Localising Forward Intensities for Multiperiod Default

Dedy Dwi Prastyo Wolfgang Karl Härdle

Ladislaus von Bortkiewicz Chair of Statistics C.A.S.E. – Center for Applied Statistics and Economics Humboldt–Universität zu Berlin <http://lvb.wiwi.hu-berlin.de> <http://www.case.hu-berlin.de>

Poisson process and default time

Figure 1: Poisson process $N(t)$ with intensity λ_t .

 \Box Time of default τ_D : first jump time of $N(t)$

Survival probability

 \Box For known path $\lambda_{\boldsymbol{s}},{\rm\,$ survival probability in $[t,t+\tau]$

$$
P(\tau_D > t + \tau) = \exp\left\{-\int_t^{t+\tau} \lambda_s \, ds\right\} \tag{1}
$$

 $\Box \ \lambda_{\mathsf{s}} = \lambda(X_{\mathsf{s}})$ stochastic determined by state variable X_{s} . Filtration \mathcal{F}_t , simulating path of X_s , **DIGBY**

$$
P(\tau_D > t + \tau | \mathcal{F}_t) = E\left[\exp\left\{-\int_t^{t+\tau} \lambda(X_s, \theta_t) \ ds\right\} | X_t\right] \tag{2}
$$

 \Box Simulation on high dimensional X_{s} is quite challenging

Forward default intensity, $\lambda_t(s)$

 \Box Hazard function where survival time is evaluated at a fixed horizon

$$
\lambda_t(s) \stackrel{\text{def}}{=} \lim_{\Delta t \to 0} \frac{P(t+s < \tau_D \le t+s + \Delta t | \tau_D \ge t+s)}{\Delta t} \tag{3}
$$
\n
$$
= F'_t(s) / \{1 - F_t(s)\},
$$

where $F_t(s) = 1 - P(\tau_D > t + s | \mathcal{F}_t)$

 \Box Avoid modelling X_s , specify $\lambda_t(s) = \lambda(s, X_t)$ $\mathsf{P}\left(\tau_D > t+\tau\left|\mathcal{F}_t\right.\right) = \exp\left\{-\int^{t+\tau}$ t $\lambda_t(s)$ ds $\}$ (4)

Specifications of λ_s

Table 1: The specifications of the default intensity.

$$
X_{it} = (x_{it,1}, x_{it,2}, \ldots, x_{it,p}) = (W_t, U_{it})
$$

 W_t W_t – Macroeconomic factors (common) W_t U_{it} U_{it} – Firm specific attributes U_{it}

Doubly stochastic Poisson process

Default (with intensity λ_t) and other exits (ϕ_t) governed by two independent doubly stochastic Poisson process

Conditional probability to survive and to default in $[t, t + \tau]$

$$
\mathsf{E}\left[\exp\left\{-\int_{t}^{t+\tau}(\lambda_{s}+\phi_{s})ds\right\}|X_{t}\right]
$$
\n
$$
\mathsf{E}\left[\int_{t}^{t+\tau}\exp\left\{-\int_{t}^{s}(\lambda_{u}+\phi_{u})du\right\}\lambda_{s}ds|X_{t}\right]
$$
\nLet $\mathsf{E}\left[\int_{t}^{t+\tau}|\phi_{s}|\left(\lambda_{u}+\phi_{u}\right)du\right]\lambda_{s}ds\right]$

Problem: λ_s and ϕ_s unknown

Solution: simulating $\chi_{\mathsf{s}},\ \lambda_{\mathsf{s}}=\lambda_{1}(\mathsf{X}_{\mathsf{s}},\theta_{1,t}),\ \phi_{\mathsf{s}}=\lambda_{2}(\mathsf{X}_{\mathsf{s}},\theta_{2,t})$ or specifying forward intensities

Forward intensities

Combined exit: $\lambda_t + \phi_t$ Reparameterize $\lambda_{it}(\tau)$ as $f_{it}(\tau)$ and forward combined exit intensity $g_{it}(\tau)$

Duan et al. (2012), $f_{it}(\tau)$ and $g_{it}(\tau)$ are parameterized with $f_{it}(\tau) > 0$ and $g_{it}(\tau) > f_{it}(\tau)$:

 $f_{it}(\tau) = \exp{\{\alpha_0(\tau) + \alpha_1(\tau) x_{it,1} + \ldots + \alpha_p(\tau) x_{it,p}\}}$ (5) $g_{it}(\tau) = f_{it}(\tau) + \exp \{ \beta_0(\tau) + \beta_1(\tau) x_{it,1} + \ldots + \beta_n(\tau) x_{it,n} \}$

Is this a satisfactory calibration technique ?

What can go wrong ?

For the horizon τ .

 \Box forward intensities [\(5\)](#page-6-0) are time homogeneous, i.e. at each t

 $f_{it}(\tau)$ and $g_{it}(\tau)$ follow the same structural equation, $\alpha_i(\tau)$ and $\beta_i(\tau)$ are constant over time

 \Box Are the parameters constant ? If not, why and where they deviate ?

What can go wrong ?

Figure 2: Rolling windows (length = 6 years), $\hat{\alpha}_{12}(\tau)$ and $\hat{\beta}_{12}(\tau)$, with $\tau = 0, 1, \ldots, 36.$

Homogeneous interval

Adaptively selecting a data-driven window length

Figure 3: Time varying parameters approximated by piecewise constants.

Outline

- 1. Motivation \checkmark
- 2. Forward Intensities Approach
- 3. Local Change Point detection
- 4. Empirical Result
- 5. Conclusion

Combined exit: default & other exit

 τ_C as combined exit time, survival probability in [t, t + τ]

$$
P(\tau_C > t + \tau | \mathcal{F}_t) \stackrel{\text{def}}{=} E\left[\exp\left\{-\int_t^{t+\tau} (\lambda_s + \phi_s) ds\right\} | X_t\right] \qquad (6)
$$

Forward combined exit intensity $g_t(s)$

$$
P(\tau_C > t + \tau | \mathcal{F}_t) \stackrel{\text{def}}{=} \exp \left\{-\int_t^{t+\tau} g_t(s)ds\right\} \qquad (7)
$$

$$
= \exp \left\{-\psi_t(\tau)\tau\right\}
$$

with
$$
\psi_t(\tau) \stackrel{\text{def}}{=} -\frac{\log\{1-G_t(\tau)\}}{s}
$$
, $G_t(\tau) = 1 - P\{\tau_C > t + \tau | \mathcal{F}_t\}$

Combined exit

Forward combined exit intensity (hazard rate) for firm i

$$
g_{it}(\tau) \stackrel{\text{def}}{=} \frac{G'_{it}(\tau)}{1 - G_{it}(\tau)} = \psi_{it}(\tau) + \psi'_{it}(\tau)\tau \quad \text{[j.e.,}
$$
 (8)

Therefore

$$
\psi_{it}(\tau)\tau = \int_0^{\tau} g_{it}(s)ds \quad \text{[t] details]}
$$

Forward default intensity: combined exit

No combined exit till time s, default probability over $[t, t + \tau]$

$$
\int_0^\tau \exp\left\{-\psi_{it}(s)s\right\} f_{it}(s) \; ds
$$

with forward default intensity $f_{it}(s)$ is defined as

$$
\begin{aligned}\n&\stackrel{\text{def}}{=} e^{-\psi_{it}(s)s} \lim_{\Delta t \to 0} \frac{P(t+s < \tau_{Di} = \tau_{Ci} \leq t+s + \Delta t \, | \tau_{Di} = \tau_{Ci} \geq t+s)}{\Delta t} \\
&= e^{-\psi_{it}(s)s} \lim_{\Delta t \to 0} \frac{E\left[\int_{t+s}^{t+s+\Delta t} \exp\left\{-\int_{t}^{u} (\lambda_{iv} + \phi_{iv}) dv\right\} \lambda_{iu} du \, | \tau_{Di} = \tau_{Ci} \geq t+s\right]}{\Delta t}\n\end{aligned}
$$

Note that $\tau_{Ci} < \tau_{Di}$

Recall: forward intensities

Duan et al. (2012), $f_{it}(\tau)$ and $g_{it}(\tau)$ are parameterized with $f_{it}(\tau) > 0$ and $g_{it}(\tau) \geq f_{it}(\tau)$:

$$
f_{it}(\tau) = \exp \{ \alpha_0(\tau) + \alpha_1(\tau) x_{it,1} + \ldots + \alpha_p(\tau) x_{it,p} \}
$$

$$
g_{it}(\tau) = f_{it}(\tau) + \exp \{ \beta_0(\tau) + \beta_1(\tau) x_{it,1} + \ldots + \beta_p(\tau) x_{it,p} \}
$$

Note: $\tau = 0$ obtain the spot intensity of Duffie et al. (2007)

Localising the forward intensities

- \boxdot Given [\(5\)](#page-6-0) for each t one might look for a homogeneous interval I in which forward intensities are adequately described
- \boxdot Longer estimation period reduced variability, enlarge bias LPA finds a balance between parameter variability and modelling bias
- \boxdot Estimation windows with potentially varying length. Find the longest stable (homogeneity) interval

Interval selection

Given time t , go back and split time series into K intervals,

$$
l_K \supset \cdots \supset l_k \supset \cdots \supset l_1 \supset l_0
$$

$$
\widetilde{\theta}_K \qquad \cdots \qquad \widetilde{\theta}_k \qquad \cdots \qquad \widetilde{\theta}_1 \qquad \widetilde{\theta}_0
$$

for $t \in I_k$, $I_k = [t - m_{k+1} + 1, t]$, with length $|I_k| = m_k$, estimates are obtained using log-likelihood

$$
\widetilde{\theta}_{k} = \widetilde{\theta}_{I_{k}} = (\widetilde{\alpha}_{k}, \widetilde{\beta}_{k})^{\top} \n\widetilde{\alpha}_{k} = \{\widetilde{\alpha}_{I_{k}}(0), \ldots, \widetilde{\alpha}_{I_{k}}(\tau - 1)\}; \quad \widetilde{\alpha}_{I_{k}}(s) = (\widetilde{\alpha}_{I_{k},0}(s), \ldots, \widetilde{\alpha}_{I_{k},p}(s))^{\top} \n\widetilde{\beta}_{k} = \{\widetilde{\beta}_{I_{k}}(0), \ldots, \widetilde{\beta}_{I_{k}}(\tau - 1)\}; \quad \widetilde{\beta}_{I_{k}}(s) = (\widetilde{\beta}_{I_{k},0}(s), \ldots, \widetilde{\beta}_{I_{k},p}(s))^{\top}
$$

MLE

Maximum likelihood estimates (MLEs) of $\theta_k = (\alpha_k, \beta_k)^\top$

$$
\widetilde{\theta}_k = \arg \max_{\theta \in \Theta} L_{k,\tau} \left(\alpha_k, \beta_k \right) \tag{9}
$$

where $L_{k,\tau}(\alpha_k,\beta_k)$ is likelihood for interval I_k evaluated at τ

$$
L_{k,\tau}(\alpha_k,\beta_k) = \prod_{i=1}^{N} \prod_{\substack{t=0 \ t \in I_k}}^{T-1} L_{\tau,i,t}(\alpha_k,\beta_k) \quad \text{(Likelihood)} \tag{10}
$$

where sample period from 0 to T for each I_k N is number of companies at a point in time t

MLE: Decomposable

The likelihood is decomposable into separate $\alpha_k(\tau)$ and $\beta_k(\tau)$ corresponding to different τ 's represented by s,

$$
L\{\alpha_k(s)\} = \prod_{i=1}^N \prod_{t=0}^{T-s-1} L_{i,t} \{\alpha_k(s)\}
$$
(11)

$$
L\{\beta_k(s)\} = \prod_{i=1}^N \prod_{t=0}^{T-s-1} L_{i,t} \{\beta_k(s)\}
$$
(12)

where $s = 0, 1, \ldots, \tau - 1$ \longleftrightarrow [Likelihood](#page-19-0)

MLE: Decomposable

$$
L_{i,t} \{\alpha_{k}(s)\}\n= 1_{\{t_{0i} \leq t, \tau_{Ci} > t+s+1\}} \exp \{-f_{it}(s)\Delta t\}\n+ 1_{\{t_{0i} \leq t, \tau_{Di} = \tau_{Ci} \leq t+s+1\}} [1 - \exp \{-f_{it}(s)\Delta t\}]\n+ 1_{\{t_{0i} \leq t, \tau_{Di} \neq \tau_{Ci}, \tau_{Ci} \leq t+s+1\}} \exp \{-f_{it}(s)\Delta t\}\n+ 1_{\{t_{0i} > t\}} + 1_{\{\tau_{Ci} \leq t+s+1\}}\nL_{i,t} \{\beta_{k}(s)\}\n= 1_{\{t_{0i} \leq t, \tau_{Ci} > t+s+1\}} \exp \{-[g_{it}(s) - f_{it}(s)] \Delta t\}\n+ 1_{\{t_{0i} \leq t, \tau_{Di} = \tau_{Ci} \leq t+s+1\}}\n+ 1_{\{t_{0i} \leq t, \tau_{Di} \neq \tau_{Ci}, \tau_{Ci} \leq t+s+1\}} [1 - \exp \{-[g_{it}(s) - f_{it}(s)] \Delta t\}] \n+ 1_{\{t_{0i} > t\}} + 1_{\{\tau_{Ci} \leq t+s+1\}}
$$

where $g_{it}(s) - f_{it}(s) = \exp \{ \beta_0(s) + \beta_1(s) x_{it,1} + \ldots + \beta_p(s) x_{it,p} \}$

MLE: Decomposable

Grouping observation into

$$
X^{0} = (x_{1}^{0},...,x_{N_{0}}^{0})^{\top}, X^{1} = (x_{1}^{1},...,x_{N_{1}}^{1})^{\top},
$$

$$
X^{2} = (x_{1}^{2},...,x_{N_{2}}^{2})^{\top},
$$

where X^0 , X^1 , and X^2 contain all firm-month observation that survive, default, and exit due to other reason, respectively.

The N_0 , N_1 , and N_2 are number of observation in each category.

MLE: Decomposable, $\Delta t = 1/12$

Put log at each indicator function ([Forward PD](#page-56-0)) ([Cum. Forward PD](#page-57-0))

$$
\begin{array}{lll} \log L\left\{\alpha(s)\right\} & = -\sum_{i=1}^{N_0} \exp(x_i^0 \alpha) \Delta t \\ & + \sum_{i=1}^{N_1} \log\left[1 - \exp\{-\exp(x_i^1 \alpha) \Delta t\}\right] - \sum_{i=1}^{N_2} \exp(x_i^2 \alpha) \Delta t, \\ \log L\left\{\beta(s)\right\} & = -\sum_{i=1}^{N_0} \exp(x_i^0 \beta) \Delta t \\ & + \sum_{i=1}^{N_1} \log\left[1 - \exp\{-\exp(x_i^1 \beta) \Delta t\}\right]. \end{array}
$$

Sequential test, fixed τ (Mote)

 H_0 : Parameter homogeneity within I_k H_1 : Change point within I_k

Test statistic

$$
\mathcal{T}_{k,\tau} = \left| L_{l_k}(\widetilde{\theta}_k) - L_{l_k}(\widehat{\theta}_{k-1}) \right|^r, \quad k = 1,\ldots, K \tag{15}
$$

 $\lambda_{k,\tau}$ – Critical values

If $T_{k,\tau} > \mathfrak{z}_{k,\tau}$, accepts l_{k-1} as homogeneous, $\theta_k = \theta_{k-1} = \theta_{k-1}$ Otherwise, accepts I_k as homogeneous, $\theta_k = \theta_k$

Critical value, $\mathfrak{z}_{k,\tau}$

'Propagation' condition (under
$$
H_0
$$
)

$$
\mathsf{E}_{\theta^*}\left|L_{k,\tau}\left\{\widetilde{\theta}_k,\widehat{\theta}_k\right\}\right|^r\leq \frac{k \ \rho}{K} \ \mathcal{R}_r\left(\theta^*\right),\quad \forall k\leq K
$$

 ρ and r are two hyper-parameters \longrightarrow [Hyper-par.](#page-63-0) 'Modest' risk, $r = 0.5$ (shorter intervals of homogeneity) 'Conservative' risk, $r = 1$ (longer intervals of homogeneity) Constant risk bound $\mathcal{R}_r(\theta^*)$ w.r.t. true parameter θ ∗ [Risk Bound](#page-64-0)

Adaptive estimation

$$
\Box
$$
 Compare $T_{k,\tau}$ at every step k with $\mathfrak{z}_{k,\tau}$

 \boxdot Data window index of the *interval of homogeneity -* \widehat{k}

 \Box Adaptive estimate

$$
\widehat{\theta} = \widetilde{\theta}_{\widehat{k}}, \quad \widehat{k} = \max_{k \leq K} \{ k : T_{\ell, \tau} \leq \mathfrak{z}_{\ell, \tau}, \ell \leq k \}
$$

Data and Variables

2000 U.S. public firms from Feb 1991 to Dec 2011.

Macroeconomic factors $(W_t) \longrightarrow$ [Back](#page-4-0)

 \Box One year simple return on S&P500 index $(X_{t,1})$

 \Box 3-months US Treasury bill rate $(X_{t,2})$

Firm-specific attribute (U_{it})

Level: one-year average of the measure Trend: current value - level

Data and Variables

Firm-specific attribute $(U_{it}) \longrightarrow$ [Back](#page-4-0)

- \Box Volatility-adjusted leverage
	- Distance-to-Default (DTD): level $(X_{it,3})$, trend $(X_{it,4})$ [Detail](#page-67-0)
		-
- \Box Liquidity CASH/Total Asset: level $(X_{it,5})$, trend $(X_{it,6})$
- Profitability Net Income/Total Asset: level $(X_{it,7})$, trend $(X_{it,8})$
- \Box Relative size log(firm's equity/average equity of S&P500's firms): level $(X_{it,9})$, trend $(X_{it,10})$
- \Box Market-to-book asset ratio $(X_{it,11})$
- **One-year idiosyncratic volatility** $(X_{it,12})$ \rightarrow [Back](#page-0-1) \rightarrow [Detail,](#page-69-1) $X_{it,12} = \sigma_{it}$

Set up

- \Box True parameters θ^* are generated as average over 35 moving windows (length: 15 years)
- \Box Subset interval $I_k = \{5, 6, 8, 10, 12, 15\}$ years (monthly-based)
- \Box Monte Carlo simulation to generate critical value $\mathfrak{z}_{k,\tau}$ for $\tau = \{1, 3, 6, 12, 24, 36\}$ months horizons

Accuracy Ratio (AR) – discriminative power

Estimates: Macroeconomic

exits (two right) over 35 windows (length: $5, 6, \ldots, 15$ years). Figure 4: Box-plots of estimates, $\tau=12$, of default (two left) and other 4

Estimates: Firm specific −
− −
−

(length: $5, 6, \ldots, 15$ years). Figure 5: Box-plots of estimates, $\tau = 12$, of default over 35 windows

−
−

Estimates

\Box Robust to I_k

- ▶ Macroeconomic: 3-months US Treasury interest rate
- Firm specific: DTD, company size, market-to-book ratio

\Box Sensitive to I_k

- Macroeconomic: 1-year return of S&P500
- Firm specific: Liquidity, profitability
- **Intercept**

Table 2: Interval of homogeneity, $r = \{0.5, 1\}$, $\tau = \{1, 3\}$ months. [Localising Forward Intensities](#page-0-0)

Table 3: Interval of homogeneity, $r = \{0.5, 1\}$, $\tau = \{6, 12\}$ months. [Localising Forward Intensities](#page-0-0)

Table 4: Interval of homogeneity, $r = \{0.5, 1\}$, $\tau = \{24, 36\}$ months. [Localising Forward Intensities](#page-0-0)

Accuracy Ratio, $\rho = 0.50$

Figure 6: AR over windows, $r = 0.5$ (left), $r = 1$ (right), for $\tau =$ ${1, 3, 6, 12, 24, 36}$ months horizons. [Localising Forward Intensities](#page-0-0)

Accuracy Ratio, $\rho = 0.75$

Figure 7: AR over windows, $r = 0.5$ (left), $r = 1$ (right), for $\tau =$ ${1, 3, 6, 12, 24, 36}$ months horizons. [Localising Forward Intensities](#page-0-0)

Table 5: AR-based performance for horizon 1, 3, and 6 months. Mark $\sqrt{}$ denotes the corresponding approach results in higher AR whereas \star denotes equal accuracy for both.

[Empirical Result](#page-35-0) **4-13**

Table 6: AR-based performance for horizon 12, 24, and 36 months. Mark $\sqrt{\frac{1}{2}}$ denotes the corresponding approach results in higher AR whereas \star denotes equal accuracy for both.

Conclusion

- \boxdot Employing all past observation (as benchmark) results in better accuracy prediction for short horizon (1 and 3 months)
- \boxdot Local approach performs with the same accuracy as the benchmark for six months horizon
- \Box The accuracy prediction is improved for the longer horizon (12, 24, 36 months)

Localising Forward Intensities for Multiperiod Default

Dedy Dwi Prastyo Wolfgang Karl Härdle

Ladislaus von Bortkiewicz Chair of Statistics C.A.S.E. – Center for Applied Statistics and Economics Humboldt–Universität zu Berlin <http://lvb.wiwi.hu-berlin.de> <http://www.case.hu-berlin.de>

E. Bai, J. and Perron, P.

Estimating and Testing Linear Models with Multiple Structural **Changes**

Econometrica, 66(1): 47–78, 1998

- **Belomestny, D. and Spokoiny, V.** Spatial aggregation of local likelihood estimates with applications to classification The Annals of Statistics 35(5): 2287–2311, 2007
- **a** Cai, Z., Fan, J., and Yao, Q.

Functional-coefficient regression models for nonlinear time series

J. Am. Stat. Assoc. 95(451): 941–956, 2000

Chen, Y. and Niu, L.

Adaptive dynamic Nelson-Siegel term structure model with applications

Journal of Econometrics 180(1): 98–115, 2014

- \Box Čížek, P., Härdle, W., and Spokoiny, V. Adaptive pointwise estimation in time-inhomogeneous conditional heterocedasticity models The Econometrics Journal 12(2): 248–271, 2009
- Duan, J-C., Sun, J., and Wang, T. 歸

Multiperiod Corporate Default Prediction – A Forward Intensity Approach

Journal of Econometrics 170(1): 191–209, 2012


```
螶
   Duffie, D., Saita, L., and Wang, Ke.
   Multi-period Corporate Default Prediction with Stochastic
   Covariates
   Journal of Financial Economics 83: 635–665, 2007
```
Fan, J. and Zhang, W. Statistical Method with Varying Coefficient Models Stat Inference 1(1): 179–195, 2008

Katkovnik, V. and Spokoiny, V. Spatially adaptive estimation via fitted local likelihood techniques

IEEE Transactions on Signal Processing 56(3): 873–886, 2008


```
E.
   Mercurio, D. and Spokoiny, V.
   Statistical inference for time-inhomogeneous volatility models
   The Annals of Statistics 32(2): 577–602, 2004
```

```
■ Shumway, T.
```
Forecasting bankruptcy more accurately: a simple hazard model The Journal of Business 74(1): 101–124, 2001

B Spokoiny, V.

Estimation of a function with discontinuities via local polynomial fit with an adaptive window choice The Annals of Statistics 26(4): 1356–1378, 1998

Spokoiny, V.

Multiscale Local Change Point Detection with Applications to Value-at-Risk

The Annals of Statistics 37(3): 1405–1436, 2009

暈 Risk Management Institute Construction and Application of the Corporate Vulnerability Index CVI White Paper: Jan, 2013

Duffie, Saita, Wang (2007) ([Surv. Prob.](#page-2-1)

Conditional probability of default (PD) within τ years ahead

$$
\mathsf{E}\left[\int_{t}^{t+\tau}\exp\left\{-\int_{t}^{s}(\lambda_{u}+\phi_{u})\ du\right\}\lambda_{s}\ ds\left|X_{t}\right.\right]
$$

 $\{X_t : t \geq 0\}$ be time-homogeneous Markov process in $\mathbb{R}^p, p \geq 1$ $\lambda_t = \wedge_1(X_t)$ and $\phi_t = \wedge_2(X_t)$ \wedge is non-negative real-valued measurable function on \mathbb{R}^p

State variable X_t governing the Poisson intensities are assumed to follow a specific high-dimensional VAR process

Deducing PD multiperiod ahead from repeating one-period ahead prediction

Poisson process **[Back](#page-1-0)**

Let D_i are times between jumps (events), $\{D_i\}_{i=1}^n$ i.i.d. $\exp(\lambda)$

$$
T_n = \sum_{i=1}^n D_i, \quad T_0 = 0
$$

Poisson process with intensity λ :

$$
N(t) = \sup \{ n \geq 0 : T_n \leq t \} \text{ for } t \geq 0 \quad \text{Filtration}
$$

Number of jumps in $[t, t + \tau] \sim \text{Pois}(\lambda \tau)$

$$
P[N(t+\tau)-N(t)=d]=\frac{e^{-(\lambda\tau)}(\lambda\tau)^d}{d!}
$$

Poisson distribution

Figure 8: Distribution of number of evants in $[t, t + \tau]$ follow Poisson distribution. Sample size $n = 1000$.

Non-homogeneous Poisson process

Intensity λ_t may change over the time

$$
\mathsf{E}\left[N(\tau)|\lambda_{s},t\leq s\leq t+\tau\right]=\int_{t}^{t+\tau}\lambda_{s} \;ds
$$

Number of jumps in $[t, t + \tau] \sim \operatorname{Pois}\left(\int_t^{t+\tau} \lambda_s \ ds\right)$

$$
P[N(t+\tau)-N(t) = d] = \frac{e^{-\int_t^{t+\tau} \lambda_s ds} \left(\int_t^{t+\tau} \lambda_s ds\right)^d}{d!}
$$

Filtration

 τ_{Di} is default time of firm *i*

$$
P(\tau_{Di} > t + \tau | \mathcal{F}_t) = E \left[1_{\{\tau_{Di} > t + \tau\}} | \mathcal{F}_t \right]
$$
(16)

Let $X_t = (W_t, U_t)$, W is common factor and U is firm-specific $\{\mathcal{F}_{\bm t}: \bm t \ge \bm 0\}$ is filtration, where $\mathcal{F}_{\bm t}$ is σ -algebra generated by

 $\{(U_{\tau}, D_{\tau}) : \tau \leq \min(t, \tau_D)\} \cup \{W_{\tau} : \tau \leq t\}$

with D be Poisson process with intensity $\lambda(X_t)$

[Poisson process,](#page-46-0) $D_{\tau} = N(\tau)$

Conditioning on observable smaller filtration

$$
P(\tau_{Di} > t + \tau | \mathcal{F}_t) \stackrel{\text{def}}{=} E\left[1_{\{\tau_{Di} > t + \tau\}} | X_t\right] = P(\tau_{Di} > t + \tau | X_t)
$$

Let $X_t = (W_t, U_t)$, W is common factor and U is firm-specific $\{\mathcal{F}_{\bm t}: \bm t \ge \bm 0\}$ is filtration, where $\mathcal{F}_{\bm t}$ is σ -algebra generated by

$$
\{ (U_\tau, D_\tau, O_\tau) : \tau \leq \min(t, \tau_D, \tau_O) \} \cup \{ W_\tau : \tau \leq t \}
$$

with (D, O) be doubly stochastic Poisson process with intensity $\lambda(X_t)$ for default and $\phi(X_t)$ for other exit

 τ_{Di} is default time of firm *i* as stopping time

$$
\tau_{Di}=\inf\{t:D_t>0,O_t=0\}
$$

Forward intensity at τ ([Back](#page-12-0))

$$
G_{it}(\tau) = 1 - \exp\{-\psi_{it}(\tau)\tau\}
$$

$$
G'_{it}(\tau) = -\exp\{-\psi_{it}(\tau)\tau\} \{-\psi'_{it}(\tau)\tau - \psi_{it}(\tau)\}
$$

=
$$
\exp\{-\psi_{it}(\tau)\tau\} \psi'_{it}(\tau)\tau + \exp\{-\psi_{it}(\tau)\tau\} \psi_{it}(\tau)
$$

Therefore

$$
\frac{G'_{it}(\tau)}{1 - G_{it}(\tau)} = \frac{\exp\{-\psi_{it}(\tau)\tau\} \psi_{it}(\tau) + \exp\{-\psi_{it}(\tau)\tau\} \psi'_{it}(\tau)\tau}{\exp\{-\psi_{it}(\tau)\tau\}} = \psi_{it}(\tau) + \psi'_{it}(\tau)\tau
$$

Forward intensity at τ ([Back](#page-12-0))

$$
g_{it}(\tau)=\psi_{it}(\tau)+\psi_{it}^{\prime}(\tau)\tau
$$

Therefore

$$
\int_0^{\tau} g_{it}(s)ds = \int_0^{\tau} \psi_{it}(s)ds + \int_0^{\tau} \psi'_{it}(s)s ds
$$

=
$$
\int_0^{\tau} \psi_{it}(s)ds + \psi_{it}(\tau)\tau - \int_0^{\tau} \psi_{it}(s)ds
$$

=
$$
\psi_{it}(\tau)\tau
$$

 $L_{\tau i,t}(\alpha_k,\beta_k)$

L ikelihood L [Back](#page-17-0)

In I_k and t use the status info {survive, default, other exit} of firm *i* at $t + \tau$

 $= 1_{\{t_0 \leq t, \tau_{Ci} > t + \tau\}} P_t(\tau_{Ci} > t + \tau)$ $+1_{\{t_0\leq t, \tau_D\equiv \tau_C\leq t+\tau\}} P_t(\tau_{Ci};\tau_{Di}=\tau_{Ci}\leq t+\tau)$ $+1_{\{t_0\leq t,\tau_{\text{DI}}\neq \tau_{\text{CI}},\tau_{\text{CI}}\leq t+\tau\}} P_t(\tau_{\text{CI}};\tau_{\text{DI}}\neq \tau_{\text{CI}}\&\tau_{\text{CI}}\leq t+\tau)$ $+1_{\{t_0\geq t\}} + 1_{\{\tau_c\leq t\}}$

with $P_t(\tau_{Ci}) = P(\tau_{Ci}|\mathcal{F}_t)$ and t_{0i} be the first month that firm *i* appeared in the sample

Pseudo-Likelihood [Back](#page-17-0)

with $\Delta t = 1/12$, approximate integral by sum

$$
P_t(\tau_{Ci} > t + \tau) = \exp\left\{-\sum_{s=0}^{\tau-1} g_{it}(s)\Delta t\right\}
$$

\n
$$
P_t(\tau_{Ci}; \tau_{Di} = \tau_{Ci} \le t + \tau)
$$

\n
$$
= \begin{cases}\n1 - \exp\{-f_{it}(0)\Delta t\} & \text{if } \tau_{Ci} = t + 1, \\
[1 - \exp\{-f_{it}(\tau_{Ci} - t - 1)\Delta t\}] \\
\times \exp\left\{-\sum_{s=0}^{\tau_{Ci} - t - 2} g_{it}(s)\Delta t\right\} & \text{if } t + 1 < \tau_{Ci} \le t + \tau\n\end{cases}
$$

Pseudo-Likelihood [Back](#page-17-0)

$$
P_t(\tau_{Ci};\tau_{Di} \neq \tau_{Ci}\&\tau_{Ci} \leq t + \tau)
$$
\n
$$
= \begin{cases}\n\exp \{-f_{it}(0)\Delta t\} - \exp \{-g_{it}(0)\Delta t\} & \text{if } \tau_{Ci} = t + 1, \\
\exp \{-f_{it}(\tau_{Ci} - t - 1)\Delta t\} \\
-\exp \{-g_{it}(\tau_{Ci} - t - 1)\Delta t\} \\
\times \exp \{-\sum_{s=0}^{\tau_{Ci} - t - 2} g_{it}(s)\Delta t\} & \text{if } t + 1 < \tau_{Ci} \leq t + \tau\n\end{cases}
$$

Forward PD

Provided by estimate θ , Pecomposable Log-Lik. In $[t + \tau, t + \tau + 1]$ with discretized time interval $\Delta t = 1/12$ (i) Forward probability of default (PD) $\mathsf{P}_t(t+\tau<\tau_{Di}=\tau_{Ci}\leq t+\tau+1)=e^{-\psi_{it}(\tau)\tau\Delta t}\left\{1-e^{-f_{it}(\tau)\Delta t}\right\}$ (ii) Forward combined exit probability $\mathsf{P}_t(t+\tau<\tau_{\textit{Ci}}\leq t+\tau+1)=e^{-\psi_{\textit{it}}(\tau)\tau\Delta t}\left\{1-e^{-\mathcal{E}_{\textit{it}}(\tau)\Delta t}\right\}$

Forward PD

In interval $[t, t + \tau]$, Pecomposable Log-Lik.

(iii) Cumulative PD

$$
P_t(t<\tau_{Di}=\tau_{Ci}\leq t+\tau)=\sum_{s=0}^{\tau-1}e^{-\psi_{it}(s)s\Delta t}\left\{1-e^{-f_{it}(s)\Delta t}\right\}
$$

(iv) Spot combined exit intensity

$$
\psi_{it}(\tau)=\frac{1}{\tau}\left\{\psi_{it}(\tau-1)(\tau-1)+g_{it}(\tau-1)\right\}
$$

No need to specify $\psi_{it}(0)$ since it is irrelevant

Sequential test $(k = 1, ..., K)$, fixed τ ([Back](#page-22-0))

 H_0 : parameter homogeneity within I_k

 H_1 : change point within I_k

$$
T_{k,\tau} = \sup_{\zeta \in J_k} \left[L_{A_{k,\zeta,\tau}} \left\{ \widetilde{\theta}_{A_{k,\zeta}} \right\} + L_{B_{k,\zeta,\tau}} \left\{ \widetilde{\theta}_{B_{k,\zeta}} \right\} - L_{I_{k+1},\tau} \left\{ \widetilde{\theta}_{I_{k+1}} \right\} \right], \text{ Pietail}
$$

with $J_k = I_k \setminus I_{k-1}, A_{k,\zeta} = [t - m_{k+1}, \zeta + \tau]$ and $B_{k,\zeta} = (\zeta, t + \tau]$

$$
I_k = [t - m_k, t + \tau]
$$
 and $I_{k-1} = [t - m_{k-1}, t + \tau]$

 I : tested interval possibly contain change point $I = [I', I'']$: larger testing interval

$Test$ statistics \bigcirc [Back](#page-58-0)

 H_0 : homogeneity within $\mathcal I$ vs. H_1 : change point within $\mathcal I$ LRT Statistics, $L(\cdot)$ is log likelhood function

$$
T_{\mathcal{I},\zeta} = \max_{\theta',\theta''} \{ L_{I''}(\theta'') + L_{I'}(\theta') \} - \max_{\theta} L_{I}(\theta)
$$

= $L_{I'}(\widetilde{\theta}_{I'}) + L_{I''}(\widetilde{\theta}_{I''}) - L_{I}(\widetilde{\theta}_{I})$

Reject H_0 if $T_{\tau,\zeta} \geq \zeta$ Thus,

$$
T_{\mathcal{I}} = \max_{\zeta \in \mathcal{I}} T_{\mathcal{I},\zeta}
$$

Let $\mathcal{I} = I_k \setminus I_{k-1}$, $\boldsymbol{\theta} = \boldsymbol{\theta}_{\widehat{k}}, \quad k = \max\limits_{k \leq K} \{k : \textit{T}_{\ell} \leq \mathfrak{z}_{\ell}, \ell \leq k\}$

LRT: Poisson distribution

Figure 9: Monte Carlo simulation, similar result for $\lambda = 1, 2, \ldots, 9$

LRT: Exponential distribution

Figure 10: Monte Carlo simulation, similar result for $\lambda = 1, 2, \ldots, 9$

Hyper parameters \bullet [Back](#page-23-0)

 \Box The role of ρ is similar to the significance level of a test \Box The *r* denotes the power of loss function

$$
\mathsf{E}_{\theta^*} L_{k,\tau}^r \left\{ \widetilde{\theta}_k, \widehat{\theta}_k \right\} \to \mathsf{P}_{\theta^*} \left\{ \widetilde{\theta}_k \neq \widehat{\theta}_k \right\}, \quad r \to 0.
$$

- \Box The $\mathfrak{z}_{1,\tau}; \ldots; \mathfrak{z}_{K-1,\tau}$ enter implicitely in the propagation condition: if false alarm event $\left\{\widetilde{\theta}_k\neq \widehat{\theta}_k\right\}$ happen too often, it is indication that some $\mathfrak{z}_{1,\tau}$; \dots ; $\mathfrak{z}_{k-1,\tau}$ are too small
- \Box Note: propagation condition relies on artificial parametric model P_{θ^*} instead of the true model $\mathsf P$

Parametric risk bound [Propagation](#page-23-0)

$$
\begin{array}{rcl}\n\mathsf{E}_{\theta^{*}}\left|L_{\mathsf{K}}(\widetilde{\theta}_{\mathsf{K}},\theta^{*})\right|^{r} & = & \mathcal{R}_{r}(\theta^{*}) \\
& = & -\int_{s\geq 0} s^{r}d\,\mathsf{P}_{\theta^{*}}\left\{\left|L_{\mathsf{K}}(\widetilde{\theta}_{\mathsf{K}},\theta^{*})\right|> \mathfrak{z}\right\} \\
& = & r\int_{0}^{\infty} s^{r-1}\,\mathsf{P}_{\theta^{*}}\left\{\left|L_{\mathsf{K}}(\widetilde{\theta}_{\mathsf{K}},\theta^{*})\right|> \mathfrak{z}\right\}d\mathfrak{z} \\
& = & r\int_{0}^{\infty} s^{r-1}\,\mathsf{P}_{\theta^{*}}\left\{\left|L_{\mathsf{K}}(\widetilde{\theta}_{\mathsf{K}},\theta^{*})\right|> \mathfrak{z},\widetilde{\theta}_{\mathsf{K}}\in\mathcal{E}(\mathfrak{z})\right\}d\mathfrak{z} \\
& & + r\int_{0}^{\infty} s^{r-1}\,\mathsf{P}_{\theta^{*}}\left\{\left|L_{\mathsf{K}}(\widetilde{\theta}_{\mathsf{K}},\theta^{*})\right|> \mathfrak{z},\widetilde{\theta}_{\mathsf{K}}\notin\mathcal{E}(\mathfrak{z})\right\}d\mathfrak{z} \\
& \leq & 2r\int_{0}^{\infty} s^{r-1}\,\mathrm{e}^{-s}d\mathfrak{z}<\infty\n\end{array}
$$

Note:
$$
\mathcal{E}(\mathfrak{z}) \stackrel{\text{def}}{=} \left\{ \theta^* : L_K(\widetilde{\theta}_K) - L_K(\theta^*) \leq \mathfrak{z} \right\}
$$

Distance-to-Default (DTD), Merton

firms are financed by equity (E) and one single pure discount bond with maturity time T and principal Db (book value of the debt). Firm's asset value $V_{A,t}$ follow Geometric Brownian Motion (GBM)

$$
dV_{A,t} = \mu V_{A,t} dt + \sigma_A V_{A,t} dB_t
$$
\n(17)

 μ and σ_A are instantaneous drift and volatility, B is standard Wiener process Black-Scholes model

$$
V_{E,t} = V_{A,t} \Phi(d_{1,t}) - Db \ e^{-r(T-t)} \Phi(d_{2,t}) \tag{18}
$$

with

$$
d_{1,t} = \frac{\log(V_{A,t}/Db) + (r + \frac{1}{2}\sigma_A^2)(T-t)}{\sigma_A\sqrt{(T-t)}}, \quad d_{2,t} = d_{1,t} - \sigma_A\sqrt{T-t} \quad (19)
$$

where $V_{F,t}$ is market value of equity at time t, $(T - t)$ is time to expiration (of call option V_A), and r is risk-free interest rate

fault point) Figure 11: Market value of asset, equity, and book value of liabilities (de-

DTD, Merton & KMV **Exariable**

Probability of Default (PD)

$$
PD_t = P(V_{A,t+T} \le Db_t|V_{A,t}) = \Phi(DTD_t)
$$

with

$$
DTD_t = \frac{\log(V_{A,t}/Db) + (\mu - \frac{1}{2}\sigma_A^2)(T-t)}{\sigma_A\sqrt{(T-t)}}
$$
(20)

 μ cannot be estimated with reasonable precision unless for very long time span data

KMV's DTD avoids using μ

$$
DTD_t = \frac{\log(V_{A,t}/Db)}{\sigma_A \sqrt{(T-t)}}\tag{21}
$$

Distance-to-Default (DTD) [Variable](#page-26-0)

KMV typically set $(T - t)$ to one year and default point

$$
Db = Db_{ST} + 0.5Db_{LT}
$$
 (22)

where ST is hort term and LT is long term

Problem: Financial firm typically have large amount of liabilities that are neither classified as ST nor IT

Duan (2012) modified KMV default point as

 $Db = Db_{ST} + 0.5Db_{LT} + \delta Db_{other}$ (23)

Idiosyncratic Volatility *De [Variable](#page-26-0)*

Over the preceeding 12 months

$$
R_{it} = \beta R_t + \varepsilon_{it}, \quad \varepsilon_{it} \sim \mathsf{N}(0, \sigma_{it}^2)
$$
 (24)

 R_{it} is stock return of firm i R_t is value-wieghted CRSP monthly return σ_{it} is one-year idiosyncratic volatility

Following Shumway (2001), σ_{it} is missing if there are less than 12 monthly returns

