
Time Varying Hierarchical Archimedean Copulae
(HALOC)

Wolfgang Härdle

Ostap Okhrin

Yarema Okhrin

Ladislaus von Bortkiewicz
Chair of Statistics
C.A.S.E. � Center for Applied Statistics
and Economics
Humboldt-Universität zu Berlin

Chair of Statistics
Universität Augsburg



Motivation 1-1

Simple AC over time
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Figure 1: Estimated copula dependence parameter θ̂t with the Local

Change Point method for 6-dimensional data: DC, VW, Bayer, BASF,

Allianz and Münchener Rückversicherung. Clayton Copula.

Giacomini et. al (2009)
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Motivation 1-2

Collateralized Debt Obligation

Triggered the �nancial crisis.
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Motivation 1-3

CDO Dynamics
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Figure 2: Spreads of iTraxx tranches, Series 8, maturity 5 years, data

from 20070920-20081022. Left panel: mezzanine junior (dashed black),

mezzanine (dashed red), senior (solid black), super senior (solid red). Right

panel: upfront fee of the equity tranche.
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Motivation 1-4

Dependence Matters!
The normal world is not enough.
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Figure 3: Gaussian one factor model with constant correlation. Data from

20071022.
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Motivation 1-5

Time Varying Structures

θ((JPY.USD).GBP) = 0.3

θ(JPY.USD) = 0.5
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Figure 4: Film of changing structures over time.
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Motivation 1-6

Main Idea

� combine interpretability with �exibility of copulae

� determine the structure of HAC for a given time series

� identify time varying dependencies

� apply to risk pattern analysis

� reduce dimension of dependency
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Motivation 1-7

Outline

1. Motivation X

2. Hierarchical Archimedean copulae

3. Local Parametric Modeling by HAC

4. Simulation Study

5. Empirical Part

6. References
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Hierarchical Archimedean Copulae 2-1

Copula

For a distribution function F with marginals FX1
. . . ,FXd

. There
exists a copula C : [0, 1]d → [0, 1], such that

F (x1, . . . , xd ) = CCC{FX1
(x1), . . . ,FXd

(xd )} (1)

for all xi ∈ R, i = 1, . . . , d . If FX1
, . . . ,FXd

are cts, then C is
unique. If C is a copula and FX1

, . . . ,FXd
are cdfs, then the

function F de�ned in (1) is a joint cdf with marginals FX1
, . . . ,FXd

.
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Hierarchical Archimedean Copulae 2-2

A little bit of history

� 1940s: Wassilij Hoe�ding studies properties of multivariate
distributions

1914�91, b. Mustamäki, Finland; d. Chapel Hill, NC
gained his PhD from U Berlin in 1940
1924�45 work in U Berlin
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Hierarchical Archimedean Copulae 2-3

A little bit of history

� 1940s: Wassilij Hoe�ding studies properties of multivariate
distributions

� 1959: The word copula appears for the �rst time (Abe Sklar)

� 1999: Introduced to �nancial applications (Paul Embrechts,
Alexander McNeil, Daniel Straumann in RISK Magazine)

� 2000: Paper by David Li in Journal of Derivatives on
application of copulae to CDO

� 2006: Several insurance companies, banks and other �nancial
institutions apply copulae as a risk management tool
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Hierarchical Archimedean Copulae 2-4

Elliptical Gaussian Copula

C
G

δ (u1, u2) = Φδ{Φ−1(u1),Φ−1(u2)}

=

Φ−1

(u1)∫
−∞

Φ−1

(u2)∫
−∞

1

2π
√
1− δ2

exp

{
−(s2 − 2δst + t2)

2(1− δ2)

}
ds dt,

� Gaussian copula contains the dependence structure

� normal marginal distribution + Gaussian copula = multivariate
normal distributions

� non-normal marginal distribution + Gaussian copula =
meta-Gaussian distributions

� allows to generate joint symmetric dependence, but no tail
dependence
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Hierarchical Archimedean Copulae 2-5

Archimedean Copulae

Multivariate Archimedean copula C : [0, 1]d → [0, 1] de�ned as

C (u1, . . . , ud ) = φ{φ−1(u1) + · · ·+ φ−1(ud )}, (2)

where φ : [0,∞)→ [0, 1] is continuous and strictly decreasing with
φ(0) = 1, φ(∞) = 0 and φ−1 its pseudo-inverse.

Example

φGumbel(u, θ) = exp{−u1/θ}, where 1 ≤ θ <∞
φClayton(u, θ) = (θu + 1)−1/θ, where θ ∈ [−1,∞)\{0}

Disadvantages: too restrictive, single parameter, exchangeable
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Hierarchical Archimedean Copulae 2-6

Hierarchical Archimedean Copulae
Simple AC with s=(1234)

C (u1, u2, u3, u4) = C1(u1, u2, u3, u4)

x1 x2 x3 x4
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AC with s=((123)4)

C (u1, u2, u3, u4) = C1{C2(u1, u2, u3), u4}
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Fully nested AC with s=(((12)3)4)

C (u1, u2, u3, u4) = C1[C2{C3(u1, u2), u3}, u4]

x1 x2 x3 x4
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Partially Nested AC with s=((12)(34))

C (u1, u2, u3, u4) = C1{C2(u1, u2),C3(u3, u4)}

x1 x2 x3 x4

z12 z34

z(12)(34)

@
@

�
�

@
@

�
�

HH
HHH

��
���

HALOC

θθ(((1.4).3).2) = 1.12 

θθ((1.4).3) = 1.29 

θθ(1.4) = 1.34 

u1 u2

u3

u4



Hierarchical Archimedean Copulae 2-7

Hierarchical Archimedean Copulae

Advantages of HAC:

� �exibility and wide range of dependencies:
for d = 10 more than 2.8 · 108 structures

� dimension reduction:
d − 1 parameters to be estimated

� subcopulae are also HAC
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Hierarchical Archimedean Copulae 2-8

Hierarchical Archimedean Copulae
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Figure 5: Scatterplot of the

CGu[CGu{Φ(x1), t2(x2); θ(τ1) = θ(0.5) = 2},Φ(x3); θ(τ2) = θ(0.9) = 10]

HALOC

θθ(((1.4).3).2) = 1.12 

θθ((1.4).3) = 1.29 

θθ(1.4) = 1.34 
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Figure 6: Scatterplot of the

CGu[Φ(x2),CGu{t2(x1),Φ(x3); θ(τ1) = θ(0.5) = 2}; θ(τ2) = θ(0.9) = 10]
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�� ��z((13)4),i = Ĉ{z(13)i , F̂4(x4i )}

((13)4)2  θ̂((13)4)2

Estimation: multistage MLE with nonparametric and parametric margins

Criteria for grouping: goodness-of-�t tests, parameter-based method, etc.

HALOC

θθ(((1.4).3).2) = 1.12 

θθ((1.4).3) = 1.29 

θθ(1.4) = 1.34 

u1 u2

u3

u4



Hierarchical Archimedean Copulae 2-12

Determining Structure

(12)  θ̂12
(13)  θ̂13
(14)  θ̂14
(23)  θ̂23
(24)  θ̂24
(34)  θ̂34

(123)  θ̂123
(124)  θ̂124
(234)  θ̂234
(134)  θ̂134
(1234)  θ̂1234

b
es
t
�
t
(1
3
)

 

�� ��z(13),i = Ĉ{F̂1(x1i ), F̂3(x3i )}

(13)2  θ̂(13)2
(13)4  θ̂(13)4

24  θ̂24

(13)24  θ̂(13)24

b
es
t
�
t
((
1
3
)4
)
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Hierarchical Archimedean Copulae 2-16

Criteria for grouping

� goodness-of-�t tests
I dimension dependent
I KS type tests (di�cult)
I probability integral transformation

� Ali-Silvey distance measures
I dimension dependent
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Criteria for grouping

� parameter-based methods
Note that, if the true structure is (123) then

θ(12) = θ(13) = θ(23) = θ(123)
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Hierarchical Archimedean Copulae 2-20

Criteria for grouping based on θ's
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Hierarchical Archimedean Copulae 2-21

Criteria for grouping based on θ's
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Hierarchical Archimedean Copulae 2-22

Criteria for grouping based on θ's
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Hierarchical Archimedean Copulae 2-23

Criteria for grouping based on θ's
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Hierarchical Archimedean Copulae 2-24

Criteria for grouping based on θ's
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Local Parametric Modeling by HAC 3-1

Local Change Point Detection
Motivation 1-9

Local Parametric Assumption

0 100 200 t−m* 300 t
0

0.2

0.4

0.6

0.8

1

1.2

Figure 3: Parameter θt (blue), size of homogeneity interval at t (black).

COPULAE IN TEMPORE VARIENTES
-4 -2 0 2

X

-4
-2

0
2

Y

Figure 7: Dependence over time for DaimlerChrysler, Volkswagen, Bayer,

BASF, Allianz and Münchener Rückversicherung, 20000101-20041231.

Giacomini et. al (2009)
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Local Parametric Modeling by HAC 3-2

Adaptive Copula Estimation

� adaptively estimate largest interval where homogeneity
hypothesis is accepted

� Local Change Point detection (LCP): sequentially test θt , st
are constants (i.e. θt = θ, st = s) within some interval I
(local parametric assumption).
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Local Parametric Modeling by HAC 3-3

� �Oracle� choice: largest interval I = [t0 −mk∗ , t0] where small
modelling bias condition (SMB)

4I (s,θ) =
∑
t∈I
K{C (·; st ,θt),C (·; s,θ)} ≤ 4.

holds for some 4 ≥ 0. mk∗ is the ideal scale, (s, θ)> is ideally
estimated from I = [t0 −mk∗ , t0] and K(·, ·) is the
Kullback-Leibler divergence

K{C (·; st ,θt),C (·; s,θ)} = IE
st ,θt

log
c(·; st ,θt)

c(·; s,θ)
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Local Parametric Modeling by HAC 3-4

Under the SMB condition on Ik∗ and assuming that
maxk≤k∗ IE

st ,θt
|L(s̃k , θ̃k)− L(s,θ)|r ≤ Rr (st ,θt), we obtain

IE
st ,θt

log

{
1 +
|L(s̃

k̂
, θ̃

k̂
)− L(s,θ)|r

Rr (s,θ)

}
≤ 1 +4,

IE
st ,θt

log

{
1 +
|L(s̃

k̂
, θ̃

k̂
)− L(ŝ

k̂
, θ̂

k̂
)|r

Rr (s,θ)

}
≤ 1 +4,

where âI is an adaptive estimator on I and ãI is any other
parametric estimator on I .
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Local Parametric Modeling by HAC 3-5

Local Change Point Detection

1. de�ne family of nested intervals
I0 ⊂ I1 ⊂ I2 ⊂ . . . ⊂ IK = IK+1 with length mk as
Ik = [t0 −mk , t0]

2. de�ne Tk = [t0 −mk , t0 −mk−1]

Ik

Ik+1

Tk+1 Tk Ik−1

t0 −mk+1 t0 −mk t0 −mk−1 t0� �� �� �
� �

� �
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Local Parametric Modeling by HAC 3-6

Local Change Point Detection

1. test homogeneity H0,k against the change point alternative in
Tk using Ik+1

2. if no change points in Tk , accept Ik . Take Tk+1 and repeat
previous step until H0,k is rejected or largest possible interval
IK is accepted

3. if H0,k is rejected in Tk , homogeneity interval is the last

accepted Î = Ik−1

4. if largest possible interval IK is accepted Î = IK
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Local Parametric Modeling by HAC 3-7

Test of homogeneity

Interval I = [t0 −m, t0],T ⊂ I

H0 : ∀τ ∈ T, θt = θ, st = s,

∀t ∈ J = [τ, t0],∀t ∈ Jc = I \ J
H1 : ∃τ ∈ T, θt = θ1, st = s1; ∀t ∈ J,

θt = θ2 6= θ1; st = s2 6= s1, ∀t ∈ Jc

� �� �Jc J

T

t0 −m τ t0� �� �
I
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Local Parametric Modeling by HAC 3-8

Test of homogeneity

Likelihood ratio test statistic for �xed change point location:

TI ,τ = max
θ1,θ2
{LJ(θ1) + LJc (θ2)} −max

θ
LI (θ)

= MLJ + MLJc −MLI

Test statistic for unknown change point location:

TI = max
τ∈TI

TI ,τ

Reject H0 if for a critical value ζI

TI > ζI
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Local Parametric Modeling by HAC 3-9

Selection of Ik and ζk

� set of numbers mk de�ning the length of Ik and Tk are in the
form of a geometric grid

� mk = [m0c
k ] for k = 1, 2, . . . ,K , m0 ∈ {20, 40}, c = 1.25

and K = 10, where [x ] means the integer part of x

� Ik = [t0 −mk , t0] and Tk = [t0 −mk , t0 −mk−1] for
k = 1, 2, . . . ,K

(Mystery Parameters)
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Simulation Study 4-1

Sequential choice of ζk

� after k steps are two cases: change point at some step ` ≤ k

and no change points.

� let B` be the event meaning the rejection at step `

B` = {T1 ≤ ζ1, . . . ,T`−1 ≤ ζ`−1,T` > ζ`},

and (ŝk , θ̂k) = (s̃`−1, θ̃`−1) on B` for ` = 1, . . . , k .

� we �nd sequentially such a minimal value of ζ` that ensures
following inequality

max
k=l ,...,K

IE s∗,θ∗ |L(s̃k , θ̃k)−L(s̃`−1, θ̃`−1)|r I(B`) ≤ ρRr (s
∗,θ∗)k/K
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Simulation Study 4-2

Sequential choice of ζk
1. pairs of Kendall's τ : ∀{τ1, τ2} ∈ {0.1, 0.3, 0.5, 0.7, 0.9}2, τ1 ≥ τ2
2. simul. from Cθi ,θj

(u1, u2, u3) = C{C (u1, u2; θ1), u3; θ2}, θ = θ(τ)

3. run sequential algorithm for each sample

2 4 6 8 10

0
2

4
6

8

k

λ k

Figure 8: ζk of the 3-dimensional HAC as a function of k with the �xed
m0 = 40, ρ = 0.5, r = 0.5, τ1 = 0.1 and for di�erent τ2. τ2 = 0.1 (solid),
τ2 = 0.3 (solid), τ2 = 0.5 (solid), τ2 = 0.7 (dashed), τ2 = 0.9 (dashed).
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Simulation Study 4-3

Simulation: Change in θ1, I

Ct(u1, u2, u3; s,θ) =

{
C{u1,C (u2, u3; θ1 = 3.33); θ2 = 1.43} for 1 ≤ t ≤ 200
C{u1,C (u2, u3; θ1 = 2.00); θ2 = 1.43} for 200 < t ≤ 400

,

1. N = 400 and 100 runs

2. LCP based on the same critical values

0 100 200 300 400
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3

0.
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0.
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0.
6

0.
7

ττ

Figure 9: θ1 and θ2 on the intervals of homogeneity (median - dashed line,
mean - solid line).
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Simulation Study 4-4

Simulation: Change in θ1, II
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Figure 10: Intervals of homogeneity and ML on these intervals (median -

dashed line, mean - solid line)
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Simulation Study 4-5

Simulation: Change in θ2, I

Ct(u1, u2, u3; s,θ) =

{
C{u1,C (u2, u3; θ1 = 3.33); θ2 = 1.43} for 1 ≤ t ≤ 200
C{u1,C (u2, u3; θ1 = 3.33); θ2 = 2.00} for 200 < t ≤ 400

.

1. N = 400 and 100 runs

2. LCP based on the same critical values
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Figure 11: θ1 and θ2 on the intervals of homogeneity (median - dashed
line, mean - solid line).
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Simulation Study 4-6

Simulation: Change in θ2, II
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Figure 12: Intervals of homogeneity and ML on these intervals (median -

dashed line, mean - solid line)
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Simulation Study 4-7

Simulation: Change in the Structure, I

Ct(u1, u2, u3; s,θ) =

{
C{u1,C (u2, u3; θ1 = 3.33); θ2 = 1.43} for 1 ≤ t ≤ 200
C{C (u1, u2; θ1 = 3.33), u3; θ2 = 1.43} for 200 < t ≤ 400

.

1. N = 400 and 100 runs

2. LCP based on the same critical values
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Figure 13: The structure of the est. HAC on the intervals of homogeneity
(median - dashed line, mean - solid line)
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Simulation Study 4-8

Simulation: Change in the Structure, II

●●

le
ng

th

10
0

15
0

20
0

m
l

0 100 200 300 400

0.
4

0.
6

0.
8

1.
0

1.
2

Figure 14: Intervals of homogeneity and ML on these intervals (median -

dashed line, mean - solid line)
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Empirical Part 5-1

Data and Copula

daily values for the exchange rates
JPN/EUR, GBP/EUR and USD/EUR

timespan = [4.1.1999; 14.8.2009] (n = 2771)

M = {φ = exp(−u1/θ)} - Gumbel generator
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Empirical Part 5-2

Data and Copula

� a univariate GARCH(1,1) process on log-returns

Xj ,t = µj ,t + σj ,tεj ,t with σ
2

j ,t = ωj + αjσ
2

j ,t−1 + βj(Xj ,t−1 − µj ,t−1)2

εt ∼ C{F1(x1), . . . ,Fd (xd ); θt}
� estimated copula from the whole sample

s∗ = (JPY USD)1.588 GBP1.418

µ̂j ω̂j α̂j β̂j BL KS

JPY 4.85e-05 2.99e-07 0.06 0.94 0.73 1.70e-05
(1.15e-04) (1.02e-07) (7.49e-03) (7.64e-03)

GBP 6.34e-05 1.44e-07 0.06 0.93 0.01 2.10e-04
(7.39e-05) (5.11e-08) (8.75e-03) (9.12e-03)

USD 1.76e-04 1.19e-07 0.03 0.97 0.87 1.65e-03
(1.10e-04) (5.92e-08) (4.14e-03) (4.28e-03)

Table 1: Estimation results univariate time series modelling.
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Empirical Part 5-3

Rolling window

ML =
n∑

i=1

log{f (ui1, . . . , uid , θ̂)},

where f denotes the joint multivariate density function.

AIC = −2ML + 2m, BIC = −2ML + 2 log(m),

where m is the number of parameters to be estimated.
Θt(d × d) - matrix of the pairwise θ based on the 250 days before t

||Θ̂t − Θ̂t−1||2 =

√
λmax{(Θ̂t − Θ̂t−1)(Θ̂t − Θ̂t−1)>}
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Empirical Part 5-4

Copulae over time
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Figure 15: Time-varying HAC: BIC for the AC, Gaussian copula and HAC.

Di�erence Matrix and points of the changes of the structure.
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Empirical Part 5-5

LCP for HAC to real Data
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Figure 16: Structure, τ1 and τ2 of the HAC on the intervals of homogeneity
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Empirical Part 5-6

LCP for HAC to real Data
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Figure 17: Intervals of homogeneity and ML on these intervals
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Empirical Part 5-7

Data and Copula

daily returns values for Dow Jones (DJ), DAX and NIKKEI
timespan = [4.1.1999; 14.8.2009] (n = 2771)
M = {φ = exp(−u1/θ)} - Gumbel generator
estimated copula from the whole sample

s∗ = (DAX DJ)2.954 NIKKEI1.222

µ̂j ω̂j α̂j β̂j BL KS

DAX 6.94e-04 4.17e-06 0.11 0.87 0.23 3.35e-05
(1.39e-04) (5.29e-07) (0.01) (9.39e-03)

DJ 5.96e-04 3.09e-06 0.11 0.87 0.02 1.58e-07
(1.11e-04) (3.38e-07) (0.01) (9.40e-03)

NIKKEI 5.62e-04 3.01e-06 0.12 0.88 0.78 2.45e-13
(1.45e-04) (5.18e-07) (0.01) (8.71e-03)

Table 2: Estimation results univariate time series modelling.
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Empirical Part 5-8

Copulae over time
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Figure 18: Time-varying HAC: BIC for the AC, Gaussian copula and HAC.

Di�erence Matrix and points of the changes of the structure.
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LCP for HAC to real Data
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Figure 19: Structure, τ1 and τ2 of the HAC on the intervals of homogeneity
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Empirical Part 5-10

LCP for HAC to real Data
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Figure 20: Intervals of homogeneity and ML on these intervals
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