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Motivation 1-1

Poisson process and default time
Homogen. Pois. Non-homogen. Pois.

Figure 1: Poisson process N(t) with intensity λt .

� Time of default τD : first jump time of N(t)
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Motivation 1-2

Survival probability

� For known path λs , survival probability in [t, t + τ ]

P (τD > t + τ) = exp
{
−
∫ t+τ

t
λs ds

}
(1)

� λs = λ(Xs) stochastic determined by state variable Xs .
Filtration Ft , simulating path of Xs , DSW

P (τD > t + τ |Ft) = E
[
exp
{
−
∫ t+τ

t
λ(Xs , θt) ds

}
|Xt

]
(2)

� Simulation on high dimensional Xs is quite challenging
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Motivation 1-3

Forward default intensity, λt(s)

� Hazard function where survival time is evaluated at a fixed
horizon

λt(s)
def
= lim

∆t→0

P (t + s < τD ≤ t + s + ∆t |τD ≥ t + s )

∆t
(3)

= F ′
t (s)/{1− Ft(s)},

where Ft(s) = 1− P (τD > t + s |Ft )

� Avoid modelling Xs , specify λt(s) = λ(s,Xt)

P (τD > t + τ |Ft ) = exp
{
−
∫ t+τ

t
λt(s) ds

}
, (4)
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Motivation 1-4

Specifications of λs

λs = λ(Xs ; θt) , Duffie et al. (2007)
λt(s) = λ(θs ;Xt) , Duan et al. (2012)
λt(s) = λ(θs,t ;Xt) , Our approach

Table 1: The specifications of the default intensity.

Xit = (xit,1, xit,2, . . . , xit,p) = (Wt ,Uit)

Wt – Macroeconomic factors (common) Wt

Uit – Firm specific attributes Uit
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Motivation 1-5

Doubly stochastic Poisson process

Default (with intensity λt) and other exits (φt) governed by two
independent doubly stochastic Poisson process

Conditional probability to survive and to default in [t, t + τ ]

E
[
exp
{
−
∫ t+τ

t
(λs + φs)ds

}
|Xt

]
E
[∫ t+τ

t
exp
{
−
∫ s

t
(λu + φu)du

}
λs ds|Xt

]
detail

Problem: λs and φs unknown

Solution: simulating Xs , λs = λ1(Xs , θ1,t), φs = λ2(Xs , θ2,t) or
specifying forward intensities
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Motivation 1-6

Forward intensities

Combined exit: λt + φt

Reparameterize λit(τ) as fit(τ) and
forward combined exit intensity git(τ)

Duan et al. (2012), fit(τ) and git(τ) are parameterized with
fit(τ) > 0 and git(τ) ≥ fit(τ):

fit(τ) = exp {α0(τ) + α1(τ)xit,1 + . . .+ αp(τ)xit,p} (5)
git(τ) = fit(τ) + exp {β0(τ) + β1(τ)xit,1 + . . .+ βp(τ)xit,p}

Is this a satisfactory calibration technique ?
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Motivation 1-7

What can go wrong ?

For the horizon τ ,

� forward intensities (5) are time homogeneous, i.e. at each t

fit(τ) and git(τ) follow the same structural equation,
αj(τ) and βj(τ) are constant over time

� Are the parameters constant ?
If not, why and where they deviate ?
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Motivation 1-8

What can go wrong ?

Figure 2: Rolling windows (length = 6 years), α̂12(τ) and β̂12(τ), with
τ = 0, 1, . . . , 36.
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Motivation 1-9

Homogeneous interval

Adaptively selecting a data-driven window length

Figure 3: Time varying parameters approximated by piecewise constants.
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Forward Intensities Approach 2-1

Combined exit: default & other exit

τC as combined exit time, survival probability in [t, t + τ ]

P (τC > t + τ |Ft)
def
= E

[
exp
{
−
∫ t+τ

t
(λs + φs)ds

}
|Xt

]
(6)

Forward combined exit intensity gt(s)

P (τC > t + τ |Ft )
def
= exp

{
−
∫ t+τ

t
gt(s)ds

}
(7)

= exp {−ψt(τ)τ}

with ψt(τ)
def
= − log{1−Gt(τ)}

s , Gt(τ) = 1− P {τC > t + τ |Ft }

Localising Forward Intensities



Forward Intensities Approach 2-2

Combined exit

Forward combined exit intensity (hazard rate) for firm i

git(τ)
def
=

G ′it(τ)

1− Git(τ)
= ψit(τ) + ψ′it(τ)τ detail (8)

Therefore

ψit(τ)τ =

∫ τ

0
git(s)ds detail
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Forward Intensities Approach 2-3

Forward default intensity: combined exit

No combined exit till time s, default probability over [t, t + τ ]∫ τ

0
exp {−ψit(s)s} fit(s) ds

with forward default intensity fit(s) is defined as

def
= e−ψit (s)s lim

∆t→0

P (t + s < τDi = τCi ≤ t + s + ∆t |τDi = τCi ≥ t + s )

∆t

= e−ψit (s)s lim
∆t→0

E
[∫ t+s+∆t

t+s exp
{
−
∫ u
t (λiv + φiv )dv

}
λiudu |τDi = τCi ≥ t + s

]
∆t

Note that τCi < τDi
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Forward Intensities Approach 2-4

Recall: forward intensities

Duan et al. (2012), fit(τ) and git(τ) are parameterized with
fit(τ) > 0 and git(τ) ≥ fit(τ):

fit(τ) = exp {α0(τ) + α1(τ)xit,1 + . . .+ αp(τ)xit,p}
git(τ) = fit(τ) + exp {β0(τ) + β1(τ)xit,1 + . . .+ βp(τ)xit,p}

Note: τ = 0 obtain the spot intensity of Duffie et al. (2007)
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Local Change Point 3-1

Localising the forward intensities

� Given (5) for each t one might look for a homogeneous
interval I in which forward intensities are adequately described

� Longer estimation period – reduced variability, enlarge bias
LPA finds a balance between parameter variability and
modelling bias

� Estimation windows with potentially varying length. Find the
longest stable (homogeneity) interval
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Local Change Point 3-2

Interval selection
Given time t, go back and split time series into K intervals,

IK ⊃ · · · ⊃ Ik ⊃ · · · ⊃ I1 ⊃ I0

θ̃K · · · θ̃k · · · θ̃1 θ̃0

for t ∈ Ik , Ik = [t −mk+1 + 1, t], with length |Ik | = mk ,
estimates are obtained using log-likelihood

θ̃k = θ̃Ik =
(
α̃k , β̃k

)>
α̃k =

{
α̃Ik (0), . . . , α̃Ik (τ − 1)

}
; α̃Ik (s) =

(
α̃Ik ,0(s), . . . , α̃Ik ,p(s)

)>
β̃k =

{
β̃Ik (0), . . . , β̃Ik (τ − 1)

}
; β̃Ik (s) =

(
β̃Ik ,0(s), . . . , β̃Ik ,p(s)

)>
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Local Change Point 3-3

MLE

Maximum likelihood estimates (MLEs) of θk = (αk , βk)>

θ̃k = arg max
θ∈Θ

Lk,τ (αk , βk) (9)

where Lk,τ (αk , βk) is likelihood for interval Ik evaluated at τ

Lk,τ (αk , βk) =
N∏

i=1

T−1∏
t=0
t∈Ik

Lτ,i ,t (αk , βk) Likelihood (10)

where sample period from 0 to T for each Ik
N is number of companies at a point in time t
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Local Change Point 3-4

MLE: Decomposable

The likelihood is decomposable into separate αk(τ) and βk(τ)
corresponding to different τ ’s represented by s,

L {αk(s)} =
N∏

i=1

T−s−1∏
t=0

Li ,t {αk(s)} (11)

L {βk(s)} =
N∏

i=1

T−s−1∏
t=0

Li ,t {βk(s)} (12)

where s = 0, 1, . . . , τ − 1 Likelihood
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Local Change Point 3-5

MLE: Decomposable Back

Li,t {αk(s)}
= 1{t0i≤t, τCi>t+s + 1} exp {−fit(s)∆t} (13)

+1{t0i≤t, τDi =τCi≤t+s + 1} [1− exp {−fit(s)∆t}]
+1{t0i≤t,τDi 6=τCi ,τCi≤t+s + 1} exp {−fit(s)∆t}
+1{t0i>t} + 1{τCi≤t+s + 1}

Li,t {βk(s)}
= 1{t0i≤t, τCi>t+s + 1} exp {− [git(s)− fit(s)] ∆t} (14)

+1{t0i≤t, τDi =τCi≤t+s + 1}

+1{t0i≤t,τDi 6=τCi ,τCi≤t+s + 1} [1− exp {− [git(s)− fit(s)] ∆t}]
+1{t0i>t} + 1{τCi≤t+s + 1}

where git(s)− fit(s) = exp {β0(s) + β1(s)xit,1 + . . .+ βp(s)xit,p}
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Local Change Point 3-6

MLE: Decomposable

Grouping observation into

X 0 =
(
x0
1 , . . . , x

0
N0

)>, X 1 =
(
x1
1 , . . . , x

1
N1

)>,
X 2 =

(
x2
1 , . . . , x

2
N2

)>,
where X 0, X 1, and X 2 contain all firm-month observation that
survive, default, and exit due to other reason, respectively.

The N0, N1, and N2 are number of observation in each category.
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Local Change Point 3-7

MLE: Decomposable, ∆t = 1/12

Put log at each indicator function Forward PD Cum. Forward PD

logL {α(s)} = −
N0∑
i=1

exp(x0
i α)∆t

+

N1∑
i=1

log
[
1− exp{− exp(x1

i α)∆t}
]
−

N2∑
i=1

exp(x2
i α)∆t,

logL {β(s)} = −
N0∑
i=1

exp(x0
i β)∆t

+

N1∑
i=1

log
[
1− exp{− exp(x1

i β)∆t}
]
.
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Local Change Point 3-8

Sequential test, fixed τ Note

H0 : Parameter homogeneity within Ik
H1 : Change point within Ik

Test statistic

Tk,τ =
∣∣∣LIk (θ̃k)− LIk (θ̂k−1)

∣∣∣r , k = 1, . . . ,K (15)

zk,τ – Critical values

If Tk,τ > zk,τ , accepts Ik−1 as homogeneous, θ̂k = θ̂k−1 = θ̃k−1

Otherwise, accepts Ik as homogeneous, θ̂k = θ̃k
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Local Change Point 3-9

Critical value, zk,τ

’Propagation’ condition (under H0)

Eθ∗
∣∣∣Lk,τ

{
θ̃k , θ̂k

}∣∣∣r ≤ k ρ
K
Rr (θ∗) , ∀k ≤ K

ρ and r are two hyper-parameters Hyper-par.

’Modest’ risk, r = 0.5 (shorter intervals of homogeneity)

’Conservative’ risk, r = 1 (longer intervals of homogeneity)

Constant risk bound Rr (θ∗) w.r.t. true parameter θ∗ Risk Bound
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Local Change Point 3-10

Adaptive estimation

� Compare Tk,τ at every step k with zk,τ

� Data window index of the interval of homogeneity - k̂

� Adaptive estimate

θ̂ = θ̃k̂ , k̂ = max
k≤K
{k : T`,τ ≤ z`,τ , ` ≤ k}

Localising Forward Intensities



Empirical Result 4-1

Data and Variables

2000 U.S. public firms from Feb 1991 to Dec 2011.

Macroeconomic factors (Wt) Back

� One year simple return on S&P500 index (Xt,1)
� 3-months US Treasury bill rate (Xt,2)

Firm-specific attribute (Uit)

Level: one-year average of the measure
Trend: current value - level
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Empirical Result 4-2

Data and Variables

Firm-specific attribute (Uit) Back

� Volatility-adjusted leverage
I Distance-to-Default (DTD): level (Xit,3), trend (Xit,4) Detail

� Liquidity – CASH/Total Asset: level (Xit,5), trend (Xit,6)

� Profitability – Net Income/Total Asset: level (Xit,7), trend (Xit,8)

� Relative size – log(firm’s equity/average equity of S&P500’s firms):
level (Xit,9), trend (Xit,10)

� Market-to-book asset ratio (Xit,11)

� One-year idiosyncratic volatility (Xit,12) Back Detail, Xit,12 = σit
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Empirical Result 4-3

Set up

� True parameters θ∗ are generated as average over 35 moving
windows (length: 15 years)

� Subset interval Ik = {5, 6, 8, 10, 12, 15} years (monthly-based)

� Monte Carlo simulation to generate critical value zk,τ

for τ = {1, 3, 6, 12, 24, 36} months horizons

Accuracy Ratio (AR) – discriminative power
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Empirical Result 4-4

Estimates: Macroeconomic
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Figure 4: Box-plots of estimates, τ = 12, of default (two left) and other
exits (two right) over 35 windows (length: 5, 6, . . . , 15 years).
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Empirical Result 4-5

Estimates: Firm specific
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Empirical Result 4-6

Estimates

� Robust to Ik
I Macroeconomic: 3-months US Treasury interest rate
I Firm specific: DTD, company size, market-to-book ratio

� Sensitive to Ik
I Macroeconomic: 1-year return of S&P500
I Firm specific: Liquidity, profitability
I Intercept
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Empirical Result 4-7
τ = 1
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Table 2: Interval of homogeneity, r = {0.5, 1}, τ = {1, 3} months.
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Empirical Result 4-8
τ = 6
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Table 3: Interval of homogeneity, r = {0.5, 1}, τ = {6, 12} months.
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τ = 24
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Table 4: Interval of homogeneity, r = {0.5, 1}, τ = {24, 36} months.
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Accuracy Ratio, ρ = 0.50
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Figure 6: AR over windows, r = 0.5 (left), r = 1 (right), for τ =

{1, 3, 6, 12, 24, 36} months horizons.
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Accuracy Ratio, ρ = 0.75
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Figure 7: AR over windows, r = 0.5 (left), r = 1 (right), for τ =

{1, 3, 6, 12, 24, 36} months horizons.
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Table 5: AR-based performance for horizon 1, 3, and 6 months. Mark
√

denotes the corresponding approach results in higher AR whereas ? denotes
equal accuracy for both.
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Table 6: AR-based performance for horizon 12, 24, and 36 months. Mark√
denotes the corresponding approach results in higher AR whereas ?

denotes equal accuracy for both.
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Conclusion

� Employing all past observation (as benchmark) results in
better accuracy prediction for short horizon (1 and 3 months)

� Local approach performs with the same accuracy as the
benchmark for six months horizon

� The accuracy prediction is improved for the longer horizon
(12, 24, 36 months)
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Appendix 6-1

Duffie, Saita, Wang (2007) Surv. Prob.

Conditional probability of default (PD) within τ years ahead

E
[∫ t+τ

t
exp
{
−
∫ s

t
(λu + φu) du

}
λs ds |Xt

]
{Xt : t ≥ 0} be time-homogeneous Markov process in Rp, p ≥ 1
λt = ∧1(Xt) and φt = ∧2(Xt)
∧ is non-negative real-valued measurable function on Rp

State variable Xt governing the Poisson intensities are assumed to follow a
specific high-dimensional VAR process

Deducing PD multiperiod ahead from repeating one-period ahead prediction
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Poisson process Back

Let Di are times between jumps (events), {Di}ni=1 i.i.d. exp(λ)

Tn =
n∑

i=1

Di , T0 = 0

Poisson process with intensity λ:

N(t) = sup {n ≥ 0 : Tn ≤ t} for t ≥ 0 Filtration

Number of jumps in [t, t + τ ] ∼ Pois(λτ)

P [N(t + τ)− N(t) = d ] =
e−(λτ)(λτ)d

d !
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Poisson distribution
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Figure 8: Distribution of number of evants in [t, t + τ ] follow Poisson
distribution. Sample size n = 1000.
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Non-homogeneous Poisson process Back

Intensity λt may change over the time

E [N(τ)|λs , t ≤ s ≤ t + τ ] =

∫ t+τ

t
λs ds

Number of jumps in [t, t + τ ] ∼ Pois
(∫ t+τ

t λs ds
)

P [N(t + τ)− N(t) = d ] =
e−

∫ t+τ
t λs ds

(∫ t+τ
t λs ds

)d

d !
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Filtration

τDi is default time of firm i

P (τDi > t + τ |Ft) = E
[
1{τDi > t+τ}|Ft

]
(16)

Let Xt = (Wt ,Ut), W is common factor and U is firm-specific
{Ft : t ≥ 0} is filtration, where Ft is σ-algebra generated by

{(Uτ ,Dτ ) : τ ≤ min(t, τD)} ∪ {Wτ : τ ≤ t}

with D be Poisson process with intensity λ(Xt)
Poisson process, Dτ = N(τ)

Conditioning on observable smaller filtration

P (τDi > t + τ |Ft)
def
= E

[
1{τDi > t+τ}|Xt

]
= P (τDi > t + τ |Xt)
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Filtration back

Let Xt = (Wt ,Ut), W is common factor and U is firm-specific
{Ft : t ≥ 0} is filtration, where Ft is σ-algebra generated by

{(Uτ ,Dτ ,Oτ ) : τ ≤ min(t, τD , τO)} ∪ {Wτ : τ ≤ t}

with (D,O) be doubly stochastic Poisson process with intensity
λ(Xt) for default and φ(Xt) for other exit

τDi is default time of firm i as stopping time

τDi = inf{t : Dt > 0,Ot = 0}
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Forward intensity at τ Back

Git(τ) = 1− exp {−ψit(τ)τ}

G ′it(τ) = − exp {−ψit(τ)τ}
{
−ψ′it(τ)τ − ψit(τ)

}
= exp {−ψit(τ)τ}ψ′it(τ)τ + exp {−ψit(τ)τ}ψit(τ)

Therefore

G ′it(τ)

1− Git(τ)
=

exp {−ψit(τ)τ}ψit(τ) + exp {−ψit(τ)τ}ψ′it(τ)τ

exp {−ψit(τ)τ}
= ψit(τ) + ψ′it(τ)τ
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Forward intensity at τ Back

git(τ) = ψit(τ) + ψ′it(τ)τ

Therefore∫ τ

0
git(s)ds =

∫ τ

0
ψit(s)ds +

∫ τ

0
ψ′it(s)s ds

=

∫ τ

0
ψit(s)ds + ψit(τ)τ −

∫ τ

0
ψit(s)ds

= ψit(τ)τ
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Likelihood Back

In Ik and t
use the status info {survive, default, other exit} of firm i at t + τ

Lτ,i ,t (αk , βk)

= 1{t0i≤t, τCi>t+τ} Pt(τCi > t + τ)

+1{t0i≤t, τDi =τCi≤t+τ} Pt(τCi ; τDi = τCi ≤ t + τ)

+1{t0i≤t,τDi 6=τCi ,τCi≤t+τ} Pt(τCi ; τDi 6= τCi&τCi ≤ t + τ)

+1{t0i>t} + 1{τCi≤t}

with Pt(τCi ) = P(τCi |Ft) and t0i be the first month that firm i
appeared in the sample
Localising Forward Intensities



Appendix 6-10

Pseudo-Likelihood Back

with ∆t = 1/12, approximate integral by sum

Pt (τCi > t + τ) = exp

{
−
τ−1∑
s=0

git(s)∆t

}
Pt (τCi ; τDi = τCi ≤ t + τ)

=


1− exp {−fit(0)∆t} if τCi = t + 1,

[1− exp {−fit (τCi − t − 1) ∆t}]
× exp

{
−
∑τCi−t−2

s=0 git(s)∆t
}

if t + 1 < τCi ≤ t + τ
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Pseudo-Likelihood Back

Pt (τCi ; τDi 6= τCi&τCi ≤ t + τ)

=



exp {−fit(0)∆t} − exp {−git(0)∆t} if τCi = t + 1,

exp {−fit (τCi − t − 1) ∆t}
− exp {−git (τCi − t − 1) ∆t}
× exp

{
−
∑τCi−t−2

s=0 git(s)∆t
}

if t + 1 < τCi ≤ t + τ
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Forward PD

Provided by estimate θ̃, Decomposable Log-Lik.

In [t + τ, t + τ + 1] with discretized time interval ∆t = 1/12

(i) Forward probability of default (PD)

Pt(t + τ < τDi = τCi ≤ t + τ + 1) = e−ψit(τ)τ∆t
{
1− e−fit(τ)∆t

}
(ii) Forward combined exit probability

Pt(t + τ < τCi ≤ t + τ + 1) = e−ψit(τ)τ∆t
{
1− e−git(τ)∆t

}
Localising Forward Intensities



Appendix 6-13

Forward PD

In interval [t, t + τ ], Decomposable Log-Lik.

(iii) Cumulative PD

Pt(t < τDi = τCi ≤ t + τ) =
τ−1∑
s=0

e−ψit(s)s∆t
{
1− e−fit(s)∆t

}
(iv) Spot combined exit intensity

ψit(τ) =
1
τ
{ψit(τ − 1)(τ − 1) + git(τ − 1)}

No need to specify ψit(0) since it is irrelevant
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Sequential test (k = 1, . . . ,K), fixed τ Back

H0 : parameter homogeneity within Ik
H1 : change point within Ik

Tk,τ = sup
ζ∈Jk

[
LAk,ζ,τ

{
θ̃Ak,ζ

}
+ LBk,ζ,τ

{
θ̃Bk,ζ

}
− LIk+1,τ

{
θ̃Ik+1

}]
, Detail

with Jk = Ik \ Ik−1, Ak,ζ = [t −mk+1, ζ + τ ] and Bk,ζ = (ζ, t + τ ]

Ik = [t −mk , t + τ ] and Ik−1 = [t −mk−1, t + τ ]
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Test statistics Back

I : tested interval possibly contain change point
I = [I ′, I ′′) : larger testing interval
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Test statistics Back

H0 : homogeneity within I vs. H1 : change point within I
LRT Statistics, L(·) is log likelhood function

TI,ζ = max
θ′,θ′′

{
LI ′′(θ

′′) + LI ′(θ
′)
}
−max

θ
LI (θ)

= LI ′(θ̃I ′) + LI ′′(θ̃I ′′)− LI (θ̃I )

Reject H0 if TI,ζ ≥ z
Thus,

TI = max
ζ∈I

TI,ζ

Let I = Ik \ Ik−1,

θ̂ = θ̃k̂ , k̂ = max
k≤K
{k : T` ≤ z`, ` ≤ k}
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LRT: Poisson distribution
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Figure 9: Monte Carlo simulation, similar result for λ = 1, 2, . . . , 9
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LRT: Exponential distribution
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Figure 10: Monte Carlo simulation, similar result for λ = 1, 2, . . . , 9
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Hyper parameters Back

� The role of ρ is similar to the significance level of a test
� The r denotes the power of loss function

Eθ∗ Lr
k,τ

{
θ̃k , θ̂k

}
→ Pθ∗

{
θ̃k 6= θ̂k

}
, r → 0.

� The z1,τ ; . . . ; zK−1,τ enter implicitely in the propagation

condition: if false alarm event
{
θ̃k 6= θ̂k

}
happen too often, it

is indication that some z1,τ ; . . . ; zk−1,τ are too small
� Note: propagation condition relies on artificial parametric

model Pθ∗ instead of the true model P

Localising Forward Intensities
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Parametric risk bound Propagation

Eθ∗
∣∣∣LK (θ̃K , θ

∗)
∣∣∣r = Rr (θ∗)

= −
∫
z≥0

zrd Pθ∗
{∣∣∣LK (θ̃K , θ

∗)
∣∣∣ > z

}
= r

∫ ∞
0

zr−1 Pθ∗
{∣∣∣LK (θ̃K , θ

∗)
∣∣∣ > z

}
dz

= r
∫ ∞

0
zr−1 Pθ∗

{∣∣∣LK (θ̃K , θ
∗)
∣∣∣ > z, θ̃K ∈ E(z)

}
dz

+ r
∫ ∞

0
zr−1 Pθ∗

{∣∣∣LK (θ̃K , θ
∗)
∣∣∣ > z, θ̃K /∈ E(z)

}
dz

≤ 2r
∫ ∞

0
zr−1e−zdz <∞

Note: E(z)
def
=
{
θ∗ : LK (θ̃K )− LK (θ∗) ≤ z

}
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Distance-to-Default (DTD), Merton
Variable

firms are financed by equity (E) and one single pure discount bond with
maturity time T and principal Db (book value of the debt).
Firm’s asset value VA,t follow Geometric Brownian Motion (GBM)

dVA,t = µVA,tdt + σAVA,tdBt (17)

µ and σA are instantaneous drift and volatility, B is standard Wiener process

Black-Scholes model

VE ,t = VA,tΦ(d1,t)− Db e−r(T−t)Φ(d2,t) (18)

with

d1,t =
log(VA,t/Db) + (r + 1

2σ
2
A)(T − t)

σA
√

(T − t)
, d2,t = d1,t − σA

√
T − t (19)

where VE ,t is market value of equity at time t, (T − t) is time to expiration (of
call option VA), and r is risk-free interest rate
Localising Forward Intensities
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MODELING DEFAULT RISK 23 

However, most of the time the market will be well aware of problems, or opportunities, and this information will be 
fairly reflected in the EDF value, see Figure 14 and Figure 15.  
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Figure 11: Market value of asset, equity, and book value of liabilities (de-
fault point)
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DTD, Merton & KMV Variable

Probability of Default (PD)

PDt = P(VA,t+T ≤ Dbt |VA,t) = Φ(DTDt)

with

DTDt =
log(VA,t/Db) + (µ− 1

2σ
2
A)(T − t)

σA
√

(T − t)
(20)

µ cannot be estimated with reasonable precision unless for very
long time span data

KMV’s DTD avoids using µ

DTDt =
log(VA,t/Db)

σA
√

(T − t)
(21)
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Distance-to-Default (DTD) Variable

KMV typically set (T − t) to one year and default point

Db = DbST + 0.5DbLT (22)

where ST is hort term and LT is long term

Problem: Financial firm typically have large amount of liabilities
that are neither classified as ST nor LT

Duan (2012) modified KMV default point as

Db = DbST + 0.5DbLT + δDbother (23)
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Idiosyncratic Volatility Variable

Over the preceeding 12 months

Rit = βRt + εit , εit ∼ N(0, σ2
it) (24)

Rit is stock return of firm i
Rt is value-wieghted CRSP monthly return
σit is one-year idiosyncratic volatility

Following Shumway (2001), σit is missing if there are less than 12
monthly returns

Localising Forward Intensities
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