Localising Forward Intensities for Multiperiod Default

Dedy Dwi Prastyo Wolfgang Karl Härdle

Ladislaus von Bortkiewicz Chair of Statistics C.A.S.E. – Center for Applied Statistics and Economics Humboldt–Universität zu Berlin http://lvb.wiwi.hu-berlin.de http://www.case.hu-berlin.de

Poisson process and default time

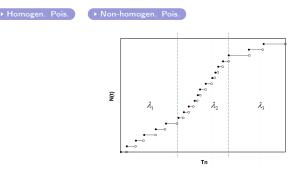


Figure 1: Poisson process N(t) with intensity λ_t .

 \Box Time of default τ_D : first jump time of N(t)

Survival probability

 \boxdot For known path λ_s , survival probability in $[t, t + \tau]$

$$\mathsf{P}(\tau_D > t + \tau) = \exp\left\{-\int_t^{t+\tau} \lambda_s \, ds\right\} \tag{1}$$

$$\mathsf{P}(\tau_D > t + \tau | \mathcal{F}_t) = \mathsf{E}\left[\exp\left\{-\int_t^{t+\tau} \lambda(X_s, \theta_t) \, ds\right\} | X_t\right] \quad (2)$$

 \Box Simulation on high dimensional X_s is quite challenging

Forward default intensity, $\lambda_t(s)$

 Hazard function where survival time is evaluated at a fixed horizon

$$\lambda_t(s) \stackrel{\text{def}}{=} \lim_{\Delta t \to 0} \frac{\mathsf{P}\left(t + s < \tau_D \le t + s + \Delta t \, | \tau_D \ge t + s\right)}{\Delta t} \quad (3)$$
$$= F'_t(s)/\{1 - F_t(s)\},$$

where $F_t(s) = 1 - \mathsf{P}\left(au_D > t + s \,| \mathcal{F}_t \,
ight)$

Localising Forward Intensities

Specifications of λ_s

$$\begin{array}{lll} \lambda_s &=& \lambda(X_s; \theta_t) & , \mbox{ Duffie et al. (2007)} \\ \lambda_t(s) &=& \lambda(\theta_s; X_t) & , \mbox{ Duan et al. (2012)} \\ \lambda_t(s) &=& \lambda(\theta_{s,t}; X_t) & , \mbox{ Our approach} \end{array}$$

Table 1: The specifications of the default intensity.

$$X_{it} = (x_{it,1}, x_{it,2}, \ldots, x_{it,p}) = (W_t, U_{it})$$

 W_t – Macroeconomic factors (common) V_t U_{it} – Firm specific attributes V_{it}

Doubly stochastic Poisson process

Default (with intensity λ_t) and other exits (ϕ_t) governed by two independent doubly stochastic Poisson process

Conditional probability to survive and to default in $[t, t + \tau]$

$$\mathsf{E}\left[\exp\left\{-\int_{t}^{t+\tau} (\lambda_{s} + \phi_{s})ds\right\}|X_{t}\right] \\ \mathsf{E}\left[\int_{t}^{t+\tau} \exp\left\{-\int_{t}^{s} (\lambda_{u} + \phi_{u})du\right\}\lambda_{s} ds|X_{t}\right] \quad \bullet \text{ detail}$$

Problem: λ_s and ϕ_s unknown

Solution: simulating X_s , $\lambda_s = \lambda_1(X_s, \theta_{1,t})$, $\phi_s = \lambda_2(X_s, \theta_{2,t})$ or specifying forward intensities

Localising Forward Intensities

Forward intensities

Combined exit: $\lambda_t + \phi_t$ Reparameterize $\lambda_{it}(\tau)$ as $f_{it}(\tau)$ and forward combined exit intensity $g_{it}(\tau)$

Duan et al. (2012), $f_{it}(\tau)$ and $g_{it}(\tau)$ are parameterized with $f_{it}(\tau) > 0$ and $g_{it}(\tau) \ge f_{it}(\tau)$:

 $f_{it}(\tau) = \exp \{\alpha_0(\tau) + \alpha_1(\tau) x_{it,1} + \ldots + \alpha_p(\tau) x_{it,p}\}$ (5) $g_{it}(\tau) = f_{it}(\tau) + \exp \{\beta_0(\tau) + \beta_1(\tau) x_{it,1} + \ldots + \beta_p(\tau) x_{it,p}\}$

Is this a satisfactory calibration technique ?

What can go wrong ?

For the horizon au,

 \boxdot forward intensities (5) are time homogeneous, i.e. at each t

 $f_{it}(\tau)$ and $g_{it}(\tau)$ follow the same structural equation, $\alpha_j(\tau)$ and $\beta_j(\tau)$ are constant over time

Are the parameters constant ?
 If not, why and where they deviate ?

What can go wrong ?

Figure 2: Rolling windows (length = 6 years), $\hat{\alpha}_{12}(\tau)$ and $\hat{\beta}_{12}(\tau)$, with $\tau = 0, 1, \dots, 36$.

Localising Forward Intensities -

Homogeneous interval

Adaptively selecting a data-driven window length

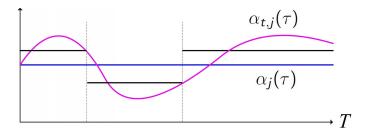


Figure 3: Time varying parameters approximated by piecewise constants.

Outline

- 1. Motivation \checkmark
- 2. Forward Intensities Approach
- 3. Local Change Point detection
- 4. Empirical Result
- 5. Conclusion

Combined exit: default & other exit

 $\tau_{\textit{C}}$ as combined exit time, survival probability in $[t,t+\tau]$

$$\mathsf{P}(\tau_{C} > t + \tau | \mathcal{F}_{t}) \stackrel{\text{def}}{=} \mathsf{E}\left[\exp\left\{-\int_{t}^{t+\tau} (\lambda_{s} + \phi_{s}) ds\right\} | X_{t}\right]$$
(6)

Forward combined exit intensity $g_t(s)$

$$P(\tau_{C} > t + \tau | \mathcal{F}_{t}) \stackrel{\text{def}}{=} \exp\left\{-\int_{t}^{t+\tau} g_{t}(s)ds\right\}$$
(7)
$$= \exp\left\{-\psi_{t}(\tau)\tau\right\}$$

with
$$\psi_t(\tau) \stackrel{\text{def}}{=} -\frac{\log\{1-\mathcal{G}_t(\tau)\}}{s}$$
, $\mathcal{G}_t(\tau) = 1 - \mathsf{P}\left\{\tau_{\mathcal{C}} > t + \tau \mid \mathcal{F}_t\right\}$

Localising Forward Intensities

Combined exit

Forward combined exit intensity (hazard rate) for firm i

$$g_{it}(\tau) \stackrel{\text{def}}{=} \frac{G'_{it}(\tau)}{1 - G_{it}(\tau)} = \psi_{it}(\tau) + \psi'_{it}(\tau)\tau \quad \bullet \quad \text{detail} \tag{8}$$

Therefore

$$\psi_{it}(au) au = \int_0^ au g_{it}(s)ds$$
 $igvee detail$

Forward default intensity: combined exit

No combined exit till time s, default probability over $[t, t + \tau]$

$$\int_0^\tau \exp\left\{-\psi_{it}(s)s\right\} f_{it}(s) \ ds$$

with forward default intensity $f_{it}(s)$ is defined as

$$\stackrel{\text{def}}{=} e^{-\psi_{it}(s)s} \lim_{\Delta t \to 0} \frac{P(t+s < \tau_{Di} = \tau_{Ci} \le t+s + \Delta t | \tau_{Di} = \tau_{Ci} \ge t+s)}{\Delta t}$$

$$= e^{-\psi_{it}(s)s} \lim_{\Delta t \to 0} \frac{E\left[\int_{t+s}^{t+s+\Delta t} \exp\left\{-\int_{t}^{u} (\lambda_{iv} + \phi_{iv}) dv\right\} \lambda_{iu} du | \tau_{Di} = \tau_{Ci} \ge t+s\right]}{\Delta t}$$

Note that $\tau_{Ci} < \tau_{Di}$

Localising Forward Intensities

Recall: forward intensities

Duan et al. (2012), $f_{it}(\tau)$ and $g_{it}(\tau)$ are parameterized with $f_{it}(\tau) > 0$ and $g_{it}(\tau) \ge f_{it}(\tau)$:

$$\begin{aligned} & f_{it}(\tau) &= \exp \left\{ \alpha_0(\tau) + \alpha_1(\tau) x_{it,1} + \ldots + \alpha_p(\tau) x_{it,p} \right\} \\ & g_{it}(\tau) &= f_{it}(\tau) + \exp \left\{ \beta_0(\tau) + \beta_1(\tau) x_{it,1} + \ldots + \beta_p(\tau) x_{it,p} \right\} \end{aligned}$$

Note: $\tau = 0$ obtain the spot intensity of Duffie et al. (2007)

Localising the forward intensities

- Given (5) for each t one might look for a homogeneous interval I in which forward intensities are adequately described
- Longer estimation period reduced variability, enlarge bias LPA finds a balance between parameter variability and modelling bias
- Estimation windows with potentially varying length. Find the longest stable (homogeneity) interval

Interval selection

Given time t, go back and split time series into K intervals,

$$I_{\mathcal{K}} \supset \cdots \supset I_{k} \supset \cdots \supset I_{1} \supset I_{0}$$

$$\widetilde{\theta}_{\mathcal{K}} \cdots \widetilde{\theta}_{k} \cdots \widetilde{\theta}_{1} \qquad \widetilde{\theta}_{0}$$

for $t \in I_k$, $I_k = [t - m_{k+1} + 1, t]$, with length $|I_k| = m_k$, estimates are obtained using log-likelihood

$$\begin{split} \widetilde{\theta}_{k} &= \widetilde{\theta}_{l_{k}} = \left(\widetilde{\alpha}_{k}, \widetilde{\beta}_{k}\right)^{\top} \\ \widetilde{\alpha}_{k} &= \left\{\widetilde{\alpha}_{l_{k}}(0), \dots, \widetilde{\alpha}_{l_{k}}(\tau-1)\right\}; \quad \widetilde{\alpha}_{l_{k}}(s) = \left(\widetilde{\alpha}_{l_{k},0}(s), \dots, \widetilde{\alpha}_{l_{k},p}(s)\right)^{\top} \\ \widetilde{\beta}_{k} &= \left\{\widetilde{\beta}_{l_{k}}(0), \dots, \widetilde{\beta}_{l_{k}}(\tau-1)\right\}; \quad \widetilde{\beta}_{l_{k}}(s) = \left(\widetilde{\beta}_{l_{k},0}(s), \dots, \widetilde{\beta}_{l_{k},p}(s)\right)^{\top} \end{split}$$

Localising Forward Intensities -

MLE

Maximum likelihood estimates (MLEs) of $\theta_k = (\alpha_k, \beta_k)^{\top}$

$$\widetilde{\theta}_{k} = \arg \max_{\theta \in \Theta} L_{k,\tau} \left(\alpha_{k}, \beta_{k} \right)$$
(9)

where $L_{k, au}\left(lpha_k,eta_k
ight)$ is likelihood for interval I_k evaluated at au

$$L_{k,\tau}(\alpha_k,\beta_k) = \prod_{i=1}^{N} \prod_{\substack{t=0\\t\in I_k}}^{T-1} L_{\tau,i,t}(\alpha_k,\beta_k) \quad \bullet \text{ Likelihood}$$
(10)

where sample period from 0 to T for each I_k N is number of companies at a point in time t

Localising Forward Intensities

MLE: Decomposable

The likelihood is decomposable into separate $\alpha_k(\tau)$ and $\beta_k(\tau)$ corresponding to different τ 's represented by s,

$$L\{\alpha_{k}(s)\} = \prod_{i=1}^{N} \prod_{t=0}^{T-s-1} L_{i,t}\{\alpha_{k}(s)\}$$
(11)
$$L\{\beta_{k}(s)\} = \prod_{i=1}^{N} \prod_{t=0}^{T-s-1} L_{i,t}\{\beta_{k}(s)\}$$
(12)

where $s = 0, 1, ..., \tau - 1$

▶ Likelihood

Localising Forward Intensities

MLE: Decomposable

$$\begin{split} \mathcal{L}_{i,t} \{ \alpha_k(s) \} &= 1_{\{t_{0i} \leq t, \ \tau_{Ci} > t + s + 1\}} \exp \{ -f_{it}(s) \Delta t \} & (13) \\ &+ 1_{\{t_{0i} \leq t, \ \tau_{Di} = \tau_{Ci} \leq t + s + 1\}} [1 - \exp \{ -f_{it}(s) \Delta t \}] \\ &+ 1_{\{t_{0i} \geq t, \ \tau_{Di} \neq \tau_{Ci}, \tau_{Ci} \leq t + s + 1\}} \exp \{ -f_{it}(s) \Delta t \} \\ &+ 1_{\{t_{0i} > t\}} + 1_{\{\tau_{Ci} \leq t + s + 1\}} \\ \mathcal{L}_{i,t} \{ \beta_k(s) \} &= 1_{\{t_{0i} \leq t, \ \tau_{Ci} > t + s + 1\}} \exp \{ -[g_{it}(s) - f_{it}(s)] \Delta t \} & (14) \\ &+ 1_{\{t_{0i} \leq t, \ \tau_{Di} \neq \tau_{Ci}, \tau_{Ci} \leq t + s + 1\}} \\ &+ 1_{\{t_{0i} \leq t, \ \tau_{Di} \neq \tau_{Ci}, \tau_{Ci} \leq t + s + 1\}} [1 - \exp \{ -[g_{it}(s) - f_{it}(s)] \Delta t \}] \\ &+ 1_{\{t_{0i} \geq t, \ \tau_{Di} \neq \tau_{Ci}, \tau_{Ci} \leq t + s + 1\}} \\ &+ 1_{\{t_{0i} > t\}} + 1_{\{\tau_{Ci} \leq t + s + 1\}} \\ \end{split}$$

where $g_{it}(s) - f_{it}(s) = \exp \left\{ \beta_0(s) + \beta_1(s) x_{it,1} + \ldots + \beta_p(s) x_{it,p} \right\}$

Localising Forward Intensities -

MLE: Decomposable

Grouping observation into

$$X^0 = (x_1^0, \dots, x_{N_0}^0)^{ op}, \ X^1 = (x_1^1, \dots, x_{N_1}^1)^{ op}, \ X^2 = (x_1^2, \dots, x_{N_2}^2)^{ op},$$

where X^0 , X^1 , and X^2 contain all firm-month observation that survive, default, and exit due to other reason, respectively.

The N_0 , N_1 , and N_2 are number of observation in each category.

MLE: Decomposable, $\Delta t = 1/12$

Put log at each indicator function (Forward PD (Cum. Forward PD

$$\begin{split} \log L\left\{\alpha(s)\right\} &= -\sum_{i=1}^{N_0} \exp(x_i^0 \alpha) \Delta t \\ &+ \sum_{i=1}^{N_1} \log\left[1 - \exp\{-\exp(x_i^1 \alpha) \Delta t\}\right] - \sum_{i=1}^{N_2} \exp(x_i^2 \alpha) \Delta t, \\ \log L\left\{\beta(s)\right\} &= -\sum_{i=1}^{N_0} \exp(x_i^0 \beta) \Delta t \\ &+ \sum_{i=1}^{N_1} \log\left[1 - \exp\{-\exp(x_i^1 \beta) \Delta t\}\right]. \end{split}$$

Sequential test, fixed τ (Note)

 H_0 : Parameter homogeneity within I_k H_1 : Change point within I_k

Test statistic

$$T_{k,\tau} = \left| L_{l_k}(\widetilde{\theta}_k) - L_{l_k}(\widehat{\theta}_{k-1}) \right|^r, \quad k = 1, \dots, K$$
(15)

 $\mathfrak{z}_{k,\tau}$ – Critical values

If $T_{k,\tau} > \mathfrak{z}_{k,\tau}$, accepts I_{k-1} as homogeneous, $\widehat{\theta}_k = \widehat{\theta}_{k-1} = \widetilde{\theta}_{k-1}$ Otherwise, accepts I_k as homogeneous, $\widehat{\theta}_k = \widetilde{\theta}_k$

Critical value, $\mathfrak{z}_{k,\tau}$

'Propagation' condition (under
$$H_0$$
)

$$\mathsf{E}_{\theta^*} \left| \mathsf{L}_{k,\tau} \left\{ \widetilde{\theta}_k, \widehat{\theta}_k \right\} \right|^r \leq \frac{k \rho}{K} \, \mathcal{R}_r \left(\theta^* \right), \quad \forall k \leq K$$

 ρ and r are two hyper-parameters Hyper-par. 'Modest' risk, r = 0.5 (shorter intervals of homogeneity) 'Conservative' risk, r = 1 (longer intervals of homogeneity) Constant risk bound $\mathcal{R}_r(\theta^*)$ w.r.t. true parameter θ^* Risk Bound

Adaptive estimation

$$\boxdot$$
 Compare $\mathcal{T}_{k, au}$ at every step k with $\mathfrak{z}_{k, au}$

oxdot Data window index of the *interval of homogeneity* - \widehat{k}

☑ Adaptive estimate

$$\widehat{\theta} = \widetilde{\theta}_{\widehat{k}}, \quad \widehat{k} = \max_{k \leq K} \left\{ k : T_{\ell,\tau} \leq \mathfrak{z}_{\ell,\tau}, \ell \leq k \right\}$$

Data and Variables

2000 U.S. public firms from Feb 1991 to Dec 2011.

Macroeconomic factors (W_t) \bigcirc Back

 \odot One year simple return on S&P500 index ($X_{t,1}$)

 \odot 3-months US Treasury bill rate ($X_{t,2}$)

Firm-specific attribute (U_{it})

Level: one-year average of the measure Trend: current value - level

Data and Variables

Firm-specific attribute (U_{it})

- ☑ Volatility-adjusted leverage
 - Distance-to-Default (DTD): level $(X_{it,3})$, trend $(X_{it,4})$

Detail

- Liquidity CASH/Total Asset: level $(X_{it,5})$, trend $(X_{it,6})$
- Profitability Net Income/Total Asset: level $(X_{it,7})$, trend $(X_{it,8})$
- Relative size log(firm's equity/average equity of S&P500's firms): level (X_{it,9}), trend (X_{it,10})

Back

- Market-to-book asset ratio (X_{it,11})
- \odot One-year idiosyncratic volatility ($X_{it,12}$)

Set up

- ⊡ True parameters θ^* are generated as average over 35 moving windows (length: 15 years)
- □ Subset interval $I_k = \{5, 6, 8, 10, 12, 15\}$ years (monthly-based)
- Monte Carlo simulation to generate critical value $\mathfrak{z}_{k,\tau}$ for $\tau = \{1, 3, 6, 12, 24, 36\}$ months horizons

Accuracy Ratio (AR) - discriminative power

Estimates: Macroeconomic

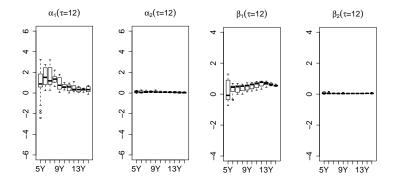


Figure 4: Box-plots of estimates, $\tau = 12$, of default (two left) and other exits (two right) over 35 windows (length: 5, 6, ..., 15 years).

Estimates: Firm specific

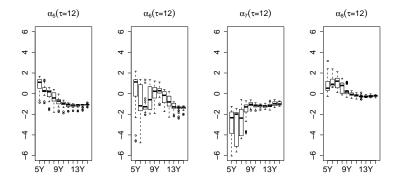


Figure 5: Box-plots of estimates, $\tau=12$, of default over 35 windows (length: 5, 6, ..., 15 years).

4-5

Estimates

\odot Robust to I_k

- ► Macroeconomic: 3-months US Treasury interest rate
- Firm specific: DTD, company size, market-to-book ratio

\odot Sensitive to I_k

- ▶ Macroeconomic: 1-year return of S&P500
- Firm specific: Liquidity, profitability
- Intercept

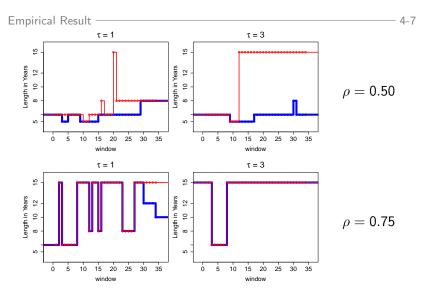


Table 2: Interval of homogeneity, $r = \{0.5, 1\}$, $\tau = \{1, 3\}$ months. Localising Forward Intensities

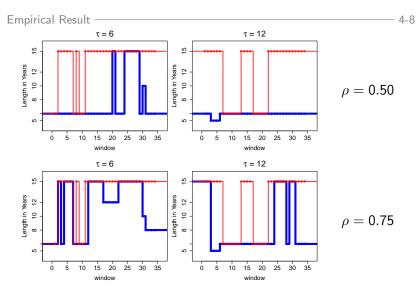


Table 3: Interval of homogeneity, $r = \{0.5, 1\}$, $\tau = \{6, 12\}$ months. Localising Forward Intensities

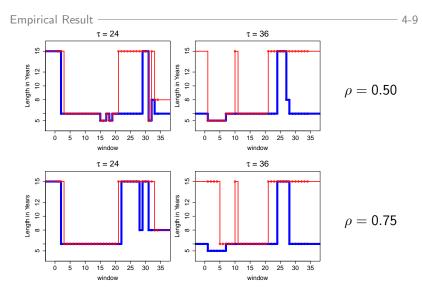


Table 4: Interval of homogeneity, $r = \{0.5, 1\}, \tau = \{24, 36\}$ months. Localising Forward Intensities

Accuracy Ratio, $\rho = 0.50$

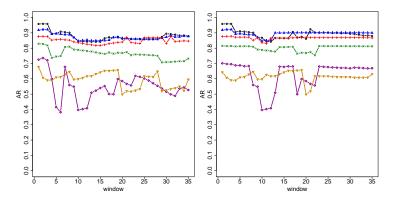


Figure 6: AR over windows, r = 0.5 (left), r = 1 (right), for $\tau = \{1, 3, 6, 12, 24, 36\}$ months horizons. Localising Forward Intensities

Accuracy Ratio, $\rho = 0.75$

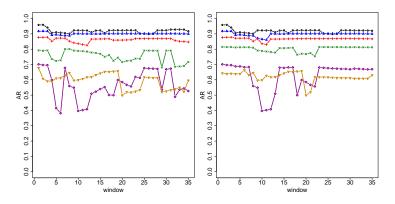


Figure 7: AR over windows, r = 0.5 (left), r = 1 (right), for $\tau = \{1, 3, 6, 12, 24, 36\}$ months horizons. Localising Forward Intensities

window		$\tau = 1$		$\tau = 3$	au=6				
	global	local	global	local	global	local			
	-	$r = 0.5, \rho = 0.5$ $r = 0.5, \rho = 0.75$ $r = 1, \rho = 0.75$ $r = 1, \rho = 0.75$		$\begin{aligned} r &= 0.5, \rho = 0.5 \\ r &= 0.5, \rho = 0.75 \\ r &= 1, \rho = 0.5 \\ r &= 1, \rho = 0.75 \end{aligned}$		$\begin{aligned} r &= 0.5, \rho = 0.5 \\ r &= 0.5, \rho = 0.75 \\ r &= 1, \rho = 0.7 \\ r &= 1, \rho = 0.75 \end{aligned}$			
1 2		$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
: 34 35	\checkmark	\checkmark	$\sqrt[]{}$		*	*			
	global local $\sqrt{(14)}$ $\sqrt{(7)}$ $\star (14)$ $\star (14)$		global √ (32) ★ (0)	local √ (3) ★ (0)	global √ (13) ★ (9)	local √ (13) ★ (9)			

Table 5: AR-based performance for horizon 1, 3, and 6 months. Mark \surd denotes the corresponding approach results in higher AR whereas \star denotes equal accuracy for both.

Empirical Result

window	au = 12					$\tau = 24$					$\tau = 36$				
	global	llocal			globallocal				globallocal			cal			
		$r = 0.5, \rho = 0.5$	$r = 0.5, \rho = 0.75$	$r=1,\rho=0.5$	$r=1,\rho=0.75$		$r=0.5, \rho=0.5$	$r = 0.5, \rho = 0.75$	$r=1,\rho=0.5$	$r=1,\rho=0.75$		$r=0.5, \rho=0.5$	$r = 0.5, \rho = 0.75$	$r=1,\rho=0.5$	$r=1, \rho=0.75$
1 2		$\sqrt[]{}$	$\sqrt[]{}$	$\sqrt[]{}$	$\sqrt[]{}$			$\sqrt[]{}$	$\sqrt[]{}$	$\sqrt[]{}$		\checkmark	\checkmark	\checkmark	$\sqrt[]{}$
: 34 35				$\sqrt[]{}$	$\sqrt[]{}$	*			√ *	√ *	*			* √	* √
	global √ (17) ★ (0)	· (17) √ (18)		global √ (10) ★ (2)		local √ (23) ★ (2)		global √ (3) ★ (6)	local √ (26) ★ (6)						

Table 6: AR-based performance for horizon 12, 24, and 36 months. Mark $\sqrt{}$ denotes the corresponding approach results in higher AR whereas \star denotes equal accuracy for both.

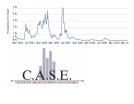
Conclusion

- Employing all past observation (as benchmark) results in better accuracy prediction for short horizon (1 and 3 months)
- Local approach performs with the same accuracy as the benchmark for six months horizon
- The accuracy prediction is improved for the longer horizon (12, 24, 36 months)

Localising Forward Intensities for Multiperiod Default

Dedy Dwi Prastyo Wolfgang Karl Härdle

Ladislaus von Bortkiewicz Chair of Statistics C.A.S.E. – Center for Applied Statistics and Economics Humboldt–Universität zu Berlin http://lvb.wiwi.hu-berlin.de http://www.case.hu-berlin.de



🔋 Bai, J. and Perron, P.

Estimating and Testing Linear Models with Multiple Structural Changes Econometrica, **66**(1): 47–78, 1998

Belomestny, D. and Spokoiny, V. Spatial aggregation of local likelihood estimates with applications to classification The Annals of Statistics **35**(5): 2287–2311, 2007

🔋 Cai, Z., Fan, J., and Yao, Q.

Functional-coefficient regression models for nonlinear time series

J. Am. Stat. Assoc. **95**(451): 941–956, 2000

Chen, Y. and Niu, L.

Adaptive dynamic Nelson-Siegel term structure model with applications

Journal of Econometrics 180(1): 98–115, 2014

- Čížek, P., Härdle, W., and Spokoiny, V.
 Adaptive pointwise estimation in time-inhomogeneous conditional heterocedasticity models
 The Econometrics Journal 12(2): 248–271, 2009
 - Duan, J-C., Sun, J., and Wang, T.
 - Multiperiod Corporate Default Prediction A Forward Intensity Approach

Journal of Econometrics 170(1): 191-209, 2012

- Duffie, D., Saita, L., and Wang, Ke. Multi-period Corporate Default Prediction with Stochastic Covariates Journal of Financial Economics 83: 635–665, 2007
 Fan, J. and Zhang, W.
 - Statistical Method with Varying Coefficient Models Stat Inference 1(1): 179–195, 2008
- Katkovnik, V. and Spokoiny, V.

Spatially adaptive estimation via fitted local likelihood techniques

IEEE Transactions on Signal Processing 56(3): 873-886, 2008


```
    Mercurio, D. and Spokoiny, V.
    Statistical inference for time-inhomogeneous volatility models
The Annals of Statistics 32(2): 577–602, 2004
```

🔋 Shumway, T.

Forecasting bankruptcy more accurately: a simple hazard model The Journal of Business **74**(1): 101–124, 2001

Spokoiny, V.

Estimation of a function with discontinuities via local polynomial fit with an adaptive window choice The Annals of Statistics **26**(4): 1356–1378, 1998

Spokoiny, V.

Multiscale Local Change Point Detection with Applications to Value-at-Risk

The Annals of Statistics 37(3): 1405–1436, 2009

Risk Management Institute Construction and Application of the Corporate Vulnerability Index CVI White Paper: Jan, 2013

Duffie, Saita, Wang (2007) • Surv. Prob.

Conditional probability of default (PD) within au years ahead

$$\mathsf{E}\left[\int_{t}^{t+\tau} \exp\left\{-\int_{t}^{s} (\lambda_{u} + \phi_{u}) \, du\right\} \lambda_{s} \, ds \, |X_{t}\right]$$

 $\begin{array}{l} \{X_t:t\geq 0\} \text{ be time-homogeneous Markov process in } \mathbb{R}^p, p\geq 1\\ \lambda_t=\wedge_1(X_t) \text{ and } \phi_t=\wedge_2(X_t)\\ \wedge \text{ is non-negative real-valued measurable function on } \mathbb{R}^p \end{array}$

State variable X_t governing the Poisson intensities are assumed to follow a specific high-dimensional VAR process

Deducing PD multiperiod ahead from repeating one-period ahead prediction

Poisson process **Back**

Let D_i are times between jumps (events), $\{D_i\}_{i=1}^n$ i.i.d. $\exp(\lambda)$

$$T_n = \sum_{i=1}^n D_i, \quad T_0 = 0$$

Poisson process with intensity λ :

$$N(t) = \sup \left\{ n \geq 0 : T_n \leq t
ight\}$$
 for $t \geq 0$ (Filtration

Number of jumps in $[t, t + \tau] \sim \mathsf{Pois}(\lambda \tau)$

$$\mathsf{P}\left[\mathsf{N}(t+\tau)-\mathsf{N}(t)=d\right]=\frac{e^{-(\lambda\tau)}(\lambda\tau)^d}{d!}$$

Poisson distribution

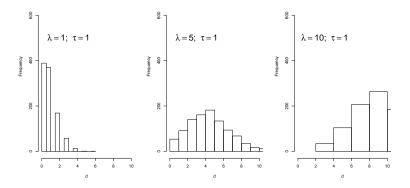


Figure 8: Distribution of number of evants in $[t, t + \tau]$ follow Poisson distribution. Sample size n = 1000.

6-3

Non-homogeneous Poisson process

Intensity λ_t may change over the time

$$\mathsf{E}\left[\mathsf{N}(au)|\lambda_{s},t\leq s\leq t+ au
ight]=\int_{t}^{t+ au}\lambda_{s}\;ds$$

Number of jumps in $[t, t + \tau] \sim \mathsf{Pois}\left(\int_t^{t+\tau} \lambda_s \ ds\right)$

$$\mathsf{P}[\mathsf{N}(t+\tau) - \mathsf{N}(t) = d] = \frac{e^{-\int_{t}^{t+\tau} \lambda_{s} \, ds} \left(\int_{t}^{t+\tau} \lambda_{s} \, ds\right)^{d}}{d!}$$

Filtration

 τ_{Di} is default time of firm i

$$\mathsf{P}\left(\tau_{Di} > t + \tau | \mathcal{F}_t\right) = \mathsf{E}\left[\mathbf{1}_{\{\tau_{Di} > t + \tau\}} | \mathcal{F}_t\right]$$
(16)

Let $X_t = (W_t, U_t)$, W is common factor and U is firm-specific $\{\mathcal{F}_t : t \ge 0\}$ is filtration, where \mathcal{F}_t is σ -algebra generated by

 $\{(U_{\tau}, D_{\tau}): \tau \leq \min(t, \tau_D)\} \cup \{W_{\tau}: \tau \leq t\}$

with D be Poisson process with intensity $\lambda(X_t)$

• Poisson process, $D_{ au} = N(au)$

Conditioning on observable smaller filtration

$$\mathsf{P}\left(\tau_{Di} > t + \tau | \mathcal{F}_t\right) \stackrel{\mathsf{def}}{=} \mathsf{E}\left[\mathbf{1}_{\{\tau_{Di} > t + \tau\}} | X_t\right] = \mathsf{P}\left(\tau_{Di} > t + \tau | X_t\right)$$

Let $X_t = (W_t, U_t)$, W is common factor and U is firm-specific $\{\mathcal{F}_t : t \ge 0\}$ is filtration, where \mathcal{F}_t is σ -algebra generated by

$$\{(U_{\tau}, D_{\tau}, O_{\tau}) : \tau \leq \min(t, \tau_D, \tau_O)\} \cup \{W_{\tau} : \tau \leq t\}$$

with (D, O) be doubly stochastic Poisson process with intensity $\lambda(X_t)$ for default and $\phi(X_t)$ for other exit

 τ_{Di} is default time of firm *i* as stopping time

$$\tau_{Di} = \inf\{t : D_t > 0, O_t = 0\}$$

Forward intensity at τ

$$\begin{aligned} G_{it}(\tau) &= 1 - \exp\left\{-\psi_{it}(\tau)\tau\right\} \\ G_{it}'(\tau) &= -\exp\left\{-\psi_{it}(\tau)\tau\right\} \left\{-\psi_{it}'(\tau)\tau - \psi_{it}(\tau)\right\} \\ &= \exp\left\{-\psi_{it}(\tau)\tau\right\} \psi_{it}'(\tau)\tau + \exp\left\{-\psi_{it}(\tau)\tau\right\} \psi_{it}(\tau) \end{aligned}$$

▶ Back

Therefore

$$\frac{G'_{it}(\tau)}{1-G_{it}(\tau)} = \frac{\exp\left\{-\psi_{it}(\tau)\tau\right\}\psi_{it}(\tau) + \exp\left\{-\psi_{it}(\tau)\tau\right\}\psi'_{it}(\tau)\tau}{\exp\left\{-\psi_{it}(\tau)\tau\right\}}$$
$$= \psi_{it}(\tau) + \psi'_{it}(\tau)\tau$$

Forward intensity at τ

▶ Back

$$g_{it}(\tau) = \psi_{it}(\tau) + \psi'_{it}(\tau)\tau$$

Therefore

$$\int_0^\tau g_{it}(s)ds = \int_0^\tau \psi_{it}(s)ds + \int_0^\tau \psi'_{it}(s)s ds$$

=
$$\int_0^\tau \psi_{it}(s)ds + \psi_{it}(\tau)\tau - \int_0^\tau \psi_{it}(s)ds$$

=
$$\psi_{it}(\tau)\tau$$

 $L_{\tau i t}(\alpha_k, \beta_k)$

Likelihood

▶ Back

In I_k and t use the status info {survive, default, other exit} of firm *i* at $t + \tau$

 $= 1_{\{t_{0i} < t, \tau_{Ci} > t + \tau\}} \mathsf{P}_t(\tau_{Ci} > t + \tau)$ $+1_{\{t_{0}\leq t, \tau_{D}i=\tau_{C}i\leq t+\tau\}} \mathsf{P}_t(\tau_{C}i; \tau_{D}i=\tau_{C}i\leq t+\tau)$ +1_{{ $t_{0i} \leq t, \tau_{Di} \neq \tau_{Ci}, \tau_{Ci} \leq t+\tau$ }} $\mathsf{P}_t(\tau_{Ci}; \tau_{Di} \neq \tau_{Ci} \& \tau_{Ci} \leq t+\tau)$ $+1_{\{t_0 > t\}} + 1_{\{\tau_0 < t\}}$

with $P_t(\tau_{Ci}) = P(\tau_{Ci} | \mathcal{F}_t)$ and t_{0i} be the first month that firm i appeared in the sample

Pseudo-Likelihood

with $\Delta t = 1/12$, approximate integral by sum

$$P_{t}(\tau_{Ci} > t + \tau) = \exp\left\{-\sum_{s=0}^{\tau-1} g_{it}(s)\Delta t\right\}$$

$$P_{t}(\tau_{Ci}; \tau_{Di} = \tau_{Ci} \le t + \tau)$$

$$= \begin{cases} 1 - \exp\left\{-f_{it}(0)\Delta t\right\} & \text{if } \tau_{Ci} = t + 1, \\ [1 - \exp\left\{-f_{it}\left(\tau_{Ci} - t - 1\right)\Delta t\right\}\right] \\ \times \exp\left\{-\sum_{s=0}^{\tau_{Ci} - t - 2} g_{it}(s)\Delta t\right\} & \text{if } t + 1 < \tau_{Ci} \le t + \tau \end{cases}$$

Pseudo-Likelihood

$$P_{t}(\tau_{Ci}; \tau_{Di} \neq \tau_{Ci} \& \tau_{Ci} \leq t + \tau) \\ = \begin{cases} \exp\{-f_{it}(0)\Delta t\} - \exp\{-g_{it}(0)\Delta t\} & \text{if} \quad \tau_{Ci} = t + 1, \\ \exp\{-f_{it}(\tau_{Ci} - t - 1)\Delta t\} \\ -\exp\{-g_{it}(\tau_{Ci} - t - 1)\Delta t\} \\ \times \exp\{-\sum_{s=0}^{\tau_{Ci}-t-2} g_{it}(s)\Delta t\} & \text{if} \quad t+1 < \tau_{Ci} \leq t + \tau \end{cases}$$

Forward PD

Provided by estimate θ . ▶ Decomposable Log-Lik. In $[t + \tau, t + \tau + 1]$ with discretized time interval $\Delta t = 1/12$ (i) Forward probability of default (PD) $\mathsf{P}_t(t+\tau < \tau_{Di} = \tau_{Ci} \le t+\tau+1) = e^{-\psi_{it}(\tau)\tau\Delta t} \left\{ 1 - e^{-f_{it}(\tau)\Delta t} \right\}$ (ii) Forward combined exit probability $\mathsf{P}_t(t+\tau < \tau_{Ci} \leq t+\tau+1) = e^{-\psi_{it}(\tau)\tau\Delta t} \left\{ 1 - e^{-g_{it}(\tau)\Delta t} \right\}$

Forward PD

In interval $[t, t + \tau]$,

▶ Decomposable Log-Lik.

(iii) Cumulative PD

$$\mathsf{P}_t(t < \tau_{Di} = \tau_{Ci} \le t + \tau) = \sum_{s=0}^{\tau-1} e^{-\psi_{it}(s)s\Delta t} \left\{ 1 - e^{-f_{it}(s)\Delta t} \right\}$$

(iv) Spot combined exit intensity

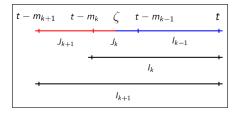
$$\psi_{it}(\tau) = rac{1}{ au} \left\{ \psi_{it}(au-1)(au-1) + g_{it}(au-1)
ight\}$$

No need to specify $\psi_{it}(0)$ since it is irrelevant

Sequential test ($k = 1, \ldots, K$), fixed τ (Back

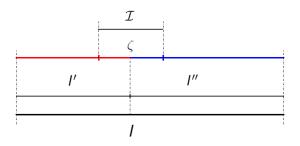
 H_0 : parameter homogeneity within I_k

 H_1 : change point within I_k



$$T_{k,\tau} = \sup_{\zeta \in J_{k}} \left[L_{A_{k,\zeta,\tau}} \left\{ \widetilde{\theta}_{A_{k,\zeta}} \right\} + L_{B_{k,\zeta,\tau}} \left\{ \widetilde{\theta}_{B_{k,\zeta}} \right\} - L_{I_{k+1},\tau} \left\{ \widetilde{\theta}_{I_{k+1}} \right\} \right], \quad \text{Detail}$$

with $J_{k} = I_{k} \setminus I_{k-1}, A_{k,\zeta} = [t - m_{k+1}, \zeta + \tau] \text{ and } B_{k,\zeta} = (\zeta, t + \tau]$
 $I_{k} = [t - m_{k}, t + \tau] \text{ and } I_{k-1} = [t - m_{k-1}, t + \tau]$



 \mathcal{I} : tested interval possibly contain change point I = [I', I'') : larger testing interval

Test statistics Pack

 H_0 : homogeneity within \mathcal{I} vs. H_1 : change point within \mathcal{I} LRT Statistics, $L(\cdot)$ is log likelhood function

$$T_{\mathcal{I},\zeta} = \max_{\theta',\theta''} \left\{ L_{I''}(\theta'') + L_{I'}(\theta') \right\} - \max_{\theta} L_{I}(\theta)$$

= $L_{I'}(\widetilde{\theta}_{I'}) + L_{I''}(\widetilde{\theta}_{I''}) - L_{I}(\widetilde{\theta}_{I})$

Reject H_0 if $T_{\mathcal{I},\zeta} \geq \mathfrak{z}$ Thus,

$$T_{\mathcal{I}} = \max_{\zeta \in \mathcal{I}} T_{\mathcal{I},\zeta}$$

Let $\mathcal{I} = I_k \setminus I_{k-1}$, $\widehat{\boldsymbol{\theta}} = \widetilde{\boldsymbol{\theta}}_{\widehat{k}}, \quad \widehat{k} = \max_{k \leq K} \{k : T_\ell \leq \mathfrak{z}_\ell, \ell \leq k\}$

LRT: Poisson distribution

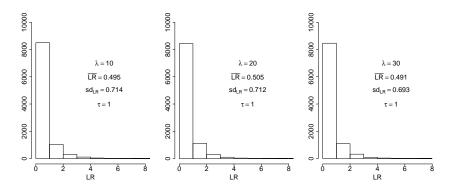


Figure 9: Monte Carlo simulation, similar result for $\lambda = 1, 2, \dots, 9$

LRT: Exponential distribution

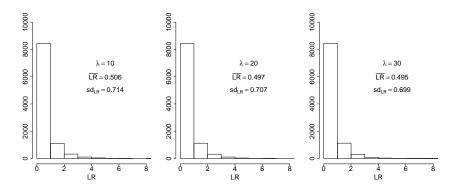


Figure 10: Monte Carlo simulation, similar result for $\lambda = 1, 2, \dots, 9$

Hyper parameters • Back

The role of ρ is similar to the significance level of a test
 The *r* denotes the power of loss function

$$\mathsf{E}_{\theta^*} L^r_{k,\tau} \left\{ \widetilde{\theta}_k, \widehat{\theta}_k \right\} \to \mathsf{P}_{\theta^*} \left\{ \widetilde{\theta}_k \neq \widehat{\theta}_k \right\}, \quad r \to 0.$$

- ∴ The $\mathfrak{z}_{1,\tau}$; ...; $\mathfrak{z}_{K-1,\tau}$ enter implicitely in the propagation condition: if false alarm event $\{\widetilde{\theta}_k \neq \widehat{\theta}_k\}$ happen too often, it is indication that some $\mathfrak{z}_{1,\tau}$; ...; $\mathfrak{z}_{k-1,\tau}$ are too small
- \boxdot Note: propagation condition relies on artificial parametric model P_{θ^*} instead of the true model P

Parametric risk bound

Propagation

$$\begin{split} \mathsf{E}_{\theta^*} \left| L_{\mathcal{K}}(\widetilde{\theta}_{\mathcal{K}}, \theta^*) \right|^r &= \mathcal{R}_r(\theta^*) \\ &= -\int_{\mathfrak{z} \ge 0} \mathfrak{z}^r d \, \mathsf{P}_{\theta^*} \left\{ \left| L_{\mathcal{K}}(\widetilde{\theta}_{\mathcal{K}}, \theta^*) \right| > \mathfrak{z} \right\} \\ &= r \int_0^\infty \mathfrak{z}^{r-1} \, \mathsf{P}_{\theta^*} \left\{ \left| L_{\mathcal{K}}(\widetilde{\theta}_{\mathcal{K}}, \theta^*) \right| > \mathfrak{z} \right\} d\mathfrak{z} \\ &= r \int_0^\infty \mathfrak{z}^{r-1} \, \mathsf{P}_{\theta^*} \left\{ \left| L_{\mathcal{K}}(\widetilde{\theta}_{\mathcal{K}}, \theta^*) \right| > \mathfrak{z}, \widetilde{\theta}_{\mathcal{K}} \in \mathcal{E}(\mathfrak{z}) \right\} d\mathfrak{z} \\ &+ r \int_0^\infty \mathfrak{z}^{r-1} \, \mathsf{P}_{\theta^*} \left\{ \left| L_{\mathcal{K}}(\widetilde{\theta}_{\mathcal{K}}, \theta^*) \right| > \mathfrak{z}, \widetilde{\theta}_{\mathcal{K}} \notin \mathcal{E}(\mathfrak{z}) \right\} d\mathfrak{z} \\ &\leq 2r \int_0^\infty \mathfrak{z}^{r-1} e^{-\mathfrak{z}} d\mathfrak{z} < \infty \end{split}$$

Note:
$$\mathcal{E}(\mathfrak{z}) \stackrel{\mathsf{def}}{=} \left\{ \theta^* : L_{\mathcal{K}}(\widetilde{\theta}_{\mathcal{K}}) - L_{\mathcal{K}}(\theta^*) \leq \mathfrak{z} \right\}$$

Distance-to-Default (DTD), Merton

firms are financed by equity (E) and one single pure discount bond with maturity time T and principal Db (book value of the debt). Firm's asset value $V_{A,t}$ follow Geometric Brownian Motion (GBM)

$$dV_{A,t} = \mu V_{A,t} dt + \sigma_A V_{A,t} dB_t$$
(17)

 μ and σ_A are instantaneous drift and volatility, B is standard Wiener process Black-Scholes model

$$V_{E,t} = V_{A,t} \Phi(d_{1,t}) - Db \ e^{-r(T-t)} \Phi(d_{2,t})$$
(18)

with

$$d_{1,t} = \frac{\log(V_{A,t}/Db) + (r + \frac{1}{2}\sigma_A^2)(T - t)}{\sigma_A\sqrt{(T - t)}}, \quad d_{2,t} = d_{1,t} - \sigma_A\sqrt{T - t} \quad (19)$$

where $V_{E,t}$ is market value of equity at time t, (T - t) is time to expiration (of call option V_A), and r is risk-free interest rate

Localising Forward Intensities

M

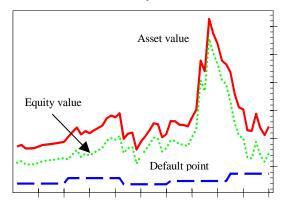


Figure 11: Market value of asset, equity, and book value of liabilities (default point)

Probability of Default (PD)

$$\mathsf{PD}_t = \mathsf{P}(V_{A,t+T} \leq Db_t | V_{A,t}) = \Phi(DTD_t)$$

with

$$DTD_{t} = \frac{\log(V_{A,t}/Db) + (\mu - \frac{1}{2}\sigma_{A}^{2})(T - t)}{\sigma_{A}\sqrt{(T - t)}}$$
(20)

 μ cannot be estimated with reasonable precision unless for very long time span data

KMV's DTD avoids using μ

$$DTD_t = \frac{\log(V_{A,t}/Db)}{\sigma_A\sqrt{(T-t)}}$$
(21)

Distance-to-Default (DTD)

KMV typically set (T - t) to one year and default point

$$Db = Db_{ST} + 0.5Db_{LT} \tag{22}$$

where ST is hort term and LT is long term

Problem: Financial firm typically have large amount of liabilities that are neither classified as ST nor LT

Duan (2012) modified KMV default point as

$$Db = Db_{ST} + 0.5Db_{LT} + \delta Db_{other}$$

(23)

Idiosyncratic Volatility

Over the preceeding 12 months

$$R_{it} = \beta R_t + \varepsilon_{it}, \quad \varepsilon_{it} \sim \mathsf{N}(0, \sigma_{it}^2)$$
(24)

 R_{it} is stock return of firm *i* R_t is value-wieghted CRSP monthly return σ_{it} is one-year idiosyncratic volatility

Following Shumway (2001), σ_{it} is missing if there are less than 12 monthly returns

