Jyrki and Takala，Pyry
Good debt or bad debt
Journal of the Association for Information Science and Technology， 2014
葍 Wilson，T．and Wiebe，J．and Hoffmann，P．
Recognizing Contextual Polarity in Phrase－Level Sentiment Analysis HLT－EMNLP， 2005

R Zhang, J., Chen C. Y., Härdle, W. K. and Bommes, E. Distillation of News into Analysis of Stock Reactions JBES, 2016
Ehang, X., Yichao, W., Wang, L. and Runze, L.
A Consistent Information Criterion for Support Vector Machines in Diverging Model Spaces
J. Mach. Learn. Res., 2016

Appendix

Tagging Example - BL

... McDonald's has an obesity problem that continues to get worse. And that's nothing to do with the food itself, but rather the huge menus that can now double as medieval fortification. For perspective, the chain's menu has grown 70% since 2007 . And while more offerings might seem like a good thing, large menus result in slower service and more flare-ups between franchisees and the corporation. Bloated menus raise inventory costs for smaller franchisees and lead to lower profit margins. The McDonald's corporate franchise fee is based upon sales instead of profits, making it a smaller concern for the company overall. ...

3 positive words and 5 negative words
Q TXTMcDbm
Article source

Tagging Example - LM

... McDonald's has an obesity problem that continues to get worse. And that's nothing to do with the food itself, but rather the huge menus that can now double as medieval fortification. For perspective, the chain's menu has grown 70% since 2007 . And while more offerings might seem like a good thing, large menus result in slower service and more flare-ups between franchisees and the corporation. Bloated menus raise inventory costs for smaller franchisees and lead to lower profit margins. The McDonald's corporate franchise fee is based upon sales instead of profits, making it a smaller concern for the company overall. ...

1 positive word and 4 negative words
a TXTMcDIm

Correlation - Positive Sentiment

Figure 3: Monthly correlation between positive sentiment: BL and LM , BL and MPQA, LM and MPQA. Source: Zhang et al. (2016)

Correlation - Negative Sentiment

Figure 4: Monthly correlation between negative sentiment: BL and LM, BL and MPQA, LM and MPQA. Source: Zhang et al. (2016) Back

Web Scraping

\square Databases to buy?
\square Automatically extract information from web pages
\square Transform unstructured data (HTML) to structured data
\square Use HTML tree structure to parse web page
\square Legal issues

- Websites protected by copyright law
- Prohibition of web scraping possible
- Comply to Terms of Service (TOS)

Natural Language Processing (NLP)

\square Text is unstructured data with implicit structure

- Text, sentences, words, characters
- Nouns, verbs, adjectives, ..
- Grammar
\square Transform implicit text structure into explicit structure
\square Reduce text variation for further analysis
\square Python Natural Language Toolkit (NLTK)
- a TXTnlp

Tokenization

\checkmark String
''McDonald's has its work cut out for it. Not only are sales falling in the U.S., but the company is now experiencing problems abroad."
\square Sentences
''McDonald's has its work cut out for it.'',
''Not only are sales falling in the U.S., but the company is now experiencing problems abroad."
\square Words
''McDonald', '"'s', '’has', '’its', '"work'', ''cut'’, '’out'" ...

Negation Handling

－＂not good＂＝＂good＂
\square Reverse polarity of word if negation word is nearby
\square Negation words
"n’t", "not", "never", "no", "neither", "nor", "none"

Part of Speech Tagging (POS)

\square Grammatical tagging of words

- dogs - noun, plural (NNS)
- saw - verb, past tense (VBD) or noun, singular (NN)
\checkmark Penn Treebank POS tags
\square Stochastic model or rule-based

Appendix

Lemmatization

\square Determine canonical form of word

- dogs - dog
- saw (verb) - see and saw (noun) - saw
\square Reduces dimension of text
\square Takes POS into account
- Porter stemmer: saw (verb and noun) - saw

Loss Functions for Classification

\square Logistic: Logit

$$
\begin{equation*}
L\{y, s(X)\}=\log (2)^{-1} \log [1+\exp \{-s(X) y\}] \tag{10}
\end{equation*}
$$

\square Hinge: Support Vector Machines

$$
\begin{equation*}
L\{y, s(X)\}=\max \{0,1-s(X) y\} \tag{11}
\end{equation*}
$$

Regularization Term

\square L2 norm

$$
\begin{equation*}
R(\beta)=2^{-1} \sum_{i=1}^{p} \beta_{i}^{2} \tag{12}
\end{equation*}
$$

\square L1 norm

$$
\begin{equation*}
R(\beta)=\sum_{i=1}^{p}\left|\beta_{i}\right| \tag{13}
\end{equation*}
$$

Back

RLM Example

Sentence 1: "The profit of Apple increased." Sentence 2: "The profit of the company decreased."

$$
X=\begin{gather*}
\text { the } \tag{15}\\
\text { profit } \\
\text { of } \\
\text { Apple } \\
\text { increased } \\
\text { company } \\
\text { decreased }
\end{gather*}\left(\begin{array}{cc}
X_{1} & X_{2} \\
1 & 2 \\
1 & 1 \\
1 & 1 \\
1 & 0 \\
1 & 0 \\
0 & 1 \\
0 & 1
\end{array}\right)
$$

k-fold Cross Validation (CV)

\checkmark Partition data into k complementary subsets
\square No loss of information as in conventional validation
\square Stratified CV: equally distributed response variable in each fold

Figure 5: 3-fold Cross Validation

Oversampling

\checkmark Härdle et al. (2009) Trade-off between Type I and Type 2 error in classification Error types
\square Balance size of neutral sentences and ones with polarity in sample
\square Duplicate sentences within folds of stratified cross validation until the sample is balanced

Classification Error Rates

\square Type I error rate $=\mathrm{FN} /(\mathrm{FN}+\mathrm{TP})$
\bullet Type II error rate $=\mathrm{FP} /(\mathrm{FP}+\mathrm{TN})$
\square Total error rate $=(\mathrm{FN}+\mathrm{FP}) /(\mathrm{TP}+\mathrm{TN}+\mathrm{FP}+\mathrm{FN})$
with TP as true positive, TN as true negative, FP as false positive and FN as false negative.

Stochastic Gradient Descent (SGD)

\square Approximately minimize loss function

$$
\begin{equation*}
L(\theta)=\sum_{i=1}^{n} L_{i}(\theta) \tag{16}
\end{equation*}
$$

\square Iteratively update

$$
\begin{equation*}
\theta_{i}=\theta_{i-1}-\eta \frac{\partial L_{i}(\theta)}{\partial \theta} \tag{17}
\end{equation*}
$$

SGD Algorithm

1. Choose learning rate η
2. Shuffle data
3. For $i=1, \ldots, n$, do:

$$
\theta_{i}=\theta_{i-1}-\eta \frac{\partial L_{i}(\theta)}{\partial \theta}
$$

Repeat 2 and 3 until approximate minimum obtained.

SGD Example

$X \sim \mathrm{~N}(\mu, \sigma)$ and x_{1}, \ldots, x_{n} as randomly drawn sample

$$
\min _{\theta} n^{-1} \sum_{i=1}^{n}\left(\theta-x_{i}\right)^{2}
$$

Update step

$$
\theta_{i}=\theta_{i-1}-2 \eta\left(\theta_{i-1}-x_{i}\right)
$$

Optimal gain
Set $2 \eta=1 / i$ and obtain $\theta_{n}=\bar{x}$ with \bar{x} as sample mean．

SGD Example ctd

Figure 6: Estimate Mean via SGD, $x_{t} \sim \mathrm{~N}(5,1)$
$\eta \in\{1 / t, 1 / 1000,1 / 1500,1 / 2000,1 / 2500\} \quad$ a TXTSGD

Garman and Klass range-based Measure of Volatility

$$
\begin{align*}
\sigma_{i, t}^{2} & =0.511(u-d)^{2}-0.019\{c(u+d)-2 u d\}-0.383 c^{2} \tag{18}\\
\text { with } u & =\log \left(P_{i, t}^{H}\right)-\log \left(P_{i, t}^{O}\right), \quad d=\log \left(P_{i, t}^{L}\right)-\log \left(P_{i, t}^{O}\right) \\
c & =\log \left(P_{i, t}^{C}\right)-\log \left(P_{i, t}^{O}\right)
\end{align*}
$$

for company i on day t with $P_{i, t}^{H}, P_{i, t}^{L}, P_{i, t}^{O}, P_{i, t}^{C}$ as highest, lowest, opening and closing stock prices, respectively.

Evaluation Supervised Learning

	Pred True			-1
0	1	Total		
-1	1,983	298	254	2,535
0	96	2,134	305	2,535
1	105	469	$\mathbf{1 , 9 6 1}$	2,535
Total	2,184	2,901	2,520	7,605

Table 10: Confusion Matrix - Supervised Learning with Oversampling

Appendix

Choice of λ

\square Fine grid with $\lambda_{i} \in\left[5 \cdot 10^{-6}, 0.05\right], i=1, \ldots, 9999$
\square Estimate penalized SVM model
\square Results remain stable

- $\hat{\lambda}_{C V}=0.000155$
- Accuracy: 0.8

Choice of λ also possible via information criterion, e.g. Zhang et al. (2016)

Evaluation Logistic Loss Function

Pred	-1			

Table 11: Confusion Matrix - Supervised Learning, estimated with Oversampling and evaluated on total Sample, Accuracy: 0.80

Abbreviations

Sector	Abbreviation
Consumer Discretionary	CD
Consumer Staples	CS
Energy	EN
Financials	FI
Health Care	HC
Industrials	IN
Information Technology	IT
Materials	MA
Telecommunication	TE
Utilities	UT

Table 12: Sector Abbreviations

Volatility Regression
Returns Regression

Appendix

Control Variables

$R_{M, t}$	- S\&P 500 index return
$\log V I X_{t}$	- CBOE VIX More Information
$\log \sigma_{i, t}$	- Range-based volatility
$R_{i, t}$	- Return

VIX

\square Implied volatility
\square Measures market expectation of S\&P 500
\square Calculated by Chicago Board Options Exchange (CBOE)
\square Measures 30-day expected volatility
\checkmark Calculated with put and call options with more than 23 days and less than 37 days to expiration

