Time Varying Hierarchical Archimedean Copulae (HALOC)

Wolfgang Härdle Ostap Okhrin Yarema Okhrin

Ladislaus von Bortkiewicz Chair of Statistics C.A.S.E. Center for Applied Statistics and Economics Humboldt-Universität zu Berlin

Chair of Statistics Universität Augsburg

Simple AC over time

Figure 1: Estimated copula dependence parameter $\widehat{\theta}_t$ with the Local Change Point method for 6-dimensional data: DC, VW, Bayer, BASF, Allianz and Münchener Rückversicherung. Clayton Copula. Giacomini et. al (2009)

θ(((1.4).3).2) = 1.12 θ((1.4).3) = 1.29 θ(1.4) = 1.34 w.

Collateralized Debt Obligation

w.

CDO Dynamics

Figure 2: Spreads of iTraxx tranches, Series 8, maturity 5 years, data from 20070920-20081022. Left panel: mezzanine junior (dashed black), mezzanine (dashed red), senior (solid black), super senior (solid red). Right panel: upfront fee of the equity tranche. [HALOC](#page-0-0) θ(((1.4).3).2) = 1.12 θ((1.4).3) = 1.29

θ(1.4) = 1.34 w.

Dependence Matters!

The normal world is not enough.

Figure 3: Gaussian one factor model with constant correlation. Data from [2007102](#page-0-0)2. HALOC θ(((1.4).3).2) = 1.12 θ((1.4).3) = 1.29 θ(1.4) = 1.34 w.

Time Varying Structures

[HALOC](#page-0-0)

Main Idea

- \Box combine interpretability with flexibility of copulae
- \Box determine the structure of HAC for a given time series
- \Box identify time varying dependencies
- \Box apply to risk pattern analysis
- \Box reduce dimension of dependency

Outline

- 1. Motivation \checkmark
- 2. Hierarchical Archimedean copulae
- 3. Local Parametric Modeling by HAC
- 4. Simulation Study
- 5. Empirical Part
- 6. References

Copula

For a distribution function F with marginals $F_{X_1} \ldots, F_{X_d}$. There exists a copula $\, C: [0,1]^d \rightarrow [0,1] ,$ such that

$$
F(x_1,...,x_d) = C\{F_{X_1}(x_1),...,F_{X_d}(x_d)\}\tag{1}
$$

for all $x_i \in \overline{\mathbb{R}}$, $i = 1, \ldots, d$. If F_{X_1}, \ldots, F_{X_d} are cts, then C is unique. If C is a copula and F_{X_1},\ldots,F_{X_d} are cdfs, then the function F defined in (1) is a joint cdf with marginals F_{X_1},\ldots,F_{X_d} .

A little bit of history

 \Box 1940s: *Wassilij Hoeffding* studies properties of multivariate distributions

191491, b. Mustamäki, Finland; d. Chapel Hill, NC gained his PhD from U Berlin in 1940 192445 work in U Berlin

A little bit of history

- \Box 1940s: *Wassilij Hoeffding* studies properties of multivariate distributions
- \Box 1959: The word copula appears for the first time (Abe Sklar)
- \Box 1999: Introduced to financial applications (Paul Embrechts, Alexander McNeil, Daniel Straumann in RISK Magazine)
- \Box 2000: Paper by David Li in Journal of Derivatives on application of copulae to CDO
- \Box 2006: Several insurance companies, banks and other financial institutions apply copulae as a risk management tool

Elliptical Gaussian Copula

$$
C_{\delta}^{G}(u_{1}, u_{2}) = \Phi_{\delta}\{\Phi^{-1}(u_{1}), \Phi^{-1}(u_{2})\}
$$

=
$$
\int_{-\infty}^{\Phi^{-1}(u_{1})} \int_{-\infty}^{\Phi^{-1}(u_{2})} \frac{1}{2\pi\sqrt{1-\delta^{2}}} \exp\left\{\frac{-(s^{2}-2\delta st + t^{2})}{2(1-\delta^{2})}\right\} ds dt,
$$

- \Box Gaussian copula contains the dependence structure
- \Box normal marginal distribution + Gaussian copula = multivariate normal distributions
- \Box non-normal marginal distribution + Gaussian copula = meta-Gaussian distributions
- \Box allows to generate joint symmetric dependence, but no tail dependence

Archimedean Copulae

Multivariate Archimedean copula $C:[0,1]^d \rightarrow [0,1]$ defined as

$$
C(u_1,\ldots,u_d)=\phi\{\phi^{-1}(u_1)+\cdots+\phi^{-1}(u_d)\},\qquad(2)
$$

where $\phi : [0, \infty) \to [0, 1]$ is continuous and strictly decreasing with $\phi(0)=1,\ \dot{\phi}(\infty)=0$ and ϕ^{-1} its pseudo-inverse.

Example

 ϕ Gumbel (u,θ) = exp $\{-u^{1/\theta}\},$ where $1\leq\theta<\infty$ $\phi_{\text{Clayton}}(u,\theta) = (\theta u + 1)^{-1/\theta}, \text{ where } \theta \in [-1,\infty) \backslash \{0\}$

Disadvantages: too restrictive, single parameter, exchangeable

Hierarchical Archimedean Copulae

Simple AC with $s=(1234)$ $C(u_1, u_2, u_3, u_4) = C_1(u_1, u_2, u_3, u_4)$

AC with $s = ((123)4)$ $C(u_1, u_2, u_3, u_4) = C_1 \{ C_2(u_1, u_2, u_3), u_4 \}$ x_1 x_2 x_3 x_4 $z_{(123)}$ ❅ ❅ ❅ ❅❅ / ∕ / ∕ / / / / / ∕ Ϊ ❅

Partially Nested AC with $s=((12)(34))$ $C(u_1, u_2, u_3, u_4) = C_1 \{ C_2(u_1, u_2), C_3(u_3, u_4) \}$

❅

 $Z((12)3)4$

Hierarchical Archimedean Copulae

Advantages of HAC:

 \Box flexibility and wide range of dependencies: for $d=10$ more than $2.8\cdot 10^8$ structures

\Box dimension reduction:

 $d-1$ parameters to be estimated

 \Box subcopulae are also HAC

Figure 5: Scatterplot of the C_{Gu} [C_{Gu} { $\Phi(x_1), t_2(x_2)$; $\theta(\tau_1) = \theta(0.5) = 2$ }, $\Phi(x_3)$; $\theta(\tau_2) = \theta(0.9) = 10$]

Figure 6: Scatterplot of the $C_{Gu}[\Phi(x_2), C_{Gu} \{t_2(x_1), \Phi(x_3), \theta(\tau_1) = \theta(0.5) = 2\}; \theta(\tau_2) = \theta(0.9) = 10]$

☎

Estimation: multistage MLE with nonparametric and parametric margins Criteria for grouping: goodness-of-fit tests, parameter-based method, etc.

Criteria for grouping

\boxdot goodness-of-fit tests

- \blacktriangleright dimension dependent
- \triangleright KS type tests (difficult)
- \blacktriangleright probability integral transformation
- Ali-Silvey distance measures
	- \blacktriangleright dimension dependent

Criteria for grouping

\Box parameter-based methods

Note that, if the true structure is (123) then

$$
\theta_{(12)} = \theta_{(13)} = \theta_{(23)} = \theta_{(123)}
$$

- \blacktriangleright heuristic methods based on proximity between parameters on different levels
- \blacktriangleright test-based methods based on tests for the parameters

 \boxdot tests on exchangeability

w.

[Hierarchical Archimedean Copulae](#page-15-0) 2-20

[Hierarchical Archimedean Copulae](#page-15-0) 2-22

Local Change Point Detection

BASF, Allianz and Münchener Rückversicherung, 20000101-20041231. Giacomini et. al (2009) Figure 7: Dependence over time for DaimlerChrysler, Volkswagen, Bayer,

Adaptive Copula Estimation

- \Box adaptively estimate largest interval where homogeneity hypothesis is accepted
- $\overline{\boxdot}$ Local Change Point detection (LCP): sequentially test $\theta_t, \ s_t$ are constants (i.e. $\theta_t = \theta$, $s_t = s$) within some interval I (local parametric assumption).

 \boxdot "*Oracle*" choice: largest interval $I = [t_0 - m_{k^*}, t_0]$ where small modelling bias condition (SMB)

$$
\triangle_I(s,\boldsymbol{\theta})=\sum_{t\in I}\mathcal{K}\{C(\cdot;s_t,\boldsymbol{\theta}_t),C(\cdot;s,\boldsymbol{\theta})\}\leq \triangle.
$$

holds for some $\triangle \geq 0$. m_{k^*} is the ideal scale, $(\bm{s},\;\theta)^\top$ is ideally estimated from $I=[t_0-m_{k^*},t_0]$ and $\mathcal{K}(\cdot,\cdot)$ is the Kullback-Leibler divergence

$$
\mathcal{K}\lbrace C(\cdot; s_t, \theta_t), C(\cdot; s, \theta) \rbrace = \boldsymbol{E}_{s_t, \theta_t} \log \frac{c(\cdot; s_t, \theta_t)}{c(\cdot; s, \theta)}
$$

Under the SMB condition on l_{k^*} and assuming that $\max_{k\leq k^*}\mathbb{E}_{s_t,\theta_t}|\mathcal{L}(\widetilde{s}_k,\theta_k)-\mathcal{L}(s,\theta)|'\leq \mathcal{R}_r(s_t,\theta_t)$, we obtain

$$
\begin{aligned} & \mathbf{E}_{s_t,\theta_t} \log \left\{ 1 + \frac{|\mathcal{L}(\widetilde{s}_{\widehat{k}}, \widetilde{\theta}_{\widehat{k}}) - \mathcal{L}(s,\theta)|^{\prime}}{\mathcal{R}_r(s,\theta)} \right\} \leq 1 + \triangle, \\ & \mathbf{E}_{s_t,\theta_t} \log \left\{ 1 + \frac{|\mathcal{L}(\widetilde{s}_{\widehat{k}}, \widetilde{\theta}_{\widehat{k}}) - \mathcal{L}(\widehat{s}_{\widehat{k}}, \widehat{\theta}_{\widehat{k}})|^{\prime}}{\mathcal{R}_r(s,\theta)} \right\} \leq 1 + \triangle, \end{aligned}
$$

where $\widehat{\boldsymbol{a}}_l$ is an adaptive estimator on l and $\widetilde{\boldsymbol{a}}_l$ is any other
parametric estimator on l parametric estimator on I.

Local Change Point Detection

[HALOC](#page-0-0)

θ(((1.4).3).2) = 1.12 θ((1.4).3) = 1.29 θ(1.4) = 1.34 w.

[HALOC](#page-0-0)

Local Change Point Detection

- 1. test homogeneity $H_{0,k}$ against the change point alternative in \mathfrak{T}_k using I_{k+1}
- 2. if no change points in \mathfrak{T}_k , accept I_k . Take \mathfrak{T}_{k+1} and repeat previous step until $H_{0,k}$ is rejected or largest possible interval I_K is accepted
- 3. if $H_{0,k}$ is rejected in \mathfrak{T}_k , homogeneity interval is the last accepted $\widehat{I} = I_{k-1}$
- 4. if largest possible interval I_K is accepted $\hat{I} = I_K$

Test of homogeneity

Interval $I = [t_0 - m, t_0], \mathfrak{T} \subset I$ H_0 : $\forall \tau \in \mathfrak{T}, \theta_t = \theta, s_t = s$ $\forall t \in J = [\tau,t_0], \forall t \in J^c = I \setminus J$ H_1 : $\exists \tau \in \mathfrak{T}, \theta_t = \theta_1, s_t = s_1; \forall t \in J,$ $\theta_t = \theta_2 \neq \theta_1; \, \, s_t = s_2 \neq s_1, \forall t \in J^c$

Test of homogeneity

Likelihood ratio test statistic for fixed change point location:

$$
T_{I,\tau} = \max_{\theta_1,\theta_2} \{ L_J(\theta_1) + L_{J^c}(\theta_2) \} - \max_{\theta} L_I(\theta)
$$

= $ML_J + ML_{J^c} - ML_I$

Test statistic for unknown change point location:

$$
T_I = \max_{\tau \in \mathfrak{T}_I} T_{I,\tau}
$$

Reject H_0 if for a critical value ζ_I

$$
T_I > \zeta_I
$$

Selection of l_k and ζ_k

- \Box set of numbers m_k defining the length of I_k and \mathfrak{T}_k are in the form of a geometric grid
- \Box $m_k = [m_0 c^k]$ for $k = 1, 2, ..., K$, $m_0 \in \{20, 40\}$, $c = 1.25$ and $K = 10$, where [x] means the integer part of x

$$
\begin{array}{ll}\n\Box & I_k = [t_0 - m_k, t_0] \text{ and } \mathfrak{T}_k = [t_0 - m_k, t_0 - m_{k-1}] \text{ for} \\
k = 1, 2, \dots, K\n\end{array}
$$

(Mystery Parameters)

Sequential choice of ζ_k

- \Box after k steps are two cases: change point at some step $\ell \leq k$ and no change points.
- \Box let \mathcal{B}_{ℓ} be the event meaning the rejection at step ℓ

$$
\mathcal{B}_{\ell} = \{ T_1 \leq \zeta_1, \ldots, T_{\ell-1} \leq \zeta_{\ell-1}, T_{\ell} > \zeta_{\ell} \},
$$

$$
\text{and } (\widehat{s}_k, \widehat{\boldsymbol{\theta}}_k) = (\widetilde{s}_{\ell-1}, \widetilde{\boldsymbol{\theta}}_{\ell-1}) \text{ on } \mathcal{B}_{\ell} \text{ for } \ell = 1, \ldots, k.
$$

 $\overline{\boxdot}$ we find sequentially such a minimal value of ζ_ℓ that ensures following inequality

$$
\max_{k=1,\ldots,K} \boldsymbol{E}_{s^*,\theta^*} | \mathcal{L}(\widetilde{s}_k,\widetilde{\boldsymbol{\theta}}_k) - \mathcal{L}(\widetilde{s}_{\ell-1},\widetilde{\boldsymbol{\theta}}_{\ell-1}) |' \mathsf{I}(\mathcal{B}_{\ell}) \leq \rho \mathcal{R}_r(s^*,\boldsymbol{\theta}^*) k / K
$$

θ(((1.4).3).2) = 1.12 θ((1.4).3) = 1.29 θ(1.4) = 1.34 w.

Sequential choice of ζ_k

- 1. pairs of Kendall's τ : $\forall {\tau_1, \tau_2} \in \{0.1, 0.3, 0.5, 0.7, 0.9\}^2$, $\tau_1 \geq \tau_2$
- 2. simul. from $C_{\theta_i, \theta_j}(u_1, u_2, u_3) = C \{ C(u_1, u_2; \theta_1), u_3; \theta_2 \}, \theta = \theta(\tau)$

3. run sequential algorithm for each sample

Simulation: Change in θ_1 , I

$$
C_t(u_1, u_2, u_3; s, \theta) = \left\{\n\begin{array}{l}\nC\{u_1, C(u_2, u_3; \theta_1 = 3.33); \theta_2 = 1.43\} & \text{for } 1 \leq t \leq 200 \\
C\{u_1, C(u_2, u_3; \theta_1 = 2.00); \theta_2 = 1.43\} & \text{for } 200 < t \leq 400\n\end{array}\n\right.
$$

1. $N = 400$ and 100 runs

2. LCP based on the same critical values

[Simulation Study](#page-17-0) 244

Simulation: Change in θ_2 , I

$$
C_t(u_1, u_2, u_3; s, \theta) = \left\{\n\begin{array}{l}\nC\{u_1, C(u_2, u_3; \theta_1 = 3.33); \theta_2 = 1.43\} & \text{for } 1 \leq t \leq 200 \\
C\{u_1, C(u_2, u_3; \theta_1 = 3.33); \theta_2 = 2.00\} & \text{for } 200 < t \leq 400\n\end{array}\n\right.
$$

- 1. $N = 400$ and 100 runs
- 2. LCP based on the same critical values

[Simulation Study](#page-17-0) 2012 12:00 12:00 12:00 12:00 12:00 12:00 12:00 12:00 12:00 12:00 12:00 12:00 12:00 12:00 12:0

Simulation: Change in the Structure, I

 $(1.2).3$ 0 100 100 200 300 300 400 Figure 13: The structure of the est. HAC on the intervals of homogeneity [\(median](#page-0-0) - dashed line, mean - solid line) θ(((1.4).3).2) = 1.12 θ((1.4).3) = 1.29 HALOC θ(1.4) = 1.34 w.

w.

Data and Copula

daily values for the exchange rates JPN/EUR, GBP/EUR and USD/EUR

timespan = $[4.1.1999; 14.8.2009]$ ($n = 2771$)

 $\mathcal{M} = \{\phi = \mathsf{exp}(-\mathsf{u}^{1/\theta})\}$ - Gumbel generator

Data and Copula

 \Box a univariate GARCH(1,1) process on log-returns

$$
X_{j,t} = \mu_{j,t} + \sigma_{j,t} \varepsilon_{j,t} \text{ with } \sigma_{j,t}^2 = \omega_j + \alpha_j \sigma_{j,t-1}^2 + \beta_j (X_{j,t-1} - \mu_{j,t-1})^2
$$

$$
\varepsilon_t \sim C\{F_1(x_1), \ldots, F_d(x_d); \theta_t\}
$$

 \Box estimated copula from the whole sample $s^* = (JPY \text{ USD})_{1.588} \text{ GBP}_{1.418}$

Table 1: Estimation results univariate time series modelling.

θ(((1.4).3).2) = 1.12 θ((1.4).3) = 1.29 θ(1.4) = 1.34 w.

Rolling window

$$
ML = \sum_{i=1}^n \log\{f(u_{i1},\ldots,u_{id},\widehat{\boldsymbol{\theta}})\},
$$

where f denotes the joint multivariate density function.

$$
AIC = -2ML + 2m, \qquad BIC = -2ML + 2\log(m),
$$

where *m* is the number of parameters to be estimated. $\mathbf{\Theta}_t(d \times d)$ - matrix of the pairwise θ based on the 250 days before t

$$
||\widehat{\Theta}_t - \widehat{\Theta}_{t-1}||_2 = \sqrt{\lambda_{\max}\{(\widehat{\Theta}_t - \widehat{\Theta}_{t-1})(\widehat{\Theta}_t - \widehat{\Theta}_{t-1})^{\top}\}}
$$

$$
\sum_{n=1}^{\infty}
$$

Copulae over time

Figure 15: Time-varying HAC: BIC for the AC, Gaussian copula and HAC. Difference Matrix and points of the changes of the structure.

θ(((1.4).3).2) = 1.12 θ((1.4).3) = 1.29 θ(1.4) = 1.34 w.

[Empirical Part](#page-16-0) 3-5

LCP for HAC to real Data

w.

[Empirical Part](#page-16-0) 3-6

LCP for HAC to real Data

[HALOC](#page-0-0)

θ(1.4) = 1.34 w.

Data and Copula

daily returns values for Dow Jones (DJ), DAX and NIKKEI timespan = $[4.1.1999; 14.8.2009]$ $(n = 2771)$ $\mathcal{M} = \{\phi = \mathsf{exp}(-\mathsf{u}^{1/\theta})\}$ - Gumbel generator estimated copula from the whole sample $s^* = (DAX DJ)_{2.954} NIKKEI_{1.222}$

Table 2: Estimation results univariate time series modelling.

θ(((1.4).3).2) = 1.12 θ((1.4).3) = 1.29 θ(1.4) = 1.34 w.

Copulae over time

Figure 18: Time-varying HAC: BIC for the AC, Gaussian copula and HAC. Difference Matrix and points of the changes of the structure.

θ(((1.4).3).2) = 1.12 θ((1.4).3) = 1.29 θ(1.4) = 1.34 w.

[Empirical Part](#page-16-0) - 5-9

w.

[Empirical Part](#page-16-0) 3-10

LCP for HAC to real Data

[HALOC](#page-0-0)

θ(1.4) = 1.34 w.

H. Joe

Multivariate Models and Concept Dependence Chapman & Hall, 1997

V. Spokoiny

Local Parametric Methods in Nonparametric Estimation Springer Verlag, 2009

E. Giacomini, W. Härdle and V. Spokoiny Inhomogeneous Dependence Modeling with Time-Varying Copulae Journal of Business and Economic Statistics, 27(2), 2009

D. O. Okhrin and Y. Okhrin and W. Schmid On the Structure and Estimation of Hierarchical Archimedean Copulas under revision in Journal of Econometrics, 2009

