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Abstract

Principal component analysis (PCA) is a widely used dimension reduction tool in high-dimensional data analysis.
In risk quantification in finance, climatology and many other applications, however, the interest lies in capturing the
tail variations rather than variation around the mean. To this end, we develop Principal Expectile Analysis (PEC),
which generalizes PCA for expectiles. It can be seen as a dimension reduction tool for extreme-value theory, where
fluctuations in the τ-expectile level of the data are approximated by a low-dimensional subspace. We provide al-
gorithms based on iterative least squares, derive bounds on their convergence time, and compare their performance
through simulations. We apply the algorithms to a Chinese weather dataset and fMRI data from an investment decision
study.
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1. Introduction

Principal component analysis (PCA) is a classical dimension reduction tool widely used in fields such as genetics,
environmental studies and demographics. The monographs of Jolliffe [11] and Ramsay and Silverman [20] contain
many examples. The basic principle is to find a basis for a k-dimensional affine linear subspace that best approximates
the data. If the data points are finite-dimensional vectors, the basis vectors are called principal components or factors.
One then views each observation as a residual plus a point in this subspace, which is expressed as a vector in Rk of
coefficients, also called loadings. A classic example is the Canadian temperature dataset in Ramsay and Silverman
[20], where temperature curves recorded daily over a year are considered at multiple stations in an area. The premise
is that only few factors influence temperature across stations, and that the temperature curve from each station is well
approximated on average by a specific linear combination of these factors.

In classical PCA, the optimal k-dimensional subspace is one that minimizes the L2-norm of the residuals. When
k = 0, this is the mean of the data, so that classical PCA decomposes the data around its mean subspace. Much research
in the broader field of functional data analysis has focused on the variation around an average pattern; see [6, 10].
In many applications such as risk analysis, however, one is not only interested in variations around the mean, but rather
those around the tail of the data. For example, one may be interested in extreme phenomena like droughts, heavy
rainfalls, or heat waves. Can the data be decomposed around the 99th quantile, say, and produce some ‘best’ principal
component where only 1% of the observations have positive loadings? In the aforementioned temperature data, for
instance, this principal component could be interpreted as one that influences locations with extreme temperatures.

Note that the above problem is different from finding the 99th quantile of the loadings in classical PCA. Doing so
corresponds to keeping the same PCA-optimal subspace, and translating it so that each component has 1% positive
loadings. The principal components are the same; the tail of the data is reflected by the loadings. In our setup, one
wants to find a low-dimensional subspace that best approximates the data by some tail measure, say, an appropriate
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analogue of the 99th quantile. In this case, the tail of the data is reflected by the principal components. As we will
show in Section 4, only in some special cases do these two methods give the same subspace.

In this paper, we generalize multivariate PCA to Principal Expectile Analysis, a method which, for a given expec-
tile level τ, produces k principal expectile components (PECs) that best decompose the data around its τ-expectile.
Classical PCA corresponds to the case τ = 0.5. Expectiles, proposed in [19], are natural analogues of quantiles for
the mean. While the τ-quantile minimizes asymmetric `1-error, the τ-level expectile minimizes asymmetric `2-error.

Expectiles enjoy several advantages over quantiles, including computational efficiency; see [23]. It is also more
sensitive to extreme values in the data, and thus is preferred in the calculation of risk measures of a financial asset or
a portfolio. For instance, value-at-risk (VaR) is commonly used to measure the downside risk, especially in portfolio
risk management. Given a predetermined probability level, VaR represents the quantile of the portfolio loss distribu-
tion; see [12]. Since VaR merely depends on the probability value and neglects the size of the downside loss, it has
been criticized as a risk measure. Alternative measures based on expectiles have been investigated; see, e.g., [5, 15].

Our definitions of PECs are different from the principal directions for quantiles of Fraiman and Pateiro-López [7].
These authors are focused on doing classical PCA for quantile level sets. Related is the work of Kong and Mizera
[14], who propose the same approach but without centering the data at its expectation. Since the quantile has to be
computed in each direction, the principal quantile directions in these papers can only be explicitly computed in small
dimensions in general. Applying the methods of [7] to a dataset amounts to a two-step procedure: first transform the
data to its quantile level sets, then do PCA. In contrast, our method generalizes PCA by minimizing the τ-variance in
the residuals. It is a one-step procedure with an iterative approximation algorithm that runs well on large datasets; see
Sections 5 and 8. Like the definition in [7], one can generalize PEC to functional data. Furthermore, our definition of
PEC enjoys many nice properties, some of which are shared by the principal directions; see Section 4.

Though we make computational gains over [7], it is not without loss. In particular, for τ , 1/2, our estimators
generally do not have the nested subspace property. That is, the best k-dimensional subspace that minimizes the τ-
variance in the data may not contain the best (k − 1)-dimensional subspace. This issue was raised in other contexts;
see [4, 26] and references therein. We show that this discrepancy leads to three plausible estimators for the principal
expectile component, which we term TopDown (TD), BottomUp (BUP), and PrincipalExpectile (PEC). We compare
the theoretical and computational properties of these estimators on both simulated and real-life datasets. In general,
we find that TopDown has the best mean-squared error in simulations and the algorithm has much better convergence
properties than PEC. In contrast, PEC runs somewhat faster, has comparable mean-squared error, and does not require
a pre-specified number of components. As the three methods often give similar estimates, we advocate TopDown for
small to medium size datasets, and PEC for larger datasets, where computation may be an issue.

Since we initiated this project, Principal Expectiles Analysis has found numerous applications, mainly in quan-
tifying risks. In climate analysis, for example, Burdejová et al. [2] looked for trends and critical changing points in
the strength of tropical storms in two different areas over several decades. The analysis considers the wind data ob-
served every six hours represented as functional data for several τ-expectile levels. A proposed test based on principal
components shows that there is a significant trend in the shape of the annual pattern of upper wind speed levels of
hurricanes. In this setup, PECs yield time varying information of storm strength which lies between ‘typical’ and
‘extreme’ behavior. This approach can be applied to any environmental data that can be represented as annual curves
which evolve from year to year, such as daily temperature or log-precipitation curves at specific locations.

We here present three more applications. The first analyzes extreme temperature based on recordings of daily
temperature over the last 50 years for 159 stations in China. This is an analogue to the commonly known approach
of Ramsay and Silverman [20]. For this dataset, the principal expectile components differ significantly from classical
PCs. Furthermore, the PECs are interpretable. The first PEC shows the long-term changes in extreme temperature,
while the second PEC reflects temporal seasonal extremes. The second application applies PEC to an fMRI dataset
called the RPID (Risk Perception in Investment Decision) experiment. Majer et al. [16] found strong relations between
fRMI reactions and diagnosed risk perception. Their results show that one can predict the risk perception parameter
of each individual based on the classical principal components of the fMRI data. In contrast, we show that one can
obtain even better predictions using PECs with τ = 0.6. In other words, extreme fMRI reactions is a better predictor of
more extreme behavior against risk. Our last application concerns the Berkeley Growth Study, in which the height of
39 boys and 54 girls was monitored. Principal component analysis of these growth curves was carried out in [20, 25].
We repeat this analysis for three different τ levels: τ = 0.05, 0.5 and 0.95. The PECs for τ = 0.95 would represent
fluctuations in growth among the tallest children, for instance. Our analysis reveals that height fluctuations differ
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significantly across τ for boys, but follow the same pattern for all τ for girls. Compared to the average, both the tall
and short group have less variation and the overall change in growth rate is less extreme.

In summary, we provide a solid optimization framework with algorithms to generalize multivariate PCA to prin-
cipal expectile analysis, which can be seen as a dimension reduction tool for extreme-value theory. Different views
of PCA lead to different ways to generalize it, and thus we obtain three different estimators. We give algorithms to
estimate them and compare their performance in both synthetic and real-life datasets; we also offer interpretations of
these results. Our work also leaves a number of interesting open problems, such as comparisons between quantiles
and expectile, generalizations to functional data, and further statistical properties of our estimators.

Our paper is organized as follows. In Section 2 we review quantiles, expectiles and PCA. We then discuss the
issues in generalizing PCA to expectiles, and propose a definition for principal expectile components, PrincipalEx-
pectile algorithm and two other variations named TopDown and BottomUp. In Section 4, we report the statistical
properties of these estimators. In Section 5, we provide algorithms to compute PEC, TopDown and BottomUp based
on iterative weighted least squares, and derive upper bounds on their convergence time. We compare their performance
in a simulation study in Section 6. In Section 7, we show applications to three different real-life datasets pertaining
to the weather, fMRI and growth curves. The last section summarizes our findings. Further experimental results and
discussion on various aspects of the algorithms are given in the Appendix.

2. Background

2.1. Quantiles and expectiles

Take the data dimension p as fixed. For y ∈ Rp, we define y+ = max(0, y), y− = max(0,−y) coordinate-wise. For
τ ∈ (0, 1), let ‖ · ‖1 be the L1-norm in Rp, i.e., ‖y‖1 = |y1| + · · · + |yp|. The L1-norm with weight τ in Rp is

‖y‖τ,1 = τ‖y+‖1 + (1 − τ)‖y−‖1 =

p∑

j=1

|y j| × {τ1(y j ≥ 0) + (1 − τ)1(y j < 0)},

where 1 is the indicator function. Similarly, let ‖ · ‖2 denote the L2-norm in Rp, ‖y‖22 = y2
1 + · · · + y2

p. The asymmetric
L2-norm with weight τ in Rp is

‖y‖2τ,2 = τ‖y+‖22 + (1 − τ)‖y−‖22.
When τ = 1/2, we recover constant multiples of the L1 and L2-norms, respectively. These two families of norms
belong to the general class of asymmetric norms with sign-sensitive weights. They stem from approximation theory;
see [3]. Among other properties, these norms are convex, and their unit balls restricted to a given orthant in Rp are
weighted simplices for the ‖ · ‖τ,1 norm, and axis-aligned ellipsoids for the ‖ · ‖τ,2 norm. In other words, they coincide
with the unit balls of axis-aligned weighted L1 and L2 norms.

Let Y ∈ Rp be a random variable with cumulative distribution function (cdf) F. The τ-quantile qτ(Y) ∈ Rp of FY

is the solution to the following optimization problem:

qτ(Y) = argmin
q∈Rp

E‖Y − q‖τ,1.

Similarly, the τ-expectile eτ(Y) ∈ Rp of FY is the solution to

eτ(Y) = argmin
e∈Rp

E‖Y − e‖2τ,2.

As shown by Cobzaş [3], both qτ(Y) and eτ(Y) exist and are unique, assuming that E(Y) is finite.

2.2. Classical principal component analysis

There are multiple, equivalent ways of defining classical PCA, which generalize to different definitions of principal
components for quantiles and expectiles. We focus on two formulations: minimizing the residual sum of squares, and
maximizing the variance captured. For further details, see [11].
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Suppose we observe n vectors Y1, . . . ,Yn ∈ Rp with empirical distribution function (edf) Fn. Write Y for the n× p
data matrix. PCA solves for the k-dimensional affine subspace that best approximates Y1, . . . ,Yn in L2-norm. In matrix
terms, we are looking for the constant m∗ ∈ Rp and the matrix E∗k , the rank-k matrix that best approximates Y − ι(m∗)>
in the Frobenius norm, where ι stands for a vector of 1s. That is,

(m∗k, E
∗
k) = argmin

m∈Rp,E∈Rn×p:rank(E)=k
‖Y − ιm> − E‖21/2,2. (1)

As written, m is not well defined: if (m, E) is a solution, then (m + c, E − ιc>) is another solution for any c in
the column space of E. Geometrically, this means that we can express the affine subspace m + E with respect to any
chosen point m. It is intuitive to choose m to be the best constant in this affine subspace that approximates Y . By a
least squares argument, the solution is m∗k = E(Y). That is, it is independent of k and coincides with the best constant
approximation to Y . Thus, it is sufficient to assume E(Y) = m ≡ 0, and consider the optimization problem in (1)
without the constant term.

Suppose Y is of full rank and the eigenvalues of its covariance matrix are distinct. This is necessary and sufficient
for principal components to be unique. Again by least squares argument, for all k ∈ {1, . . . , p − 1}, one can show that

E∗k ⊂ E∗k+1, (2)

and E∗k+1 \ E∗k is the optimal rank-one approximation of Y − E∗k . This has two consequences. First, there exists
a natural basis for E∗k . Indeed, there exists a unique ordered sequence of orthonormal vectors v∗1, . . . , v

∗
p ∈ Rp such

that E∗1 = U1V>1 , E∗2 = U2V>2 , and so on, where the columns of Vk are the first k v∗i s. The v∗i s are called the principal
components or factor. For fixed k, Vk is the component, or factor matrix, and Uk is the loading. The second implication
of (2) is that one can compute the principal components by a greedy algorithm which solves k iterations of the one-
dimensional version of (1).

The one-dimensional version of (1) has another characterization. The first principal component v∗ is the unit
vector in Rp which maximizes the variance of the data projected onto the subspace spanned by v∗. That is,

v∗ = argmax
v∈Rp,v>v=1

var{vv>Yi : 1 ≤ i ≤ n} = argmax
v∈Rp,v>v=1

1
n

n∑

i=1

(v>Yi − v>Y)2, (3)

where var is the variance of the sequence in the argument, while v>Y = (v>Y1 + · · · + v>Yn)/n is the mean of the
projected data, or equivalently, the projection of the mean Ȳ onto the subspace spanned by v. Given that the first
principal component is v∗1, the second principal component v∗2 is the unit vector in Rp which maximizes the variance
of the residual Yi− (v∗1)>Ȳ−v∗1(v∗1)>Yi, and so on. In this formulation, the data do not need to be pre-centered. The sum
(v∗1)>Ȳ + · · · + (v∗k)>Ȳ is the overall mean Ȳ projected onto the subspace spanned by the first k principal components.

For the benefit of comparisons with Theorem 2, let us reformulate (3) as follows. Define

C =
1
n

n∑

i=1

(Yi − Ȳ)(Yi − Ȳ)>. (4)

Then v∗ is the solution to the following optimization problem:

maximize v>Cv subject to v>v = 1.

It is clear from this formulation that this optimization problem has a solution unique up to a sign if and only if C has
a unique largest eigenvalue. For this reason, we will implicitly assume that all eigenvalues of C are distinct.

3. Principal expectile analysis

We now generalize the above definitions of PCA to those for expectiles, leading to principal expectile analysis.
While we focus exclusively on expectiles in this paper, we note that the generalization for quantiles follows similarly,
and algorithms for L1 matrix factorization can also be adapted to this case.
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The two views of PCA, minimizing-least-squares in (1), and maximizing-projected-variance in (4), are no longer
equivalent when one optimizes these functions under the asymmetric L2-norm. This is because the asymmetric norm
is not a projection. The analogue of (1) is the following low-rank matrix approximation problem:

(m∗k, E
∗
k) = argmin

m∈Rp,E∈Rn×p:rank(E)=k
‖Y − ιm> − E‖2τ,2. (5)

Again, we may define m to be the best constant approximation to Y on the affine subspace determined by (m, E). For a
fixed affine subspace, such a constant is unique and is the coordinate-wise τ-expectile of the residuals Y−E. However,
the expectile is not additive for τ , 1/2. Thus in general the column space of E∗k is not a subspace of the column
space E∗k+1, the constant m∗k depends on k, and is not equal to the τ-expectile eτ(Y). In other words, even when E∗k is a
well-defined subspace, it does not come with a natural basis, and hence there are no natural candidates for ‘principal
components’.

Fix k and consider the problem of computing m∗k and E∗k . Write a rank-k matrix E as E = UV>, where U ∈ Rn×k;
V ∈ Rp×k. Adjoin U with an all-1 column to form Ũ, and adjoin m to the corresponding column of V to form Ṽ . Thus
ιm> + E = ŨṼ>. Eq. (5) is an unconstrained minimization problem over the pair of (adjoined) matrices (Ũ, Ṽ) with
minimization objective

J(Ũ, Ṽ ,W) = ‖Y − ŨṼ>‖2τ,2 =

n∑

i=1

p∑

j=1

wi j

Yi j − m j −
∑

`

Ui`V`k


2

,

where the weights wi j are sign-dependent: wi j = τ if Yi j − m j −∑` Ui`V`k > 0, wi j = 1 − τ otherwise.
To define principal expectile components, one can equip E∗k with two types of basis, which we call TopDown and

BottomUp. In TopDown, one first finds E∗k . Then for j ∈ {1, . . . , k − 1}, one finds E j, the best j-dimensional subspace
approximation to Y−m∗k, subject to E j−1 ⊂ E j ⊂ E∗k . This defines a nested sequence of subspace E1 ⊂ · · · ⊂ Ek−1 ⊂ E∗k ,
and hence a basis for E∗k , such that E j is an approximation of the best j-dimensional subspace approximation to Y−m∗k
contained in E∗k . In BottomUp, one first finds E∗1. Then for j ∈ {2, . . . , k}, one finds (m j, E j), the optimal j-dimensional
affine subspace approximation to Y , subjected to E j−1 ⊂ E j. In each step we re-estimate the constant term. Again, we
obtain a nested sequence of subspaces E∗1 ⊂ · · · ⊂ Ek, and constant terms m1, . . . ,mk, where (m j, E j) is the best affine
j-dimensional subspace approximation to Y .

When τ = 1/2, i.e., when doing usual PCA, both definitions correctly recover the principal components. For
τ , 1/2, they can produce different output. Interestingly, both in simulations and in practice, these outputs are not
very different; see Sections 6 and 7. See Section 5 for a formal description of the TopDown and BottomUp algorithms
and computational bounds on their convergence time.

Generalization of (3) is more fruitful, both theoretically and computationally. First we need a weighted definition
of the variance. Let Y ∈ R be a random variable with cdf F. Its τ-variance is

varτ(Y) = E‖Y − eτ‖2τ,2 = min
e∈R

E‖Y − e‖2τ,2,

where eτ = eτ(Y) is the τ-expectile of Y . When τ = 1/2, this reduces to the usual definition of variance. The direct
generalization of (3) is

v∗τ = argmax
v∈Rp,v>v=1

varτ(v>Y1, . . . , v>Yn) = argmax
v∈Rp,v>v=1

1
n

n∑

i=1

(v>Yi − µτ)2wi

where µτ ∈ R is the τ-expectile of the sequence of n real numbers v>Y1, . . . , v>Yn, and

wi =

{
τ if

∑p
j=1 Yi jv j > µτ,

1 − τ otherwise.

Definition 1. Suppose we observe Y1, . . . ,Yn ∈ Rp. The first principal expectile component (PEC) v∗τ is the unit vector
in Rp that maximizes the τ-variance of the data projected on the subspace spanned by v∗τ. That is, v∗τ solves (6).
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Like in classical PCA, the other components are defined based on the residuals, and thus by definition, they are
orthogonal to the previously found components. Therefore one obtains a nested sequence of subspace which captures
the tail variations of the data.

The τ-variance measures the spread of the data relative to the τ-expectile eτ. For τ very close to 1, for instance,
observations above eτ are assigned the very high weight τ, while those below receive very little weight. Similarly, for
τ very close to 0, observations below eτ carry most of the weight. In other words, the τ-variance is dominated by the
observations more extreme than eτ. Thus, PEC, the direction that maximizes the τ-variance of the projected data can
be interpreted as the direction with the most ‘extreme’ behavior in the loadings.

3.1. Relation to principal quantile directions

Though we only focus on expectiles, for ease of comparison with [7] and the related literature, we give the quantile
analogue of our definition of PEC. By replacing the ‖ · ‖2τ,2 norm with the ‖ · ‖τ,1 norm, one can define the analogue of
principal component for quantiles. The analogue of τ-variance is the τ-deviation

Devτ(Y) = E‖Y − qτ(Y)‖τ,1 = min
q∈R

E‖Y − q‖τ,1.

This leads to the optimization problem

v∗τ,L1
= argmax

v∈Rp:
∑

j |v j |=1
Devτ(v>Y1, . . . , v>Yn).

One can define the first principal quantile component (PQC) v∗τ,L1
as the L1-unit vector in Rp that maximizes the τ-

deviation captured by the data projected on the subspace spanned by v∗τ,L1
. In comparison, Fraiman and Pateiro-López

[7] define the first principal quantile direction ψ to be the one that maximizes the L2 norm of the τ-quantile of the
centered data, projected in the direction ψ. That is, ψ is the solution of

max
v∈Rp:v>v=1

‖v>qτ(Y − EY)‖1/2,2.

Kong and Mizera [14] proposed the same definition but without centering Y at EY .

4. Statistical properties of PEC

We now show that our definition of PEC satisfies many important properties, such as being compatible to or-
thogonal transformations of the data, and coinciding with classical PC for elliptically symmetric distributions; see
Proposition 2. More important, we show that the empirical estimator in (6) is consistent under some mild uniqueness
assumptions akin to the unique leading eigenvalue assumption in classical PCA.

Proposition 1 (Properties of τ-variance). Let Y ∈ R be a random variable. For τ ∈ (0, 1), the following statements
hold:

(i) varτ(Y + c) = varτ(Y) for c ∈ R;

(ii) varτ(sY) = s2varτ(Y) for s ∈ R, s > 0;

(iii) varτ(−Y) = var1−τ(Y).

Proof. The first two follow directly from corresponding properties for eτ. We will prove that last assertion. Recall
that eτ(−Y) = −e1−τ(Y). Thus

varτ(−Y) = E‖ − Y − eτ(−Y)‖2τ,2 = E‖ − {Y − e1−τ(Y)}‖2τ,2 = E‖Y − e1−τ(Y)‖21−τ,2 = var1−τ(Y).

Hence the argument is complete. �

As a corollary, we see that PECs are sign-sensitive in general, unless the distribution of Y is symmetric or τ = 1/2.
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Corollary 1. For τ ∈ (0, 1) and random variable Y ∈ Rp, suppose v∗τ is a first τ-PEC of Y. If τ , 1/2, then −v∗τ = v∗1−τ,
i.e., −v∗τ is also a first (1 − τ)-PEC of Y. Furthermore, if the distribution of Y is symmetric about 0, i.e., Y =L −Y, or
if τ = 1/2, then then −v∗τ is also a first τ-PEC of Y.

Proof. By Proposition 1, varτ(v∗>τ Y) = var1−τ{(−v∗>τ )Y}. Thus if v∗τ solves (6) for τ, then so does (−vτ)∗ for 1 − τ. If
the distribution of Y is symmetric about 0, then varτ(v∗>τ Y) = var1−τ{v∗>τ (−Y)} = varτ(v∗>τ Y). In this case −v∗τ = v∗1−τ is
another τ-PEC of Y . �

Proposition 2. [Properties of principal expectile component] Let Y ∈ Rp be a random variable and v∗τ(Y) its unique
first principal expectile component as given in Definition 1.

(i) For any constant c ∈ Rp, v∗τ(Y + c) = v∗τ(Y). In words, the PEC is invariant under data translations.

(ii) If B ∈ Rp×p is an orthogonal matrix, then v∗τ(BY) = Bv∗τ(Y). In words, the PEC respects changes of basis.

(iii) If the distribution of Y is elliptically symmetric about some point c ∈ Rp, i.e., there exists an invertible p × p
real matrix A such that BA−1(Y − c) =L A−1(Y − c) for all orthogonal matrices B, then v∗τ(Y) = v∗1/2(Y). In this
case, the PEC coincides with the classical PC regardless of τ.

(iv) If the distribution of Y is spherically symmetric about some point c ∈ Rp, i.e., B(Y − c) =L Y − c for all
orthogonal matrix B, then all directions are principal.

Proof. By the first part of Proposition 1,

varτ{v>(Yi + c) : i ∈ {1, . . . , n}} = varτ{v>Yi + v>c : i ∈ {1, . . . , n}} = varτ{v>Yi : i ∈ {1, . . . , n}}.

This proves the first statement. For the second, note that

varτ{v>BYi : i ∈ {1, . . . , n}} = varτ{(B>v)>Yi : i ∈ {1, . . . , n}}.

Thus if v∗τ is the first τ-PEC of Y , then (B>)−1v∗τ is the first τ-PEC of BY . But B is orthogonal, i.e., (B>)−1 = B. Hence
Bv∗τ is the τ-PEC of BY . This proves the second statement.

For the third statement, by Statement 1, we can assume c ≡ 0. Thus Y = AZ, where BZ =L Z for all orthogonal
matrices B. Write A in its singular value decomposition A = UDV , where D is a diagonal matrix with positive values
Dii = di for i ∈ {1, . . . , p}, and U and V are p × p orthogonal matrices. Choosing B = V−1 gives

v∗τ(Y) = v∗τ(UDZ) = Uv∗τ(DZ).

Now, by Proposition 1, since d j ≥ 0 for all j ∈ {1, . . . , p},

varτ(v>DZ) = varτ


p∑

j=1

d jZ jv j

 =
∑

j

v2
jd

2
j varτ(Z j).

Since
∑

j v2
j = 1, varτ(v>DZ) lies in the convex hull of the p numbers d2

j varτ(Z j) for j ∈ {1, . . . , p}. Therefore, it is
maximized by setting v to be the unit vector along the axis j with maximal d2

j varτ(Z j).
But Z =L BZ for all orthogonal matrices B and so Z j =L Zk. Therefore, varτ(Z j) = varτ(Zk) for all indices

j, k ∈ {1, . . . , p}. Thus varτ(v>DZ) is maximized when v is the unit vector along the axis j with maximal d j. This
is precisely the axis with maximal singular value of A, and hence is also the direction of the (classical) principal
component of DZ. This proves the claim. The last statement follows immediately from the third statement. �

We now prove consistency of local maximizers of (6). The main theorem in this section is the following.

Theorem 1. Fix τ > 0. Let Y be a random variable in Rp with finite second moment and distribution function F.
Suppose v∗ = v∗τ is a unique global solution to (6) corresponding to Y. Suppose we observe n iid copies of Y, with
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empirical distribution function Fn. Let Yn be a random variable whose cdf is Fn. Then for sufficiently large n, for any
sequence of global solutions v∗n of (6) corresponding to Yn, we have, as n→ ∞,

v∗n
F−a.s.−→ v∗ in Rp.

For the proof, we first need the following lemma.

Lemma 1. Under the assumptions of Theorem 1, uniformly over all v ∈ Rp with v>v = 1, and uniformly over all
τ ∈ (0, 1),

varτ(Y>n v)
F−a.s.−→ varτ(Y>v).

Proof. Since Yn is the empirical version of Y and the set of all unit vectors v ∈ Rp, v>v = 1 is compact, it follows
from the Cramér–Wold theorem that Y>n v  Y>v uniformly over all such unit vectors v ∈ Rp. It then follows that eτ
and varτ, which are completely determined by the distribution function, also converge F-a.s. uniformly over all v. �

Proof of Theorem 1. Let Sp−1 denote the unit sphere in Rp. Equip Rp with the Euclidean norm ‖ · ‖. Define the map
VY : Sp−1 → R, VY (v) = varτ(Y>v). Fix ε > 0. We will prove that there exists δ > 0 such that the global minimum of
VYn is necessarily within δ-distance of v∗.

Since VY is continuous, Sp−1 is compact, and v∗ is unique, there exists a sufficiently small δ > 0 such that

|VY (v) − VY (v∗)| < ε ⇒ ‖v − v∗‖ < δ

for v ∈ Sp−1. In particular, if ‖v − v∗‖ > δ, then VY (v∗) + ε < VY (v). By Lemma 1, VYn → VY as n→ ∞ uniformly over
Sp−1. In particular, there exists a large N such that for every integer n > N, |VYn (v) − VY (v)| < ε/6 for all v ∈ Sp−1.
Thus for v ∈ Sp−1 such that ‖v − v∗‖ > δ, VYn (v) − VY (v∗) > ε − ε/6 = 5ε/6. Meanwhile, since VY is continuous,
one can choose ε′ = ε/6, and thus obtain δ′ such that ‖v − v∗‖ < δ′ ⇒ |VY (v) − VY (v∗)| < ε/6. Then, for v such that
‖v − v∗‖ < δ′,

VYn (v) − VY (v∗) ≤ |VYn (v) − VY (v)| + |VY (v) − VY (v∗)| < ε/6 + ε/6 = ε/3.

So far we have shown that if ‖v − v∗‖ > δ, then VYn (v) is at least 5ε/6 larger than VY (v∗). Meanwhile, if ‖v − v∗‖ < δ′,
then VYn (v) is at most ε/3 larger than VY (v∗). Thus the global minimum v∗n of VYn necessarily satisfies ‖v∗n − v∗‖ < δ.
This completes the proof. �

4.1. PEC as constrained PCA
To compute the principal expectile component v∗τ, one needs to optimize the right-hand side of (6) over all unit

vectors v. Although this is a differentiable function in v, optimizing it is a difficult problem, since µτ also depends
on v and does not have a closed form solution. However, Theorem 2 below shows that in certain situations, for given
weights wi, not only µτ but also v∗τ do have closed form solutions. In particular, in this setting, PEC is the constrained
classical PC of a weighted version of the covariance matrix of the data, centered at a constant possibly different from
the mean. This theorem forms the backbone of our iterative algorithm for computing PEC discussed in Section 5.

Theorem 2. Consider (6). Suppose we are given the true weights wi, which are either τ or 1 − τ. Let τ+ =

{i ∈ {1, . . . , n} : wi = τ} be the set of observations Yi with ‘positive’ labels, and τ− = {i ∈ {1, . . . , n} : wi = 1 − τ} be
its complement. Let n+ and n− be the sizes of the respective sets. Define an estimator êτ ∈ Rp of the τ-expectile via

êτ =
τ
∑

i∈τ+
Yi + (1 − τ)

∑
i∈τ− Yi

τn+ + (1 − τ)n−
. (6)

Define

Cτ =
τ

n


∑

i∈τ+

(Yi − êτ)(Yi − êτ)>
 +

1 − τ
n


∑

i∈τ−
(Yi − êτ)(Yi − êτ)>

 . (7)

Then v∗τ is the solution to the following optimization problem:

maximize v>Cτv subject to v>Yi > v>êτ ⇔ i ∈ τ+, v>v = 1. (8)
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Proof. Since the weights are the true weights coming from the true principal expectile component v∗τ, clearly v∗τ
satisfies the constraint in (8). Now suppose v is another vector in this constraint set. By definition of êτ, v>êτ is
exactly µτ, the τ-expectile of the sequence of n real numbers v>Y1, . . . , v>Yn. Therefore, the quantity we need to
maximize in (6) reads

1
n

n∑

i=1

(v>Yi − µτ)2wi =
τ

n

∑

i∈τ+

(v>Yi − v>êτ)2 +
1 − τ

n

∑

i∈τ−
(v>Yi − v>êτ)2

=
τ

n

∑

i∈τ+

v>(Yi − êτ)(Yi − êτ)>v +
1 − τ

n

∑

i∈τ−
v>(Yi − êτ)(Yi − êτ)>v = v>Cτv.

Thus the optimization problem above is indeed an equivalent formulation of (6), which was used to define v∗τ. Finally,
the last observation follows by comparing the above with the optimization formulation for PCA; see the paragraph
after (4). Indeed, when τ = 1/2, ê1/2 = Ȳ , C1/2 = C, and we recover the classical PCA. �

5. Algorithms

5.1. Principal expectile components

Suppose the conditions of Theorem 2 are satisfied, so that finding PEC is the problem of solving a constrained
PCA given in (8), but with unknown weights depending on the true principal direction. Since êτ is a linear function
in Yi, (8) defines a system of linear constraints in the entries of Yi and v∗τ. Thus for each fixed sign sets (τ+, τ−), there
exist (not necessarily unique) local optima v∗τ(τ+, τ−). There are 2n possible sign sets, one of which corresponds to
the global optimum v∗τ that we need. It is clear that finding the global optimum v∗τ by enumerating all possible sign
sets is intractable. However, in many situations, the constraint in (8) is inactive. That is, the largest eigenvector of
Cτ satisfies (8) for free. In such situations, we call v∗τ a stable solution. Just like classical PCA, stable solutions are
unique for matrices Cτ with unique principal eigenvalue. More importantly, we have an efficient algorithm for finding
stable solutions, if they exist.

Definition 2. For some given sets of weights w = (wi), define eτ(w) via (6), Cτ(w) via (7). Let vτ(w) be the largest
eigenvector of Cτ(w). If vτ(w) satisfies (8), we say that vτ(w) is a locally stable solution with weights w.

To find locally stable solutions, one can solve (3) using iterative re-weighted least squares: first initialize the wis,
compute estimators µτ(w) and vτ(w) ignoring the constraint (8), update the weights via (3), and iterate. At each step
of this algorithm, one finds the principal component of a weighted covariance matrix with some approximate weight.
Since there are only finitely many possible weight sets, the algorithm is guaranteed to converge to a locally stable
solution if it exists. In particular, if the true solution to (3) is stable, then for appropriate initial weights, the algorithm
will find this value. We call this algorithm PrincipalExpectile.

We now describe the details of this algorithm for the case k = 1, i.e., the algorithm for computing the first
principal expectile component only. To obtain higher order components, one iterates the algorithm over the residuals
Yi − v̂1(v̂>1 Yi + µ̂1), where µ̂1 is the τ-expectile of the loadings v̂>1 Yi.

For n observations Y1, . . . ,Yn, there are at most 2n possible labels for the Yis, and hence the algorithm has in total
2n possible values for the wis. Thus either Algorithm 1 converges to a point which satisfies the properties of the
optimal solution that Theorem 2 prescribes, or it iterates infinitely over a cycle of finitely many possible values of the
wis. In particular, the true solution is a fixed point, and thus fixed points always exist. In practice, we find that the
algorithm converges very quickly, though occasionally it can get stuck in a finite cycle of values; see the Appendix.
In this case, one can jump to a different starting point and restart the algorithm. Choosing a good starting value is
important in ensuring convergence. In practice we employ two initialization methods: random and incremental. With
the first method, one selects a random fraction (say, 10%) of the weights and initialize it to 1 − τ, while the rest to τ.
One repeats PEC estimation for m different initialization settings, take the average curve, and then use the weights
induced by this curve for initialization. With the second method, one performs a sequence of PEC computations for
a sequence of τ starting with τ = 1/2, and set the initial weight to be that induced by the previous run of the algorithm
for a slightly smaller τ. Since the τ-variance is a continuous function in τ, the incremental method is theoretically
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Algorithm 1 PrincipalExpectile

1: Input: Data Y ∈ Rn×p.
2: Output: A vector v̂, an estimator of the first principal expectile component of Y .
3: procedure PrincipalExpectile(Y)
4: Initialize the weights w(0)

i .
5: Set t = 0.
6: repeat
7: Let τ(t)

+ be the set of indices i such that w(t)
i = τ, and τ(t)

− be the complement.
8: Compute e(t)

τ as in Eq. (6) with sets τ(t)
+ , τ

(t)
− .

9: Compute C(t)
τ as in Eq. (7) with sets τ(t)

+ , τ
(t)
− .

10: Set v(t) to be the largest eigenvector of Ct
τ(C

t
τ)
>.

11: Set µ(t)
τ to be the τ-expectile of (v(t))>Yi.

12: Update wi: set w(t+1)
i = τ if (v(t))>Yi > µ

(t)
τ , and set w(t+1)

i = 1 − τ otherwise.
13: Set t = t + 1.
14: until wt

i = w(t+1)
i for all i.

15: return v̂ = v(t)

16: end procedure

sound, and produces a deterministic estimate for each choice of increment sequence. On simulated data, we found
that both methods produce the same estimate; see the Appendix.

5.2. TopDown and BottomUp

We now describe how iterative weighted least squares can be adapted to implement TopDown and BottomUp.
We start with a description of the asymmetric weighted least squares (LAWS) algorithm of Newey and Powell [19].
The basic algorithm outputs a subspace without the affine term, and needs to be adapted. See [9] for a variation with
smoothing penalty and spline basis.

Algorithm 2 Asymmetric weighted least squares (LAWS)

1: Input: Data Y ∈ Rn×p, positive integer k < p.
2: Output: Ê∗k , an estimator of E∗k , expressed in product form Ê∗k = ÛV̂>, where Û ∈ Rn×k, V̂ ∈ Rp×k; Û, V̂ are

unique up to multiplication by an invertible matrix.
3: procedure LAWS(Y, k)
4: Set V (0) to be some rank-k p × k matrix.
5: Set W (0) ∈ Rn×p to be 1/2 everywhere.
6: Set t = 0.
7: repeat
8: Update U: Set U(t+1) = argminU∈Rn×k J(U,V (t),W (t)).
9: Update W: Set W (t+1)

i j = τ if Yi j −∑l U(t+1)
il V (t)

lk > 0, W (t+1)
i j = 1 − τ otherwise.

10: Update V: Set V (t+1) = argminV∈Rk×p J(U(t+1),V,W (t+1)).
11: Update W: Set W (t+1)

i j = τ if Yi j −∑l U(t+1)
il V (t+1)

lk > 0, W (t+1)
i j = 1 − τ otherwise.

12: Set t = t + 1.
13: until U(t+1) = U(t),V (t+1) = V (t),W (t+1) = W (t).
14: return Êk = U(t)(V (t))>

15: end procedure

Proposition 3. The LAWS algorithm is well defined, and is a gradient descent algorithm. Thus it converges to
a critical point of the optimization problem (1).

10



Proof. First note that the steps in the algorithm are well defined. For fixed W and V , J(U,V,W) is a quadratic in the
entries of U. Thus the global minimum on line 8 has an explicit solution; see [9, 24]. A similar statement applies
to line 9. Note that J(U,V,W) is not jointly convex in U and V , but as a function in U for fixed V , it is a convex,
continuously differentiable, piecewise quadratic function. The statement holds for J(U,V,W) as a function in V for
fixed U. Hence lines 8 and 9 is one step in a Newton–Raphson algorithm on J(U,V,W) for fixed V . Similarly, lines 10
and 11 is one step in a Newton–Raphson algorithm on J(U,V,W) for fixed U. Thus the algorithm is a coordinate-wise
gradient descent on a coordinate-wise convex function, and hence it converges. �

If some columns of U or V are pre-specified, one can run LAWS and not update these columns in lines 8 and 10.
Thus one can use LAWS to find the optimal affine subspace by writing ιm> + E = ŨṼ with the first column of Ũ
constrained to be ι. Similarly, we can use this technique to solve the constrained optimization problems:

Find a rank-k approximation Ek whose span contains a given subspace of dimension r < k.

Solution: Constrain the first r columns of V (0) to be a basis of the given subspace.

Find a rank-k approximation whose span lies within a given subspace of dimension r > k.

Solution: Let B ∈ Rn×r be a basis of the given subspace. Then the optimization problem becomes

min
U∈Rr×k ,V∈Rp×k

‖Y − BUV>‖2τ,2.

One can then apply the LAWS algorithm with variables U and V .

Find a rank-k approximation whose span contains a given subspace of dimension r < k, and is contained in a
given subspace of dimension R > k.

Solution: Combine the previous two solutions.

Algorithm 3 TopDown

1: Input: Data Y ∈ Rn×p, positive integer k < p.
2: Output: Ê∗k , an estimator of E∗k , expressed in product form Ê∗k = ÛV̂>, where Û ∈ Rn×k, V̂ ∈ Rp×k are unique.
3: procedure TopDown(Y, k)
4: Use LAWS(Y, k) to find m̂∗k, Ê

∗
k . Write Ê∗k = UV> for some orthonormal basis U.

5: Use LAWS to find Û1, the vector which spans the optimal subspace of dimension 1 contained in U.
6: Use LAWS to find Û2, where (Û1, Û2) spans the optimal subspace of dimension 1 contained in U and contains

the span of Û1
7: Repeat the above step until obtains Û.
8: Obtain V̂ through the constraint Ê∗k = ÛV̂>.
9: return m̂∗k, Ê

∗
k , Û, V̂

>

10: end procedure

Algorithm 4 BottomUp

1: Input: Data Y ∈ Rn×p, positive integer k < p.
2: Output: Ê∗k , an estimator of E∗k , expressed in product form Ê∗k = ÛV̂>, where Û ∈ Rn×k, V̂ ∈ Rp×k are unique.
3: procedure BottomUp(Y, k)
4: Use LAWS to find Ê∗1. Let Û1 be the basis vector.
5: Use LAWS to find Û2 such that (Û1, Û2) is the best bivariate approximation to Y , subject to containing Û1.
6: Repeat the above step until obtains Û. We obtain V̂ and Ê∗k in the last iteration.

return Ê∗k , Û, V̂
>

7: end procedure
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With these tools, we now define the two algorithms, TopDown and BottomUp. The TopDown algorithm requires
the weights wi j and the loadings on previous principal components to be re-evaluated when finding the next principal
component. A variant of the algorithm would be to keep the weights wi j, in which case the algorithm is still well
defined though it will produce a different basis matrix Û, since the estimators are no longer optimal in the ‖ · ‖2τ,2 norm.

5.3. Performance bounds of TopDown and BottomUp

We now show that the dependence on k only grows polylog in n. Thus both TopDown and BottomUp are fairly
efficient algorithms even for large k.

Theorem 3. For fixed V of dimension k, LAWS requires at most O{ln(p)k} iterations, O{npk2 ln(p)k} flops to esti-
mate U.

In other words, if V has converged, LAWS needs at most O{npk2 ln(p)k} flops to estimate U. The role of U and V
are interchangeable if we transpose Y . Thus if U has converged, LAWS needs at most O{npk2 ln(n)k} to estimate V .
We do not have a bound for the number of iterations needed until convergence. In practice this seem to be of order
log of n and p. For the proof of Theorem 3, we need the following two lemmas.

Lemma 2. If Y1, . . . ,Yn ∈ R are n real numbers, then LAWS finds their τ-expectile eτ in O{ln(n)} iterations.

Proof. Given the weights w1, . . . ,wn, that is, given which Yi’s are above and below eτ, the τ-expectile eτ is a linear
function in the Yi as we saw in (6). As shown in Proposition 3, LAWS is equivalent to a Newton–Raphson algorithm
on a piecewise quadratic function. Since the Yis are ordered, it takes O{ln(n)} to learn their true weights. Thus the
algorithm converges in O{ln(n)} iterations. �

Lemma 3. An affine line in Rp can intersect at most 2p orthants.

Proof. Recall that an orthant of Rp is a subset of Rp where the sign of each coordinate is constrained to be either
nonnegative or nonpositive. There are 2p orthants in Rp. Let f (λ) = Y + λv be our affine line, λ ∈ R,Y, v ∈ Rp.
Let sgn : Rp → {±1}p denote the sign function. Now, sgn{ f (0)} = sgn(Y), sgn{ f (∞)} = sgn(v), and sgn{ f (λ)} is a
monotone increasing function in λ. As λ → ∞, sgn{ f (λ)} goes from sgn(Y) to sgn(v) one bit flip at a time. Thus
there are at most p flips, i.e., the half-line f (λ) for λ ∈ [0,∞) intersects at most p orthants. By a similar argument, the
half-line f (λ) for λ ∈ (−∞, 0) intersects at most p other orthants. This concludes the proof. �

Corollary 2. An affine subspace of dimension k in Rp can intersect at most O(pk) orthants.

Proof. Fix any basis, say ψ1, . . . , ψk. By Lemma 3, ψ1 can intersect at most 2p orthants. For each orthant of ψ1,
varying along ψ2 can yield at most another 2p orthants. The proof follows by induction. This is a rather liberal bound,
but it is of the correct order for k small relative to p. �

Proof of Theorem 3. By Corollary 2, it is sufficient to consider the case k = 1. Fix V of dimension 1. Since U,V are
column matrices, we write them in lower case letters u, v. Solving for each ui is a separate problem; thus we have n
separate optimization problem, and it is sufficient to prove the claim for each i ∈ {1, . . . , n}.

Fix i ∈ {1, . . . , n}. As ui varies, Yi −mi − uiv defines a line in Rp. The weight vector (wi1, . . . ,wip) only depends on
which coordinates are the orthant of Rp in which Yi −mi −uiv is in. The latter is equivalent to determining the weights
of the p points (Yi −mi)/vi. By Lemma 2, it takes O{ln(p)} for LAWS to determine the weights correctly. Thus LAWS
takes at most O{ln(p)} iterations to converge, since each iteration involves estimating w, then v. Each iteration solves
a weighted least squares, thus takes O(npk2). Hence for fixed v, LAWS can estimate u after at most O{npk2 ln(p)}
flops for k = 1. This concludes the proof for fixed v. By considering the transposed matrix Y , we see that the roles of
u and v are interchangeable. The conclusion follows similarly for fixed u. �
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6. Simulation

To study the finite-sample properties of the proposed algorithms we perform a simulation study. We follow the
simulation setup of Guo et al. [9], i.e., we simulate the data Yi j for all i ∈ {1, . . . , n}, j ∈ {1, . . . , p} as

Yi j = µ(t j) + f1(t j)α1i + f2(t j)α2i + εi j, (9)

where the t js are equidistant on [0, 1], µ(t) = 1 + t + exp{−(t − 0.6)2/0.05} is the mean function, f1(t) =
√

2 sin(2πt)
and f2(t) =

√
2 cos(2πt) are principal component curves, and εi j is a random noise. We consider two settings, each

with five error scenarios:

1. α1i ∼ N(0, 36) and α2i ∼ N(0, 9) are both iid and the εi js are (1) iid N(0, σ2
1), (2) iid t(5), (3) independent

N[0, µ(t j)σ2
1], (4) iid lnN(0, σ2

1) and (5) iid sums of two uniformsU(0, σ2
1) with σ2

1 = 0.5.

2. α1i ∼ N(0, 16) and α2i ∼ N(0, 9) are both iid and the εi js are (1) iid N(0, σ2
2), (2) iid t(5), (3) independent

N[0, µ(t j)σ2
2], (4) iid lnN(0, σ2

2) and (5) iid sums of two uniformsU(0, σ2
2) with σ2

2 = 1.

Note that the settings imply different ratios of coefficient-to-coefficient-to-noise variations. In Setting 1, Sce-
nario (1), we have a ratio 36:9:0.5, whereas in Setting 2, Scenario (1) we have 16:9:1. Apart from standard Gaussian
errors, we also consider “fat tailed” errors in Scenario (2), heteroscedastic in (3) and skewed errors in (4). We study
the performance of the algorithms for three sample sizes: (i) small n = 20, p = 100; (ii) medium n = 50, p = 150;
(iii) large n = 100, p = 200.

For every combination of parameters we repeat the simulations 500 times and record the mean computing times,
the mean of the average mean squared error (MSE), its standard deviation, and convergence ratio for each algorithm.
We label the run of the algorithm as unconverged whenever after 30 iterations and 50 restarts from a random starting
point the algorithms fail to converge.

We compare computational times and MSEs of the three methods TopDown (TD), BottomUp (BUP) and Princi-
palExpectile (PEC) in the Appendix. In general, PEC is the fastest but it has a lower convergence rate than TopDown
(TD) and BottomUp (BUP). From the MSEs, we conclude that whenever the error distribution is fat-tailed or skewed,
or for small samples, PEC is likely to produce more reliable results in terms of its MSE, whereas for errors close to
normal and moderate or large samples, TD is likely to produce smaller MSEs.

7. Empirical study

We apply the proposed algorithms to three different datasets. In Section 7.1 we investigate the fMRI data from the
Risk Perception in Investment Decisions (RPID) study. Since the technical details of the experiment are complex and
beyond the scope of this research, we provide only a short summary of the experiment and refer the reader to [16–18]
for more details about the experiment and to [1] for the analysis of fMRI data in general. In Section 7.2 we analyze
the daily temperature dataset over multiple Chinese stations. Finally, we perform PEC-analysis on the child growth
data in Section 7.3.

In these empirical studies, we keep the multivariate data in their original form. We also note that a complete
data analysis using PEC requires one to address many issues common to classical PCA such as smoothing, choice
of number of components and cross-validation of estimated parameters, to name a few; see the classic monographs
[20, 21]. In-depth analysis of these steps is beyond the scope of the present work. Rather, the results in this section
are meant to demonstrate how PECs can be applied and interpreted in various settings.

7.1. Application to fMRI data
Risk Perception in Investment Decisions (RPID) Study performed an experiment over 19 individuals. Each par-

ticipant was asked 256 investment questions, where past returns were presented and participants had to make a choice
whether they would invest in a bond with 5% fixed return or the displayed investment. Individual responses reflect the
risk attitude of every participant. Following the common Markowitz mean-variance approach, one can evaluate the
this risk attitude (for details, see [18]) and assign the corresponding values between −0.1 and 1.1 reflecting individual
risk perception. We show the values in the right panel of Figure 2 on vertical axes. Higher values represent the higher
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Figure 1: Loadings for the first principal expectile component for active regions of individual No 1 (left) and No 19 (right).

risk aversion. Individual No 19 is considered as the most risk seeking and individual No 1 as the most risk averse
participant in the sample.

The aim of the experiment was to study if individual risk perception can be interpreted and recovered by brain
activities. With functional magnetic resonance imaging (fMRI) one can measure such neural activity by the blood
oxygen level-dependent (BOLD) signal.

Regarding the settings of our dataset, scans of voxels were taken every two seconds, resulting in high-dimensional
data for each individual. Majer et al. [16] identified three brain regions (clusters) which are activated during the ex-
periment: the anterior insula (aINS; left and right) and the dorsomedial prefrontal cortex (DMPFC). From a statistical
point of view the scan of all voxels in certain brain areas can be considered as a very noisy multi-dimensional time
series of round 300–400 voxels for every individual. In order to capture the variability in these series of every region,
we use principal expectile components.

Following the notation from Section 4, denote Y (r)
t the response, N(r)-dimensional vector, obtained at specific re-

gion, r = aINS le f t, aINS right,DMPFC at time t ∈ {1, . . . , 1400}, where N(r) is a number of voxels in a specific region
r. Further let φk

τ,(r) be the kth principal expectile component (PEC) at level τ and ψk
τ,(r) be the corresponding projec-

tions, also known as loadings. PECs provide us with dimension reduction; each region dynamics is now captured by
univariate time series of loadings. The loadings of all three regions for indiviuals No 1 and No 19 at level τ = 0.6 are
presented in Figure 1.

Since the response function usually achieves its peak only shortly after stimulus, i.e., portfolio question, we focus
on average loadings after stimulus. The average loadings of three active regions are considered as the regressors for
explanation of this risk attitude. For comparison with the results of previous work, we follow Majer et al. [16] and
model the relationship of the risk attitude atti and brain reactions via linear regression, which provides the simplest,
yet quite accurate, comparison. More precisely for individuals i ∈ {1, . . . , 19} and any fixed τ-level, we have

atti = β0 +
∑

k=1,2 r=aINS l, aINS r,DMPFC

βk,rψ
k
τ,(r),i + εi. (10)
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Figure 2: Coefficients of determination for all considered τ-level (left) and the regression fit for model (10) at τ = 0.6 (right). The horizontal axis
represents âtti, the best linear combination of regressors ψk

τ,(r),i.

We performed the PrincipalExpectile algorithm for τ ∈ {0.05, 0.1, . . . , 0.9, 0.95}. It is interesting to see that the best
result with respect to coefficient of determination R2 is obtained not for τ = 0.5, but rather for τ = 0.6. We report
the coefficients of determination for all considered τ-level in Figure 2, together with the regression fit for model (10)
at level τ = 0.6. The use of τ = 0.6 over-performs the traditional use of τ = 0.5.

7.2. Application to Chinese Weather Data

We apply the algorithms BottomUp, TopDown and PrincipalExpectile to Chinese temperature data using daily av-
erage temperature data of 159 weather stations in mainland China for the years 1957 to 2009 provided by the Chinese
Meteorological Administration via its website. We did not pre-smooth the data. The original data averaged over years
for every country are presented in Figure 3.

We run the algorithms to estimate principal expectile components for the weather stations at each of the τ-levels
10%, 50% and 90% with respect to days of a year from 1 to 365. Our analysis for the 50% expectile corresponds to the
classical PCA. We estimate the first two principal component functions.The estimation results of the three proposed
algorithms are rather similar. In Figure 4, we present the estimated principal component functions for τ = 0.1 and
τ = 0.9.

We see that the three algorithms give really similar results. However, one can be more interested in differences
between the τ levels. Thus in Figure 5 we show the differences of PEC component at level τ = 0.9 (red), τ = 0.1
(blue) respectively, and PEC component at level τ = 0.5, which corresponds to the ordinary principal component, i.e.,
φk

0.9 − φk
0.5, respectively φk

0.1 − φk
0.5. We observe that both components differ from the ordinary principal component.

Moreover, we plot also differences for τ = 0.8 (dashed gray) and τ = 0.7 (solid gray) to show that in case of the second
component, the difference increases with higher levels of τ.

The obtained first and second components indicate the changes in the temperature distribution from lighter to
heavier tails and the other way around within a typical year. A positive score on the first component would mean
heavier than average tails in winter and lighter than average tails during the rest of the year. Similarly, a positive score
on the second component would indicate lighter than average tails of the temperature distribution in winter months,
and heavier in summer.
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Figure 3: Observed averaged daily temperature on 159 stations (upper panel) and decentred data (lower panel) with expectiles for level τ ∈
{0.9, 0.5, 0.1}.
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Figure 6: The scores for first (left) and second (right) PECs computed by Principile expectile algorithm for τ = 0.9.

.

Figure 7: Map of Chinese climate zones by Gao et al. [8] (left) and distribution of trends in temperature percentile index TX90p for the period
1961–2010 by Zhou et al. [27] (right).
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For better interpretation we also provide the map of scores in Figure 6. The scores of the first principal expectile
component correspond to the climate regions; see Figure 7, explaining the short-term periodic behavior precisely.
The scores of the second principal expectile component correspond to the increasing trend in extremes observed for
different areas, shown in Figure 7 via temperature index TX90p. TX90p - Warm days indicator is a percentage of
time when daily max temperature is higher than 90th percentile. It is one of the 27 core indicators for temperature and
perspiration recommended by the World Meteorological Organization - Expert Team on Climate Change Detection
and Indices (WMO - ETCCDI); see [13]. The scores of the second component do not necessary coincide with the
climate regions but with areas of TX90p index, which explains more long-term behavior and trend.

7.3. Application to Berkeley Growth Data

The Berkeley Growth Study data consist of the height measurements of 39 boys and 54 girls. Children were
monitored until the age of 18 and the observations are not equally spaced. Four measurements were taken while
the child is one year old, followed by annual measurements from two to eight years and later the height was measured
biannually. Data are publically available as in R-package fda; see Ramsay et al. [22].

Introductory analysis of such growth curves was already presented in Ramsay and Silverman [20], where the
differences between the boy and girl curves were considered. Later Yu et al. [25] showed the application of functional
principal component analysis as a tool for the modeling and prediction of growth data. We enlarge the analysis for
all τ-levels and computed the principal expectile components for Berkeley growth data with respect to the gender as
well.

In Figure 8 we present the first (upper row) and second (bottom row) Principal Expectile Components computed
for all children (right column) as well as the subsets of girls (left column) and boys (middle column). In order to
point out the difference between the τ-levels, we present PECs for τ equal to 0.05 (blue), 0.95 (red) and τ equal to 0.5
(black) that correspond to the traditional principal components.
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Figure 8: First PEC (first row) and second PEC (second row) for Berkeley Growth data with respect to gender: girls (right), boys (middle), all
together (left).
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The different pattern for girls and boys should be definitely taken into consideration. We also see that in case
of boys compared to the mean (black curve), there are less variations in both the 95th (red curve) and the 5th (blue
curve) expectile around the 20–25 age range. This is especially true for the second principal component at τ-level 0.5,
suggesting that in the bottom 5th percentile, for the first 20 years, the variation around the 5th expectile can be mostly
explained by the first PEC.

8. Summary

We proposed two definitions of principal components in an asymmetric norm and provided consistent algorithms
based on iterative least squares. We derived the upper bounds on their convergence time as well as other useful
properties of the resulting principal components in an asymmetric norm.

The algorithms TopDown and BottomUp minimize the projection error in a τ-asymmetric norm, and Principal-
Expectile algorithm maximizes the τ-variance of the low-dimensional projection. The latter algorithm was shown to
share ‘nice’ properties of PCA such as invariance under translations and changes of basis. Moreover, it coincides with
classical PCA for elliptically symmetric distributions. In simulations, PrincipalExpectile and TopDown both have
very satisfactory performance in terms of MSE. From a theoretical viewpoint TD is preferable because the estimated
subspace is optimal in the desired norm. As shown in experiments, TD outperforms BUP both in computation time
and mean-squared error of the estimates. From a computational viewpoint, PE is faster and significantly easier to
implement. In addition, it shows robustness to ‘fat-tails’ and skewed data. Therefore, we see that these methods are
complementary. For medium-sized data, we would advocate TD. For larger data where efficiency may be prioritized,
we would recommend PE.

We applied the algorithm to fMRI data to analyze the possibility of better explanation of individual risk attitude
by brain reactions. We have shown that one can achieve better results with a help of higher τ-level rather than by
commonly used τ = 0.5. We also applied the algorithms to a Chinese weather dataset with a view to analyzing
weather extremes and long-term behavior. Analogously to principal components in [20], we estimated the first two
principal expectile component functions of the temperature as functions of days over a year. The resulting component
functions indicate relative changes in the tails of the temperature distribution from light to heavier and vice versa. Our
results clarify the meaning of the first component as a seasonal component explaining short-term variance of climate
areas, while the second component corresponds to the long-term changes. Last, we performed the PrincipalExpectile
algorithm for Berkeley Growth data measurements of children’s height. We observed that there are variations in
heights across ages that also differ with respect to τ-level. Mainly for boys the variation is explained by the first two
components and the variation occurs in ages 20–25. Among the 95th expectile (tall boys), we see the same pattern of
variation as for the mean, i.e., 50th expectile, but in smaller magnitude. Among the 5th expectile (short boys), we see
the same pattern of variation, but even smaller magnitude, almost flat.

The proposed algorithms appear to be a good way to study multivariate data extremes. They are easy to compute,
relatively fast and their results are easy to interpret.

Appendix

Table 1 and 2 show the runtimes of the simulations. PrincipalExpectile (PEC) is the fastest algorithm but it has a
relative low convergence rate: for all sample sizes only around 80% of the algorithm runs converged. In 20% cases
the algorithm kept iterating between two sets of weights which possibly indicates an adverse sample geometry, i.e.,
that two eigenvalues of the scaled covariance matrix are too close to each other. TD, on the contrary, converges almost
always in medium and large sample sizes.

Table 1: Average time in seconds for convergence of the algorithms by 500 simulations

Sample Small Medium Large
τ/sec BUP TD PEC BUP TD PEC BUP TD PEC
0.900 1.15 0.70 0.57 2.87 1.59 1.39 7.44 4.02 2.71
0.950 1.52 1.13 0.55 3.94 2.68 1.57 10.34 6.88 3.03
0.975 2.47 2.32 0.56 5.49 4.62 1.56 14.37 10.96 3.54
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Table 2: Nonconvergence rates of the algorithms by 500 simulation runs

Sample Small Medium Large
τ/rate BUP TD PEC BUP TD PEC BUP TD PEC
0.900 0.11 0.00 0.24 0.07 0.00 0.23 0.03 0.00 0.20
0.950 0.17 0.00 0.22 0.13 0.00 0.26 0.11 0.00 0.21
0.975 0.25 0.03 0.21 0.22 0.01 0.25 0.22 0.00 0.24

The results in terms of MSEs are presented in Tables 3–4 for both simulation settings. Only the magnitude of
the average MSE differs; there is no substantial qualitative difference in relative performance of the algorithms. BUP
performs the worst among the three algorithms in terms of its MSE in all scenarios. TD and PEC are comparable in
terms of their MSEs. PEC is robust against skewness and fat tails in the error distribution since it produces the lowest
MSEs in Scenarios (2) and (4). Yet TD tends to outperform PEC slightly in medium and large samples for errors close
to iid normal or normal heteroscedastic; for small sample sizes PEC outperforms TD in all scenarios but (5).

Figures 9 – 10 illustrate the difference in the quality of component estimation for the 95% expectile when
coefficient-to-coefficient-to-noise variation ratio changes (setting 1 versus setting 2, respectively). The results are
shown for the error scenario (1) and small sample size. We observe that as the ratio changes from 36:9:0.5 (Setting 1,
Figure 9) to 16:9:1 (Setting 2, Figure 10) the variability of the estimators of both component functions increases. The
overall mean of the estimators remains very close to the true component functions.

Finally, we comment on the run time. The computation time always includes the initialization step. For these
simulations, for PEC, we use random weight initialization (and not incremental initialization). This is to ensure a
fair comparison with TD and BUP. Should one compute with incremental initialization, then the runtime should be
multiplied by the number of increments in the sequence. However, this also means that the algorithm outputs all PECs
for a large range of τ, and therefore it is not a fair comparison with TD/BUP (which only output for one specific τ).

When τ is very close to 1 or 0, which observation is assigned the rarer weight has a large influence on the estimator.
The objective function J(U,V,W) becomes very sensitive to weight changes, and the Newton–Raphson algorithm can
take longer to converge. The three algorithms run more slowly when τ is more extreme. PEC is faster compared to TD
and BUP. While all of these algorithms are iterative and involve solving a family of optimization problems (one for
each weight w), TD/BUP does this internal optimization through an iterative coordinate descent procedure (embedded
in LAWS). In comparison, PEC just needs to solve for the largest eigenvector of a particular matrix (Step 10), for
which many efficient algorithms with efficient implementations exist. Therefore, PEC runs much faster.
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Figure 9: Estimated component functions (solid gray) from 500 simulation runs for simulation Setting 1, Scenario 1 small sample size and 95%
expectile. The rows from the top to the bottom show respectively results produced by BUP, TD and PEC. Left panel corresponds to the first
component function, right panel – to the second. The true functions are shown as solid black curves. The overall mean across simulation runs is
shown as dashed black curve. The later can not be distinguished from the true curve.
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Figure 10: Estimated component functions (gray) from 500 simulation runs for simulation Setting 2, Scenario 1 small sample size and 95%
expectile. The rows from the top to the bottom show respectively results produced by BUP, TD and PEC. Left panel corresponds to the first
component function, right panel – to the second. The true functions are shown as solid black curves. The overall mean across simulation runs is
shown as dashed black curve. The later can not be distinguished from the true curve.

Initialization of weights for PEC algorithm

As the first step of the estimation procedure of PEC algorithm, one has to set up initialization weights. We
performed simulations to measure how sensitive the final weight is to initialization. In the simulation below (setup
with n = 20 and p = 100 for Scenario 1, error type 1; see Section 6), we computed PEC for τ = 0.9 with different
initialization settings. Each time, we randomly initialized a fraction k of the weights to be 0.9, and the rest to be 0.1.
For each value of k ∈ {0.1, . . . , 0.9}, we performed 100 runs and plotted the mean squared error of the residual; see
Figure 11. It appears that the change the ratio of 0.1s to 0.9s in the initialization step does not affect performance.
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Figure 11: The mean squared error of the residual with randomly initialized a fraction k of the weights from 10% to 90%.

Finally, we compared the random initialization setup above with the incremental algorithm. In the same setup,
to compute τ = 0.9, we computed a sequence of PECs for τ from 0.5 to 0.9, in increments of size 0.1, 0.05 and
0.01. With an increment of size 0.1, for instance, this means we computed PEC for τ = 0.5 (which is the usual PCA),
used weights from this output to initialize the computation for τ = 0.6, and then again used these weights to initialize
the computation for τ = 0.7, and so on. Figure 12 shows the boxplots of 20 simulation runs for each setting of the
incremental algorithm. These plots show that the increment sequence does not affect the final result significantly.
Furthermore, they largely agree with the random initialization method. In conclusion, either random or incremental
initialization works well in practice and yields similar results.

0.1 0.05 0.01

0.
08

0.
09

0.
10

0.
11

0.
12

0.
13

0.
14

size of increment

m
ea

n 
sq

ua
re

d 
er

ro
r 

of
 r

es
id

ua
l

Figure 12: The mean squared error of the residual with incrementally computed algorithm.
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Abstract
New Public Management helps universities and research institutions to perform in a highly

competitive research environment. Evaluating publicly financed research improves trans-

parency, helps in reflection and self-assessment, and provides information for strategic

decision making. In this paper we provide empirical evidence using data from a Collab-

orative Research Center (CRC) on financial inputs and research output from 2005 to 2016.

After selecting performance indicators suitable for a CRC, we describe main properties of

the data using visualization techniques. To study the relationship between the dimensions

of research performance, we use a time fixed effects panel data model and fixed effects

Poisson model. With the help of year dummy variables, we show how the pattern of

research productivity changes over time after controlling for staff and travel costs. The

joint depiction of the time fixed effects and the research project’s life cycle allows a better

understanding of the development of the number of discussion papers over time.
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Introduction

New Public Management (NPM) emerged in the 1980s (Hood 1991) with the goal of

improving efficiency and overall performance of public sector institutions by using busi-

ness management approaches and models. NPM places a strong focus on permanent

monitoring and evaluation of performance. Measuring research performance allows an

analysis of the structural issues in science. It can thus facilitate the development of a

scientific system and strengthen excellence in research.

This paper discusses Collaborative Research Centers (CRC)—long-term university-

based research institutions funded by the German Research Foundation (DFG 2018).

Evaluating publicly financed research results improves transparency, helps in reflection

and self-assessment, and provides information for strategic decision making. Periodic

monitoring of resource use and interim results allows CRC management to keep the finger

on the pulse and to react to unfavourable phenomena promptly or to develop options for

improvement; thereby, supporting success of the CRC.

There are numerous studies that concentrate on the evaluation of university research or

research institutions in general (Pastor et al. 2015; Van den Berghe et al. 1998). Lee (2010)

and Bolli and Somogyi (2011) discuss performance measurements for departments and

research units. Jansen et al. (2007) and Carayol and Matt (2004) further investigate per-

formance indicators for research groups. However, a CRC differs from common research

units or institutions, because of its interdisciplinary background. The performance indi-

cators used for the evaluation of a CRC should be designed specifically for its needs and

purposes in order to reflect the behaviour of involved research fields and other underlying

characteristics.

In this paper we focus on a selection of performance indicators for intermediate and

final evaluations suitable for broad applicability within CRCs and identifying a relationship

between productivity and resource use of CRCs that may have implications for funding

policy. The goals of this paper include: (1) selecting performance indicators suitable for a

CRC; (2) visualizing goals vs. results, societal impact and the interdisciplinarity structure

of research results of a CRC; (3) analysis of a dependence structure between financial

inputs and research output of a CRC and development of research productivity over time.

To achieve these objectives, we use twelve years (2005–2016) of Collaborative

Research Center 649 ‘‘Economic Risk’’ (CRC 649) data on 35 sub-projects. For each sub-

project we observe yearly staff costs, travel costs and number of discussion papers (DPs).

The life span of each sub-project varies, which results in an unbalanced panel.

Schröder et al. (2014) indicate that the proposal for funding determines objectives for

the research activity. To examine the correspondence between objectives and research

results of the CRC, we carry out a semantic analysis of proposals and abstracts from

published DPs. As a result, we find that both use 50% of the same words.

Apart from research activity, a CRC has an impact on society through public events,

transfer of knowledge or promotion of young researchers. For instance, young researchers

usually perform specific theoretical or practical research that is also used for their Ph.D.

thesis. Collecting data on their further career helps to better understand this impact. With

the help of a mosaic plot, we visualize three important dimensions of young researchers

careers after receiving their Ph.D. within the CRC: gender, location and area of work. For

example, we show that almost 70% of young researchers who received their Ph.D. during

CRC membership found later a job in academia.
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Through a network analysis, we illustrate the interdisciplinarity structure of the research

results and find out that most DPs were published in the fields of mathematical and

quantitative methods, followed by financial economics, macroeconomics and monetary

economics.

To study the relationship between research outcomes and funding for the CRC, we

regress the number of DPs on staff and travel costs using sub-project-level data. With the

help of year dummy variables added to the model, we show how the pattern of the sub-

projects’ productivity changed from 2005 to 2016 after controlling for staff and travel

costs. Since the level of spending from the previous year and the preceding number of DPs

may influence the current number of DPs, we additionally control for the lagged variables.

The productivity of each sub-project may differ due to some heterogeneity or individual

effects, such as the skills of a principal investigator (PI), average abilities or skills of

researchers employed at the sub-project, or the specific behavior of a research field. For

instance, working on a publication with one vs. more co-authors, writing in English vs.

other languages, or publishing in books vs. articles may affect the research outcomes

(Zharova et al. 2017). Therefore, we allow for the possibility of individual sub-project’s

effects. Considering the data structure, we apply a time fixed effects panel data (FE) model.

Since the number of DPs is a count variable, we also apply a fixed effects Poisson (FEP)

model.

We show that an increase of staff costs by 100% leads to an expected increase in the

number of DPs by roughly 43% (FE) or 1.62 DPs (FEP). Travel costs have a diminishing

effect on the number of DPs according to estimation results of the considered models. The

previous level of both staff and travel costs negatively influence the number of DPs. We

depict the estimates of coefficients of the dummy variables for years and find that the

development trend corresponds with the stages of a project’s life cycle. For instance, the

most significant declines in the number of DPs take place during the stage of theoretical

and empirical research, whereas the finalization stage corresponds with the growth in the

number of published DPs.

The programmed R codes are available on the web-based repository hosting service and

collaboration platform GitHub.

The remainder of the paper is structured as follows. Literature review on performance

indicators is presented in Sect. 2. Section 3 describes the data and provides some pre-

liminary descriptive analyses. Section 4 introduces the methodology and shows empirical

results. Finally, Sect. 5 summarizes the results.

Literature review

The combination of a peer-reviewed process and quantitative indicators is common

practice in research performance assessment. The German Council of Science and

Humanities (WR, germ.—Wissenschaftsrat) suggests evaluating the research institutions

within three dimensions (research, promoting young researchers and knowledge transfer),

which contain nine research performance criteria (WR 2004). We select five criteria rel-

evant to a CRC and provide a literature review on suitable indicators that may reflect the

performance of the CRC.

1. Research quality shows originality and novelty of research outputs, trustworthiness of

methodology, impact and relevance for further research (Table 1).

2. Effectiveness reflects the contribution of all sub-projects to the development of

expertise in the research field within the CRC and beyond (Table 2).
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3. The efficiency criterion describes a quantity of research outputs in relation to a

specific input, i.e. total costs, staff expenditures, number of staff, etc. (Table 3).

4. Research enabling relates to scientific activities that facilitate and support the

research of young researchers (Table 4).

5. Knowledge transfer defines the transfer of research results and products or distri-

bution of knowledge (Table 5).

Data

Collaborative Research Centers (CRC) are interdisciplinary research institutions financed

through the German Research Foundation (germ.—Deutsche Forschungsgemeinschaft,

DFG). The goal of a CRC is to pursue interdisciplinary innovative research by bringing

together scholars from different research fields within multiple research projects, also

called sub-projects. The classical CRC consolidates cooperation between several univer-

sities or non-university research institutions with at least 60% of all sub-projects based in

the coordinating university (DFG 2018).

CRCs are granted for four years and depending on the results of the interim evaluations

can be prolonged twice for a maximum period of twelve years. During the assessment each

sub-project undergoes a critical appraisal. Depending on a change in research program or

staff turnover (professors), a CRC can also submit proposals for new sub-projects. As a

result, the number of research projects may vary between phases.

In this paper we provide empirical evidence using data from a Collaborative Research

Center 649 ‘‘Economic Risk’’ (hereinafter referred to as the CRC). The CRC was launched

in 2005 for a four-year term and extended twice, for a total life span of twelve years. As an

interdisciplinary research center, it combined economics, mathematics and statistics and

pursued research within three primary areas: (1) microeconomics, in particular individual

and contractual answers to risk; (2) quantitative projects, in particular financial markets

and risk assessment; (3) macroeconomic risks. For more information, we refer to the

website of the CRC (CRC 649 2016).

The total number of the CRC sub-projects within three four-year phases is 35, but the

number of sub-projects per phase varies from 16 to 21. Since the sub-projects of the CRC

have different life periods, the data set does not have the observations for all years that

indicates an unbalanced panel, see Fig. 1. The main reason for the panel being unbalanced

Table 1 Research quality

Indicator Definition Literature

Relative reception success

CPub Relation of total number of citations
(NCPub) to the total number of
publications (NPub)

Wissenschaftsrat (2012), Diem and Wolter (2013),
Donner and Aman (2015)

CPub/FCm Number of citations per publication in
relation to the citation’s average of the
field

Wissenschaftsrat (2012), Abramo and D’Angelo
(2011), Moed et al. (2011), Van den Berghe
et al. (1998)

CPub=JCm Number of citations per publication in
relation to the citation’s average of the
journal

Moed (2010), Wissenschaftsrat (2012)
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is the attrition of sub-projects, as a result of research project’s termination or the leave of

principal investigators to other universities, and the establishment of new research projects

during the prolongation phases. For instance, twelve sub-projects had a life cycle of four

Table 2 Effectiveness

Indicator Definition Literature

Research activity

NCosts Total amount of the third party expenses (TPE) Wissenschaftsrat (2012), Schmoch and
Schubert (2009)

NStaff Total number of staff financed from third party
funds (TPF)

Carayol and Matt (2004), Wissenschaftsrat
(2012)

RAunit Research activity of unit (sub-project, SP)—
multiplication of the total number of
publications and the total number of citations
of a unit with regard to the institutions-wide
number of citations for the analyzed period
ðRASP ¼ NPubSP � CPubSP=CPubCRC Þ

Pastor et al. (2015)

Research productivity

NPub Total number of publications Wissenschaftsrat (2012), Abramo and
D’Angelo (2011), Diem and Wolter (2013),
Moed et al. (2011), Hornbostel (1991)

NCPub Total number of citations Wissenschaftsrat (2012)

FNPub Fractional productivity—total number of
contributions to publications, where each
contribution is a publication divided by the
number of co-authors

Abramo et al. (2009), Abramo and D’Angelo
(2011)

ScSPub Scientific strength—weighted sum of
publications authored by each person, where
the weight for each publication is the number
of citations per publication in relation to the
citation’s average of the field ðCPub=FCmÞ

Abramo and D’Angelo (2011), Abramo et al.
(2009)

h h-index Hirsch (2005), Bornmann (2013)

Visibility of the CRC

AbsCPub Absolute citation count in the light of
maximum citation count of a single
publication ðCPubmax

Þ and the number of non-
cited publications (NncPub)

Wissenschaftsrat (2012)

Reputation

List of scientific prizes and awards Zheng and Liu (2015), Wissenschaftsrat
(2012)

Professional activity Wissenschaftsrat (2012)

Editorships

Review activities

Editorial board memberships

Academic functions

Academic memberships

Organized conferences and workshops
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years, eleven sub-projects lasted for eight years and five sub-projects existed twelve years

(see Fig. 1).

Principal investigators (PIs) lead sub-projects. From 35 sub-projects 83% have one PI

and 17% have two PIs. Since three PIs participate in two sub-projects, the CRC counts 38

Table 3 Efficiency

Indicator Definition Literature

NPub=NStaff Relation of the number of publications (NPub) to
the number of research staff (NStaff )

Pastor and Serrano (2016),
Wissenschaftsrat (2012), Abramo and
D’Angelo (2011)

NCPub=NStaff Relation of the number of citations of
publications (NPub) to the number of research
staff (NStaff )

Wissenschaftsrat (2012), Lee (2010)

NCosts=NStaff Relation of the TPE to the total number of
research staff (NStaff )

Wissenschaftsrat (2012), Pastor and
Serrano (2016), Barra and Zotti (2016)

Table 4 Research Enabling / Promotion of young researchers

Indicator Definition Literature

Promotion of young researchers

NYR Total number of positions for
young researchers

Wissenschaftsrat (2012)

NPh:D: Total number of defended
Ph.D.

Wissenschaftsrat (2012), Diem and Wolter (2013), Grözinger
and Leusing (2006), Schmoch and Schubert (2009)

DPh:D: Average duration of Ph.D.
study

Wissenschaftsrat (2004)

NPubPh:D: Total number of publications
by young researchers

Wissenschaftsrat (2004)

List of awards and prizes of
young researchers

Wissenschaftsrat (2012)

List of calls and appointments
for young researchers

Wissenschaftsrat (2012)

Table 5 Knowledge transfer

Indicator Definition Literature

NPat Number of patents Wissenschaftsrat (2011), Carayol and Matt
(2004)

List of Transfer projects

List of activities in public relations Wissenschaftsrat (2012)

List of research products and teaching
materials

Wissenschaftsrat (2012)
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PIs in total over twelve years. PIs of all three academic ranks participate in the CRC: full

professors (76%), junior professors (19%) and postdoctoral researchers (5%).

The CRC uses 62% of resources on average to finance the research staff working within

sub-projects, in particular doctoral (Docs) and postdoctoral (PostDocs) researchers. In

addition, all members of the CRC may use its central funds for travel costs, organizing

conferences and workshops, inviting guest lecturers and researchers, gender equality etc.

The amount of research staff working within sub-projects differs, depending on the

scope and complexity of the research program. Each sub-project counts from 0.5 to 2.5

full-time equivalents (FTEs) of researcher positions per year. The FTEs are often split and

used to hire more research staff, i.e. 2 researchers with 50% financing, or to top up

researchers that are already employed and who are financed by other sources. Figure 2

shows the distribution of sub-projects according to the number of FTEs per year. For

instance, 21 sub-projects have one FTE per year on average, eight sub-projects hire staff on

0.5 FTEs, four sub-projects use 1.5 FTEs and two sub-projects have each 2 and 2.5 FTEs.

In this paper we use data from annual financial reports, internal publications’ and

discussion papers’ (DPs) databases and CRC’s newsletter. Additional insight is gathered

from the texts of one proposal for a launch and two proposals for a prolongation of the

CRC 649 (2005–2008, 2009–2012, 2013–2016) which were submitted to the DFG. On the

one hand, one can see such proposals as goals that the CRC sets for each period. On the

other hand, the published DPs encompass the achieved results of the research activity. We

undertake a semantic analysis on both informational sources, i.e. 61 summaries of sub-

projects from three proposals and abstracts of 771 DPs. The two word clouds of the top 75

keywords are illustrated in Fig. 3. We find that both use 50% of the same words. The

Fig. 1 Distribution of sub-projects (SP) over life span in years

Fig. 2 Distribution of sub-projects according to the number of research staff (in FTE per year)
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different size of the same words, for instance the word ‘‘risk’’, indicates that the number of

times the word is mentioned in the proposals and abstracts differs.

One of the primary goals of a CRC is the high-quality instruction, supervision and

support of young researchers. The common result of this process is a Ph.D. defence.

Collecting data on the further career of the young researchers helps to better understand the

impact on society. For instance, one may wonder how many females that worked and

defended their Ph.D. thesis at the CRC are afterward working in academia in Germany? To

visualize such data we use a mosaic plot in Fig. 4.

The vertical axis splits the individuals according to their gender. The data are further

divided into two groups on the upper horizontal axis according to the location of the job.

The lower horizontal axis shows how many people received a contract in academia or other

fields. The width and height of each segment represent the number of observations within

each group. Consider the 65 members of the CRC that received their Ph.D. from 2005 to

2016. There are 11 female researchers that received jobs in academia in Germany and 6 in

other countries. For males that stayed in academia, the number is 21 for Germany and 7 for

other countries. This means that almost 70% of young researchers who received their Ph.D.

during CRC membership found later a job in an academic institution.

The proportion of 36.9% of female researchers is quite low in comparison to 50.4% for

female doctoral students within CRCs in social sciences and humanities, but higher than

25.7% within CRC in mathematical and natural sciences (DFG 2017). However, since the

CRC pursued interdisciplinary research in both social and mathematical sciences, the CRC

proportion corresponds to the value in-between. As a part of the communication processes

with alumni and mentoring of CRC young researchers, the CRC invited its former

members who got promoted in academia as guest lecturers for CRC seminars or as guest

researchers to work on papers jointly with PIs and/or younger CRC generations.

In order to understand if the intended interdisciplinarity occurred, we analyze DPs that

serve as an outcome of the CRC research activity. Almost each DP has codes indicating

subject fields according to the Journal of Economic Literature (JEL) classification in the

economic sciences (see JEL 2018).

We show the network of collaborating disciplines in Fig. 5. The small gold circles

introduce the DPs, whereas the nodes leading to the bigger blue circles indicate the JEL
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Fig. 4 Mosaic plot of job type, location and gender of 65 CRC members who received their Ph.D. between
2005 and 2016 (as of Dec 2016)

Fig. 5 Network of 760 discussion papers (yellow) and 20 JEL codes (blue) published from 2005 to 2016.
(Color figure online)
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code of the corresponding research area. The size of each blue circle reflects the relative

number of references to DPs. The explanation of JEL codes is given in Table 6. For

instance, most of the DPs were published in the C area, i.e. mathematical and quantitative

methods. They are followed by G (financial economics), E (macroeconomics and monetary

economics) and D (microeconomics). These four fields with higher research output cor-

respond to the three primary areas of the CRC. Note that the DPs that involve research in

more than one field are connected to two or more JEL codes simultaneously. This confirms

the interdisciplinary character of the CRC research output.

One more factor influencing the variability of the number of DPs across research fields

is the area of expertise of PIs and research staff. Figure 6 shows the cumulative number of

PIs within their areas of expertise and Fig. 7 depicts the cumulative number of CRC

research staff (in FTE) working within same research areas for twelve years. Since the

attrition of some sub-projects and establishment of new ones influences the availability of

PIs and research staff and accordingly their expertise within the CRC life cycle, we use

cumulative numbers. We also use weights for the number of the sub-projects and expertise

areas for each PI to equalize the total time available for research. For example, the PI who

is an expert in four research areas receives 0.25 for each JEL code and the PI who leads

two sub-projects has 0.5 for the distribution within JEL areas of each project.

Figures 6 and 7 show, for instance, that the area D reveals 24 years of PIs expertise and

15 years of research staff (in FTE) work. Both figures provide evidence that the most

expertise is concentrated within the area C, followed by E, D, G and Q. This also explains

the concentration of research output within corresponding JEL areas in Fig. 5. The

Table 6 JEL Classification System

Code Research field

A General Economics and Teaching

B History of Economic Thought, Methodology, and Heterodox Approaches

C Mathematical and Quantitative Methods

D Microeconomics

E Macroeconomics and Monetary Economics

F International Economics

G Financial Economics

H Public Economics

I Health, Education, and Welfare

J Labor and Demographic Economics

K Law and Economics

L Industrial Organization

M Business Administration and Business Economics/Marketing/Accounting/Personnel Economics

N Economic History

O Economic Development, Innovation, Technological Change, and Growth

P Economic Systems

Q Agricultural and Natural Resource Economics/Environmental and Ecological Economics

R Urban, Rural, Regional, Real Estate, and Transportation Economics

Y Miscellaneous Categories

Z Other Special Topics
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correlation between the number of DPs and number of PIs specializing in the same JEL

areas is 93.8% (95% for full professors only), whereas the correlation between the number

of DPs and the amount of research staff (in FTE) working within same fields is 95.1%.

Analysis of research productivity

The observed time series across the same sub-projects indicate the longitudinal or panel

structure of the data. To investigate the relationship between the input and the output

variables, we use the methods designed for panels.

Methodology

The basic framework for the panel data analysis shows the model (Wooldridge 2002):

yi ¼ bXi þ ui; i ¼ 1; . . .;K; ð1Þ

where yi ¼ ðyi1; . . .; yiTÞ> is a (1� T) vector of observations for t ¼ 1; 2; . . .; T , Xi ¼
ðx>i1; . . .; x>iTÞ

>
is a (K � T) matrix of observations, b is a (K � 1) vector of coefficients and

ui is a (1� T) vector of unobservables.

The unobserved sub-project’s effect may contain such factors as publishing behavior in

a research field, average researchers’ abilities or skills of principal investigators of sub-

projects that should be roughly constant over time.

We allow for arbitrary correlation between the unobserved sub-project’s heterogeneity

or fixed effects ci and the observed explanatory variables xit and, therefore, use the fixed

effects model for each i (Wooldridge 2016):

Fig. 6 Cumulative number of PIs (in PI years; full professors—blue, junior professors—red, postdoctoral
researchers—orange) from 2005 to 2016 (weighted by the number of research fields and sub-projects) with
expertise in corresponding JEL research fields. (Color figure online)

Fig. 7 Cumulative number of research staff in FTE (in staff years; weighted by the number of research
fields) from 2005 to 2016 working within corresponding JEL research areas
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yit ¼ b1xit1 þ � � � þ bkxitk þ ci þ uit; t ¼ 1; 2; . . .; T ; i ¼ 1; 2; . . .;K; ð2Þ

where yit includes dependent variables and xit independent variables for individual i at time

t, b1; . . .; bk are the unknown coefficients, ci is individual effect or individual heterogeneity
and uit are idiosyncratic errors that change across individuals i and time t.

The fixed effects estimator (or the within estimator) is obtained as the pooled OLS

estimator on the time-demeaned variables. The strict exogeneity assumption on explana-

tory variables, EðuitjXi; ciÞ ¼ 0, provides that the fixed effects estimator is unbiased

(Wooldridge 2016). As the number of sub-projects (clusters) is large, statistical inference

after OLS should be based on cluster-robust standard errors to account for heteroscedas-

ticity and within-panel serial correlation (Cameron and Miller 2015).

Next, we are interested in the pattern of sub-projects’ productivity, i.e. number of

produced discussion papers, in different time periods. For this purpose we use time fixed

effects that change over time but are constant across sub-projects. We include the dummy

variables for T � 1 years to avoid the multicollinearity. Usually the first year is selected as

a base year. The time fixed effects model (FE) is (Stock and Watson 2003):

yit ¼ b1xit1 þ � � � þ bkxitk þ d1 þ d2D2 þ � � � þ dTDT þ ci þ uit; ð3Þ

where D2; . . .;DT are time effects and d1; . . .; dT are the parameters to estimate.

When the dependent variable involves count data, it has a Poisson distribution instead of

a normal distribution. Hausman et al. (1984) introduce a fixed effects Poisson model (FEP)

as:

Eðyitjxi; aiÞ ¼ ailðxit; b0Þ; t ¼ 1; 2; . . .; T ; ð4Þ

where b0 is a (1� K) vector of unknown parameters to be estimated and l is the condi-

tional mean. Wooldridge (1999) further derives a consistent estimator for FEP using a

quasi-conditional maximum likelihood estimator (QCMLE).

Empirical results

Before presenting the estimates, we explain some specifications of the model. Since the

yearly staff and travel costs are in nominal Euros, a slight increase may happen due to

inflation. One possibility to deal with this is an adjustment using a Consumer Price Index

(CPI). Another way to track the effect of real spendings is the use of a logarithmic form.

The interpretation of the estimation results is then done using the level-log model. Here we

use the second approach.

Table 7 presents the results of FE (1) and (2), and FEP (3) and (4) models for the

number of DP as a dependent variable. The parameters of interest are staff costs

blogStaffCosts, travel costs blogTravelCosts and year-specific influence dyear. We also include

lagged variables into the models (2) and (4), since the current number of research outputs

may be affected by the previous number of publication and invested funds in economic

sciences and mathematics (Zharova et al. 2017). The models (2) and (4) encompass the

number of DPs bnDPt�1
, staff costs blogStaffCosts and travel costs blogTravelCosts in the time

t � 1. The intercept const is the average of individual effects ci across all sub-projects that

is reported by Stata. We use cluster-robust standard errors to account for heteroscedas-

ticity. The significance level of all estimates decreases as a result of standard error

adjustment (Wooldridge 2016).
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Table 7 Estimation results for time fixed effects (within) regression (models (1) and (2)) and fixed effects
Poisson regression (models (3) and (4)) with number of DP (nDP) as the dependent variable and with robust
standard errors adjusted for clusters in sub-projects

Dependent variable: nDP FE model FEP model

(1) (2) (3) (4)

blogStaffCosts 1.38** 1.62* 0.47*** 0.43**

(0.61) (0.88) (0.12) (0.19)

blogTravelCosts � 0.94* � 0.34 � 0.22** � 0.04

(0.55) (0.47) (0.10) (0.09)

d2006 1.61 1.92 0.25 0

(1.36) (1.61) (0.26) (omit.)

d2007 � 1.20 � 2.55 � 0.30 � 0.98***

(1.38) (2.46) (0.31) (0.25)

d2008 � 0.95 � 2.03 � 0.23 � 0.97***

(1.30) (2.10) (0.32) (0.36)

d2009 � 2.05* � 3.16 � 0.54* � 1.20***

(1.13) (1.98) (0.33) (0.23)

d2010 � 1.93* � 2.13 � 0.51* � 1.03***

(1.14) (2.68) (0.30) (0.31)

d2011 1.10 0 0.33* 0

(0.70) (omit.) (0.20) (omit.)

d2012 � 2.79* � 3.60* � 0.71** � 1.90***

(1.46) (1.78) (0.34) (0.20)

d2013 � 2.98** � 3.18 � 0.80** � 1.32***

(1.30) (2.52) (0.32) (0.41)

d2014 � 1.36 � 1.73 � 0.44 � 0.99***

(0.95) (1.61) (0.27) (0.37)

d2015 � 2.55** � 1.90 � 0.74** � 1.02***

(1.17) (1.77) (0.33) (0.31)

d2016 � 0.30 0 � 0.31 � 0.69*

(1.79) (omit.) (0.36) (0.41)

const � 2.37 0.05

(5.29) (10.09)

bnDPt�1
0.02 � 0.01*

(0.16) (0.03)

blogStaffCostst�1
� 0.66 � 0.25

(0.59) (0.23)

blogTravelCostst�1
� 0.21 � 0.02

(0.58) (0.13)

R2 0.20 0.21

AIC 706 437 463 253

BIC 742 469 501 258

***, ** and * indicate a statistical significance at 1%, 5% and 10% level, respectively. Standard deviation is
provided in brackets
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In (2) and (4) two years were omitted because of collinearity. In (3) five observations

were dropped out of the analysis because there was only one observation per group.

Performing analysis on unbalanced data slightly increases the estimated effects of con-

sidered variables, but the general idea remains unchanged (Wooldridge 2016).

In the model (1) we see the positive, significant effect of staff costs on the number of

DPs. 1.38/100 is the unit change in n DP when staff expenses increase by 1%. In other

words, a 100% increase in staff costs leads to an increase in the number of DPs by 1.38.

Similarly, the model (2) shows that a 100% increase in staff costs increases the number of

DPs by 1.62, holding other variables constant. The fit of the FE models in (1) and (2) in

Table 7 with nDP as the dependent variable is almost the same, indicating that including

lagged variables does not significantly improve the model.

The FEP estimates have a different interpretation. For instance, the coefficient on

blogStaffCosts shows that a rise of staff costs by 100% leads to an increase of the number of

DPs by 47% and 43% for models (3) and (4) correspondingly. The coefficients on staff

costs estimates for four models in Table 7 are significant at 1% to 10% level. The influence

of previous values of staff costs on the number of DPs is negative and insignificant.

Travel costs have a diminishing effect on the number of DPs according to estimation

results of considered models. The coefficient on blogTravelCosts implies that, if we increase

the travel costs by 100%, we expect the number of DP to decrease by 0.94 DP due to FE

model (1). The Poisson coefficient in (3) means that an increase in logTravelCosts by 10%

decreases nDP by 2% (0.22�0.10).

The coefficients on the year dummy variables reveal how the average productivity of

sub-projects changes over time. As 2005 is selected as the base year, it is not reported with

a coefficient. The coefficient on d2006 in model (1) shows that, on average, 1.6 DPs are

attributed to the year effect of 2006 holding other factors fixed. In Poisson case (3) one

suggests that the expected number of DPs in 2006 is 25% higher than on average. The

coefficients on d2006 and d2011 indicate a positive increase in the number of DPs even

without changing expenses. The omission of year dummies would lead to the attribution of

this positive effects to the effects of costs change.

One can see that the year effects have a negative impact on the number of DPs in the

majority of years for all models. The project’s life cycle could explain this. Research

projects generally have five main stages: proposal development, funding review, project

start-up, performing research and finalization of the project. We map the estimates of

coefficients of the models and fit the stages of life cycles in Figs. 8 and 9. Proposal

development and funding review take place before 2005 and are not depicted in these

Figures.

A highly demanding application for a CRC requires extensive preliminary research. The

results of this preliminary research are published as DPs in the first year 2005, thus,

creating a specific bias towards later research outputs produced during the CRC’s life time.

The three following increases in the number of DPs take place mainly in the finalization

stage caused by the publishing of research results in the final stage of projects. The

research output of the last phase in 2016 shows part of the positive trend. In fact, 28 DPs

were published in 2017, after the CRC was officially finished and financing ended. Three

major declines could be explained by the theoretical and empirical stage of the research in

the middle of each project life cycle. In summary, the joint depiction of the time fixed

effects and the research project’s life cycle allows a better understanding of the devel-

opment of the number of DPs over time.

123

1036 Scientometrics (2018) 117:1023–1040



Conclusions

Our findings show that the performance indicators suitable for the intermediate or final

evaluation of a CRC facilitate a better understanding of the dependence structure between

research productivity and financial inputs, and provide relevant information for successful

decision and policy making.

As a result of semantic analysis of the text from proposals for the CRC submitted to the

DFG and the abstracts from published DPs, we find out that two word clouds standing for

goals and results use 50% of the same words. Aiming to visualize a further career path of

young researchers that received their Ph.D. within the CRC, we use mosaic plot with

dimensions gender, location and area of work. We show that almost 37% are females and

70% of young researchers found a job in academia.

We describe the interdisciplinary structure of research results with the help of the

network analysis. We show that such fields as mathematical and quantitative methods,

financial economics, macroeconomics and monetary economics and microeconomics are

Fig. 8 Estimates of coefficients on the year dummy variables for the time fixed effects (within) regression
(models (1) and (2)). The lower part of the figure shows the corresponding stage of the research project life
cycle
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the most reflected in the published DPs. These fields correspond to the primary research

areas of the CRC. Moreover, the most of research output takes place in the areas that have

more PIs with corresponding expertise. Additionally, the sub-projects with more research

staff are expected to produce more DPs. The network visualization provides also evidence

that one of the main goals of the interdisciplinary research center—interdisciplinarity—is

achieved.

Using time fixed effects panel data model and fixed effects Poisson model, we show that

increasing staff costs by 100% raises the number of DPs of a sub-project by 1.62 or 43%

according to the estimates of FE and FEP models correspondingly. Travel costs have

diminishing effect on the number of DPs according to our estimation results. We analyse

the change in productivity of the CRC over time for reasons not captured by the other

independent variables using the dummy variables for years. We depict the estimates of

coefficients for years and show the possible association between the trend and the stages of

a project’s life cycle. For instance, the major declines in the number of DPs take place

during the stage of theoretical and empirical research, whereas the finalization stage may

correspond to the growth in the number of published DPs.

Fig. 9 Estimates of coefficients on the year dummy variables for the fixed effects Poisson regression
(models (3) and (4)). The lower part of the figure shows the corresponding stage of the research project life
cycle
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Moed, H. F., de Moya-Anegón, F., López-Illescas, C., & Visser, M. (2011). Is concentration of university

research associated with better research performance? Journal of Informetrics, 5, 649–658.
Pastor, J. M., & Serrano, L. (2016). The determinants of the research output of universities: Specialization,

quality and inefficiencies. Scientometrics, 1029(2), 1255–1281.
Pastor, J. M., Serrano, L., & Zaera, I. (2015). The research output of European higher education institutions.

Scientometrics, 102(3), 1867–1893.
Schmoch, U., & Schubert, T. (2009). Sustainability of incentives for excellent research—The German case.

Scientometrics, 81(1), 195–218.

123

Scientometrics (2018) 117:1023–1040 1039

http://sfb649.wiwi.hu-berlin.de/about/index.php
http://www.github.com/QuantLet/CRC
http://www.dfg.de/download/pdf/foerderung/grundlagen_dfg_foerderung/chancengleichheit/chancengleichheits_monitoring_2017.pdf
http://www.dfg.de/download/pdf/foerderung/grundlagen_dfg_foerderung/chancengleichheit/chancengleichheits_monitoring_2017.pdf
http://www.dfg.de/download/pdf/foerderung/grundlagen_dfg_foerderung/chancengleichheit/chancengleichheits_monitoring_2017.pdf
http://www.dfg.de/en//research_funding/programmes/coordinated_programmes/collaborative_research_centres/index.html
http://www.dfg.de/en//research_funding/programmes/coordinated_programmes/collaborative_research_centres/index.html
http://www.dfg.de/en//research_funding/programmes/coordinated_programmes/collaborative_research_centres/index.html
https://EconPapers.repec.org/RePEc:fln:wpaper:012
https://EconPapers.repec.org/RePEc:fln:wpaper:012
https://www.aeaweb.org/econlit/jelCodes.php?view=jel
https://www.aeaweb.org/econlit/jelCodes.php?view=jel
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Abstract:Understanding how people make decisions from risky choices has attracted increasing attention of
researchers in economics, psychology and neuroscience. While economists try to evaluate individual’s risk
preference through mathematical modeling, neuroscientists answer the question by exploring the neural
activities of the brain. We propose a model-free method, 3-dimensional image functional principal compo-
nent analysis (3DIF), to provide a connection between active risk related brain region detection and indi-
vidual’s risk preference. The 3DIF methodology is directly applicable to 3-dimensional image data without
artificial vectorization or mapping and simultaneously guarantees the contiguity of risk related brain regions
rather than discrete voxels. Simulation study evidences an accurate and reasonable region detection using
the 3DIF method. In real data analysis, five important risk related brain regions are detected, including pari-
etal cortex (PC), ventrolateral prefrontal cortex (VLPFC), lateral orbifrontal cortex (lOFC), anterior insula
(aINS) and dorsolateral prefrontal cortex (DLPFC), while the alternative methods only identify limited risk
related regions. Moreover, the 3DIF method is useful for extraction of subjective specific signature scores
that carry explanatory power for individual’s risk attitude. In particular, the 3DIF method perfectly classifies
both strongly andweakly risk averse subjects for in-sample analysis. In out-of-sample experiment, it achieves
73%–88%overall accuracy, amongwhich 90%–100%strongly risk averse subjects and49%–71%weakly
risk averse subjects are correctly classified with leave-k-out cross validations.

Keywords: fMRI, FPCA, GLM, risk attitude, SVD
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1 Introduction

Understandingpeople’s risk preferences andhowpeoplemakedecisionsunder riskhaveboth attractedmuch
attention in industry and academia alike. Accurate risk classification is of benefit both to creditors including
banks, retailers, mail order companies, utilities and various other organizations, and to the applicants avoid-
ing over commitment, see [16]. While the traditional classification approaches rely on expert knowledge,
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experience and even a subjective feeling to categorize an individual to be risk averse or risk seeking, there
has been an increasing demand in statistical methods for quantitative complements to the formal art alike
analysis systems. Discriminant analysis, linear regression, logistic regression and decision trees have been
developed and implemented in literature.

To explain the decision making behaviors, classical expected utility theory has been widely adopted in
economics, see [23, 28, 31, 50]. The utility theory assumes that a rational decision maker chooses a strategy
that maximizes the average or expected value of a concave utility function among possible outcomes, see
e.g. [36] for the properties of utility functions. The utility functions depend on parameters that represent
individual’s risk preferences and are estimated based on the individual’s characteristics. Alternatively, risk-
return models [30] determine the average or expected returns and the associated risks of different choices,
and compute a risk-compensated value in the capital asset pricing models, see [43, 51, 52]. The traditional
models, though demonstrating some decision making philosophy in a common sense, are unable to explain
the heterogeneity in decision-making under similar risk attitudes from person to person in the experiments
of behavioral economics and neuroscience, see [3, 5, 10, 21, 44].

Decision-making is indeed a complex neural process involving both cognitive and emotional factors.
According to [23] and [44], individuals not only estimate the expected value of utility or return, but more
importantly, they seem to adapt these estimates by subjective factors, such as risk preference. It thus becomes
scientifically necessary and important to answer which parts of the human brain regulate specific decision-
making tasks and which neural processes drive investment decisions, see [25, 33, 37, 41]. It is also interest-
ing to ask whether the identification of the risk related brain regions helps to explain the heterogeneity of
individual risk preference and its impact on making decision from the neural aspect.

The recent development on neural image data collection allows quantitative analysis to be possible.
In modern risk perception and investment decision (RPID) experiments, subjects are requested to make
decisions with uncertain outcomes and simultaneously their brain reactions are recorded as neural images
by the functional magnetic resonance imaging (fMRI) scanner. The neural images or fMRI data reflects the
changes in the brain’s blood flow at volume and oxygen level during neural activities. The blood-oxygen-
level-dependent (BOLD) signals are captured on 3-dimensional (3D) spatial maps of brain voxels during the
experiments.

Given the fMRI data collected in the risk related experiments, specific brain regions have been found to
be associatedwith risk related decisionmaking. Tobler, O’Doherty, Dolan and Schultz [45] demonstrated that
lateral orbifrontal cortex (lOFC) and medial orbifrontal cortex (mOFC) are related to the evaluation and the
contrast of risky or sure choices. Mohr, Biele, Krugel, Li and Heekeren [33] discovered that risk averse indi-
viduals have greater brain activities in lateral orbifrontal cortex (lOFC) and posterior cingulate cortex (PCC).
Mohr, Biele and Heekeren [32] evidenced the importance of anterior insula (aINS) and ventrolateral pre-
frontal cortex (VLPFC) to value processing, risk and uncertainty. Van Bömmel, Song, Majer, Mohr, Heekeren
and Härdle [47] found parietal cortex (PC) is associated with value processing and selective attention. The
risk related regions are quantified as the voxels significantly activated by the stimulus, which turn out to
be contiguous in modest size relative to the visual or audial cortex. Two techniques – general linear model
(GLM) method and principal component analysis (PCA) method – are by far the most popular to identify the
risk related regions.

The model-based GLM technique depends on a parametric structure, see e.g. [9, 11, 48]. It only focuses
on the neural information with a pre-defined design matrix and ignores any neural activity other than the
priori specified modeling. The PCA technique is model free and has potential to detect risk related regions
without making any constraint or subjective assumptions, see [2, 4, 27]. Without losing much variability, it
extracts spatial factors to represent the risk related brain regions, while the individual risk attitude of the
subject is explained by the factor loadings named signature scores via an orthogonal decomposition.

The PCA method however needs a conversion of the fMRI data to a vector of discrete signals, leading
to extremely high dimensionality when applied to the high resolution image data. To solve the estimation
challenge, singular value decomposition (SVD) has been proposed with a reduced dimension of covariance
matrix, see [13]. Nevertheless, the PCA and SVDmethods conducted in a discrete framework cannot guaran-
tee the contiguity of risk related regions rather discrete voxels, see [19].
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This motivates the adoption of functional principal component analysis (FPCA), see [39, 40]. In FPCA,
the vectorized fMRI data is smoothed as a continuous curve, for which eigen-decomposition is performed,
see [29, 47, 49]. Zipunnikov, Caffo, Yousem, Davatzikos, Schwartz and Crainiceanu [54] further proposed
the functional SVD (FSVD) approach that improved computational efficiency with the utilization of the SVD
technique. It is worth noting that the FPCA and FSVDmethods both request vectorizing the BOLD signals that
are naturally defined on 3D location coordinates to 1D domain. Given the high resolution of fMRI data, with-
out sufficient knowledge of spatial interdependence of the brain, the pre-processing vectorization potentially
impairs accuracy and efficiency for the risk related region detection and further for the risk classification.

It is necessary to ask why not directly analyze the fMRI signals in the 3D domain and howmuch accuracy
can be improved by employing such a new technique. In our study, we propose a model-free 3-dimensional
image functional principal component analysis (3DIF) method to identify risk related regions and extract
subject signature scores. Simulation study and real data analysis demonstrate good quality of the detected
risk related regions with stable accuracy and contiguity property. The 3DIF regions are further found to
carry explanatory power for subjects’ risk attitudes. In the application of risk classification, the 3DIF method
reaches 100% accuracy for in-sample analysis and 73%–88% overall accuracy for out-of-sample analy-
sis. In particular, it correctly classifies 90%–100% strongly risk averse subjects and 49%–71%weakly risk
averse subjects by using leave-k-out cross validations.

The remainder of the paper is structured as follows. Section 2 presents the RPID experiment and data.
Section 3 details the 3DIF methodology and briefly reviews the alternative methods in literature. Section 4
reports the performance of the proposed 3DIF method under different scenarios. In Section 5, we implement
the 3DIF to real data. Section 6 concludes.

2 RPID experiment and data

To investigate the mechanism of brain processes during the process of making decisions under risk, we
analyze functional magnetic resonance imaging (fMRI) data on seventeen subjects who were exposed to an
RPID experiment designed in [33]. The experiment uses streams of investment returns as stimuli and hypo-
thesizes how individual risk attitude affects decisions in risky choices against sure choices. Figure 1 displays
a graphic illustration of the experimental setup. Each experiment trial composes of two phases. The presenta-
tion phase displays a random Gaussian distributed return stream with ten observations that are sequentially
displayed over 2 × 10 seconds. After a 2.5 seconds break, subjects are exposed in the decision phase to one
of three types of tasks and have to give an answer within the next 7 seconds. The three types of tasks included
the decision task, where subjects choose either a 5% fixed return (sure choice) or the investment of the ran-
dom return stream just shown (risky choice). In the other two tasks subjects report their subjective expected
return (scaling from 5% to 15%) and perceived risk (from 0 = no risk to 100 = maximum risk) of the just dis-
played investment. Each trial is repeated 27 times, with the types of tasks randomly selected. In total, there
are 3 × 27 trails for each subject. During the experiment, subjects were placed in the fMRI scanner and high
resolution (91 × 109 × 91) images were acquired every 2.5 seconds.

The seventeen subjects were native German speakers, healthy and right-handed. All participants had
no history of neurological or psychiatric diseases. They were paid for their participation and gave written
informed consent. The return streams were independent from trial to trial, randomly drawn from a Gaussian
distribution. The expected value of the return streams varied from 6%, 9%, to 12%and standard deviations
from 1%, 5% to 9%. The combinations generated in total nine different Gaussian distributions associated
with various risk-return relationships, e.g. low return (6%) and low risk (1%) as well as high return (12%)
and high risk (9%).

The same data had been studied by two works in the existing literature. Mohr, Biele, Krugel, Li and
Heekeren [33] conducted the general linearmodel (GLM)with six design factors. The factors are either subject
specific values including e.g. return stream, perceived risk, expected value of the return stream, or dummy
variables. The study detected value-reward related brain activity in bilateral dorsolateral prefrontal cortex
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Figure 1: Graphic illustration of one trail of the RPID experiment, see [33].

(DLPFC), posterior cingulate cortex (PCC), ventrolateral prefrontal cortex (VLPFC), and medial prefrontal
cortex (MPFC), which is consistent to [1, 22, 24–26, 35, 46]. It also found that perceived risk correlated
significantly with the BOLD signal in the anterior insula (aINS), as documented in a variety of studies by
[8, 14, 20, 34, 37, 38, 42]. However, GLM detection depends on the significance of statistical tests, which are
hard to extract subject specific signals for further analysis.

Van Bömmel, Song, Majer, Mohr, Heekeren and Härdle [47] proposed a panel version of the dynamic
semiparametric factormodel (PDSFM) to reanalyze the data. The approach however only detected two impor-
tant risk-related regions and did not contain any activation regions previously reported in [33] except Parietal
Cortex (PC). Subject signature scoreswere extracted andused in risk classification.Using the variance of these
stimuli responses as input for the classification algorithm, it obtained very high classification rates at 97%
for strongly risk averse individuals and 75% for weakly risk averse with the SVM classifier by applying the
double leave-one-out cross-validation algorithm.

3 Method

Our interest is to propose a dimension reduction technique on 3D space to improve prediction in the fMRI
study of association between risk preferences and brain activity. In this section, we detail the 3D image func-
tional principal component analysis (3DIF)method that is directly applicable to high-dimensional functional
data and guarantees the contiguity of detected risk related brain regions. We show how to identify common
spatial factors and extract subjective specific scores. The spatial factors are used to construct common risk
activation regions that do not dependent on subjects, while the heterogeneity of individual risk attitude is
explained by the subjective specific scores.

Let Y(j)t (x1, x2, x3) denote the observed fMRI signal at time t = 1, . . . , N for subject j = 1, . . . , J at 3D spa-
tial location (x1, x2, x3), where x1 ∈ P1, x2 ∈ P2, x3 ∈ P3 are defined in a bounded cube P1 × P2 × P3 ⊂ ℝ3.
In our study, J = 17 subjects and N = 1360 scanned images. The brain is measured in a cube of size
[1, 91] × [1, 109] × [1, 91], i.e. around 106 voxels per scan. A tensor B-spline smoother is used to smooth
each time-specific brain image and it leads to continuous 3D functional data, denoted as f (j)t (x1, x2, x3).
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3.1 3D image functional principal component analysis (3DIF)

For any continuous functional data ft(x) with x = (x1, x2, x3), one can represent it in a vector format

f (x) = Cϕ(x), (3.1)

where C is an (N × K3)-dimensionalmatrix of B-spline coefficients, N is the number of time points in the fMRI
data and K refers to the number of knots in each spatial direction, and

ϕ(x) = [ϕ1(x1, x2, x3), ϕ2(x1, x2, x3), . . . , ϕK3 (x1, x2, x3)]⊤

are the continuous basis functions generated by tensor products of univariate splines. Thus K3 is the total
number of the basis functions.

In the factor extraction experiment, we are able to assume the fMRI images to be independent and iden-
tically distributed. Denote the covariance function of the functional data

G(x, s) = Cov{f(x), f(s)}

and its sample estimator

Ĝ(x, s) = N−1
N
∑
t=1

ft(x)ft(s). (3.2)

The covariance operator V is defined as

Vf = ∫
P1

∫
P2

∫
P3

G( ⋅ , x)f(x)dx.

Similarly to the orthogonal decomposition in the multivariate PCA, we have for the 3D image functional data

Vξ = ∫
P1

∫
P2

∫
P3

G( ⋅ , x)ξ(x)dx = λξ(x),

where ξ(x) and λ denote the eigenfunction on the 3Ddomain and the eigenvalue respectively. The eigenvalues
are real and non-negative λ1 > λ2 > ⋅ ⋅ ⋅ ≥ 0.Without spatial information loss or distortion due to vectorization
in e.g. FPCA, the first functional factor ξ1(x1, x2, x3) corresponding to the largest eigenvalue λ1 accounts for
as much of the variability in the data as possible, and each succeeding functional factor ξℓ(x1, x2, x3) in turn
has the highest variance possible under the constraint that it is uncorrelated with the preceding ones.

Plugging (3.1) into (3.2), we obtain

Ĝ(s, x) = N−1ϕ⊤(s)C⊤Cϕ(x),

and the orthogonal decomposition equation as

∭N−1ϕ⊤(s)C⊤Cϕ(x)ϕ⊤(x)b d(x) = λϕ⊤(s)b,

where the eigenfunction ξ = ϕ⊤b with b being a coefficient vector. Define

W =∭ϕ(x)ϕ⊤(x)dx.

By solving

N−1W
1
2 C⊤CW

1
2 u = λu, (3.3)

where u = W
1
2 b and the coefficient vector b satisfies b⊤i Wbi = 1 and b⊤i Wbj = 0, we obtain the eigenfunc-

tion that contains spatial information and hence will be used to construct the common spatial factors of
the fMRI data.
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3.2 Multilinear model

To obtain common spatial factors across subjects, we borrow the idea of panel data analysis by averaging
fMRI signals over subjects at each time t:

Ȳt(x1, x2, x3) = J−1
J
∑
j=1

Y(j)t (x1, x2, x3), t = 1, . . . , N.

The averaged signals are smoothed over a tensor B-spline regression with K = 16 knots in every spatial direc-
tion. The eigenfunctions are obtained by the 3DIF orthogonal decomposition in Section 3.1.

The eigenfunctions consist of not only important regions attributed to risk perception and investment
decisions but also other neural activities unrelated to the investigated stimuli and possible magnetic noises.
To remove the impact of noises, the spatial factors are constructed by trimming the eigenfunctions at extreme
quantiles such as [0.05%, 99.95%] levels and replacing the “non-active” voxels with zeros. Moreover, we
only consider the first L eigenfunctions and denote the trimmed factors as common risk related regions,
denoted as ξ̂ℓ(x1, x2, x3)with ℓ = 1, . . . , L, since only the first spatial factors are fundamental and necessary.
By doing this, the original high dimensionality is reduced to a small number of common spatial factors.

Heterogeneity of individual risk attitude are extracted in the multilinear regression that projects the raw
fMRI signals on the common spatial regions:

Y(j)t (x1, x2, x3) =
L
∑
ℓ=1

Z(j)ℓ,t ξ̂ℓ(x1, x2, x3) + ε
(j)
t (x1, x2, x3), (3.4)

where ε(j)t (x1, x2, x3) denotes the idiosyncratic noise of the j-th subject, which is independently and iden-
tically distributed with zero mean and constant variance. The subject-specific factor loadings Z(j)ℓ,t are
calculated by ordinary least squares regression at time t for subject j:

min
Z(j)ℓ,t ∑x1 ,x2 ,x3 {Y

(j)
t (x1, x2, x3) −

L
∑
ℓ=1

Z(j)ℓ,t ξ̂l(x1, x2, x3)}
2
.

The multi-subject 3DIF estimation procedure can now be summarized as follows:
(1) Take the average Ȳt(x1, x2, x3) of the raw 3D fMRI data across all subjects and obtain the smoothed 3D

image functional data ft(x1, x2, x3).
(2) Perform3DIF to construct common spatial functional factors ξ̂ℓ(x1, x2, x3) via (3.3) and trim out insignif-

icant active regions at e.g. 0.05%− and 99.95%+ quantiles.
(3) For every subject, estimate the subject-specific factor loadings Z(j)ℓ,t with the multilinear regression (3.4)

that will be further used to classify risk attitude of the subject.

4 Simulation

Before implementing the proposed 3DIF method to real data, we perform a simulation study to investigate
its performance under known data generating processes. Our primary interest is to see how much the 3DIF
method will improve the detection accuracy of the risk related brain regions compared to the alternative
1-dimensional functional approach. Moreover, we study how robust is the region detection with respect to
the size of the risk activation brain regions.

Our simulation studies are designed to properly reflect real data at hand. The fMRI signals are generated
for a “brain” defined in the dimensions of [1, 91] × [9, 100] × [11, 81]. In previous literature five regions
including PC, VLPFC, lOFC, aINS and DLPFC have been identified to be active under risk related tasks. In the
first simulation study, we consider five regions that are contained in the literature documented places and
specify each of them to a 3 × 3 × 3 cube for a simple demonstration. In particular, PC is defined at location
[51, 53] × [25, 27] × [60, 62], VLPFC at [27, 29] × [89, 91] × [38, 40], lOFC at [54, 56] × [97, 99] × [30, 32],
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Figure 2: Visualization of the double gamma function.

aINS at [63, 65] × [75, 77] × [37, 39], and DLPFC at [66, 68] × [77, 79] × [53, 55]. The regions are constant
in the data generation.

Two kinds of factor loadings are considered: Gaussian distributed random loadings, and a more realistic
situation by incorporating the haemodynamic response function (HRF) in the random loadings. The HRF is
generated by a double gamma function (see [12, 15, 19, 53]):

h(t) = ( t
a1b1
)
a1
e−

t−a1b1
b1 − c( t

a2b2
)
a2
e−

t−a2b2
b2 ,

where a1 = 6, a2 = 12, b1 = b2 = 0.9 and c = 0.35. Compared to the pure random factor loadings, the HRF
scenario mimics the working process of the fMRI scanners, where HRF triggers brain activities. Figure 2
illustrates how the double gamma function reflects the haemodynamic response function (HRF).

Figure 3 gives an illustration of one simulated convolution of double gamma function and the generated
factor loadings with HRF.

The 3D image signals are generated to represent brain signals recorded by the fMRI scanner during an
RPID experiment:

f (NFL)t (x1, x2, x3) =
5
∑
ℓ=1

Zℓtξℓ(x1, x2, x3) + εt(x1, x2, x3),

f (HRF)t (x1, x2, x3) =
5
∑
ℓ=1
{Zℓt + h(t)}ξℓ(x1, x2, x3) + εt(x1, x2, x3),

where NFL refers to the scenario with only normal random factor loadings, while HRF incorporates the
impact of HRF in the fMRI signals. The five functional factors ξℓ(x1, x2, x3) have been defined in the loca-
tions (x1, x2, x3) as mentioned before and are constant over time. The factor loading Zℓt corresponds to the
ℓ-th spatial factor at time point t = 1, . . . , 1000. In both the NFL and HRF scenario, the factor loadings are
Gaussian distributed with mean zero and standard deviations of 7.6, 5.8, 5.2, 1.8, and 1.7 respectively
learned from the real data. The random noise εt(x1, x2, x3) is standard normal distributed and independent
from each other. Each generation is repeated 100 times.

We implement two methods to identify the common spatial factors: 3DIF and FSVD proposed by [54].
Bothmethods handle continuous functional data, however 3DIF directly analyze the fMRI signals in 3D space
while FSVD is only applicable for 1D functional data though the latter employs the singular value decompo-
sition (SVD) approach to achieve better estimation feasibility and accuracy. In the simulation study, we chose
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Figure 3: Simulated factor loadings. On top is the double gamma function. The bottom is the simulated factor loadings,
which are the sum of the double gamma function and the normal random loadings. The red dots highlight time points
when the stimulus are triggered.

K = 16 in each direction leading to K3 = 4096 basis functions to utilize the largest computational power for
each direction. It is worth noting that the designed risk related regions are only used in the fMRI data gen-
eration and will not be utilized in the following decomposition and factor computation. Instead, they are
retained to evaluate the detection accuracy. In both methods, the active regions are defined as the trimmed
spatial functional factors over the 99.999% quantile and below the 0.001% quantile.

As an illustration, Figure 4 displays one active region lOFC associated with evaluating and contrasting
different option choices [45]. From top to bottom, one observes the generated (true) region, the identified
regions by the 3DIF method and the FSVD approach. The active regions are highlighted as bright areas. Both
methods detect the region, however 3DIF performs better in several aspects. In the NLF case, 3DIF explains
more variation for the fMRI signals thanFSVD, i.e.56.3%against55.2%, see Table 1. The variance explained
increaseswhen the number of factor increases.Moreover, 3DIF providesmore clear-cut results, i.e. if the iden-
tified spacial factor corresponds to only one actual region, and simultaneously has less mis-detection, i.e. by
wrongly identifying non-active regions. See Table 2 for the average percentage of the true regions detected by
each estimated functional factor. More than 60% of the estimated functional factors correspond to exactly
one region in 3DIF. The value drops to 43.33% in FSVD. As for mis-detection, 3DIF mistakenly detects 28%
andFSVDhasmore at36.83%.More importantly, 3DIFprovides contiguous regions insteadof discrete voxels
thanks to itsmathematical properties, see the contour plot of lOFC in Figure 5. On the other hand, FSVD iden-
tifies discrete voxels, due to the adoption of SVD in the discrete space, which improves estimation efficiency
but at cost of contiguity. The relative good performance applies to the HRF scenario, too.While 3DIF explains
69.5% variation, FSVD reaches to 55.9%. When using 3DIF, 70% of the detected risk regions correspond to
exactly one active region, 23.33% are mis-detected and less than 7% are mixture of risk regions. The alter-
native FSVDmethod has only 54% of one-to-onematch, more than 30%mis-detection and 15% ofmixture.
Again, 3DIF accurately and reasonably detects a contiguous region, while the FSVD gives discrete voxels.

Now we repeat the above two experiments with different designs on the active regions to investigate the
robustness of 3DIF. In particular, the five active regions are generated with varying sizes to reflect a more
realistic situation. Following the study of [33] on the size of identified brain regions, our spatial moder-
ate assumptions state that the spatial factors are active at location [51, 54] × [25, 28] × [60, 63] for Pari-
etal Cortex (64 voxels), [27, 29] × [88, 91] × [38, 41] for VLPFC (48 voxels), [52, 59] × [92, 99] × [28, 35] for
lOFC (512 voxels), [62, 66] × [74, 78] × [37, 39] for aINS (75 voxels), and [64, 70] × [73, 79] × [51, 57] for
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Figure 4: Functional factors on lOFC. From top to bottom are the generated (true) region, the estimated region with 3DIF
and the estimated region with the FSVD method.

Factor

1 2 3 4 5 6 Total

NFL: 3DIF 24.2% 4.5% 4.2% 9.9% 1.7% 11.7% 56.3%
NFL: FSVD 19.2% 0.7% 1.6% 21.5% 4.8% 7.4% 55.2%

HRF: 3DIF 25.9% 4.9% 7.0% 16.2% 5.7% 9.8% 69.5%
HRF: FSVD 20.5% 2.2% 3.3% 17.8% 1.2% 10.7% 55.9%

Table 1: Variance explained by different number of spatial factors for NFL with Gaussian random factor loadings
and HRF incorporating HRF in the factor loadings. Two methods have been implemented: 3DIF and FSVD.

Regions

0 1 2 ≥ 3

NFL: 3DIF 28.00% 60.67% 11.33% 0.00%
NFL: FSVD 36.83% 43.33% 19.50% 0.33%

HRF: 3DIF 23.33% 70.00% 6.67% 0.00%
HRF: FSVD 31.33% 54.00% 14.67% 0.00%

Table 2: Average percentage of the estimated functional factors that detect the true regions; “0 region” means
no active region and hence a nonzero values indicates mis-detection.
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(a) (b)

(c) (d)

Figure 5: Contour plot of the estimated active region lOFC in NFL (top) and HRF (bottom) cases. On the left is the estimated
region with 3DIF and on the right is the estimated region with FSVD.

Regions

0 1 2 ≥ 3

NFL: 3DIF 27.00% 62.67% 10.33% 0.00%
NFL: FSVD 32.17% 52.33% 15.50% 0.00%

HRF: 3DIF 18.50% 79.67% 1.83% 0.00%
HRF: FSVD 27.67% 61.33% 11.00% 0.00%

Table 3: Robust: average percentage of the estimated functional factors that detect the true regions; “0 region” means
no active region and hence a nonzero values indicates mis-detection.

DLPFC (343 voxels). The factor loadings and the noise level remain the same as in the previous experiments.
Both normal and HRF factor loadings are considered. Each data generation is repeated 100 times.

We still implement the 3DIF and FSVD methods to the generated fMRI data. As the average number of
voxels now is about eight times of that in the previous simulations, the active regions are trimmed at extreme
quantiles. Results evidence a stable performance. Again, 3DIF provides better identification, see Table 3 for
the average percentage of the true regions detected by each estimated factor. In the NFL case, 62.67% of
the estimated functional factors are associated with exactly one region, 27% are mis-detected and 10.33%
are mixed. On the contrary, the alternative method performs worse with less one-to-one match at 52.33%,
moremis-detection at 32.17% andmixture at 15.5%. In the HRF case, 3DIF still outperforms the alternative
with 79.67% one-to-one match, 18.50%mis-detection and 1.83%mixture, compared to 61.33%, 27.67%
and 11.00%by FSVD. Similarly, the 3DIFmethod provides realistic contiguous regions, while the alternative
FSVD detects discrete voxels, see Figure 6 for the contour plot of the risk region lOFC as illustration.
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(a) (b)

(c) (d)

Figure 6: Robust: contour plot of the active region on lOFC. The left column is the estimated region in 3DIF and the right column
is the estimated region with FSVD method. The top row is the result for NFL with normal factor loadings and on the bottom is
the result for HRF with HRF incorporated in factor loadings.

The simulation study shows that the proposed 3DIF outperforms the alternative functional approach,
with better quality of risk related regions detected. The relative good performance is stable for different sce-
narios with various parameters.

5 Empirical results

We implement the proposed 3DIF method to the fMRI signals data collected in the RPID experiment as
described in Section 2,whichmimics real-life investment decisions by providing subjectswith return streams
of investments. We assume that all subjects exhibit homogenous brain structure. In other words, the spatial
maps are common for all, while the individual differences are represented by the subject specific scores. We
report the detected common risk related regions and compare with several alternative methods. We classify
subjects’ risk perception based on the extracted subject specific signals, i.e. signature scores, and evaluate
the risk classification accuracy with the help of psychological risk-return (PRR) model.

5.1 Computational time

The analyzed fMRI data are high dimensional (91 × 109 × 91 × 1 360 scans = 1,227,575,440) and require
large memory (17 × 1.3 GB). The 3DIF method is implemented on twelve cores ProLiant BL680c G7 server
equipped with Intel(R) Xeon(R) CPU E7-4860@2.27GHz processors and 252 GB memory loading. The main
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computation time is spent on computing the tensor integral W =∭ϕ(x)ϕ⊤(x)dx, which exponentially
increases in the number of knots K. Though a large number of knots provides better fit, it extends the com-
putational time. Van Bömmel, Song, Majer, Mohr, Heekeren and Härdle [47] choose the basis function with
fourteen knots in the x- and y-axis and twelve knots in the z-axis to balance accuracy and computational
time. In our study, we increase the number of knots K = 16 in each direction leading to K3 = 4096 basis
functions, to further improve the estimation accuracy by utilizing larger computational power. The computa-
tion of the triple integralW costs 48 hours. It is worth noting that the value of the triple integral only depends
on the B-spline basis functions and hence can be used for other fMRI data analysis. With the value ofW, the
computation of 3DIF only needs 4 hours to complete.

5.2 Alternative methods

For comparison, two alternative methods have been implemented on the same data. Mohr, Biele, Krugel, Li
and Heekeren [33] conducted the general linear model (GLM) with six design factors on the individual fMRI
data. Van Bömmel, Song, Majer, Mohr, Heekeren and Härdle [47] proposed a panel version of the dynamic
semiparametric factor model (PDSFM) to reanalyze the data. See Section 2 for details of their findings.

In addition, we consider threemoremethods that have previously been proposed in literature. We imple-
ment them to analyze the same data, including singular value decomposition (SVD) – a multivariate statis-
tical technique – in a discrete framework, and two functional data analysis methods functional principal
component analysis (FPCA) and functional SVD (FSVD) in a continuous but 1-dimensional space.

SVD: Denote the vectorized fMRI signal data as Y = [Y1, Y2, . . . , YN] that has p × N dimensions with
p = 91 × 109 × 91 and N = 1360 in our study, SVD decomposes the discrete data averaged over subjects
and constructs common spatial factors of risk-related brain regions Y = ΓΛ 1

2 U⊤, where Γ is a p × N orthonor-
mal matrix, Λ is a diagonal matrix and U is an N × N orthogonal matrix. The ℓ-th spatial factor is constructed
with the ℓ-th column of Γ. Compared to the classic principal component analysis (PCA), SVD is computation-
ally efficient and feasible with reduced dimensionality, i.e. decomposing a p × N sample matrix instead of
a p × p covariance matrix given that p ≫ N, when dealing with high-dimensional data. It however ignores
contiguity nature of the fMRI signals, which leads to discontinued active regions.

FPCA and FSVD: The FPCA method estimates eigenfunctions in a functional framework. Similar to the pro-
posed 3DIF method, the vectorized data is smoothed but using 1D basis functions and one performs eigen-
decomposition for the covariance operator. Denote the covariance operator by V we have Vξ = λξ , where ξ
represents the eigenfunction corresponding the eigenvalue λ, see [39, 40]. The FPCA approach, though guar-
antees the contiguity of risk related brain regions, is subject to the curse of dimensionality. Zipunnikov, Caffo,
Yousem,Davatzikos, Schwartz and Crainiceanu [54] proposed FSVD,which implements SVD to the smoothed
functional data instead of the discrete raw data to balance the tradeoff between high dimensionality and
computational efficiency. Nevertheless, the two functional data analysis methods requests pre-processing
vectorization, which may misrepresent the raw spatial structure of the fMRI data.

5.3 Risk related regions ξ̂ℓ

The3D ImageFPCA (3DIF) technique is utilized to capture the fundamental spatialmapsunder riskdecisions.
We identify the common spatial factors and use them to represent the brain regions with significant activity
during the RPID experiment. One question remains on how to choose the number of spatial factors, denoted
by L. The larger the number of spatial factors, the better the in-sample accuracy of the fitted model. On the
other hand, too large L leads to over-fitting and poor out-of-sample performance. The selection of the number
of factorsmay rest on the explained variation for differentmodel specification. Table 4 presents the explained
variance averaged over the seventeen subjects for different number of factors. It shows that 86% variation
in the data is attributed to the first spatial factor when using 3DIF, which can be interpreted as the typical
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L

1 2 4 6 20

3DIF 86.03% 88.93% 90.05% 92.78% 94.34%
FSVD 96.50% 96.57% 96.65% 96.74% 97.07%
FPCA 70.06% 81.62% 87.85% 92.82% 95.27%
SVD 96.67% 96.73% 96.80% 96.89% 97.21%

Table 4: Explained variance by different number of spatial factors.

brain activity during the RPID experiment. Alternatively, the dominant component explains 96.50% varia-
tion in FSVD, 70% in FPCA and 98.67% in SVD. Though numerically important, the first spatial factor has
less psychological meaning and is irrelevant to any important risk related regions documented in literature.
On the contrary, the inclusion of subsequent factors allowsmore useful information captured and simultane-
ously enables the detection of important risk related regions. For example, aINS is in modest size relative to
visual or audial cortex but highly relevant to risk perception and investment decisions. Thus, L = 20 is chosen
in our study. In this case, 94%of variation is explained by the 3DIFmethod, which is lower than the alterna-
tives. However, it is worth mentioning that higher variance is explained by the 3DIF spatial factor associated
with important risk related regions. For example, the 3DIF factor for lOFC (ξ̂5) explains 2.73%(the difference
between 92.78% for L = 6 and 90.05% for L = 4), while FSVD (ξ̂5) and SVD (ξ̂5) both contribute 0.09%and
FPCA (ξ̂3) provide 6.23%. We will continue the performance comparison of the data-driven methods in the
risk classification analysis.

Figure 7displays the identified risk related brain regions byusing the proposed3DIFmethod, the alterna-
tive 1D functional data analysis methods FSVD and FPCA, and themultivariate technique SVD. All detect the
risk relatedbrain regions includingparietal cortex (PC), lateral orbifrontal cortex (lOFC) andventrolateral pre-
frontal cortex (VLPFC). The three regions have been documented in literature and also by [33] analyzing the
same data with GLM. However only the proposed 3DIF method successfully finds anterior insula (aINS) that
is associated with value processing, risk and uncertainty. Moreover, the 3DIF method detects the activation
of medial orbifrontal cortex (mOFC) as documented in [47] when analyzing the same data using PDSFM. The
mOFC has been interpreted to be related to evaluation and contrast of various choices [45]. The FPCAmethod
provides over-smoothed regions, though continuous, due to the extremely high dimensionality larger than
220,000 after vectorization. Table 5 summarizes the region detection for the same data by various methods.
The proposed 3DIF method and the GLM [33] both identified five regions, where four of them are consistent.
The alternative FSVD, FPCA and SVD found three regions and the PDSFM [47] obtained two.

Figure 8 displays details of the detected regions by 3DIF. The relevant spatial factors are ξ̂ℓ(x1, x2, x3)
with ℓ = 3, 4, 5, 12, 18, 19. In particular, ξ̂3 and ξ̂12 are located in PC and attributed to risk related processes
and selective attention (see [6, 41]); ξ̂4 is related to the VLPFC region that stands for value processing. The
regionsmOFCand lOFCpickedupby ξ̂5 that are associatedwith evaluating and contrasting of different choice
options [45]. The aINS region is captured by ξ̂18 and related to risk anduncertainty [18], and theDLPFCarea is
highlighted by ξ̂19. Figures 9–11display the detected risk related brain regions by the alternative approaches.
The identified regions of lOFC and VLPFC in Figures 9–11are similar due to the nearby coordinates of the
regions. The center coordinates of the identified lOFC is (61, 94, 31) and of the VLPFC is (30, 94, 36).

PC VLPFC lOFC aINS DLPFC mOFC MPFC

3DIF ✓ ✓ ✓ ✓ ✓
GLM ✓ ✓ ✓ ✓ ✓
PDSFM ✓ ✓
FSVD ✓ ✓ ✓
FPCA ✓ ✓ ✓
SVD ✓ ✓ ✓

Table 5: Detected risk related brain regions for the same fMRI data of the RPID experiments in [33].
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(a) 3DIF.

(b) FSVD.

(c) FPCA.

(d) SVD.

Figure 7: Detected risk-related brain regions by the first twenty eigenfunctions using (a) the 3DIF and alternative methods
including (b) FSVD, (c) FPCA and (d) SVD.
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(a) Parietal Cortex.

(b) VLPFC.

(c) lOFC.

(d) Parietal Cortex.

(e) aINS.

(f) DLPFC

Figure 8: 3DIF: Selected identified risk related regions ξ̂ℓ , ℓ = 3, 4, 5, 12, 18, 19. (a) Estimated function ξ̂12 in Parietal Cortex;
(b) ξ̂4 in VLPFC; (c) ξ̂5 in lOFC; (d) ξ̂3 in Parietal Cortex; (e) ξ̂18 in aINS; (f) ξ̂19 in DLPFC.
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(a) Parietal Cortex.

(b) VLPFC & lOFC.

Figure 9: FSVD: Selected identified risk related regions. (a) Estimated function ξ̂10 in Parietal Cortex;
(b) ξ̂5 in VLPFC and lOFC.

(a) Parietal Cortex.

(b) VLPFC & lOFC.

Figure 10: FPCA: Selected identified risk related regions. (a) Estimated function ξ̂2 in Parietal Cortex;
(b) ξ̂3 in VLPFC and lOFC.
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(a) Parietal Cortex.

(b) VLPFC & lOFC.

Figure 11: SVD: Selected identified risk related regions by SVD. (a) Estimated function ξ̂10 in Parietal Cortex;
(b) ξ̂5 in VLPFC and lOFC.

5.4 Subject specific signature scores Z(j)ℓ,t

The dynamic behaviors of the individual brain activities are represented by the subject specific signature
Z(j)ℓ,t with j = 1, . . . , 17, ℓ = 1, . . . , 20, and t = 1, . . . , 1360. Given the risk related regions common for all
subjects, the individual risk perception and attitude during decision making under risk are reflected by the
series of the activation. An interesting question is whether the extracted subject specific signature scores
properly reflect the risk preference of individual. Among others, for the active brain regions that have been
found to be related to risk and uncertainty, the respective signature scores are expected to carry explanatory
power for the heterogeneity of individual risk preferences. Understanding those variations requires a careful
investigation and is presented in the following risk classification study.

5.4.1 Risk attitudes

Mohr, Biele, Krugel, Li and Heekeren [33] quantify the risk preference of the seventeen subjects in the same
experiment with the help of psychological risk-return (PRR) model

Vj(x) = μj(x) − βjσj(x),

where Vj(x) is the value of investment x by subject j, μj(x) is the respective expected return, σj(x) is the per-
ceived risk, and βj is a subject specific weight coefficient and reflects the risk attitude of subject j. Given the
displayed streams of returns in the RPID experiment and the subjects’ answers to the two tasks, i.e. subjec-
tive expected return and perceived risk, the risk weight βj is estimated in a logistic regression framework.
In total, seven subjects (j = 2, 5, 6, 8, 10, 11, 17) are categorized as weakly risk averse with the risk weight
βj < 5, and the remaining ten subjects are classified as strongly risk averse, with higher risk attitudes. The
dichotomization and derived risk attitudes βj are presented in Figure 12.

5.4.2 Risk classification

The aim of risk classification analysis is to investigate the possible relation between neural processes under-
lying investment decisions and subjects’ risk preferences. A classification method is proposed to predict
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Figure 12: Risk attitudes and SVM scores of seventeen subjects. Subjects with risk attitude ≤ 5 are marked as red circles,
otherwise as blue squares.

individual’s risk attitude without any information on his or her decision behavior. Instead, the classification
is performed solely on the extracted signature scores. The RPID consists of three types of tasks, we here only
utilize the decision task, where subject chooses between risky investment return or sure fixed 5%return, and
thus his risk attitude contributes to the perceived value of the displayed return streams and plays a key role
in the decision process. The other two tasks, i.e. subjective expected return and perceived risk, have been
employed in the PRR model to provide a benchmark and will be used to verify the classification accuracy.
Moreover, the analysis is performed for each subject based on six signature scores Z(j)ℓ,t, ℓ = 3, 4, 5, 12, 18, 19,
of the active brain regions that have been found to be related to risk and uncertainty.

Each subject was exposed to 27 decision tasks and had tomake a choice within the next 7 seconds in the
RPID experiment. To investigate the brain reactions to the investment decision task of different groups being
strongly/weakly risk averse, three consequent observations after the s-th stimulus at scan ts are considered,
covering the decision making period over 7.5 seconds. The three signature scores are demeaned by the score
at the stimulus timepoint Z jℓ,ts to capture the peak of theHRF.We compute the average to stand for the average
reaction to stimulus s

∆Ẑ(j)ℓ,ts =
1
3

3
∑
τ=1

Ẑ(j)ℓ,,ts+τ − Ẑ
(j)
ℓ,ts

and the standard deviation of the 27 average reactions as empirical characteristics of subject’s risk prefer-
ence. For each subject, six standarddeviations are obtainedandwill beused in the risk classification analysis.
For the alternative FSVD, FPCA and SVD methods, similar procedures are applied to extract the variables for
risk classification.

Classification analysis is performed via support vectormachines (SVM), see [7, 17]. Subjects are classified
based on their six standard deviations of the average reactions to decision task. For the learning part, the
strongly risk averse subjects are denotedwith1 and theweakly risk averse subjectswith−1. The classification
performance is validated by the estimated risk attitudes, see Section 5.4.1.

We first evaluate the in-sample predictive power of the 3DIFmethod on risk preferences. Figure 12 shows
that the seventeen subjects were perfectly classified, with 100% correction for both strongly and weakly risk
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Overall Strong Weak

k 3DIF SVD FSVD FPCA 3DIF SVD FSVD FPCA 3DIF SVD FSVD FPCA

1 88% 76% 76% 76% 100% 100% 100% 90% 71% 43% 43% 57%
2 82% 76% 76% 76% 100% 100% 100% 89% 55% 43% 43% 56%
3 79% 75% 75% 73% 98% 99% 99% 87% 53% 42% 42% 54%
4 77% 74% 73% 72% 95% 98% 95% 85% 51% 39% 41% 52%
5 74% 71% 70% 69% 92% 95% 91% 83% 50% 37% 39% 49%
6 73% 67% 66% 66% 90% 90% 86% 81% 49% 35% 37% 46%

Table 6: SVM classification rate in percentage points by leave-k-out for the 3DIF, SVD, FSVD and FPCA methods. The overall
refers to the classification rates of all subjects, while strong and weak refer to the classification rates of strongly risk averse
subjects and weakly risk averse subjects respectively.

averse groups. The in-sample classification however by utilizing all the information of subjects may involve
over-fitting problem.We thus employ the leave-k-out cross validation and continue out-of-sample prediction.
Samples are iteratively partitioned to two subsets, i.e. training with N − k subjects and validation with k sub-
jects. The prediction for validation is repeatedly performed based on different training sets. The accuracy
measurements are averaged among all the predictions. The algorithm can be formulated as follows:
(1) Divide subjects into training set with N − k people and test set with size of k.
(2) Apply the leave-k-out cross validation and find the optimal SVM parameters.
(3) Classify the test data.
(4) Repeat (1)–(3) for all different test sets.

Table 6 reports the classification rate (in percentage) by leave-k-out cross validation for k = 1, . . . , 6.
The classification rate is relatively stable, though it reduces slowly as k increases. The 3DIF method provides
consistently better “overall classification” rate than the alternatives, with 73%–88% correction using the
optimal SVMparameters. The classification accuracy is remarkably improved for the strongly risk averse sub-
jects. The 3DIF and SVDmethods are superior in terms of classification accuracy at 90%–100%, while 3DIF
and FPCA perform better for weakly risk averse individuals at 49%–71%. As a comparison, van Bömmel,
Song, Majer, Mohr, Heekeren and Härdle [47] have implemented leave-one-out procedure, i.e. k = 1, and
reached 97% for strongly risk-averse individuals and 75% for weakly risk-averse individual. In summary,
the analysis implies that the signature scores of the selected risk related regions carry explanatory power for
subjects’ risk attitudesderived from their choice in theRPIDexperiment. The riskpreferences canbe classified
by the volatility (standard deviation) of the signature signals with an considerable accuracy. The proposed
3DIF method has consistent reasonable classification power compared to the alternatives.

6 Conclusion

Understanding how people make decisions among risky choices has attracted much attention of researchers
in economics, psychology, and neuroscience.While economists evaluate individual’s risk preference through
mathematical modeling, neuroscientists answer the question by exploring the neural activities in brain. The
existing literature has documented the brain regions of PCC, lOFC, mOFC, VLPFC, VMPFC and aNIS to be
associated with decision making process under risk. Our study implements a model-free method to further
investigate the links between active risk related brain region detection and individual’s risk preference.

The proposed 3D Image FPCA (3DIF) methodology is directly applicable to the 3D image data. It avoids
spatial information distortion during artificial vectorization or mapping and simultaneously analyzes brain
data in the continuous functional domain. Thus, the anatomical brain structure is preserved and efficiently
embraced in the estimation procedure. Moreover, it guarantees the contiguity of brain regions rather than
discrete voxels. The 3DIF decomposes the fMRI BOLD signals into spatial factors, representing the common
spatial maps for all subjects, and the heterogeneity of individual risk preference is explained by subject spe-
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cific signature scores. The spatial factors capture the brain regions with the highest variability throughout
experiment and consequently represent the activation pattern with a reduced number of factors. The rep-
resentation precision is controlled by the number of factors L and even subtle effects can be detected. The
signature scores mimic activation patterns on subject’s risk attitude and correspond to the neural activity of
a particular region of interest. As a result, the 3DIF addresses the key limitations of the GLM and the other
conventional model-free methods such as PDSFM, FSVD, FPCA and SVD.

The performance is evidenced by our extensive simulation study, where in different setups, region detec-
tions and modeling performance were reasonably achieved. Furthermore, our technique outperforms the
alternative competitor as the preservation of the spatial brain structure really pays off. In real data analysis,
3DIF detected five risk related regions, which is consistent to the study in [33]. The alternative methods on
the other hand only identified limited risk related regions.

Investment decision may be described as a process of evaluating and contrasting of various choices with
uncertain outcomes. In this framework the risk preferences are the crucial factor which affects the subjec-
tive value of investment. To improve our understanding of the underlying neural activities, we provided the
statistical analysis of the extracted signature scores selected in the decision making context. The focus is
on the variability in the HRF after the decision stimulus, captured by the score series. The standard devia-
tions derived from the subject-specific responses served as an input in the SVM classifier. We perform both
in-sample and out-of-sample risk classifications. In addition to perfect correction for in-sample, the 3DIF
provides nice and stable performance for out-of-sample with leave-k-out cross validation, with the best over-
all classification rate at 73%–88%, the 90%–100% for strongly risk averse and 49%–71% for weakly
risk averse. One can conclude that the 3DIF method exhibits better explanatory power for subjects’ risk
preferences than the alternatives.

Funding: This research was supported by the FRC grant and IDS grant at the National University of Sin-
gapore. The authors also acknowledge the support of the Deutsche Forschungsgemeinschaft through the
SFB 649 “Economic Risk” and the International Research Training Group (IRTG) 1792 “High-Dimensional
Non-Stationary Time Series”.
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We develop a dynamic model to simultaneously characterize the liquidity demand and supply in
a limit order book. The joint dynamics are modeled in a unified Vector Functional AutoRegres-
sive (VFAR) framework. We derive a closed-form maximum likelihood estimator under sieves and
establish asymptotic consistency of the proposed method under mild conditions. We find the VFAR
model presents strong interpretability and accurate out-of-sample forecasts. In application to limit
order book records of 12 stocks in the NASDAQ, traded from 2 January 2015 to 6 March 2015,
the VFAR model yields R2 values as high as 98.5% for in-sample estimation and 98.2% in out-of-
sample forecast experiments. It produces accurate 5-, 25- and 50-min forecasts, with RMSE as low
as 0.09–0.58 and MAPE as low as 0.3–4.5%. The predictive power stably reduces trading cost in the
order splitting strategies and achieves excess gains of 31 basis points on average.

Keywords: Liquidity demand and supply curves; Order splitting strategy; Vector functional autore-
gression; Liquidity forecasting; Time series
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1. Introduction

Liquidation of large orders has attracted much attention from
researchers and practitioners. Markets address the large order
liquidation problem in one of three ways: call auctions, dealer
markets and limit order books, see Foucault et al. (2005).
Among them, Limit Order Book (LOB) has emerged as the
main source for liquidity and exhibits a growing importance
worldwide. LOB records investors’ orders on both the bid
and ask sides with price and volume constraints. With a limit
order, investors can improve the execution price, either buy-
ing or selling, according to their choice, but the execution

*Corresponding author. Email: a0054070@u.nus.edu

is not immediate as a market order, nor guaranteed. Har-
ris (1990) defines three components of liquidity as being: (1)
tightness such as bid–ask spread at the best price level; (2)
depth measured by quantities, e.g. eXchange Liquidity Mea-
sure (XLM); and (3) resilience referring to the recovery for
deviations of spreads from their competitive level. As such,
LOB contains the comprehensive information on market liq-
uidity, not only a single-valued liquidity measurement at the
best bid–ask price level, but also the queuing liquidities at
deeper levels in the book. In this paper, we develop a dynamic
model to simultaneously characterize the liquidity demand
and supply in the LOB. The objectives are to understand the
joint dynamics of liquidity at multiple levels and on both the

© 2019 Informa UK Limited, trading as Taylor & Francis Group
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Figure 1. AAPL, AMAT, AEZS, and SIRI liquidity demand and supply curves at an arbitrarily selected time point. In our study, AAPL has
the largest market value; AEZS has the smallest value and the smallest bid–ask spread on average; SIRI is the most active stock; and AMAT
is the relatively less active stock among the rest.

bid and ask sides of the LOB, and explore the applicability of
a dynamic model in the order splitting strategy.

Liquidity in the LOB can be well represented by a pair of
demand and supply curves that are defined as the (log) accu-
mulated volumes on the quoted prices. The demand curve
corresponds to the bid side and the supply is associated with
the ask side. As an illustration, figure 1 displays the liquidity
curves of four stocks: Apple Inc. (AAPL); Applied Materi-
als, Inc. (AMAT); AEterna Zentaris Inc. (AEZS); and Sirius
XM Holdings Inc. (SIRI), based on the snapshots of book on
4 March 2015 at 14:45:00. Each pair of demand and supply
curves forms a V-shape that is monotonically decreasing on
the bid side and monotonically increasing on the ask side. The
gap at the center represents the bid–ask spread, i.e. the market
tightness at the best price level. Moreover, the market depth
is reflected by the gradients of the liquidity curves. More pre-
cisely, the steeper the curves are, the less price impact there is
for large orders, and thus the more liquidity is ready to be sup-
plied or consumed in the market. Liquidity is concentrated on
relatively few quoted prices near the best bid and ask prices,
while the tails are relatively flat. This flattening out of the tail,
or the gentle gradient in the tails, implies low liquidity. A buy
or sell of large volumes at the extreme prices will trigger a
drastic change in the price and thus increase trading cost. The

dynamic dependence of the series on the liquidity demand and
supply curves naturally inherits the market resilience, the third
component of liquidity.

Liquidity is serially dependent, i.e. the current value of
liquidity depends on its own past values. Though with lim-
ited information, the popular single-valued liquidity mea-
sures are found to be serially dependent; e.g. bid–ask spread
(see Benston and Hagerman 1974, Stoll 1978, Fleming and
Remolona 1999) and XLM (see Cooper et al. 1985, Gomber
et al. 2015). These findings motivate as a first proxy the
adoption of autoregressive models for liquidity in the LOB.
Groß–Klußmann and Hautsch (2013) propose a long mem-
ory autoregressive conditional Poisson model for the quoted
bid–ask spreads. Huberman and Halka (2001) evidence the
serial dependence of bid–ask spread and market depth in
an autoregressive framework. Härdle et al. (2015) propose
a local adaptive multiplicative error model to forecast the
high-frequency series of 1-min cumulative trading volumes
of several NASDAQ blue chip stocks. Chordia et al. (2005)
document in a vector autoregressive model the cross-sectional
dependence among the liquidity measures of bid–ask spread,
market depth and order flow, and other statistics of volatility
and returns in the stock and bond markets, where the liquid-
ity measures depend on both their own past values and the



Forecasting limit order book liquidity supply–demand curves 1475

Figure 2. Sample cross-correlation function between first B-spline coefficient of the bid and ask curve for AAPL, AMAT, AEZS, and SIRI.

historical values of the other measures. Härdle et al. (2012)
empirically analyze the seasonally-adjusted liquidity supply
curves in the LOB using a dynamic semiparametric factor
model, where the extracted factors of the curves are modeled
in the Vector Error Correction (VEC) framework.

It is worth noting that there also exists serial cross-
dependence in the bivariate series of liquidity demand and
supply. The impact of public information on limit orders
result in similar changes on both bid and ask sides, and
can cause investors to switch from one side to the other.
Thus it introduces lead–lag cross-dependence in both sides
of liquidity. The joint serial cross-dependence suggests richer
dynamics should be utilized in liquidity analysis. Building
on this idea, we develop a Vector Functional AutoRegressive
(VFAR) model to describe the joint dynamics of the bivariate
series—liquidity demand and supply curves on the bid and ask
sides of an electronic open LOB—simultaneously in a uni-
fied framework. While there is in general co-integration or a
common trend in demand and supply when both variables are
scalar time series, the model features the dependence of the
series of curves, which is stable over time. Figure 2 displays
the sample cross-correlations between the fundamental repre-
sentatives of the demand and supply curves of the four stocks
(the ‘first B-spline coefficients’ of the bid and ask curves).
This first proxy shows that there are significant lead–lag cross-
dependencies between the demand and supply curves, but the
patterns deviate far from the persistence of a unit root.

In the VFAR model, we derive a closed-form maximum
likelihood estimator under a sieve and establish the asymp-
totic consistency of the method. We investigate the finite
sample performance of the proposed model along with the
LOB records of 12 stocks traded in NASDAQ from 2 Jan-
uary 2015 to 6 March 2015, where the stocks are carefully
selected to represent various types with different market capi-
talization and liquidity. We find the VFAR presents a strong
predictability in liquidity, producing R2 values as high as
98.5 % for in-sample estimation and 98.2 % in out-of-sample
forecast experiments. Moreover, it yields accurate 5-, 25-
and 50-min forecasts, with RMSE as low as 0.09–0.58 and
MAPE as low as 0.3 –4.5%. Finally, the predictive power sta-
bly reduces trading cost in the order splitting strategies and
achieves excess gains of 31 basis points on average.

We would like to highlight the difference between our study
and the existing ones in the literature. Above all, we develop
a dynamic model to estimate and forecast liquidity demand
and supply curves simultaneously and demonstrate the appli-
cation in order splitting execution. Härdle et al. (2012) imple-
ment a dynamic semiparametric factor model for liquidity
curves, but the extracted factors are handled separately on
each side, although it is possible to capture the joint evo-
lution of bid and ask sides. Secondly, we develop the FAR
modeling for multiple functional time series, where the con-
tinuous curves are modeled in a convolutional VFAR that is
stationary. Whereas in the functional time series literature,
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Bosq (2000) has proposed the FAR model for univariate
functional time series and developed Yule–Walker estimation
(see also Besse et al. 2000, Guillas 2001, Antoniadis and
Sapatinas 2003, Chaudhuri et al. 2016). Mourid and Bens-
main (2006) propose a maximum likelihood estimation with
Fourier expansions, as far as we know this is the first work
to model multiple functional time series. We investigate its
theoretical properties, and within a maximum likelihood esti-
mator approach based on B-spline expansions, we provide
more flexibility in fitting beyond the Fourier expansion in
Chen and Li (2017). Although the implementation focuses on
the bivariate liquidity demand and supply curves in our study,
the developed model is general and can be used for analyzing
multiple functional time series in other research areas.

This paper is structured as follows. In Section 2, we
describe the LOB data. Section 3 introduces the VFAR mod-
eling in detail including the estimation approach and the
theoretical properties. Section 4 presents the modeling setup
and in-sample estimation results, reports the out-of-sample
forecast results and demonstrates the application to an order
execution strategy. Section 5 provides concluding remarks.
All of the theoretical proofs are contained in the Appendix.

2. Data

We consider the LOB records of 12 stocks from 2 January
2015 to 6 March 2015 (44 trading days). The LOB records
contain the quoted prices and volumes up to 100 price levels
on each side of ask and bid. All the quotes are timestamped
with decimal precision up to nanoseconds (= 10−9 s). In total,
the (buy or sell) order book contains 400 values from the
best ask price, best ask volume, best bid price, and best bid
volume until the 100-th best ask (bid) price and correspond-
ing volume. The data was obtained from LOBSTER through
the Research Data Center of the Collaborative Research Cen-
ter 649 (https://sfb649.wiwi.hu-berlin.de/fedc/). Note that the
records of the 12 stocks in LOBSTER only contain the infor-
mation in the National Association of Securities Dealers
Automated Quotations (NASDAQ) stock market. NASDAQ
is a continuous auction trading platform where the normal

continuous trading hours are between 9:30 am to 4:00 pm
from Monday to Friday. During the normal trading, if an order
cannot be executed immediately or completely, the remaining
volumes are queued in the bid and ask sides according to a
strict price-time priority order.

The stocks correspond to high variations in terms of market
capitalization, liquidity tightness and depth. They are Apple
Inc. (AAPL), Microsoft Corporation (MSFT), Intel Corpora-
tion (INTC), Cisco Systems, Inc. (CSCO), Sirius XM Hold-
ings Inc. (SIRI), Applied Materials, Inc. (AMAT), Comcast
Corporation (CMCSA), AEterna Zentaris Inc. (AEZS), eBay
Inc. (EBAY), Micron Technology, Inc. (MU), Whole Foods
Market, Inc. (WFM), and Starbucks Corporation (SBUX).
The largest stock is AAPL with market value of USD737.41
billions, and the smallest is AEZS with market value of
USD35.38 millions. When considering the 5-min queueing
volume in the LOB, the most active stock is SIRI, with value
of 3.73 millions on the bid side and 7.61 millions on the ask
side. The lest active stocks are CMCSA with value of 0.02
millions on the bid side and SBUX with value of 0.03 millions
on the ask side. Moreover, the average value of the bid–
ask spread varies from 0.0062 (AEZS) to 0.0213 (SBUX),
see table 1.

In data pre-processing, we remove the first 15 min after
opening and the last 5 min before closing to eliminate the
market opening and closing effect. The accumulated bid and
ask volumes are log-transformed when constructing liquidity
curves to reduce the impact of extraordinarily large volumes.
The liquidity curves are smoothed over the 100 price levels of
LOB on each side using B-spline basis functions. Moreover,
to remove the impact of microstructure noise, the sampling
frequency is set to be 5 min for a good strike between bias and
variance, see AitSahalia et al. (2005), Zhang et al. (2005), and
Härdle et al. (2018). As such, there are 75 pairs of bid and ask
liquidity curves on each day for each stock. Over the whole
sample period of 44 trading days, it amounts to 3300 pairs of
bid and ask supply curves for each stock.

The liquidity curves exhibit significant serial dependence
over time. As an illustration, figure 3 shows the sample cross-
correlations between the log-accumulated volumes at best bid
and ask prices for four representative stocks including AAPL
with the largest market value, AEZS with the smallest value

Table 1. Summary statistics on liquidity measures for the 12 stocks traded in NASDAQ.

Bid vol Ask vol

Ticker symbol Mean spread (USD) Min Max Min Max

AAPL 0.0125 52,267 710,020 61,305 1,298,696
MSFT 0.0101 90,344 928,319 122,377 621,471
INTC 0.0102 158,900 557,251 146,959 1,142,641
CSCO 0.0101 134,790 1,316,058 266,455 4,458,672
SIRI 0.0101 1,266,528 3,725,304 3,002,680 7,605,467
AMAT 0.0102 78,944 334,794 180,749 787,983
CMCSA 0.0106 23,668 128,916 40,638 146,724
AEZS 0.0062 145,635 767,785 472,689 1,158,740
EBAY 0.0110 42,060 160,572 52,813 415,033
MU 0.0107 95,907 497,910 102,357 595,200
WFM 0.0153 34,538 114,386 41,019 159,488
SBUX 0.0213 27,467 151,022 34,914 166,932

Note: Sampling frequency is 5 min.
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Figure 3. Sample cross-correlation function between log-accumulated volumes at best bid and ask price for AAPL, AMAT, AEZS, and SIRI.

and the smallest bid–ask spread on average, SIRI the most
active stock, and AMAT the relatively mid active stock among
the rest. While the simultaneous dependence between the bid
and ask sides is insignificant or negatively correlated, there
are significant positive serial correlations on the first lagged
values of the opposite side and then decays for higher order.
Similar features are observed in the other eight stocks, which
are not displayed. The bid–ask cross-dependency motivates
analyzing the liquidity demand and supply jointly.

In addition, the serial cross-dependence between the series
of curves is reflected in figure 2, where the sample cross-
correlations are computed based on the first B-spline coeffi-
cients of the bid and ask curves, which will be detailed later.
It shows that there are significant lead–lag cross-dependence
between the demand and supply curves, but the patterns devi-
ate far from the persistence of unit root. We also perform the
Johansen (1991) co-integration test to assess the null hypoth-
esis of co-integration of bid and ask sides. The results support
rejecting co-integration.

3. Vector functional autoregression

In this section, we present the Vector Functional AutoRe-
gressive (VFAR) model that is to describe the joint serial
cross-dependence of multiple series of continuous curves.

We show how to estimate the functional parameters of the
bivariate liquidity demand and supply curves, with the help
of B-spline expansions and sieve method. A closed-form
estimator is presented and asymptotic consistency provided.

The liquidity curves are defined on the quoted price,
denoted as τ , which is assumed to be exogenous. The quoted
prices are observed on a dense tick grid, that is re-scaled sep-
arately for bid and ask sides into a continuous interval [0, 1],
with the minimum price as 0 and maximum price as 1. Denote
by X (a)

t (τ ) and X (b)
t (τ ) the liquidity supply and demand curves

on the ask (a) side and the bid (b) side at t = 1, . . . , n. The
curves are realizations of a functional stochastic process in
the space C[0,1] of real continuous functions on [0, 1]. In other
words, each pair of the liquidity curves is one functional
object. Over time, the curves form bivariate time series of
n functional objects, each on the bid and ask sides. In our
study, the curves are obtained by smoothing over the discrete
log-accumulated volumes against the quoted prices at every
time point.

To handle the joint dynamics of the two continuous liquid-
ity curves, we propose a Vector Functional AutoRegressive
(VFAR) model of order p:

[
X (a)

t − μa

X (b)
t − μb

]
=

p∑
k=1

[
ρaa,k ρab,k

ρba,k ρbb,k

] [
X (a)

t−k − μa

X (b)
t−k − μb

]
+
[
ε
(a)
t

ε
(b)
t

]
,

(1)
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where the operators ρaa,k , ρab,k , ρba,k , and ρbb,k measure
the serial cross-dependence among the liquidity demand
and supply curves on their kth lagged values. The oper-
ators are bounded linear operator from H to H, a real
separable Hilbert space endowed with its Borel σ -algebra

BH. The mean function is denoted as (μa(τ ),μb(τ ))
� def=

(E[X (a)
t (τ )],E[X (b)

t (τ )])�. Under stationarity, both the serial
cross-dependence and the mean are constant over time. The
innovations {ε(a)t }nt=1 and {ε(b)t }nt=1 are strong H-white noise,
independently and identically distributed with zero mean and
finite second moment, 0 < E‖ε(a)1 ‖2 = · · · = E‖ε(a)n ‖2 <∞
and 0 < E‖ε(b)1 ‖2 = · · · = E‖ε(b)n ‖2 <∞, where the norm ‖ ·
‖ is induced from the inner product 〈·, ·〉 of H. The innovation
processes ε(a)t and ε(b)t need not be cross-independent.

In the following, we derive the estimation for the VFAR
model of order 1, which can be generalized for higher order.
For the notational simplification, the superscript k is dropped.
We consider the convolutional VFAR, where each operator
ρ is represented by a convolution kernel Hilbert–Schmidt
operator,

X (a)
t (τ )− μa(τ )

=
∫ 1

0
κab(τ − s)

{
X (b)

t−1(s)− μb(s)
}

ds

+
∫ 1

0
κaa(τ − s)

{
X (a)

t−1(s)− μa(s)
}

ds+ ε(a)t (τ ),

X (b)
t (τ )− μb(τ )

=
∫ 1

0
κbb(τ − s)

{
X (b)

t−1(s)− μb(s)
}

ds

+
∫ 1

0
κba(τ − s)

{
X (a)

t−1(s)− μa(s)
}

ds+ ε(b)t (τ ). (2)

The kernel function κxy ∈ L2([0, 1]) and ‖κxy‖2 < 1 for
xy=aa, ab, ba, and bb, where ‖ · ‖2 denotes the L2 norm
in C[0,1]. Note that a linear operator ρ on a Hilbert space H
with norm ‖ · ‖ and inner product 〈·, ·〉 is Hilbert–Schmidt if
ρ(·) =∑j λj〈·, ej〉fj, where {ej} and {fj} are orthonormal bases
of H and {λj} is a real sequence such that

∑
j λ

2
j <∞.

Expand the functional terms in (2) using the B-spline basis
functions in L2([0, 1]):

Bj,m(τ ) = τ − wj

wj+m−1 − wj
Bj,m−1(τ )+ wj+m − τ

wj+m − wj+1
Bj+1,m−1(τ ),

m ≥ 2,

where m is the order, w1 ≤··· ≤wJ+m denote the sequence of
knots, and

Bj,1(τ ) =
{

1 if wj ≤ τ < wj+1,

0 otherwise.

Plug-in the B-spline expansions to the VFAR model (2),
we obtain the relationship of the B-spline coefficients in the

framework of VFAR:

da
t,h = pa

h + da
h (ε

(a)
t )+

∞∑
i=1

×
⎧⎨⎩
∞∑

j=1

(
wj+m − wj+1

wj+m − wj
− wj+m+1 − wj+2

wj+m+1 − wj+1

)
caa

j − caa
h

⎫⎬⎭
× wi+m − wi

m
da

t−1,i +
∞∑

i=1

×
⎧⎨⎩
∞∑

j=1

(
wj+m − wj+1

wj+m − wj
− wj+m+1 − wj+2

wj+m+1 − wj+1

)
cab

j − cab
h

⎫⎬⎭
× wi+m − wi

m
db

t−1,i,

db
t,h = pb

h + db
h (ε

(b)
t )+

∞∑
i=1

×
⎧⎨⎩
∞∑

j=1

(
wj+m − wj+1

wj+m − wj
− wj+m+1 − wj+2

wj+m+1 − wj+1

)
cbb

j − cbb
h

⎫⎬⎭
× wi+m − wi

m
db

t−1,i +
∞∑

i=1

×
⎧⎨⎩
∞∑

j=1

(
wj+m − wj+1

wj+m − wj
− wj+m+1 − wj+2

wj+m+1 − wj+1

)
cba

j − cba
h

⎫⎬⎭
× wi+m − wi

m
da

t−1,i, (3)

where da
t,j and db

t,j are the B-spline coefficients for the observed

functional data X (a)
t and X (b)

t , respectively; pa
h are the coeffi-

cients associated with the expansion of the mean on the ask
side μa(τ )−

∫ 1
0 κab(τ − s)μb(s) ds− ∫ 1

0 κaa(τ − s)μa(s) ds
and pb

h are the coefficients on the bid side for μb(τ )−∫ 1
0 κbb(τ − s)μb(s) ds− ∫ 1

0 κba(τ − s)μa(s) ds; da
j (ε

(a)
t ) and

db
j (ε

(b)
t ) are the B-spline coefficients for the unknown inno-

vations ε(a)t and ε(b)t , respectively; and caa
j , cab

j , cba
j , and cbb

j are
the B-spline coefficients for the unknown kernel functions κaa,
κab, κba, and κbb, respectively. As such, the original problem of
estimating the functional parameters can now be equivalently
solved by the estimation of the B-spline coefficients in (3).

Given a finite sample of the functional objects, it is how-
ever impossible to estimate the infinite coefficients in (3) for
i, j = 1, . . . ,∞. The estimation is conducted with the help of
a sieve.

3.1. Maximum likelihood estimator under sieve

We introduce a sequence of subsets—named sieve for the
parameter space�, which is denoted by {�Jn}with Jn →+∞
as n→+∞, see e.g. Grenander (1981) on the theory of
sieves. In other words, the dimension of the subset is allowed
to increase with the sample size. We have �Jn ⊆ �Jn+1 and
the union of subsets

⋃
�Jn is dense in the parameter space.
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The sieve is defined as follows:

�Jn =
{
κxy ∈ L2 | κxy(τ ) =

Jn∑
l=1

cxy
l Bl,m(τ ), τ ∈ [0, 1],

×
Jn∑

l=1

l2(cxy
l )

2 ≤ vJn

}
, (4)

where v is some known positive constant such that the con-
straint on cxy

l can be satisfied generally without sacrifice of
the growth rate of Jn. We will show the estimation in the finite
subsets of the parameter space.

Under the sieve with Jn, Equation (3) can be represented in
a form as follows:

yt = v+ Cyt−1 + ut, (5)

where yt = (da
t,1, . . . , da

t,Jn
, db

t,1, . . . , db
t,Jn
)�, v = (pa

1, . . . , pa
Jn

,

pb
1, . . . , pb

Jn
)�, ut = (da

1 (ε
(a)
t ), . . . , da

Jn
(ε
(a)
t ), db

1 (ε
(b)
t ), . . . ,

db
Jn
(ε
(b)
t ))�, and C = [ RaaRab

RbaRbb ] with Rxy being a Jn × Jn matrix

with elements rxy
h,i = {

∑Jn
j=1((wj+m − wj+1)/(wj+m − wj)−

(wj+m+1 − wj+2)(wj+m+1 − wj+1))c
xy
j − cxy

h }((wi+m − wi)/m),
for xy=aa, ab, ba, and bb.

We impose an assumption that the B-spline coefficients
da

j (ε
(a)
t ) and db

j (ε
(b)
t ) are independently and identically Gaus-

sian distributed with mean zero and constant variance σ 2
j,a and

σ 2
j,b, respectively. Following Geman and Hwang (1982), we

define the likelihood function for (5) over the approximating
subspace (4) of the original parameter space. The transition
density is as follows:

g
(

X (a)
t , X (b)

t , X (a)
t−1, X (b)

t−1, ρaa, ρab, ρba, ρbb
)

= 1

(2π)Kn/2

∣∣∣In ⊗
u

∣∣∣−1/2

× exp

{
−1

2

(
y− (Z� ⊗ IK)β

)�
(In ⊗
−1

u )(
y− (Z� ⊗ IK)β

)}
,

where y = vec(y1, . . . , yn), Z = [ 1 ···1
y0···yn−1

], β = vec(v, C), u =
vec(u1, . . . , un), K = 2Jn, In is an n× n identity matrix, and
vec is the column stacking operator.

The Maximum Likelihood Estimators (MLEs) are obtained
with closed-form:

β̂ =
{
(ZZ�)−1Z ⊗ IK

}
y orequivalently,

B̂ = (̂v, Ĉ) = YZ�(ZZ�)−1,


̂u = 1

n
(Y − BZ)(Y − BZ)�,

(6)

where the first column of B̂ in (6) contains the estima-
tors of coefficients for the mean function v = (pa

1, . . . , pa
Jn

, pb
1,

· · · , pb
Jn
)�. Let θ = (θ1, . . . , θ1, θ2, . . . , θ2), with θ1 = (caa

1 ,
. . . , caa

Jn
, cba

1 , . . . , cba
Jn
)� and θ2 = (cab

1 , . . . , cab
Jn

, cbb
1 , . . . , cbb

Jn
)�,

such that θ contains Jn columns of θ1 and Jn columns of θ2.
The estimator for cxy

j for xy= aa,ab,ba,bb is as follows:

θ̂ = Q−1YZ�(ZZ�)−1(02Jn×1, I2Jn)
�W ,

where W = diag(m/(w1+m − w1), . . . , m/(wJn+m − wJn), m/

(w1+m − w1), . . . , m/(wJn+m − wJn)), Q = [ Q1 0Jn×Jn

0Jn×Jn Q1 ], with

Q1 being a Jn × Jn matrix with elements in the jth diag-
onal equals qj − 1 and the remaining elements in the
jth column equals qj, qj = (wj+m − wj+1)/(wj+m − wj)−
(wj+m+1 − wj+2)/(wj+m+1 − wj+1), and 0 is the zero matrix.

3.2. Asymptotic property

We establish the consistency property of the sieve estimators.
Let H(ρ,ψ) denote the conditional entropy between a set of
operators ρ = (ρaa, ρab, ρba, ρbb) and a given set of operators
ψ :

H(ρ,ψ) = Eρ
[

log g(X (a)
t , X (b)

t , X (a)
t−1, X (b)

t−1,ψ)
]
.

Theorem 3.1 Assume {�Jn} is chosen such that conditions
Con1 and Con2 in Appendix 3 are in force. Suppose that for
each δ > 0, we can find subsets 1,2, . . . ,lJn

of �Jn , Jn =
1, 2, . . . such that

(i) DJn ⊆
⋃lJn

k=1 k, where DJn = {ρ ∈ �Jn |H(ρ0|�Jn
, ρ) ≤

H(ρ0|�Jn
, ρJn

)− δ} for every δ > 0 and every Jn.

(ii)
∑+∞

n=1 lJn(ϕJn)
n < +∞, where given l sets 1, . . . ,l

in �Jn , ϕJn = supk inft≥0 Eρ0|�Jn
exp{t log(g(X (a)

t , X (b)
t ,

X (a)
t−1, X (b)

t−1,k)/g(X
(a)
t , X (b)

t , X (a)
t−1, X (b)

t−1, ρJn
))}.

Then we have supρ̂n∈M n
Jn
‖ρ̂n − ρ0|�Jn

‖S → 0 a.s.

The norm ‖ · ‖S is a Hilbert–Schmidt norm for the con-
volution kernel operator and its Hilbert–Schmidt norm is
‖ρ‖S = (

∑
j λ

2
j )

1/2. The use of Hilbert–Schmidt norm comes
from the fact that it forms a class of operators embedded in the
whole space of Hilbert–Schmidt operators and for any con-
volution kernel operator ρ, the Hilbert–Schmidt norm of ρ
is equal to the L2 norm of its kernel function, in particular,
‖ρ‖S = ‖κ‖2.

Note that in Theorem 3.1, g(X (a)
t , X (b)

t , X (a)
t−1, X (b)

t−1,k) =
supψ∈k

g(X (a)
t , X (b)

t , X (a)
t−1, X (b)

t−1,ψ). We define the set of all
the MLEs on �Jn given the sample size n as M n

Jn
= {ρ ∈

�Jn |�(X (a)
1 , . . . , X (a)

n , X (b)
1 , . . . , X (b)

n ; ρ) = supψ∈�Jn
�(X (a)

1 ,

. . . , X (a)
n , X (b)

1 , . . . , X (b)
n ;ψ)}. Let ρ0 denotes the true set of

values for the set of parameters (ρaa
0 , ρab

0 , ρba
0 , ρbb

0 ). We follow
Mourid and Bensmain (2006) for the proof of Theorem 3.1 to
show the convergence of the ML estimator to ρ0|�Jn

, the pro-
jections of the true operators on sieve, see Appendix 3 for
details. Together with the convergence of ρ0|�Jn

to the true set
of operators ρ0 as the sieve dimension grows, we prove that
the ML estimator converges to the true set of operators ρ0.

Theorem 3.2 If Jn = O(n1/3−η) for η > 0, then ‖̂κJn −
κ0|�Jn

‖2 → 0 a.s. when n→+∞. κ̂Jn = (̂κaa,Jn , κ̂ab,Jn , κ̂ba,Jn ,
κ̂bb,Jn) is the set of sieve estimators on �Jn and κ0|�Jn

=
(κaa,0|�Jn

, κab,0|�Jn
, κba,0|�Jn

, κbb,0|�Jn
) is the projection of the

set of true kernel functions κ0 on �Jn . ‖̂κJn − κ0|�Jn
‖2 →
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Table 2. R2, RMSE, and MAPE for in-sample estimation of the 12 stocks.

VFAR RW vs. VFAR

Ticker symbol R2 (%) RMSE MAPE (%) R2 RMSE MAPE

AAPL 92.03 0.34 3.61 0.97 1.18 1.05
MSFT 95.19 0.18 0.95 0.98 1.16 1.07
INTC 94.79 0.19 0.92 0.98 1.15 1.07
CSCO 96.16 0.19 0.86 0.99 1.13 1.06
SIRI 98.29 0.09 0.29 1.00 1.09 1.00
AMAT 95.83 0.18 0.89 0.99 1.15 1.09
CMCSA 93.39 0.19 1.20 0.97 1.18 1.13
AEZS 98.48 0.42 2.18 0.98 1.45 1.05
EBAY 94.88 0.23 1.55 0.98 1.15 1.06
MU 95.14 0.26 1.17 0.98 1.16 1.08
WFM 95.52 0.20 1.57 0.98 1.16 1.01
SBUX 94.77 0.22 2.51 0.98 1.17 1.05

Figure 4. Estimated bid (and ask) supply curves vs. the actually observed.

0 a.s. means that each ‖̂κxy,Jn − κxy,0|�Jn
‖2 → 0 a.s. for

xy=aa,ab,ba,bb.

By checking the conditions of Theorem 3.1, we can achieve
the proof of Theorem 3.2. The proof is detailed in Appendix 4.

As n, Jn →∞, we have κ0|�J → κ0 as κxy,0|�J in κ0|�J is
just the B-spline truncation of the corresponding true kernel
κxy,0 in κ0 on �Jn . Finally we have the sieve estimator κ̂Jn

converges to the true set of kernel functions κ0.
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4. Modeling liquidity demand and supply curves

We apply the convolutional VFAR model to study the joint
dynamics of the liquidity demand and supply curves in the
LOB. We investigate the in-sample and out-of-sample pre-
dictability based on the records of the 12 stocks with high
variations over 44 trading days from date 2 January 2015 to
6 March 2015. We evaluate the accuracy of prediction and
also demonstrate the application of the VFAR forecast in order
execution strategy.

On each day, the liquidity demand and supply curves
are obtained by using the B-spline expansions on the log-
accumulated volumes. Throughout the analysis, we assumed
prices are known exogenous variables. The equally spaced
price percentiles are used as nodes and Jn = 20 is chosen in
the sieve. The value of Jn is selected for giving on average
the highest explanatory power over all the 12 stocks in our
analysis. There are in total 20 coefficients on the bid side and
another 20 on the ask side.

One may suspect co-integration between the bid and ask
sides, though there is no empirical evidence on the existence
of co-integration in figure 2, we also consider the Random
Walk (RW) model as an alternative, where the liquidity curves
are predicted by the most recent curves at the previous time
point. The selection of random walk is also motivated by the
fact the it provides a general good predictability and is hard to
beat under market efficiency.

Three measures are used to evaluate the prediction perfor-
mance. They are Root Mean Squared Error (RMSE), Mean
Absolute Percentage Error (MAPE) for accuracy, and R2 for
the explanatory power:

RMSE =

√√√√√∑xy=a,b

∑n
t=1

∑
τ

{
X (xy)

t (τ )− X̂ (xy)
t (τ )

}2

∑n
t=1 Nt

,

MAPE =
∑

xy=a,b

∑n
t=1

∑
τ

∣∣∣X (xy)
t (τ )−X̂ (xy)

t (τ )

∣∣∣
X (xy)

t (τ )∑n
t=1 Nt

,

R2 = 1−
∑

xy=a,b

∑n
t=1

∑
τ

{
X (xy)

t (τ )− X̂ (xy)
t (τ )

}2

∑
xy=a,b

∑n
t=1

∑
τ

{
X (xy)

t (τ )− X̄
}2 ,

(7)

where X is the actual value, X̂ denotes the estimate or forecast,
and Nt is the total number of the observed price quotes on both
sides of LOB at time point t. For each stock, we calculate these
measures for the estimated/forecasted liquidity curves using
the VFAR model and the alternative RW model, respectively.

4.1. In-sample estimation

We conduct the in-sample estimation over the whole time
period of the 44 days. Table 2 reports the R2, RMSE and
MAPE of the estimated liquidity curves. It shows that VFAR
provides high explanatory power for all the stocks, with R2

ranging from 92 % (AAPL) to 98 % (AEZS), and superior
prediction accuracy with RMSE smaller than 0.42 (AEZS)

and MAPE lower than 3.61 % (AAPL). We compare the per-
formance of VFAR and the alternative RW model. On the
right panel, the ratio of each measure is computed for the esti-
mates based on the RW model against those on the VFAR
model. The best relative performance is marked in bold-face.
Without exception, the VFAR model is better than the alterna-
tive. In terms of R2, VFAR outperforms by up to 3 % (AAPL
the largest stock and CMCSA the least active stock). As for
estimation accuracy, the relative performance reaches to 13
% in MAPE (CMCSA) and at least 9 % (SIRI, the most

Figure 5. Dynamics of multi-step ahead forecast for AAPL. Top:
5-min ahead forecast; middle: 25-min ahead forecast; bottom:
50-min ahead forecast.
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Table 3. R2, RMSE, MAPE for multi-step ahead VFAR forecast of the 12 stocks.

R2 (%) RMSE MAPE (%)

Ticker symbol 1-step 5-steps 10-steps 1-step 5-steps 10-steps 1-step 5-steps 10-steps

AAPL 91.13 85.64 83.74 0.37 0.48 0.51 3.61 4.21 4.49
MSFT 95.38 91.56 89.65 0.18 0.24 0.27 0.93 1.42 1.63
INTC 94.02 89.44 86.95 0.19 0.26 0.28 0.95 1.46 1.74
CSCO 96.67 93.07 90.35 0.21 0.31 0.36 0.88 1.44 1.76
SIRI 98.14 96.23 95.31 0.09 0.13 0.14 0.30 0.52 0.62
AMAT 95.47 92.17 89.99 0.19 0.25 0.29 1.00 1.47 1.72
CMCSA 92.80 89.22 88.09 0.20 0.24 0.25 1.15 1.56 1.69
AEZS 98.23 97.71 97.43 0.48 0.55 0.58 2.22 2.85 3.14
EBAY 94.64 91.54 89.74 0.23 0.29 0.32 1.31 1.79 2.03
MU 95.37 92.35 90.60 0.22 0.28 0.31 1.18 1.70 1.99
WFM 95.18 92.24 91.15 0.20 0.26 0.27 1.25 1.76 1.94
SBUX 94.49 91.82 90.63 0.23 0.28 0.30 1.81 2.27 2.48

Table 4. Ratio of R2, RMSE, MAPE for multi-step ahead RW forecast to VFAR forecast of the 12 stocks.

R2 RMSE MAPE

Ticker symbol 1-step 5-steps 10-steps 1-step 5-steps 10-steps 1-step 5-steps 10-steps

AAPL 0.97 0.93 0.90 1.15 1.19 1.22 1.03 1.11 1.13
MSFT 0.99 0.98 0.97 1.10 1.12 1.14 0.97 0.98 1.02
INTC 0.98 0.96 0.94 1.12 1.16 1.19 1.02 1.05 1.07
CSCO 0.99 0.98 0.97 1.09 1.13 1.14 1.01 1.01 1.05
SIRI 1.00 0.99 0.99 1.04 1.10 1.09 0.90 0.90 0.90
AMAT 0.99 0.97 0.96 1.11 1.16 1.18 1.01 1.05 1.09
CMCSA 0.98 0.94 0.91 1.14 1.23 1.28 1.06 1.13 1.19
AEZS 0.98 0.98 0.98 1.36 1.40 1.39 1.05 1.12 1.12
EBAY 0.99 0.96 0.94 1.12 1.19 1.23 1.05 1.11 1.16
MU 0.98 0.96 0.95 1.15 1.20 1.22 1.08 1.12 1.15
WFM 0.99 0.96 0.94 1.13 1.23 1.29 1.05 1.12 1.20
SBUX 0.98 0.96 0.94 1.15 1.21 1.24 1.03 1.11 1.15

active stock) and up to 45 % (AEZS that has the smallest
bid–ask spread on average) in RMSE. We find the superior
performance of the VFAR is robust with respect to market
capitalization, market tightness and depth.

Figure 4 visualizes the fitted liquidity demand and supply
curves and the actual values at an arbitrarily selected date,
24 February 2015 at 3 pm, of the four representative stocks,
AAPL, AMAT, AEZS and SIRI. The estimated curves reason-
ably trace the queuing orders displayed as discrete dots as well
as the smoothed liquidity curves in gray color. The accuracy
is quite stable, especially in the middle around the best quotes
as well as the extreme in the tails.

4.2. Out-of-sample forecast

In this section, we analyze the model’s forecasting perfor-
mance in a realistic setup. In particular, a trader is assumed
to observe the LOB at 5-min snapshots, with the informa-
tion over the past 30 trading days. The trader can only submit
orders every 5 min and thus asks for multi-step ahead out-of-
sample forecasts for the liquidity curves, starting from the 31st
trading day onwards. Among others, the trader is interested
in 1-, 5- and 10-step ahead forecasts that correspond to 5-,
25- and 50-min ahead liquidity curves, respectively. As such,
the first pair of the forecasted curves is for time t=2251,
based on the past 30 trading days of 30× 75 = 2250 func-
tional objects. Each time, he moves forward one period, i.e.

5 min and performs re-estimation and forecast until reaching
the end of the sample at t= 3300.

Figure 5 gives graphical illustrations of the forecasted liq-
uidity curves for AAPL with the VFAR model. The forecasts
closely trace the realized liquidity curves. It is remarkable that
the VFAR model is able to catch the dynamic movements of
the liquidity curves over the period from 17 February to 06
March 2015 for different forecast horizon from 5- to 50-min.

Table 3 reports the RMSE, MAPE and predictive power
of the liquidity curves forecast for the 12 stocks. Even if in
the ‘worst’ case, the VFAR approach is able to achieve high
R2 ranging from 91.13 % (1-step AAPL) to 83.74 % (10-step
AAPL), low RMSE of 0.48 (1-step AEZS) to 0.58 (10-step
AEZS), and low MAPE of 3.61 % (1-step AAPL) to 4.49 %
(10-step AAPL). The relative performance of the alternative
RW model is summarized in table 4. Again, the VFAR model
dominates the RW model across forecast horizons and fore-
cast measures. Though the improvement in R2 is weak, the
advantage is obvious in terms of the forecast error reduction.
In terms of RMSE, the VFAR model reaches about 4 % (1-
step SIRI) in the worst case and 36 % (1-step AEZS) and 40 %
(5-step AEZS) in the best case. On the other hand, the VFAR
model does not always yield improvement in the MAPE com-
parison. However, the RW performs better than VFAR only
in 5 out of 36 instances. In other cases, VFAR outperforms
the RW by up to 20 %. The relative superior performance
grows as the forecast horizon increases, indicating that the
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Figure 6. Mean absolute percentage errors (MAPEs) implied by the VFAR approach (blue) and the RW approach (black dashed) for different
number of steps ahead forecasts, corresponding to 5–100 min.

utilization of cross-dependence in liquidity curves helps to
improve out-of-sample prediction.

We also find that the strong predictability of the VFAR
model is stable with respect to forecast horizons. Figure 6
displays the MAPEs for various multi-steps ahead forecasts
ranging from 1 to 20 steps ahead for the four representa-
tive stocks AAPL, AMAT, AEZS, and SIRI. Except SIRI, the
VFAR forecasts outperform the RW with lower MAPEs. As
we forecast further into the future, the advantage of VFAR
over RW increases for AAPL, AMAT and AEZS. As the
most active stock considered in our data analysis, SIRI has
weaker predictive power in the out-of-sample forecasting. It
is the only asset for which MAPE is greater than the ran-
dom walk specification alternative, although this difference
shrinks as the steps forward increase. This weaker predictive
power could be due to the fact that SIRI is the most active
stock, and its dynamics is difficult to characterize, even by
the VFAR.

To summarize, the proposed VFAR model is able to suc-
cessfully predict the liquidity curves over various forecasting
periods. These results can be applied to various financial and

economics applications, and we will show next an application
to order execution strategy as an example.

4.3. Application to order execution strategy

In this section, we show how to utilize the forecasting results
in the previous section to a practical application on order exe-
cution. Assume that an investor decides to buy (sell) v number
of shares over a course of a trading day, starting from 9:45 to
15:55. The volume v to be traded is chosen to be 5 or 10 times
the average pending volume at the best bid (ask) price, yield-
ing the following buy (sell) quantities in the respective two
cases of (a) high and (b) very high liquidity demand:

(a) AAPL-4000 (4000); MSFT-26 000 (29 000); INTC-
27 000 (31 000); CSCO-67 000 (53 000); SIRI-675 000
(654 000); AMAT-17 000 (18 000); CMCSA-7000
(8000); AEZS-12 000 (17 000); EBAY-6000 (6000);
MU-8000 (8000); WFM-2000 (3000); SBUX-2000
(2000).
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Figure 7. Average percentage gains by strategy (ii) in excess of the equal-splitting strategy (i) when buying (blue) and selling (red) shares
based on m VFAR-predicted time points per day. For each stock, top: high liquidity demand corresponding to 5 times the average first level
market depth; bottom: very high liquidity demand corresponding to 10 times the average first level market depth.

(b) AAPL-8000 (8000); MSFT-52 000 (58 000); INTC-
54 000 (62 000); CSCO-134 000 (106 000); SIRI-
1 350 000 (1 308 000); AMAT-34 000 (36 000);
CMCSA-14 000 (16 000); AEZS-24 000 (34 000);
EBAY-12 000 (12 000); MU-16 000 (16 000); WFM-
4000 (6000); SBUX-4000 (4000).

Suppose that trading is only performed on a 5 min grid
throughout the day corresponding to 75 possible trading time
points, and investor can only make decision at 9:45 but not
monitor the market anymore during the day. The forecast-
ing horizon covers h=75 periods on each trading day. The
following are two execution strategies the investor can use:

(i) Splitting the buy (sell) order of size v equally in 5-min
frequency over the trading day, resulting into 75 trades
of size v/75 each; see Almgren and Chriss (2000).

(ii) Placing different orders at m (5-min interval) time
points throughout the day where the VFAR predicted
implied trading costs c of volume v are smallest. The
volume is split over the m time points according to
the relative proportion of expected trading costs, i.e.
at time point i, wi · v shares are traded, with wi =
ci/
∑m

j=1 cj for i = 1, . . . , m; see Härdle et al. (2012).

Note that strategy (i) is a special case of strategy (ii) with
m= 75 and the volume v is equally split. For strategy (ii),
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if m=1, it is the extreme case where the whole quantity is
traded only once. The VFAR prediction of the trading costs
involves predicting the whole bid and ask curve at each time
point and compute the effective cost of trading using prevail-
ing bid and ask quotes assumed to be known at the respective
time points.

We implement these strategies to 14 forecasting days, from
17 February to 06 March 2015. Figure 7 shows the aver-
age percentage reduction in trading costs of strategy (ii) in
excess of the equal-splitting strategy (i) for different values
of m ∈ [1, 75] for AAPL, AMAT, AEZS, and SIRI. Overall,
we observe that strategic placement of orders according to
VFAR predictions achieve excess gains of 31 basis points
on average. Generally, the behavior of the curves is simi-
lar, increasing as m increases from 1, and converge to zero
as m reaches the upper limit of 75. The pattern shows that
making small number of large market orders is superior to
an equal-splitting strategy, while for the extreme case where
m=1, there is lesser benefit or even loss since the transactions
have to walk up the book too severely and cause large price
impacts; and where m=75, the relative benefit only results
from the strategic non-equal weighting scheme. All in all,
the VFAR model is successful in predicting times when the
market is sufficiently deep to execute large orders.

5. Conclusion

Predictions of future liquidity supply and demand in the limit
order book (LOB) help in analyzing optimal splitting strate-
gies for large orders to reduce cost. To capture not only the
volume around the best bid and ask price in the LOB, but also
the pending volumes more deeply in the book, it becomes an
ultra-high dimensional problem. Motivated by the significant
cross-dependency of the bid and ask side of the market, we
proposed a Vector Functional AutoRegressive (VFAR) model
to estimate and forecast the liquidity supply and demand
curves in the functional domain.

The model is applied to 12 stocks traded in the National
Association of Securities Dealers Automated Quotations
(NASDAQ) stock market. It is shown that the VFAR model
gives R2 values as high as 98.5 % for in-sample estimation. In
out-of-sample forecast experiments, it produces accurate 5-,
25- and 50-min forecasts, with MAPE as low as 0.3 –4.5%.
The predictive power of the VFAR model can be further used
to improve order execution strategies at lower trading cost.

Our results contribute to the finance domain in helping both
practitioners and academics to better understand the dynam-
ics of available liquidity of a LOB and aiding to construct
a forward-looking trading strategy. In the area of financial
econometrics, we extend the VAR framework to the func-
tional domain, develop the method, and derive the theoretical
results. For future work, one can consider adding exogenous
variables to the VFAR model, extending the VARX frame-
work in the functional domain, to develop the VFARX model.
In application, one can jointly forecast the liquidity supply
and demand of a basket of stocks, rather than just an individ-
ual stock that was presented in this paper, and include other

exogenous variables (in VFARX) such as oil prices, or elec-
tricity prices, that may affect the liquidity of certain stocks.
Most important, the VFAR model is general, has high inter-
pretability, and can be used for other multiple functional time
series modeling and forecasting.
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Appendix 1. Derivation of the B-spline coefficient
relationship as shown in Section 3
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Rearranging the above equations gives the relationship of the B-
spline coefficients in (3).

Next we show how the expansion was obtained in (A1). We only
show for the first integral in (A1) as the expansion other integrals can
be obtained similarly.
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The second equality made use of integration by parts, with
(d/ds)Bj,m(τ − s) = −((m/(wj+m − wj))Bj,m−1(τ − s)−
(m/(wj+m+1 − wj+1))Bj+1,m−1(τ − s)) and
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i=1 da

t−1,iBi,m(s) ds

= (1/m)∑∞i=1 da
t−1,i(wi+m − wi). In the third equality, we made the

substitution of z = τ − s. For the fourth equality, we made use of
the formula:

∫ τ
−∞ Bj,m(z) dz = ((wj+m+1 − wj+1)/(m+ 1))

∑∞
h=1

Bh,m+1(τ ), and truncating the sum up till the J th term. We also
swapped the notation j for the first summation with h in the fourth
equality.

Appendix 2. Derivation of the ML estimator in (eqn6)

For t = 1, . . . , n, we write (5) compactly as the following:

Y = BZ + U . (A2)

By applying vec operator to (A2) yields

vec(Y ) = vec(BZ)+ vec(U)

= (Z� ⊗ IK)vec(B)+ vec(U)

or equivalently,

y = (Z� ⊗ IK)β + u,

where ⊗ is the Kronecker product.
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where v = (v, . . . , v)� is a (Kn× 1) vector. Consequently, ∂u/∂y� is
a lower triangular matrix with unit diagonal which has unit determi-
nant. Therefore using u = y− (Z� ⊗ IK)β, the transition density is
as follows:
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The (approximated) log-likelihood function is
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and the first order partial differentiations are as follows:
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−1
u .

(A3)

By equating the first order partial derivatives in (A3) to zero, we
obtain the maximum likelihood estimators in (6).

Appendix 3. Proof of Theorem 3.1

The growth of Jn is determined by the following two conditions:

Con1: If there exists a sequence {ρJn
} such that ρJn

∈
�Jn∀n and H(ρ0|�Jn

, ρJn
)→ H(ρ0|�Jn

, ρ0|�Jn
), then ‖ρJn

−
ρ0|�Jn

‖S → 0; meaning each ‖ρxy
Jn
− ρxy

0|�Jn
‖S → 0, for

xy= aa,ab,ba,bb. Here ρ0|�Jn
denotes the projection of the

set of true operators ρ0 on the sieve �Jn .
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Con2: There exists a sequence {ρJn
} described in Con1 such

that H(ρ0|�Jn
, ρJn

)→ H(ρ0|�Jn
, ρ0|�Jn

).

Fix δ > 0. Following Mourid and Bensmain (2006), we only need
to show that

P(DJn ∩M n
Jn
�= ∅) = 0, (A4)

because if (A4) holds, then with probability 1

inf
ϕ∈M n

Jn

H(ρ0|�Jn
, ρ) ≥ H(ρ0|�Jn

, ρJn
)− δ,

for all n sufficiently large. Since δ is arbitrary, and

H(ρ0|�Jn
, ρJn

)→ H(ρ0|�Jn
, ρ0|�Jn

),

by condition Con2 we deduce

lim inf inf
ρ∈M n

Jn

H(ρ0|�Jn
, ρ) ≥ H(ρ0|�Jn

, ρ0|�Jn
) a.s.

Combining with

H(ρ0|�Jn
, ρ) ≤ H(ρ0|�Jn

, ρ0|�Jn
),

we have

lim
n→+∞ sup

ρ∈M n
Jn

|H(ρ0|�Jn
, ρ)− H(ρ0|�Jn

, ρ0|�Jn
)| = 0 a.s. (A5)

Fix ε > 0, and for each n choose ψn ∈ M n
Jn

such that

d(ρ0|�Jn
,ψn)

1+ d(ρ0|�Jn
,ψn)

> sup
ρ∈M n

Jn

d(ρ0|�Jn
, ρ))

1+ d(ρ0|�Jn
, ρ))
− ε.

Condition Con1 combined with (A5) imply that

d(ρ0|�Jn
,ψn)→ 0 a.s.

Hence,

lim sup sup
ρ∈M n

Jn

d(ρ0|�Jn
, ρ))

1+ d(ρ0|�Jn
, ρ))
≤ ε.

Since ε is arbitrary, we deduce that M n
Jn
→ ρ0|�Jn

, which is the
desired result. Therefore, it suffices to prove (A4).

For now, n and Jn are fixed. Then

(DJn ∩M n
Jn
�= ∅)

⊆
{

sup
ρ∈DJn

�(X (a)1 , . . . , X (a)n , X (b)1 , . . . , X (b)n ; ρ)

≥ �(X (a)1 , . . . , X (a)n , X (b)1 , . . . , X (b)n ; ρJn
)
}

⊆
lJn⋃

k=1

{
sup
ρ∈k

n∏
i=1

g
(

X (a)i , X (b)i , X (a)i−1, X (b)i−1, ρ
)

≤
n∏

i=1

g
(

X (a)i , X (b)i , X (a)i−1, X (b)i−1, ρJn

)}

⊆
lJn⋃

k=1

{
n∏

i=1

g
(

X (a)i , X (b)i , X (a)i−1, X (b)i−1,k

)

≤
n∏

i=1

g
(

X (a)i , X (b)i , X (a)i−1, X (b)i−1, ρJn

)}
.

Next we bound the probability of this latter set and called it π .

π ≤
lJn∑

k=1

P

[
n∏

i=1

g
(

X (a)i , X (b)i , X (a)i−1, X (b)i−1,k

)

≤
n∏

i=1

g
(

X (a)i , X (b)i , X (a)i−1, X (b)i−1, ρJn

)]

=
lJn∑

k=1

P

[
exp

n∑
i=1

{
tk log

g(X (a)i , X (b)i , X (a)i−1, X (b)i−1,k)

g(X (a)i , X (b)i , X (a)i−1, X (b)i−1, ρJn
)

}
≥ 1

]

≤
lJn∑

k=1

Eρ0|�Jn

[
exp

{
tk log

g(X (a)t , X (b)t , X (a)t−1, X (b)t−1,k)

g(X (a)t , X (b)t , X (a)t−1, X (b)t−1, ρJn
)

}]n

for any nonnegative arbitrary t1, . . . , tk and conditionally to X (a)i−1

and X (b)i−1, the laws of the real r.v. g(X (a)i , X (b)i , X (a)i−1, X (b)i−1,k) and

g(X (a)i , X (b)i , X (a)i−1, X (b)i−1, ρJn
) are images of g by the translations of

the laws εi which are i.i.d. Hence, we get

π ≤ lJn(ϕJn)
n.

Finally, result (A4) is deduced by condition (ii) of Theorem 3.1 and
by the Borel–Cantelli lemma.

Appendix 4. Proof of consistency result in Theorem 3.2

Without loss of generality, we assume that pa
j and pb

j are all zeros.
For non-zero cases, the same consistency results can be obtained.
We check the condition Con1. We replace Jn by J in the remaining of
this section for notational simplicity, and let all summation be from
1 to J. Using the definition of the entropy, we have

H(ρ0|�J
, ρ0|�J

)− H(ρ0|�J
, ρ�J

)

= H(κ0|�J , κ0|�J )− H(κ0|�J , κ�J )

= −1

2
log |
u| + 1

2
log |
u,J | + E

(
−1

2
x�
−1

u x+ 1

2
x�J


−1
u,J xJ

)
,

where

x =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

da
t,1 −

∑
i

⎛⎝∑
j

qjc
aa
j − caa

1

⎞⎠ wi+m − wi

m
da

t−1,i

−∑
i

(∑
j

qjcab
j − cab

1

)
wi+m−wi

m db
t−1,i

...

da
t,J −

∑
i

⎛⎝∑
j

qjc
aa
j − caa

J

⎞⎠ wi+m − wi

m
da

t−1,i

−∑
i

(∑
j

qjcab
j − cab

J

)
wi+m−wi

m db
t−1,i

db
t,1 −

∑
i

⎛⎝∑
j

qjc
ba
j − cba

1

⎞⎠ wi+m − wi

m
da

t−1,i

−∑
i

(∑
j

qjcbb
j − cbb

1

)
wi+m−wi

m db
t−1,i

...

db
t,J −

∑
i

⎛⎝∑
j

qjc
ba
j − cba

J

⎞⎠ wi+m − wi

m
da

t−1,i

−∑
i

(∑
j

qjcbb
j − cbb

J

)
wi+m−wi

m db
t−1,i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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xJ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

da
t,1 −

∑
i

⎛⎝∑
j

qjc
aa
j,J − caa

1,J

⎞⎠ wi+m − wi

m
da

t−1,i

−∑
i

(∑
j

qjcab
j,J − cab

1,J

)
wi+m−wi

m db
t−1,i

...

da
t,J −

∑
i

⎛⎝∑
j

qjc
aa
j,J − caa

J ,J

⎞⎠ wi+m − wi

m
da

t−1,i

−∑
i

(∑
j

qjcab
j,J − cab

J ,J

)
wi+m−wi

m db
t−1,i

db
t,1 −

∑
i

⎛⎝∑
j

qjc
ba
j,J − cba

1,J

⎞⎠ wi+m − wi

m
da

t−1,i

−∑
i

(∑
j

qjcbb
j,J − cbb

1,J

)
wi+m−wi

m db
t−1,i

...

db
t,J −

∑
i

⎛⎝∑
j

qjc
ba
j,J − cba

J ,J

⎞⎠ wi+m − wi

m
da

t−1,i

−∑
i

(∑
j

qjcbb
j,J − cbb

J ,J

)
wi+m−wi

m db
t−1,i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Here 
u, caa
j , cab

j , cba
j , and cbb

j denote the covariance matrix and B-

spline coefficients for the kernel κ0|�J ; and 
u,J , caa
j,J , cab

j,J , cba
j,J , and

cbb
j,J denote the covariance matrix and B-spline coefficients for the

kernel κJ . κJ is the set of kernel functions for ρJ with ρJ ∈ �J ; and
κ0|�J is the projection of the set of true kernel functions κ0 on �J .
Assuming 
u = 
u,J , we have

H(ρ0|�J
, ρ0|�J

)− H(ρ0|�J
, ρ�J

)

= E
(
−1

2
x�
−1

u x+ 1

2
x�J


−1
u xJ

)
= 1

2

∑
r,s

(
−1
u )r,sE

{
(xJ )r(xJ )s − (x)r(x)s

}
,

where (
−1
u )r,s is the rth row, sth column of 
−1

u , (xJ )r is the rth
element of xJ , and (x)r is the rth element of x.

Since the only difference between (xJ )r(xJ )s and (x)r(x)s are the
different B-spline coefficients, we can group the individual terms
of the expansion of (xJ )r(xJ )s and the expansion (x)r(x)s together.
After canceling out the common terms not containing the B-spline
coefficients, each of the grouped terms will contain a product of
some common terms and the subtraction between the B-spline coef-
ficients (of the same index) of the two kernels or the subtraction
between the product of B-spline coefficients of one kernel and that
of the other kernel (of the same combination of indices). Hence,
if H(κ0|�J , κ�J )→ H(κ0|�J , κ0|�J ) as n, J →∞, we have caa

j,J →
caa

j , cab
j,J → cab

j , cba
j,J → cba

j , cbb
j,J → cbb

j and consequently ρJ →
ρ0|�J

.

For the condition Con2 and (i) of Theorem 3.1, we follow similar
arguments as in Mourid and Bensmain (2006). To verify Theorem 3.1
(ii), we define

ϕ(t) = Eκ0|�J

{
exp

(
t log

g(X (a)t , X (b)t , X (a)t−1, X (b)t−1,k)

g(X (a)t , X (b)t , X (a)t−1, X (b)t−1, κJ )

)}
,

where g(X (a)t , X (b)t , X (a)t−1, X (b)t−1,k) = supψ∈k
g(X (a)t , X (b)t , X (a)t−1,

X (b)t−1,ψ). Furthermore, we have ϕ(0) = 1 and ϕ′ = Eκ0|�J

log(g(X (a)t , X (b)t , X (a)t−1, X (b)t−1,k)/g(X
(a)
t , X (b)t , X (a)t−1, X (b)t−1, κJ )).

For a fixed κ ∈ k , we have

A = Eκ0|�J
log g(X (a)t , X (b)t , X (a)t−1, X (b)t−1,k)

− E log g(X (a)t , X (b)t , X (a)t−1, X (b)t−1, κ)

= Eκ0|�J
sup
ψ∈k

{
log g(X (a)t , X (b)t , X (a)t−1, X (b)t−1,ψ)

− log g(X (a)t , X (b)t , X (a)t−1, X (b)t−1, κ)
}

= Eκ0|�J
sup
ψ∈k

{
−1

2
log |
u,ψ | + 1

2
log |
u,κ |

−1

2
x�
ψ

−1

u,ψxψ + 1

2
x�κ


−1
u,κxκ

}
,

where xψ and xκ have the same form as xJ , with J replaced by ψ
and κ , respectively. 
u,ψ , caa

j,ψ , cab
j,ψ , cba

j,ψ , and cbb
j,ψ denote the covari-

ance matrix and B-spline coefficients for the kernel ψ , while 
u,κ ,
caa

j,κ , cab
j,κ , cba

j,κ , and cbb
j,κ denote that for the kernel κ .

Assuming 
u,ψ = 
u,κ = 
u, we have

A = Eκ0|�J
sup
ψ∈k

{
1

2

∑
r,s

(
−1
u )r,s

(
(xψ )r(xψ )s − (xκ )r(xκ )s

)}
,

where (
−1
u )r,s is the rth row, sth column of 
−1

u , (xψ )r is the rth
element of xψ , and (xκ )r is the rth element of xκ .

We follow the similar conditions and arguments in Mourid and
Bensmain (2006) and obtain A ≤ C1/Jη/2, where C1 is a constant.
In addition, for δ > 0,

ϕ′(0) = H(κ0|�J , κ)− H(κ0|�J , κJ )+ A ≤ C2J−η/2 − δ.
Using Taylor expansion and the results from Hwang (1980) such that
ϕ′′(t) ≤ C3J2, we have ϕ(1/J2) ≤ 1− δ/C4J2, where C2, C3, and
C4 are constants. Since ϕJ = supk inft≥0 ϕ(t), we can deduce that for
sufficiently large J, we have

lJ (ϕJ )
n ≤ CJCJ1+η

(
1− δ

CJ2

)n

,

which is summable if J = O(n1/3−δ) for δ > 0 (see Hwang 1980).
Note that C is a constant. Finally, we can apply Theorem 3.1 to obtain
the result that the ML estimator κ̂ obtained on �Jn converges to the
projected true set of kernel functions κ0|�J . As n, Jn →∞, κ0|�J →
κ0 because each κxy,0|�J in κ0|�J is just the B-spline truncation of the
corresponding true kernel κxy,0 in κ0 on �Jn .
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1. INTRODUCTION

Quantile regression is an increasingly popular tool for modern econometric analy-

sis. Instead of studying the conditional mean function of the response variable, quantile

regression is concerned with estimating the conditional quantile function. It has been

applied to a wide range of econometric applications, such as labor economics (Koenker

and Hallock, 2001; Fitzenberger et al., 2013) and financial risk management (Gaglianone

et al., 2011; Härdle et al., 2016). Particularly, the linear quantile model has been studied

by a seminal work by Koenker and Bassett (1978), and the asymptotic theory has been

developed by Portnoy (1991, 1997). See Koenker (2005) for a comprehensive summary of

the methods and applications.

Following the development of quantile methods in the existing literature, the quantile

regression in time series is of particular interest. An early stream of researches such as

Hasan and Koenker (1997) deal with linear quantile autoregression models, which focus

on independent identically distributed (iid) innovations in a relatively restrictive loca-

tion shift model. In another approach, Engle and Manganelli (2004) propose a set of

autoregressive forms (the CaViaR model) for value-at-risk (VaR), which models directly

the dynamics of the conditional quantiles. The framework is easy to apply but is quite

difficult to directly infer the underlying process. As an alternative, Koenker and Xiao

(2006) consider a quantile autoregressive method to model the conditional quantile func-

tion, which allows to study the asymptotic properties of the underlying process and does

not assume an iid underlying process. This provides us with an interesting framework to

understand the risk propagation within a complex financial system. We consider therefore

a parametric approach involving a system of dynamic quantile autoregression equations.

Thus our methodology characterizes a dynamic tail dependency graph, which facilitates

tail event driven forecasting and impulse analysis in a complex financial system. This

is in particular important in a financial network and complements to the literature on

systemic risk; see for example Billio et al. (2012), Diebold and Yılmaz (2014).

The rapid development of modern data technology has allowed us to have access to

large amount of data with possible network structures. On one hand, this poses serious

challenges to the analysis of dynamic tail behavior especially within a network composed

of a large number of nodes. On the other hand, the data structure bears the opportunity

for naturally embedded network information. We take this opportunity of employing

network structures, and propose a tail event driven network quantile autoregression model

(NQAR), which allows us to make inference based on the underlying processes and to

2



estimate the network dependencies.

In the existing literature, great efforts have been taken to incorporate network infor-

mation into an econometric framework. For instance, Sewell and Chen (2015) incorporate

network information to study the dynamic social behavior of students in a Dutch class by

a latent space model. Community detection and extraction methods are studied by Zhao

et al. (2011), Amini et al. (2013), and Sewell et al. (2017) using a block structure. Compa-

rably, our proposed framework is related to the recent autoregressive models in large-scale

social networks. Based on the cited literature, it is assumed that the behavioural patterns

of network users are related to their connected friends (Zhang and Chen, 2013; Zhu et al.,

2017). Estimation and computation issues for this situation are intensively discussed

(Zhou et al., 2017; Zhu et al., 2018).

A recent paper by Zhu et al. (2017) on network autoregression provide a modelling

framework at the mean level. In this work, we extend this to a network quantile au-

toregression (NQAR) model in order to study conditional quantiles in complex financial

networks. Consider a network of firms, connected by their shareholder relationships.

Specifically, a nodal connection between two firms can be established if they share major

common shareholders. In this context, it makes sense to assume that the conditional

quantile function of the response variable (e.g., volatility of stock returns for the firms) is

related to underlying exogenous factors. These may include nodal specific variables (e.g.,

firm specific variables), the lagged response of the same node (e.g., volatility of the same

stock in the previous time point), and the lagged responses of other connected nodes. To

estimate the parameter, a minimum contrast method is introduced, which is applied to

a large-scale network. The corresponding asymptotic properties are established, where

the conditions on network structures are given and discussed. Moreover, the stationarity

of the NQAR model is investigated, and an impulse analysis under the NQAR model is

discussed. Empirically, we discover strong asymmetric network effects of shocks at dif-

ferent quantile levels of stock volatilities in the Chinese financial market. Namely, the

network dependence among the absolute returns becomes stronger at the tail level, while

at normal times it is not significant.

Finally, our paper is closely related to the recent emerging literature on modeling

tail dependence in a complex financial system. Examples include the quantile LASSO

framework discussed by Hautsch et al. (2014) and Härdle et al. (2016), where the net-

work relationship is estimated among the financial institutions by imposing an L1-penalty.

Their estimation framework considers a more flexible network formation at the cost of s-
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lower convergence rate, as it is in nature a nonparametric estimation. Furthermore, there

is also a literature on the tail dependence in multi-dimensional dynamic settings. For

example, Cappiello et al. (2014) develop an econometric measure for the comovement of

quantiles. In addition, White et al. (2015) provide a very innovative vector autoregres-

sive model for the dynamics of quantiles. Chavleishvili and Manganelli (2016) propose

a framework related to the CaViaR process to identify the structural quantile shock-

s. Comparably, our approach is different mainly in the following three aspects. First,

the proposed NQAR model embeds the observed network structure, which provides a

parametric estimation framework. Second, it admits trackable quantile dynamics, which

facilitates to conduct stationary and impulse response analysis. Third, the model allows

for modeling a large number of nodes (a high dimensional setup), and controlling for the

observed nodal heterogeneity.

Lastly, we summarize our contribution as follows. Firstly, we provide a novel net-

work quantile model that characterizes the dynamic quantile behavior, which incorporates

valuable network information from data. Secondly, we give new definitions of tail-event

driven impulse functions under this innovative modeling framework. Thirdly, the asymp-

totic theories are derived for both the underlying process and estimated parameters. The

model stationarity is discussed with insights on its relationship with the given network in-

formation. Moreover, detailed conditions on the network structures are derived to ensure

the consistency and asymptotic normality of the estimator.

The rest of the paper is organized as follows. Section 2 introduces the network

quantile autoregression model and its stationarity properties. Section 3 proposes a novel

impulse analysis framework for the network quantile autoregression model. The parameter

estimation method is given in Section 4, where the asymptotic properties are presented.

An empirical analysis for stocks in Chinese financial markets are conducted in Section

5. Lastly, a conclusion is discussed in Section 6. Extensive numerical studies and all

technical details are delegated to the supplementary material.

2. NETWORK QUANTILE AUTOREGRESSION

2.1. Model and Notations

Let Uit (1 ≤ i ≤ N , 1 ≤ t ≤ T ) be iid random variables following the standard

uniform distribution on the set of [0, 1]. Assume that a q-dimensional random nodal

covariate vector Zi = (Zi1, · · · , Ziq)> ∈ Rq is collected for each node. To record the

4



network relationship, we define A = (aij) ∈ RN×N as the adjacency matrix, where aij = 1

if there is an edge from i to j, otherwise aij = 0.

Following the standard conventions, the nodes are assumed to be not self-related (i.e.,

aii = 0). Motivated by the univariate autoregression quantile model (Koenker and Xiao,

2006), we consider the network quantile autoregression model as

Yit = β0(Uit) +

q∑
l=1

Zilγl(Uit) + β1(Uit)n
−1
i

N∑
j=1

aijYj(t−1) + β2(Uit)Yi(t−1), (2.1)

where βjs (0 ≤ j ≤ 2) and γls (1 ≤ l ≤ q) are unknown coefficient functions from (0, 1)

to R1, and ni =
∑

j 6=i aij is the out-degree for the ith node.

Importantly, the NQAR model (2.1) induces a convenient form of the conditional

quantile function of Yit. Denote QY (τ |X) as the τth conditional quantile of Y seen as a

function of X. By assuming that the right side of (2.1) is monotonically increasing in Uit,

we can write the conditional quantile function of Yit given (Zi,Yt−1) as:

QYit(τ |Zi,Yt−1) = β0(τ) +

q∑
l=1

Zilγl(τ) + β1(τ)n−1
i

N∑
j=1

aijYj(t−1) + β2(τ)Yi(t−1). (2.2)

In (2.2), β0(τ) +
∑q

l=1 Zilγl(τ) reflects the nodal impact invariant over t, where β0(τ) is

referred to as the baseline function. The covariates Zil refer to node-specific variables, like,

size, leverage ratio, which are invariant in time. It is assumed that the nodal covariates

Zis are independent of the Uits. Next, the second term n−1
i

∑N
j=1 aijYj(t−1) characterizes

the network impact from the connected nodes (e.g., firms with common shareholders)

(Zhu et al., 2017). The corresponding coefficient function β1(τ) is then referred to as the

network function. Lastly, Yi(t−1) captures the impact from the response of the same node

in the previous time point. Accordingly, the coefficient function β2(τ) is then referred to

as the momentum function. The model (2.2) is related to the autoregression models in

spatial econometrics literature, e.g. Lee (2004); Lee and Yu (2009). Although they share

the similarity in the construction of the adjacency matrix A, the modelling interests are

different. Specifically, the spatial models mainly characterize the simultaneous spatial

effect across spatial locations, while our approach mainly focus on modelling the dynamic

patterns of the responses. To better understand the NQAR model (2.1), we have the

following remarks.

Remark 1. (Monotonicity) Monotonicity is a frequently discussed issue for the quantile

5



autoregression model. A specific example for the monotonicity of (2.1) to hold is that

γl(·)s and βl(·)s are all monotone increasing functions, and Zils, Yits are positive random

variables. In other cases, certain data transformation techniques can be conducted to

ensure this assumption; see Koenker and Xiao (2006) and Fan and Fan (2010) for more

detailed discussions.

Remark 2. (Comparison with NAR Model) One certainly notes (2.2) to be an ex-

tension of the network vector autoregression (NAR) model proposed by Zhu et al. (2017).

First of all, the NQAR model has a varying coefficient structure which requires to signif-

icantly different tools for deriving theoretical properties. Emphatically, the conditional

quantile function in the NAR case is

QYit(τ |Zi,Yt−1) = β0 +

q∑
l=1

Zilγl + β1n
−1
i

N∑
j=1

aijYj(t−1) + β2Yi(t−1) + cτ ,

where cτ is the quantile of the error distribution, and all the parameters β1, β2, γl are not

related to τ . In contrast, the NQAR model allows coefficient functions to vary over τ .

This makes not only the location of the conditional density of Yit be determined by τ ,

but also the shape of QYit(τ |Zi,Yt−1) be τ -related. In practice, this model formulation is

of particular interest for financial risk management. Specifically, we discuss the following

two scenarios in which NQAR is more powerful than the mean case (i.e., NAR model).

Scenario 1. (Tail Behavior) The NQAR model captures asymmetric dependen-

cy between the responses at different quantile levels, especially at tail levels. For instance,

to measure the conditional VaR of a firm, one can adopt the stock volatility as Yits for

the ith firm and at τ = 0.95. In this case, an asymmetric pattern indicates whether the

financial institutions tend to have closer connections in the upper tail (e.g. when the

market exhibits high turbulences) than other levels.

Scenario 2. (Robust Estimation) General vector autoregression models are

usually sensitive to outliers, which leads to a serious distortion of the estimation (Abello

et al., 2013; Li et al., 2015). Consequently, compared to NAR, NQAR is more robust to

outliers since it is established on the quantile framework. Specifically, the robust median

estimation can be readily obtained by setting τ = 0.5.

Remark 3. (Heteroskedasticity) Heteroskedasticity is a pervasive phenomenon in

complex financial systems. The QNAR model could include a vector autoregression model

with heteroskedasticity as a special case. We take for example the classical location shift
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form as mentioned by Koenker and Hallock (2001) as

Yit = b0 + b1Y i(t−1) + b2Yi(t−1) + σiεit, (2.3)

where b0, b1, b2 are constants, Y i(t−1) = n−1
i

∑
j aijYj(t−1), σi = b0 + b1Y i(t−1) + b2Yi(t−1),

and εits are iid random variables with distribution function F (·). One could note that

Model (2.3) involves the heteroscedasticity in the innovation term. It can be rewritten

into,

Yit = b0(1 + εit) + b1(1 + εit)Y i(t−1) + b2(1 + εit)Yi(t−1),

Specifically, it is a special case of the NQAR model (2.1) by specifying β0(Uit) = b0(1+εit),

β1(Uit) = b1(1 + εit), and β2(Uit) = b2(1 + εit), where εit = F−1(Uit).

Remark 4. (Adjacency Matrix) It should be noted that the adjacency matrix A in

(2.1) is allowed to take flexible forms according to specific application scenarios. For ex-

ample, in social network analysis, the adjacency matrix is defined by the natural following-

followee relationship (Chen et al., 2013; Zhou et al., 2017; Zhu et al., 2017). Specifically,

aij = 1 if the ith node follows the jth node in the network; otherwise aij = 0. In eco-

nomic and financial applications, one can take several strategies. For instance, Acemoglu

et al. (2012) provide a characterization of intersectorial input-output linkage embedded

in a network relationship. Alternatively, the network structures of financial institutions

are usually constructed according to their financial fundamentals. Specifically, the indus-

trial background, financial statement, shareholder information are commonly employed

for network construction (Zou et al., 2017; Antón et al., 2018; Chen et al., 2018). In

spatial econometrics, the adjacency matrix can be related to spatial distances between

locations (or even economic distance such as a measure of trade flows, e.g., Novy (2013)),

where the weight (i.e., aij) are usually assumed to be monotone decreasing with distance

increasing (Cressie and Wikle, 2015; Lee, 2004). In addition, one could take a further

flexible approach to model the adjacency matrix A at the first step according to different

statistical models. Particularly, the random graph model (Hoff et al., 2012; Herz, 2015)

and statistical tests (Granger et al., 2000) can be applied.

2.2. Vector Formulation of NQAR

Next, we organize the NQAR model in (2.1) into vector forms to facilitate further

discussions. Define Yt = (Y1t, · · · , YNt)> ∈ RN . Let B0t =
(
β0(Uit) +

∑
l Zilγl(Uit), 1 ≤

i ≤ N
)>∈ RN , B1t = diag{β1(Uit), 1 ≤ i ≤ N}∈ RN×N , B2t = diag{β2(Uit), 1 ≤ i ≤
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N}>∈ RN×N . One can easily verify that Γ = E(B0t) = c01N ∈ RN , where c0 = b0 + cZ ,

b0 =
∫ 1

0
β0(u)du and cZ = E(Z1)>r with r =

( ∫ 1

0
γl(u)du, 1 ≤ l ≤ q

)> ∈ Rq. Then the

NQAR model (2.1) can be re-written in a vector form as

Yt = Γ +GtYt−1 + Vt, (2.4)

where Gt = B1tW + B2t ∈ RN×N , W = (wij) = (n−1
i aij) ∈ RN×N is the row-normalized

adjacency matrix, and Vt = B0t−Γ ∈ RN is iid over t with mean 0 and covariance ΣV =

σ2
V IN ∈ RN×N with σ2

V = σ2
b0

+ E{γ>(U1t)Σzγ(U1t)}, σ2
b0

=
∫ 1

0
β2

0(u)du − {
∫ 1

0
β0(u)du}2,

and Σz = Cov(Z1) ∈ Rq×q.

Note that (2.4) is written in the form of a vector autoregression model (Lütkepohl,

2005) with a stochastic coefficient matrix Gt depending on t. It is not hard to see that Gt

is linear in the adjacency matrix W . This form borrows the strength of network structure

information (i.e., W ), and greatly reduces the dimensionality of estimated parameters.

For convenience, we discuss the model stationarity based on the vector form (2.4).

2.3. Covariance Stationarity

Given the NQAR model (2.4), it is then of great interest to check the stationarity

of Yt. A process {Yt}+∞
−∞ is covariance stationary if (a) E(Yt) = µY for a constant vector

µY ∈ RN ; (b) Cov(Yt,Yt−h) = E{(Yt−µY )(Yt−h−µY )>} = Σ(h) with Σ(h) ∈ RN×N only

related to h. For convenience, let b1 = E{β1(Uit)}, b2 = E{β2(Uit)}, b̃1 = {E β2
1(Uit)}1/2,

b̃2 = {E β2
2(Uit)}1/2, G = E(Gt) = b1W + b2I, and G∗ = E(Gt ⊗ Gt). Then we have the

following theorem.

THEOREM 1. Assume b̃1 + b̃2 < 1 and E |Vit| < C for some positive constant C. Then

the following conclusions hold.

(a) There exists a unique covariance stationary solution to the NQAR model (2.4) with

finite first moment as

Yt =
∞∑
l=0

ΠlΓ +
∞∑
l=0

ΠlVt−l, (2.5)

where Πl =
∏l

k=1 Gt−k+1 for l ≥ 1 and Π0 = I.

(b) Denote ΣY = Σ(0) = Cov(Yt). The stationary mean is µY = c−1
1 c01N and

vec(ΣY ) = (M1 − c−2
1 c2

0)1N2 + 2c−1
1 c0(I −G∗)−1vec(Σbv) + (I −G∗)−1vec(ΣV ), (2.6)

where c1 = (1 − b1 − b2)−1, M1 = c−1
1 c2

0(1 + b1 + b2)(I − G∗)−1, Σbv = σbvIN , and
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σbv = E[{β1(Uit) + β2(Uit)}Vit]. Moreover, we have Σ(h) = GhΣY for any integer h > 0,

and Σ(h) = ΣY (G>)−h for h < 0.

The proof of Theorem 1 is given in the supplementary material (Appendix A.1). It

provides the unique covariance stationary solution of (2.5).

Remark 5. It is straightforward to verify b̃1 = (b2
1 + σ2

b1
)1/2, where σ2

b1
= Var{β1(Uit)}.

Similarly one can define σ2
b2

= Var{β2(Uit)} and b̃2 = (b2
2 + σ2

b2
)1/2. Therefore the sta-

tionarity assumption in Theorem 1 essentially sets constraints on the expectation and

variance of the network and momentum functions (i.e., β1(·) and β2(·)). It is noteworthy

that the assumption does not require |β1(τ)| + |β2(τ)| to be strictly less than one for all

τ ∈ (0, 1). Instead, it imposes an upper bound in L2-norm, which allows for some “ex-

plosive” cases at a specific quantile (i.e., |β1(τ)|+ |β2(τ)| > 1 for some τ). Particularly, if

the network and momentum functions are constants, i.e., β1(τ) = b′1 and β2(τ) = b′2 (for

some constants b′1 and b′2), the stationarity assumption reduces to |b′1| + |b′2| < 1, which

corroborates to the stationary condition in the mean case (Zhu et al., 2017).

Remark 6. Let us look at the stationary mean µY and covariance ΣY . First, note that

µY = c−1
1 c01N , thus the stationary mean is the same for all the nodes, and unrelated

to the network structure. By contrast, the analytical form for the covariance ΣY is

more complicated. To better understand how ΣY is affected by the network structure,

we approximate ΣY in the case that β1 is small (Chen et al., 2013; Zhou et al., 2017;

Zhu et al., 2017), namely, b̃1 = O(1). For convenience, define b̃12 = E{β1(Uit)β2(Uit)},
b̃01 = E{β1(Uit)Vit}, and b̃02 = E{β2(Uit)Vit}. Employing the Taylor’s expansion, ΣY can

be approximated by

Var(Yit) ≈ cb1c
2
0 +

1

1− b̃2
2

[
2(1− b2)−2{(1− b2)σbv + b1b̃02}c0 + σ2

V

]
, (2.7)

Cov(Yi1t, Yi2t) ≈ cb2c
2
0 +

1

(1− b2
2)2

{
2(1− b2)−1b̃02c0 + σ2

V

}{
b1b2(wi1i2 + wi2i1)

}
, (2.8)

where cb1 = [(1−b̃2
2)−1{1−b2

2+2b1+2(1−b̃2
2)−1(1−b2

2)̃b12}−(1−b2)−1(1−b2+2b1)](1−b2)−2

and cb2 = (1 − b2)−2(1 − b2
2)−2(1 − b2

2 + 2b1 + 2b1b2) − (1 − b2)−3(1 − b2 + 2b1). Detailed

verifications of (2.7) and (2.8) are given in the supplementary material (Appendix A.2). It

is worth noting that the variance of Yit is mainly determined by the momentum function

β2(·) and the baseline function β0(·). Particularly, a larger b̃2 will result in higher variance

of Yit. Next, the covariance between Yi1t and Yi2t is not only related to β2(·), but is also

related to the network function β1(·). Nodes have a higher correlation with each other if b1
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is larger. Moreover, note that wi1i2 +wi2i1 = n−1
i1
ai1i2 +n−1

i2
ai2i1 . Therefore, the correlation

between node i1 and i2 is higher if (a) they connect to each other in the network (i.e.,

ai1i2 = ai2i1 = 1) and (b) they both have small out-degrees (i.e., small ni1 and ni2).

2.4. Asymptotic Stationary Distribution

Given the established covariance stationarity, it is then natural to derive the asymp-

totic stationary distribution. We focus on the long run average of Yt, namely, YT =

T−1
∑T

t=1 Yt. It reflects the average performance of Yt over the whole time period T ,

and its asymptotic properties are going to be investigated as T → ∞. In this regard,

two types of asymptotics exist. The first type is fixed N asymptotics, and the second

one is N →∞ asymptotics. In the following theorem, we first give the result of fixed N

asymptotics.

THEOREM 2. Assume cβ < 1 and E(|Vit|4) < M , where cβ = ‖β1‖4 + ‖β2‖4 with

‖βj‖4 = E{βj(Uit)4}1/4 (j = 1, 2), and M is a finite positive constant. Then the average

of Yt converges in law to a normal distribution,

√
T (YT − µY 1)

L−→ N(0,Σ∗Y ) as T →∞, (2.9)

where Σ∗Y = G(I −G)−1ΣY + ΣY (I −G>)−1.

The proof of Theorem 2 is deferred to the supplementary material (Appendix A.3).

Via (2.9), the asymptotic normality of
√
T (YT − µY 1) is provided. One could see

that the corresponding asymptotic covariance is equal to the long run covariance Σ∗Y =∑∞
h=−∞Σ(h) = (σ∗ij) ∈ RN×N .

Note that the Theorem 2 is established for a fixed N . However, one might consider to

extend the result directly to the case N →∞. On general grounds, this can be difficult,

since the convergence in distribution in high dimensions is not well defined. As one possible

solution, we discuss the problem under the framework of Gaussian approximation theory,

which is formulated by Zhang and Cheng (2014) and Zhang and Wu (2015) for time series

analysis. Before we introduce this N → ∞ asymptotics, we first give definition of a

convenient distance between two high dimensional vectors. Specifically, the Kolmogorov

distance is employed and defined as follows.

DEFINITION 1. Let X = (X1, · · · , XN)> ∈ RN , Y = (Y1, · · · , YN)> ∈ RN be N-
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dimensional random vectors. The Kolmogorov distance between X and Y is defined as

ρ(X, Y ) = sup
t∈R

∣∣∣P (‖X‖∞ ≤ t)− P (‖Y ‖∞ ≤ t)
∣∣∣,

where ‖X‖∞ denotes max1≤i≤N |Xi| for any arbitrary vector X.

The Kolmogorov distance can be seen as a distance between two distribution function-

s. Using it, we are able to quantify the distance between
√
T (YT−µY 1) and a given Gaus-

sian random vector. Specifically, define Ỹt = Yt−µY , then we have Cov(Ỹt, Ỹt−h) = Σ(h).

Accordingly, let Z ∈ RN be an N -dimensional Gaussian random vector with covariance

equal to the long run covariance of Ỹt as Σ∗Y (defined in Theorem 2). For a finite sample,

the long run covariance is usually approximated by Σ
∗(T )
Y =

∑T−1
h=−(T−1) T

−1(T − |h|)Σ(h).

We then have the following.

THEOREM 3. Assume the same conditions as in Theorem 2. Further assume λmin(Σ
∗(T )
Y )

≥ τ for a positive constant τ . In addition, N = O{exp(T δ)} for 0 ≤ δ < 1/11. Then as

T →∞, we have

ρ
(
T−1/2

T∑
t=1

Ỹt, Z
)
→ 0. (2.10)

The result (2.10) can be seen as an analogue of the central limit theorem in a high

dimensional version. It should be noted that to guarantee the
√
T convergence rate of

T−1
∑T

t=1 Ỹt, the network size N is required to expand in a rate not faster than exp(T δ);

see Appendix A.4 for more proof details.

3. PARAMETER ESTIMATION

In this section, we provide an estimation method to the NQAR model (2.1). The

asymptotic properties are also established. Let θ(τ) = [β0(τ), γ>(τ), β1(τ), β2(τ)]> ∈ Rq+3

be the parameter vector. In addition, define Xit = (1, Z>i , n
−1
i

∑N
j=1 aijYjt, Yit)

> ∈ Rq+3.

Then θ(τ) is estimated by

θ̂(τ) = arg minθ

N∑
i=1

T∑
t=1

ρτ

{
Yit −X>i(t−1)θ(τ)

}
, (3.1)

where ρτ (u) = u{τ − 1(u < 0)} is the contrast (check) function for quantile regression.

Note that the estimation problem given by (3.1) is equivalent to estimating the quantile

regression problem, where Yit is the response variable and Xit is the explanatory vari-

able. Consequently, the standard algorithms to estimate the quantile regression model
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(e.g., simplex methods or interior point methods) can be employed. With regards to the

computational perspective, we refer to the Chapter 6 of Koenker (2005) for more details.

Let the conditional density function of Yit given Ft−1 be fi(t−1)(·). To facilitate the

study of the asymptotic properties, define Ω̂0 = (NT )−1
∑N

i=1

∑T−1
t=0 XitX

>
it and Ω̂1(τ) =

(NT )−1
∑N

i=1

∑T−1
t=0 fit

{
X>it θ(τ)

}
XitX

>
it for τ ∈ (0, 1). Computationally, fit

(
X>it θ(τ)

)
is

approximated by f̂it
(
X>it θ̂(τ)

)
= {X>it (θ̂(τl)− θ̂(τl−1))}−1(τl− τl−1) for τ ∈ [τl−1, τl], where

{τl} is a chosen grid. Next, to prove the asymptotic properties of the estimated parame-

ters, the following assumptions are required.

(C1) (Moment Assumption) Assume cβ < 1, where cβ is defined in Theorem 2. Fur-

ther, assume that Zis are iid random vectors, with mean 0, covariance Σz ∈ Rq×q

and finite fourth order moment. The same assumption is needed for Vit, 1 ≤ i ≤ N

and 0 ≤ t ≤ T . Lastly, assume that {Zi} and {Uit} to be mutually independent.

(C2) (Network Structure)

(C2.1) (Connectivity) Treat W as the transition probability matrix of a Markov

chain, whose state space is defined as the set of all the nodes {1, · · · , N}.
Assume the Markov chain to be irreducible and aperiodic. In addition, define

π = (π1, · · · , πN)> ∈ RN to be the stationary distribution vector of the Markov

chain (i.e., πi ≥ 0,
∑

i πi = 1, and W>π = π). It is assumed that
∑N

i=1 π
2
i → 0

as N →∞.

(C2.2) (Uniformity) Assume |λ1(W ∗)| = O(logN), where W ∗ is the symmetric

matrix as W ∗ = W +W>.

(C2.3) (Convergence) Assume that the following limits exist and finite: κ1 =

limN→∞N
−1tr(ΣY ), κ2 = limN→∞N

−1tr(WΣY ), κ3 = limN→∞N
−1tr(WΣYW

>),

κ4 = limN→∞N
−1tr{(I −G)−1}, and κ5 = limN→∞N

−1tr{W (I −G)−1}.

(C3) (Eigenvalue-bound) Let Ω̂1(τ)→p Ω1(τ) as min{N, T} → ∞ for any τ ∈ (0, 1),

where Ω1(τ) ∈ RN×N is a positive definite matrix. Moreover, there exists positive

constants 0 < c1 < c2 < ∞ such that c1 ≤ λmin(Ω1(τ)) ≤ λmax(Ω1(τ)) ≤ c2 for any

τ ∈ (0, 1).

(C4) (Monotonicity) It is assumed that X>it θ(τ) (1 ≤ i ≤ N, 1 ≤ t ≤ T ) is a monotone

increasing function with respect to τ ∈ (0, 1).
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To gain insights into the conditions, we comment as follows. Condition (C1) is stan-

dard conditions on the noise term Vits, nodal covariates Zis and β(Uit)s for the parameter

consistency results. This condition can be relaxed to allow for the weak dependence or

mixing case over time as long as the asymptotic normality still holds. Condition (C2) is

set for the network structure. Specifically, condition (C2.1) ensures the connectivity on

the network structure. It implies that all nodes in the network could connect each other

within a finite number of steps. This condition can be supported by the empirical phe-

nomenon named as “six degrees of separation” (Newman et al., 2011). Condition (C2.2)

assures that the network has certain uniformity properties, i.e. the divergence rate of

λ1(W ∗) should be of the same rate or slower than log(N). Consider a fully connected

network for example, it can be verified in such a case λ1(W ∗) is of order O(1), which

satisfies the condition perfectly. However, this assumption might be violated if huge het-

erogeneity occurs among nodes (e.g., a “super star” shaped network). Condition (C2.3)

states the convergence assumption, which are the values related to network structure. To

better understand the condition, we take κ1 for illustration proposes. It can be written

as N−1 tr(ΣY ) = N−1
∑

i ΣY,ii, where ΣY,ii is the variance of node i. Consequently, this

assumption is satisfied if the average variations of all the nodes in the network converge

to a finite constant. Subsequently, condition (C3) assures that the law of large number

assumption holds for Ω̂1(τ). Moreover, the condition guarantees that eigenvalues of the

asymptotic covariance matrix in Theorem 4 are bounded from above and below for any

τ ∈ B. Lastly the monotonicity assumption is imposed by condition (C4) to ensure the

validity of the quantile regression. Given the conditions, we provide a theorem named

as Network Bahadur Representation, which leads to the consistency of the parameter

estimation.

THEOREM 4 (Network Bahadur Representation). Under conditions (C1)–(C4), the

following representation holds uniformly over τ ∈ B (i.e., B is a compact set in (0, 1)),

θ̂(τ)− θ(τ) = (NT )−1Ω1(τ)−1

N∑
i=1

T∑
t=1

Xitψτ (Vitτ ) + rNT (τ), (3.2)

where ψτ (u) = τ − I(u < 0), Vitτ = Yit − X>i(t−1)θ(τ), and The remainder term satisfies

supτ∈B|rNT (τ)| = Op{(NT )−1/2
}

. Therefore, we have θ̂(τ)
p→ θ(τ) uniformly for τ ∈ B

as min{N, T} → ∞.

The proof of Theorem 4 is given in the supplementary material (Appendix B.2). With

the consistency of the parameters, we may now present the asymptotic distribution of the
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estimated parameters.

THEOREM 5. Under conditions (C1)–(C4), we have

√
NTΣ

−1/2
θ (τ)

{
θ̂(τ)− θ(τ)

} L−→ Bq+3(τ)

as min{N, T} → ∞, where Σθ(τ) = Ω−1
1 (τ)Ω0Ω−1

1 (τ) with

Ω0 =



1 0> cb cb

0 Σz κ5Σzr κ4Σzr

cb κ5r
>Σz κ3 + c2

b κ2 + c2
b

cb κ4r
>Σz κ2 + c2

b κ1 + c2
b


(3.3)

cb = c−1
1 c0, and Bq+3(τ) is a (q + 3)-dimensional Brownian bridge.

The proof of Theorem 5 is given in the supplementary material (Appendix B.3). In

Theorem 4 and Theorem 5, both N and T are required to diverge to infinity to obtain a
√
NT -consistent result. Although the NQAR model requires that the adjacency matrix

should be correctly specified, it is found that the consistency result still holds if the mis-

specification amount is under control. See Appendix B.4 in the supplementary materials

for a discussion. It is noteworthy that since the nodal covariates Zi are invariant to time,

the minimum requirement is N →∞ to obtain the consistent estimation of γ(τ).

To better understand the convergence result given in Theorem 5, consider the case

that for any fixed τ , Bq+3(τ) reduces to N(0, τ(1 − τ)Iq+3). Specifically, we have the

following Corollary on the asymptotic result for fixed τ .

COROLLARY 1. Under conditions (C1)–(C4), for any fixed τ ∈ B we have the result
√
NT

{
θ̂(τ)− θ(τ)

} L−→ N
(
0, τ(1 − τ)Σθ(τ)

)
as min{N, T} → ∞, where B ⊂ (0, 1) is a

compact set.

Corollary 1 is a direct implication of Theorem 5. Indeed, by Corollary 1, the asymptotic

normality can be obtained at any arbitrary fixed τ . This enables us to conduct pointwise

(for any fixed τ) inference on the estimated parameters.

Remark 7. Given the estimated QNAR model, one is interested in measuring goodness-

of-fit of the model. A possible solution is based on the approach of Koenker and Machado

(1999) who looks at:

R1(τ) = 1− Q̂(τ)/Q̃(τ),
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where Q̂(τ) =
∑N

i=1

∑T
t=1 ρτ{Yit−X>i(t−1)θ̂(τ)} and Q̃(τ) = minβ0

∑N
i=1

∑T
t=1 ρτ (Yit− β0).

Similarly, a goodness-of-fit measure can be defined for model prediction, which could also

be used for model comparison.

To corroborate the theoretical results, we conduct a number of simulation studies.

The details can be found in the Appendix C.1 and C.2 in the supplementary material. In

the next section, we discuss an important aspect of the NQAR model: impulse analysis.

4. IMPULSE ANALYSIS

Given the NQAR structure (2.1) it is vital to check marginal influence via an impulse

analysis: how does a node in the network react to an exogenous shock imposed on the other

nodes at different quantile levels? Particularly, consider a stimulus ∆ = (δ1, · · · , δN)> ∈
RN imposed on Vt, i.e. shock to Vt + ∆. Note here we do not consider the structural

shock analysis to facilitate a simple discussion.

Then, the response for the ith node at time point t (i.e., Yit) will grow to Yit + δi.

Following the NQAR model (2.4), the response at time point (t + l), l ≥ 1 (i.e., Yt+l) is

increased by

IEt(l) =
l−1∏
k=0

Gt+l−k∆, (4.1)

where IEt(l) refers to the impulse effect from time t to t + l. For instance, if ∆ =

(1, 0, · · · , 0)>, then the IEt(l) is the first column of
∏l−1

k=0Gt+l−k. Note in the a standard

impulse analysis of VAR model, the autoregression matrix Gt+l−k is a constant matrix.

Take the NAR model proposed by Zhu et al. (2017) for example, i.e., Yt = β0+β1WYt−1+

β2Yt−1 +Z>i γ + Et, where all the coefficients take constant forms. Immediately one could

obtain the autoregression matrix G = β1W + β2I. However, in the NQAR model, the

autoregression matrix Gt is a stochastic matrix related to {Uit : 1 ≤ i ≤ N}. As a result,

IEt(l) cannot be directly evaluated as it is a random process. Therefore, we propose

various impulse effects at any tail level in a tractable way.

4.1. Measurements of Impulse Effect

Before we go into the details, we discuss a straightforward way to measure the impulse

effect, which can be referred to as average impulse effect (AIE). Naturally, the AIE is

directly defined as the expectation of IEt(l) as E(IEt(l)) = Gl∆ = (b1W + b2IN)l∆.

Specifically, the AIE is only related to the average network (b1) and momentum effect
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(b2). It is noteworthy that the AIE is no longer related to t but only depends on the time

lag l. It can be further derived |1> E(IEt(l))| ≤ N (̃b1 + b̃2)lC∆, where C∆ = maxi |δi|.
Therefore, it can be concluded that the AIE will reduce to 0 as l →∞, if the stationary

condition in Theorem 1 is satisfied. Although the AIE is easy to understand, it could only

measure the average level of impulse effect. As an extension, we propose the following

three quantile specific measurements to measure the impulse effect.

Type I. (Interval Impulse Effect) It can be noted that the AIE can characterize

the impulse effect on average. However, it cannot capture asymmetric effects between

different tail levels. To this end, we define the interval impulse effect (IIE) from t to t+ l

within the interval [τ1, τ2], (0 < τ1 < τ2 < 1) as

IIEτ1τ2(l) = E
{ l−1∏
k=0

Gt+l−k∆
∣∣Uim ∈ [τ1, τ2], 1 ≤ i ≤ N, t+ 1 ≤ m ≤ t+ l

}
= (cβ1,τ1τ2W + cβ2,τ1τ2IN)l∆,

where cβ1,τ1τ2 =
∫ τ2
τ1
β1(u)du and cβ2,τ1τ2 =

∫ τ2
τ1
β2(u)du. As one can see, the size of IIE is

determined by the integration of β1(u) and β2(u) within any selected [τ1, τ2]. For example,

to measure the effects in the upper tail, at the middle level and in the lower tail, one can

split (0, 1) equally into three intervals (i.e., (0, 1/3), [1/3, 2/3), [2/3, 1)) and compare the

IIEs for different intervals respectively.

Type II. (Impulse Effect Intensity) IIE can distinguish effects at different

quantiles. However, due to the unknown function forms of β1 and β2, the integration can

still be hard to compute. On the other hand, note that the IIE can be defined in any

interval in (0, 1). Motivated by this, we consider a sufficiently small interval [τ, τ +δ], and

define the impulse effect intensity (IEI) at τ as

IEIτ (l) = lim
δ→0

δ−l E
( l−1∏
k=0

Gt+l−k∆
∣∣Uim ∈ [τ, τ + δ], 1 ≤ i ≤ N, t+ 1 ≤ m ≤ t+ l

)
=

{
β1(τ)W + β2(τ)IN

}l
∆,

where β1(u) and β2(u) are assumed to be continuous at τ . By definition, IEIl,τ can reflect

the impulse impact at the τth quantile, and is easy to compute as long as the estimates

of β1(τ) and β2(τ) are obtained.

Type III. (Pseudo Quantile Impulse Response Function) Similar to White

et al. (2015), we can define the pseudo impulse response function. Recall that we impose
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a stimulus on Yt and turn it to Yt + ∆, and the l-step ahead the impulse effect IEt(l)

is given by (4.1). We are interested in checking the change to the conditional quantile

QYi(t+l)
(τ |Yt+l−1, Zi), which is the pseudo quantile impulse response function according to

White et al. (2015). From (2.2), we have

QYi(t+l)
(τ |Zi,Yt+l−1) = β0(τ) +

q∑
l=1

Zilγl(τ) + β1(τ)
N∑
j=1

wijYj(t+l−1) + β2(τ)Yi(t+l−1).

Therefore, the pseudo quantile impulse response function is given by

QỸi(t+l)
(τ |Zi, Ỹt+l−1)−QYi(t+l)

(τ |Zi,Yt+l−1) = β1(τ)
N∑
j=1

wijIEt,j(l − 1) + β2(τ)IEt,i(l − 1),

where IEt,j(l−1) is the jth element of IEt(l−1). Due to the randomness of IEt(l−1), the

pseudo quantile impulse response function can be measured by the above two methods.

Given the different types of impulse effect measurement, a cross-sectional impulse

analysis can be conducted. Assume that one unit stimulus is imposed on the ith node,

a cross-sectional impulse analysis aims to analyzing its impact on the other nodes. For

instance, the impulse analysis can be critical in a network of financial institutions. It

delivers an important message on the systemic risk spillover of an institution. Take the

IEI as an example and assume ∆ = (δi)
> with only δi = 1 and δi′ = 0 (for all i′ 6= i).

The IEI from node i to j can be defined by the jth element of IEIτ (l), which is then

denoted as IEI(i,j)
τ (l). Equivalently, IEI(i,j)

τ (l) is equal to the (j, i)th element of the matrix{
β1(τ)W + β2(τ)IN

}l
. If IEI(i,j)

τ (l) is sufficiently large and decays slowly as l → ∞, the

jth node (e.g. risk factor) can be seriously affected by the shock on the ith node for a

long time.

4.2. Influential Node Analysis

The impulse effect measures the impact from t to t + l given a stimulus ∆ = (δi)
>.

Specifically, consider that one unit stimulus is imposed on the node i with δi = 1 and

δj = 0 for all j 6= i. As a result, the impulse impact of that unit stimulus could be

measured with respect to a particular node i. Such amount of influence could reflect

the influential power of the node, which leads to a quantification of influential nodes.

Empirically, the influential nodes in a complex financial system should be paid particular

attention with financial regulation.
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To facilitate the analysis, first define the total network average impulse effect (T-

NAIE) as the summation of the cumulated AIE as TNAIE(∆) =
∑∞

l=0 1
> E(IEt(l)) =∑∞

l=0 1
>Gl∆ = 1>(I − G)−1∆. Note that the definition is given by using the impulse

measurement AIE, but it would be similar to use the other impulse measures (IIE and

IEI). Further write TNAIE(∆) as TNAIE(∆) =
∑N

i=1 νiδi, where νi is the ith element of

the vector ν = (I − G>)−11. Then we have TNAIE(∆) = νi if we set δi = 1 and δj = 0

if j 6= i. It measures the effects of one unit perturbation from the node i on the whole

network. We thus define νi as the influential power of node i.

However, in practice, νi can be hard to compute, as the calculation of ν involves the

inverse of a high dimensional matrix (I −G>) ∈ RN×N . Following the idea of Remark 4

of Theorem 1, we can approximate νi by the first order Taylor’s expansion, which would

lead to

νi ≈ 1/(1− b2) + (1− b2)−2b1

∑
j

n−1
j aji.

Suppose b1 > 0, then the influential power of node i is mainly determined by the quantity∑
j n
−1
j aji, which is referred to as the weighted degree of the node i. Generally speaking,

the weighted degree is an approximation to the influential power of the nodes. Therefore

one may rank the nodes’ influences based on the weighted degrees. Computationally, the

calculation of this weighted degree does not involve complex computation of inverse of a

high dimensional matrix (I − G>), as well as specific values of b1 and b2, but only the

network structure information. As a result, nodes with larger weighted degrees tend to

be followed (connected) by a large amount of nodes (i.e.,
∑

j aji). Moreover, at the same

time, the connected nodes should have less out-degrees (i.e., small njs).

5. FINANCIAL CONTAGION AND SHARED OWNERSHIP

In this section, we study financial risk contagion mechanisms arising from the common

shared ownership information. Specifically, we focus on the Chinese Stock Market in 2013.

The dataset consists of N = 2, 442 stocks in the Chinese A share market, which are traded

in the Shanghai Stock Exchange and the Shenzhen Stock Exchange. Here N = 2, 442 is

the size of cross section. For each stock, the weekly price is recorded for T = 52 weeks.

The Yit is the log-transformed weekly absolute return volatility, where the absolute return

volatility is calculated as the absolute stock return for t = 1, · · · , T . The average volatility

of all stocks at t = 1, · · · , T is calculated and visualized in the left panel of Figure 1. A

relatively higher volatility level can be captured in May and July. To describe the cross

18



sectional information, we average for each stock the volatilities over time. That leads to a

median volatility level of 0.014. In addition, we calculate the cross sectional correlations

for all the stocks, which leads to N(N − 1) correlations. The histogram of cross sectional

correlations is given in the right panel of Figure 1, where the mean correlation level is

0.105. This implies on average the stocks tend to be positively correlated.

To construct the network structure, the top ten shareholders’ information for each

stock are collected, which are referred to as major shareholders of the stock. For the ith

and jth stock, aij = 1 if they share at least one major common shareholder, otherwise

aij = 0. The shareholder network reflects an important information of inter-corporate

dependence. Particularly, this is an important research problem of financial risk manage-

ment. Corsi et al. (2016) argue about the common shareholder effect from the perspective

of the diversification cost. They discovered that a reduction of diversification cost will

lead to increasing level of diversification and thus increases the degree of overlap (common

shareholder). This explains that why financial institutions, who have common sharehold-

ers are more likely to be highly correlated. We visualize the network structure among

the top 100 stocks ranked by market values in Figure 2. The resulting network density

is 3.9%. In addition, we would like to comment that one could construct the adjacen-

cy matrix by other approaches (e.g., according to their industrial background) and the

proposed method could still be applied.

Besides this shared ownership information, firm specific variables are also taken into

consideration. Motivated by Fama and French (2015), consider the following K = 6

covariates to represent stocks’ fundamentals: SIZE (measured by the logarithm of market

value), BM (book to market ratio), PR (increased profit ratio compared to the last year),

AR (increased asset ratio compared to the last year), LEV (leverage ratio), and Cash

(cash flow of the firm). Eventually all covariates are normalized within the interval [0, 1].

We then proceed with the network analysis using the NQAR model. The results of our

NQAR model yields Table 1. Both the estimates and the p-values are reported at quantiles

τ = 0.05, 0.30, 0.50, 0.70, and 0.95 (from left to right). One could discover that the stocks

have stronger network effect and momentum effect in the upper tail (i.e., τ = 0.95) than

the other quantiles. This indicates that stocks tend to have higher dependence through

the network when the market is exposed to a higher volatility level. While on normal

occasions (e.g., τ = 0.5), the network effect tends to be insignificant. Besides, the size

(i.e., CAP), the book to market ratio (BM), and the leverage ratios (LEV) are shown to

have negative correlations with the conditional quantile level of the volatility at τ = 0.95
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and τ = 0.5. To access the model fitting level, we apply a model diagnosis procedure on

residuals by using the QACF (quantile ACF) measure proposed by Li et al. (2015). The

details and discussions are given in Appendix C.3 in the supplementary material. There

is no strong evidence showing dynamic and cross-sectional dependence remained in the

residuals.

Lastly, we include the NAR model (Zhu et al., 2017) for a comparison. The corre-

sponding estimation results are given in Table 2. It can be seen that the network effect

(i.e., β̂1) is no longer significant with p-value much larger than 10%. That implies the

NAR model might not be suitable to detect the asymmetric effects in this volatility au-

toregression problem. Next, we compare the NQAR model with the LASSO method in

multivariate quantile regression QLASSO (The tuning parameter is chosen to maximize

R1(τ) of (5.1)) see Hautsch et al. (2014). Specifically, we use the time periods with

t = 1, · · · ,m for model training and the remaining for prediction. Following Koenker and

Machado (1999), we define the prediction goodness-of-fit measure as

R1(τ) = 1− Q̂(τ)/Q̃(τ), (5.1)

where Q̂(τ) =
∑N

i=1

∑T
t=m+1 ρτ{Yit−X>i(t−1)θ̂(τ)} and Q̃(τ) = minβ0

∑N
i=1

∑T
t=m+1 ρτ (Yit−

β0). Since for the LASSO method it is required that the number of nodes should be less

than the total time periods for feasible estimation, we then randomly select n = 40 nodes

each time, and keep m = 46 for training and the last 5 weeks for prediction. In addition,

we set τ = 0.95 to compare the prediction accuracy for the tail event. The experiment is

repeated for R = 500 times to obtain reliable results. The goodness-of-fit measures are

reported in Figure 5. It is evident that the NQAR model has better prediction power

than the QLASSO model.

The impulse analysis as discussed in Section 4 is applied for stocks of five well-known

banks in China. They include Bank of China (BOC), China Merchants Bank (CMB),

Industrial and Commercial Bank of China (ICBC), Ping An Bank (PAB), and Shanghai

Pudong Development Bank (SPDB). Specifically, IEIτ (l) (τ = 0.05, 0.5, 0.95) in Section

4.1 is computed within 5 banks at time lags l = 1, · · · , 10, which are plotted in Figure

3. The (i, j)th panel in Figure 3 denotes the impulse impact of the jth bank on the

ith bank (i.e., IEI(j,i)
τ (l)). Significant asymmetric effects across different quantiles can

be observed, where larger IEI can be detected in the upper tail (τ = 0.95). Note that

the estimated network effect β1(τ) is very small at τ = 0.05 and τ = 0.5. Therefore,

the resulting impulses IEI(j,i)
τ (l) is much smaller than the higher quantile level τ = 0.95,
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which results in an almost flat impulse line in Figure 3. Moreover, it is observed that the

mutual impulse impacts between BOC, CMB, and ICBC are much stronger than between

the other two banks. Next, to evaluate the nodal influence, the influential node analysis

is conducted. By Section 3.2, the influential power can be calculated by ν̂ = {(1− b̂2)IN−
b̂1W

>}−11, where b̂1 = 10−1
∑9

m=0 β̂1(0.05 + 0.1m) and b̂2 = 10−1
∑9

m=0 β̂2(0.05 + 0.1m)

are computed as the numerical approximations for b1 and b2. Subsequently the influential

power is plotted against the weighted degrees on the right panel of Figure 4, where a

strong linear pattern is detected. In addition, the histogram of the weighted degrees is

given on the left panel of Figure 4, where a skewed distribution pattern can be noticed.

This indicates that a small portion of nodes possesses a large amount of influential power.

6. CONCLUSION

In this article, we propose a network quantile autoregression framework, which models

network dynamics in a complex tail event-driven system. The stationarity of the model

is discussed by considering the underlying stochastic process. To estimate the NQAR

parameters, a minimum contrast estimation is employed. The asymptotic properties of

the resulting estimators are investigated, which are closely related to the given network

information. We illustrate the performance of the NQAR model via simulation studies

and an application in the Chinese stock markets. In particular, significant asymmetric

dependency at different levels of quantiles can be detected. Specifically, a stronger network

effect can be found between stocks when higher volatility level is exposed to the market.

This further confirms the usefulness of our proposed methodology.

We discuss here several potential future research topics. First, we comment on pos-

sible extensions of the model forms. First, it could be noted that the responses of the

NQAR model are continuous. As a natural extension, a quantitative framework can be

established for discrete response variables. Second, it should be noted that the NQAR

model focus on lagged dependence. Thus an alternative modelling framework is to con-

sider the contemperaneous correlation of nodes at the same time period, which would lead

to the spatial quantile autoregression model. Next, suggested by the empirical evidence,

we find that the dynamic patterns could be different during different time periods. See

Appendix C.4 in the supplementary materials for discussions. Particularly, one tends

to see stronger asymmetric network effects when the market exhibits higher turbulence.

Therefore, more flexible model forms can be designed to model this phenomenon. Lastly,

heteroskedasticity is a pervasive phenomenon in financial data and should be taken into
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consideration. Although it has been shown in Remark 3 that the NQAR model could al-

low for certain types of heteroskedasticity, however, it is still worthwhile to discuss more

general settings. In addition, with respect to the model form, one could consider allow-

ing node specific network and momentum functions to reflect more heterogeneity in the

network.

Next, the specification of the adjacency matrix should be investigated. It is found that

the estimation would be biased when the network relationship is seriously mis-specified.

As a complement to the NQAR model, one could consider the approach of Hautsch et al.

(2014) to estimate the network relationship among the nodes. In addition to that, bias

correction methods should be developed accordingly. Another flexible approach is to make

the adjacency matrix to be time varying and related to exogenous covariates. Under that

specification, new estimation methods should be discussed.

Thirdly, note that the NQAR model (2.1) requires continuous observations for each

subject i. This may not be applicable in some scenarios. For example, the daily stock

price will be missing when the stock market is closed on weekends. The model should be

further adjusted to allow for missing values in such scenarios.

Lastly, the impulse analysis should be further investigated to allow for possibly struc-

tural shocks. Consider the NAR model for example, i.e., Yt = β0 + β1WYt−1 + β2Yt−1 +

Z>i γ + Et, where the coefficients take constant forms and Cov(Et) = Σε. By conducting

a Cholesky decomposition on Σε and assuming an empirical causal chain of the nodes

on the identification of the structural model, we could have Σε = LL>. An equivalent

structural VAR form is L−1Yt = β0L
−1 +L−1GYt−1 +L−1Z>i γ+et, where G = β1W +β2I

and et = L−1Et. Further it can be transformed to Yt = (I−L−1)Yt+β0L
−1 +L−1GYt−1 +

L−1Z>i γ + et. Given this form, one could be able to analyze the instantaneous effect by

making an impulse on Yt. We refer to Lütkepohl (2005) for more discussions. However,

in the case of NQAR model, it is not so straightforward. That is because that the N-

QAR model has a non-linear model structure. Furthermore, it is assumed the underlying

generating process Uit is independent with each other. A possible extension is to allow

dependency across nodes for Uit. That will facilitate the discussion of the structural shock

for the NQAR model. However, in such a case, the dependency structure will exist simul-

taneously with {βk(Uit), 1 ≤ i ≤ N} for k = 0, 1, 2. The analytical form of the impulse

function would thus not be explicit. Since the extension might be non-trivial, we would

like to leave it for future research topics.
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Table 2: The NAR analysis results for the Chinese Stock dataset. The parameter estimates
(×10−2) and the standard error (×10−2) are reported. The p-values are also given.

Estimate SE p-value

Baseline β̂0 1.19 0.04 < 0.01

Network β̂1 0.22 0.67 0.74

Momentum β̂2 36.79 0.27 < 0.01

SIZE γ̂1 -1.60 0.10 < 0.01

BM γ̂2 -0.35 0.08 < 0.01

PR γ̂3 -0.03 0.10 0.75

AR γ̂4 -0.19 0.15 0.19

CASH β̂0 0.02 0.11 0.82

LEV β̂1 -1.34 0.10 < 0.01
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Figure 1: Left panel: the average stock volatility of Chinese A stock market in 2013. Higher
volatility level can be captured in the first half of 2013; right panel: histogram of cross sectional
correlations for the stocks. The average correlation level is 0.105.
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Figure 2: The common shareholder network of top 100 market value stocks in 2013. The larger
and darker points imply higher market capitalization.
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Figure 4: Left panel: the histogram of the weighted degrees; right panel: the influential power
against weighted degrees.
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Figure 5: The prediction goodness-of-fit measure R1(τ) at τ = 0.95 for the QNAR model and
the QLASSO methods. Better prediction performance can be detected for the QNAR model.
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Systemically important banks are connected and their default probabilities have dynamic dependen-
cies. An extraction of default factors from cross-sectional credit default swap (CDS) curves allows
us to analyze the shape and the dynamics of default probabilities. In extending the Dynamic Nelson
Siegel (DNS) model to an across firm multivariate setting, and employing the generalized variance
decomposition of Diebold and Yilmaz [On the network topology of variance decompositions: Mea-
suring the connectedness of financial firms. J. Econom., 2014, 182(1), 119–134], we are able to
establish a DNS network topology. Its geometry yields a platform to analyze the interconnectedness
of long-, middle- and short-term default factors in a dynamic fashion and to forecast the CDS curves.
Our analysis concentrates on 10 financial institutions with CDS curves comprising of a wide range
of time-to-maturities. The extracted level factor representing long-term default risk shows a higher
level of total connectedness than those derived for short-term and middle-term default risk, respec-
tively. US banks contributed more to the long-term default spillover before 2012, whereas European
banks were major default transmitters during and after the European debt crisis, both in the long-
term and short-term. The comparison of the network DNS model with alternatives proposed in the
literature indicates that our approach yields superior forecast properties of CDS curves.

Keywords: CDS; Network; Default risk; Variance decomposition; Risk management

JEL classification: C32, C51, G17

1. Introduction

The probability of default (PD) is defined as the likelihood
of a default with respect to obligations over a particular time
horizon. A PD ‘curve’ maps PDs of different maturity hori-
zons and typically shows an upward slope, although it may
occasionally display a downward slope to signal a severe
credit deterioration in the short-term relative to the long-
term. The PD curve varies in time and, as in the analysis of
term structure for credit default swaps (CDS) spreads, it car-
ries information on co-movements and common factors. An
extraction of the common factors from cross-sectional CDS
spreads allows the shape and the dynamics of the PD to be
analyzed. To be more specific, the shape of the PD curve can
be parsimoniously inferred by projecting the cross-sectional

*Corresponding author. Email: xiux@suda.edu.cn

CDS spreads with different maturities on a few factors. The
dynamics of the curves and their interplay, which is cast in
the form of a network topology, reflects their interdependency
with a controllable dimensionality.

With an understanding of the dynamics and interplay of
PD curves, the next research question is how these lead to
default risk contagion? The literature on this topic mainly
studies two issues: How to quantitatively measure the con-
tagion risk? and through which channel is contagion risk
effected? The two issues are often intertwined. Concerning
the transmission of default risk, the extant research has two
focuses: the first is to examine the common determinants
of CDS spread that may trigger contagion (Alexander and
Kaeck 2008, Das et al. 2009, Galil et al. 2014). The sec-
ond stream aims to directly measure the connectedness and
contagion in a system. By using 5-year CDS spread data,
Yang and Zhou (2013) propose a PCA framework to extract
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common factors, and build up a network based on the con-
structed latent factors. Filipović and Trolle (2013) infer a term
structure of interbank risk, and further conduct a decomposi-
tion for the default and non- default component. Bostanci and
Yilmaz (2015) focus on connectedness of global sovereign
credit risk. Puliga et al. (2014) measure the interdependency
of financial institutions via a network and propose systemic
risk stress tests. Getmansky et al. (2016) characterize the
CDS market dynamics via volume-based statistics. How-
ever, as noted by Pan and Singleton (2008), the degree of
connectedness or contagion depends upon which maturities
of CDS contract are chosen. The term structure of conta-
gion risk that can be characterized by the joint dynamics
of CDS curves has not yet been fully studied in the current
literature.

This study strives to analyze the term structure of default
risk in order to quantify the connectedness and the result-
ing contagion across different horizons. It is different from
the above cited earlier research in several aspects. First, we
consider the CDS curve as a whole and model the joint
dependency of the curve characteristics (e.g. level, slope and
curvature) rather than the correlation of spreads. The CDS
curve yields information on the risk-neutral default probabil-
ity over different time horizons. The market participants rely
on this curve to interpret the market’s expectation of default
risk at different time horizons, to manage credit risk and
to design credit derivative contracts. Second, we derive the
CDS dynamics through a DNS technique and produce short-
term (ST), middle-term (MT) and long-term (LT) default
factors that we stack into a multivariate time series. Third,
by applying a VAR approach and the generalized variance
decomposition machinery of Diebold and Yılmaz (2014),
we obtain an interpretable network structure and total con-
nectedness measures. Fourth, the proposed network, as an
extension of the DNS model to a multivariate setting, allows
one to analyze the interconnectedness in a dynamic fash-
ion and to forecast the CDS curves, even for a 30-year
horizon.

Individual default risks may build up into a systemic risk
that impacts the stability of the architecture of the financial
system (Longstaff et al. 2005, Benzoni et al. 2015). Indeed,
a default event in a bank can grow in to a systemic fail-
ure, extreme turbulence and widespread distress triggering
a contagion, as described in Duffie et al. (2009). Knowl-
edge of correlated exposure holdings is therefore important
to understand interbank obligations, and this is the very
reason why we focus on the global systemically important
banks (G-SIBs). To stabilize financial markets, the Finan-
cial Stability Board (FSB) strives to identify the systemi-
cally important financial institutions and rank them in terms
of their systemic relevance. To match this point with our
network analysis we extend earlier approaches to a net-
work topology of variance decomposition, that enables us
to quantify default spillover, contagion and interconnected-
ness. Given the ST, MT and LT default factors, it is of
interest to know to what extent the credit condition of a
bank is subject to its past, and also how it depends on the
default risk of other banks. Is risk contagion driven by ST
or LT credit horizons or both? Can we use this information

to foresee a contagion and evaluate risk transmissions among
creditors?

It is worthwhile to relate these issues to CDS pricing that
needs to take credit contagion into account. One may thus
produce better out-of-sample forecast performance for a CDS
curve, here for an entire curve instead of a point prediction.
Precise forecasts are appreciated by counterparties. For buy-
ers who wish to hedge credit risk, a good forecast is very
decisive in gauging a CDS contract, since they can benefit
through a relatively lower insurance payment. For sellers, the
default network information helps them to avoid underesti-
mating CDS spreads. We will detail the forecast performance
in section 5. Our network formulation of the joint CDS struc-
ture also helps bondholders with different time horizons of
credit exposure, policy makers with policies designed for the
ST and the LT perspectives, portfolio managers who wish to
diversify their bond portfolios, and credit agencies who wish
to assign a credit rating to firms.

Our primary findings are: (1) The CDS curves of G-SIBs
banks tightly comove and highly connect with each other,
especially in the long-term. US banks contribute more to the
long-term default contagion before 2012, whereas the Euro-
pean banks are major default transmitters during and after
the European debt crisis in both the long-term and short-
term. (2) The time-varying total default connectedness serves
as an indicator of systemic risk, it especially identifies a
clustering default sub-system. A rising total default connect-
edness signals a higher likelihood of default contagion. (3)
The channels of credit contagion vary with credit horizon. In
the long-term, credit contagion is more likely to be experi-
enced through a credit market (TED and credit spread) and
a change of investor risk attitude, while in the short-term,
contagion conditions of the credit market are exclusively rel-
evant. (4) The network-based DNS model, relative to the
DNS model, yields better out-of-sample prediction for CDS
curves.

The rest of this paper is organized as follows: the network-
based DNS model is introduced in section 2 and model
estimation is detailed in section 3. Section 4 describes the data
and offers a preliminary analysis. We summarize the empirical
results and detail the analysis of static and dynamic connect-
edness measures in section 5. Finally, section 6 concludes this
paper.

2. Modeling framework

After discussing the information content of CDS spreads
that provides the theoretical foundations, this section details
the procedures of modeling the CDS curves with dynamic
Nelson Siegel (DNS) framework, in which the three Nel-
son Siegel parameters (i.e. level, slope and curvature) can be
viewed as the long, medium and short term factor of the CDS
curves. Furthermore, to measure the systemic default caused
by credit contagion, we use the Diebold-Yilmaz connected-
ness measures, which rely on the variance decompositions
in a vector autoregressive (VAR) model. In addition, the
out-of-sample forecasting framework with or without other
banks’ information are also introduced.
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2.1. Implied default intensity in CDS spreads

The basic pricing formula for CDS contracts is to achieve a
payoff balance between CDS buyers and CDS sellers. Con-
sider a CDS contract with a maturity of M years and quarterly
premium payments. CDSt(M ) denotes the annualized spread
at issue. L is the risk-neutral expected loss of the notional
value in the event of default. We normalize the notional face
value of the contract as 1. λt denotes the risk-neutral arrival
rate of a credit event (i.e. default intensity). Then, at issue, the
present value of CDS-provider side and that of CDS-buyer
side should be equal,

1

4
CDSt(M )

4M∑
j=1

Et

[
exp

{
−
∫ t+j/4

t
(rs + λs) ds

}]

= L
∫ t+M

t
Et

[
λu exp

{
−
∫ u

t
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}]
du (1)

where rt is the risk free rate. Pan and Singleton (2008)
assumed the s years time discount factor as δ(s) =
exp(− ∫ t+s

t ru du), and presumed the conditional survival
probability q(s) as follows

q(s) = exp (−λts) (2)

Then, (1) is transformed to
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(
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(
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4

)}]
(3)

Combing (3) and (2), we can directly imply the default
intensity from CDS spreads,

λt = 4 log

{
1+ CDSt(M )

4L

}
(4)

It is noteworthy that the explicit relationship between default
intensity and CDS spreads, such as in (4), is only satis-
fied under certain assumptions, such as a constant loss given
default L, and survival probability q(s) in (2). Given that the
implied default intensity is naturally dependent on the prede-
termined model set-up, we focus on CDS spreads as a direct
indicator of default intensity (see equation (4)), to get rid of
the potential model misspecification risk. CDS spreads inves-
tigation also permits us to perform an out-of-sample forecast
and practice a convenient comparison.

In the assumption of continuous premium or coupon pay-
ments, the default intensity is represented as the solution of an
integral equation that can be derived from the standard pricing
approach for CDS (see equation (3)). The integral equation
is shown to be equivalent to an ordinary linear differential
equation of second order with time dependent coefficients,
see Baranovski et al. (2009). For the special case of Nelson
Siegel CDS terms structure models, this permits a closed form
analytical solution to the second order differential equation.

2.2. Fitting the CDS curve via the dynamic Nelson Siegel
model

2.2.1. A factor model representation. Nelson and Siegel
(1987) propose a PCA based parsimonious three factor model
for the cross-sectional yields at any point. Diebold and
Li (2006) extend this into the DNS framework and find
excellent forecasting properties for interest rates. Diebold
et al. (2006) model the yield curve via a state space factor-
ization and find strong influences from macro variables. Here
we assume a similar term structure framework for the CDS
curves with DNS modeling for several reasons. First, fitting
the observed term structure of quotes for CDS spreads through
the Nelson-Sigel type models is able to generate smooth and
reliable curve fitting, particularly for a case where the quotes
can sometimes be seen as outliers and discontinuous jumps
(due to data quality issue). In this regard, the Nelson-Sigel
type models are stable w.r.t outliers and noisy data. Second,
the Nelson Siegel functions have the advantage of permitting
a closed form analytical solution to the second order differ-
ential equation, which is directly derived from the pricing
approach of CDS (Baranovski et al. 2009). Shaw et al. (2014)
and Krishnan et al. (2010) present the application of CDS
curves with a DNS framework.

Define yit(τ ) as the nominal CDS spreads of financial
institution i on a vector comprised of τ− period maturi-
ties. τ = (τ1, τ2, . . . , τk) = (6M , 1Y , 2Y , 3Y , 4Y , 5Y , 7Y , 10Y ,
20Y , 30Y ), k= 10. The DNS factorization for a single finan-
cial institute i at time point t is,

yit(τ ) = lit + sit

{
1− exp(−δiτ)

δiτ

}
+ cit

{
1− exp(−δiτ)

δiτ
− exp(−δiτ)

}
+ υit(τ ) (5)⎛⎝ lit
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cit
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⎛⎝αl

i 0 0
0 αs

i 0
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i
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⎞⎠+
⎛⎝εl

it
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it
εc

it

⎞⎠
(
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εit

)
∼ i.i.d.N

[(
0
0

)
,

(
Qi 0
0 �i

)]
(6)

where the disturbance vector υit = [υit(τ1), υit(τ2), . . . ,
υit(τk)]� and εit = (εl

it, ε
s
it, ε

c
i,t)
�. The parameter matrix αi is

diagonal in transition equation. δ the decay factor. We vary
the decay factors and estimate them for each bank differently.
yit(τ ) is the so-called term structure of CDS spreads or CDS
curve of institution i at time t.

The three DNS parameters lit, sit, and cit can be interpreted
as LT, ST, and MT default factors. Since the factor loading on
lit is 1, which is a constant and the same for all maturities, lit
can be viewed as the long-term or level factor. Any increase
in lit will cause the entire curve to shift upwards, representing
the ‘level’ and ‘long-term’ components of the credit curve.
The factor loading of sit is (1− exp(−δiτ))/δiτ , starting from
1 and exponentially deceasing to 0, can be viewed as the ST
factor. The ‘slope’ of the credit curve changes accordingly.
The loading of cit is (1− exp(−δiτ))/δiτ − exp(−δiτ), which
is a function that starts from 0 and then increases and decays
to 0; hence, this is the MT factor. In summary, the shape of
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the credit curve is captured by these three factors. A time-
varying shape is reflected by the changing loads on the three
factors.

For the purpose of portraying the interplay of default fac-
tors given a particular horizon among banks, one has the
challenge of calibrating the dynamics of lit, sit, and cit as,
for example, a VAR(1) process. This motivates us to study
dynamically evolving lit, sit, and cit. Ideally, the DNS model
for each bank immediately forms a state-space system, as
expressed in (6). We assume the level factor, the slope, and
the curvature factor are orthogonal, so that the parameter
matrix αi is diagonal in transition equation. For this state
space system, we will resort to the Kalman filter estimation
method. We, therefore, assume that the disturbance vector
υit and εit are independent and both follow a normal distri-
bution with covariance matrix Qi and �i, respectively. By
doing so, one can distill the entire CDS curves, period by
period, into three dynamically evolving dimensional parame-
ters and then model their interplay characterized by a VAR(1)
process.

2.3. The network topology of DNS factors

Joint default may become systemic at the moment when banks
call for bailout together or even go bankrupt sequentially. The
fact of correlated default and default contagion draws more
attention (see Duffie et al. 2009, Duan and Miao 2015). Due
to interbank loans and shared credit exposures, a default risk
at one bank can easily spread to others. The speed and scope
of spread is subject to each bank’s systemic importance. Here,
we introduce a network topology of variance decomposition
to measure the ‘credit connectedness’, which quantifies the
scope of ‘default risk transmission’. The embedded dynam-
ics mechanism allows us to evaluate the speed of default risk
transmission.

2.3.1. Approximating model - VAR. We endow the level,
the slope, and the curvature factors with VAR(p) dynamics:

xt =
p∑

k=1

Akxt−k + ut, ut ∼ i.i.d .N(0,�) (7)

xt = (x1t, x2t, . . . , xNt)
� (8)

where xt represents lt = (l1t, l2t, . . . , lNt)
�, st = (s1t, s2t, . . . ,

sNt)
�, ct = (c1t, c2t, . . . , cNt)

�. N is the number of banks, in
our case, N =10. The autoregression matrix Ak is N × N
dimensional, p denotes the lag order of VAR. If the lag order
is identically equal to 1 for lit, sit, and cit, then equation (8)
represents,

lt =

⎛⎜⎜⎜⎜⎝
l1t

l2t

...

lNt

⎞⎟⎟⎟⎟⎠ =
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11 αl
12 · · · αl
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...
... · · · ...
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2t
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ul
Nt
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(9)

st =

⎛⎜⎜⎜⎜⎝
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(10)

ct =
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c1t

c2t
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(11)

It is well known that the VAR model (8) (if stationary)
can be written as xt = 	(L)ut, 	(L) = 	0 +	1L+ · · ·	h

Lh + · · · , 	i = A1	i−1 + A2	i−2 + · · · + Ap	i−p, where 	0

and A0 are N × N identity matrix, Ai = 0 for i< 0. This rep-
resentation allows us to extract connectedness information.
Following Diebold and Yılmaz (2014), we resort to apply this
variance decomposition to establish a network structure.

2.3.2. Pairwise directional default connectedness. Default
connectedness measures the shares of forecast error varia-
tion due to shocks arising from others. This is captured by
the variance decomposition, in which the forecast error vari-
ance of variable i is decomposed into parts attributed to the
remaining variables in the system. The generalized variance
decomposition (GVD) (Koop et al. 1996) yields d̃ij(H) as the
ijth H−step component, which represents the fraction of bank
i’s H−step forecast error variance due to credit shocks in bank
j,

d̃ij(H) =
σ−1

jj

∑H−1
h=0 (e

�
j 	h�ej)

2∑H−1
h=0 (e

�
i 	h�	

�
h ei)

(12)

where σjj is the jth diagonal element in the covariance matrix
� of the error vector ut - the standard deviation of the error
term of jth equation -, and ej = (0, 0, . . . , 1, . . . , 0), which is
a zero vector except jth element unity. H denotes the forecast
horizon.

Given that the sum of d̃ij(H) in each equation does not
necessarily equal the unit - that is,

∑N
j=1 d̃ij(H) �= 1 -, we

normalize as follows:

dij(H) = d̃ij(H)∑N
j=1 d̃ij(H)

(13)

We define the pairwise directional credit connectedness from
bank j to bank i as Ci←j = dij(H), and note that in gen-
eral Ci←j �= Cj←i. This finally leads to the connectedness in
table 1,

Note that when there is a higher H horizon in a predic-
tion error variance, there will be a higher value of Ci←j.
When H is very small, it limits Ci←j to short periods. On the
other hand, as H increases the corresponding Ci←j increases
slightly due to the incrementally less valuable conditioning
information. For the case H →∞, one obtains an uncondi-
tional variance decomposition. To strike a balance between
these effects, we select H = 12. This is close to the time period
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Table 1. Connectedness table.

x1 x2 ··· xN From others

x1 d11 d12 ··· d1N
∑N

j=1 d1j, j �= 1

x2 d21 d22 ··· d2N
∑N

j=1 d2j, j �= 2
...

...
...

. . .
...

...
xN dN1 dN2 ··· dNN

∑N
j=1 dNj, j �= N

To others
∑N

i=1 di1
∑N

i=1 di2 ···
∑N

i=1 diN
1
N

∑N
i,j=1 dij

i �= 1 i �= 2 i �= N i �= j

(10 days) of value at risk (VaR) required under the Basel
accord and it is also in the practical rebalancing interval of
portfolio management. In the empirical section, we also cal-
culate the results for a range of horizons. It turns out that when
H is larger than a certain value, around 10, Ci←j increases
trivially. We can provide a robustness check for other H if
required.

2.3.3. Interpreting the connectedness. Consider, for exam-
ple, the first row of table 1. Here, the sum of the off-diagonal
dij, j �= i of bank 1 accounts for shocks attributed to other
banks, while as for the first column, the sum of di1, j �= 1
indicates the risk contribution of bank 1. Total directional
connectedness from others to i is

Ci←• =
N∑

j=1, j �=i

dij(H) (14)

Likewise, the total directional connectedness to others
from j is

C•←j =
N∑

i=1, i�=j

dij(H) (15)

The net default connectedness i is the difference ‘To’ and
‘From’:

Ci = C•←i − Ci←• (16)

The total default connectedness is:

C = 1

N

N∑
i,j=1, j �=i

dij(H) (17)

Note that there are N ‘To’ and ‘From’ net connectedness
adding up to total connectedness. Economically speaking, as
C increases, the banks spread the default risk mutually. Hence,
C in (17) is a quantitative measure of default spillover or
contagion in a system.

3. Model estimation

The VAR approximating model of default intensity factor con-
nectedness has a natural state-space model representation. If
we pool all of the banks together, then the measurement and

transition equations are

Yt = HXt + υt (18)

Xt = FXt−1 + εt (19)

where

Yt =

⎛⎜⎜⎜⎝
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...
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,
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(Nk×1)
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,

and

H =
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(20)

Meanwhile, when level, slope and curvature factors are
orthogonal with autoregressive process of order one, the
parameter matrix F is,

F =

⎛⎜⎜⎜⎜⎝
αl

11 0 0 αl
12 0 0

0 αs
11 0 0 αs

12 0
...

...
...

...
...

...

0 0 αc
N1 0 0 αc

N2

· · · αl
1N 0 0

· · · 0 αs
1N 0

· · · ...
...

...

· · · 0 0 αc
NN

⎞⎟⎟⎟⎟⎠
(3N×3N)

(21)

which accommodates (6), (9), (10), and (11).
We introduce a two-step estimation method that couples the

DNS model with the variance decomposition technique. In the
first step, we estimate the dynamic level factor lit, the slope
factor sit, and the curvature factor cit for each bank i through
the Kalman filter estimation of the state space model, based
on equations (5) and (6). In the second step, by using the net-
work framework based on variance decomposition in Diebold
and Yılmaz (2014), we investigate the dynamics of LT, ST
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Table 2. Banks.

Institution Ticker Country

1 Bank of America BAC United States
2 Citygroup C United States
3 Goldman Sachs GS United States
4 J.P.Morgan JPM United States
5 Wells Fargo WFC United States
6 Deutsche Bank DB Germany
7 Commerzbank CBG Germany
8 Barclays Bank BCS United Kingdom
9 HSBC Bank HBC United Kingdom
10 UBS UBS Switzerland

Note: List of banks under study.

and MT default factors in a network perspective, based on
equation (8). To uncover the dynamics of the network con-
nectedness, we use a rolling window estimation for each of
the factors.

4. Data

We will first introduce the used CDS spreads data and then
perform the preliminary analysis to support the motivations
in the subsequent study.

4.1. CDS spreads data

We focus our attention on the CDS spreads belonging to the
Top 10 of the global systemically important banks (G-SIBs),
i.e. N =10, for their maturities in CDS contracts. In table 2,
the CDS spreads with maturities ranging from 6 months and
1, 2, 3, 4, 5, 7, 10, 20, 30 years are available via DataStream.
These 10 banks are selected out of the 34 G-SIBs based on
the availability of sufficient maturities of CDS. Banks with
less than 10 maturities of CDS are excluded from the study to
ensure the representative ability of latent factors. The sample
period selected is from 1 January 2008 to 31 December 2015,
at daily frequency.

Figure 1 depicts a 3D plot of the time-varying CDS spread
curves of Goldman Sachs and HSBC Bank. The display of
the CDS curves for the banks is depicted in figure 1 in the
Appendix. The CDS curves display apparently substantial
level movements across time, and they also exhibit a clear
commonality to support the notion of credit comovement.
One can observe a simultaneous increase of credit curve into
banks during the Eurozone debt crisis periods, which moti-
vates us to analyse the connectedness across banks. Please
note that the empirical results of this paper as well as the cor-
responding MATLAB programming codes can be found in the
folder www.github.com/QuantLet/DDINetwork as well as at
www.quantlet.de.

4.2. Preliminary analysis of CDS spreads

In summary, there are 26 free parameters to be estimated: the
3× 3 transition matrix of the three state variables containing
nine free parameters, the mean state variables containing
three free parameters, the one decay parameter in measure-
ment equation, the diagonal of disturbance covariance matrix
of transition equation containing 10 free parameters with
each covariance for the counterpart of 10 maturities of CDS
spreads, and the three free parameters constituting the diago-
nal of measurement disturbance covariance matrix with each
for one of the three latent variables.

We use the Kalman filter to derive the state variables and
CDS spreads of the next stage, after which we proceed to
evaluate the unknown parameters with the maximum likeli-
hood estimation under Gaussian distribution assumptions for
the disturbance of measurement and transition equations. The
initial parameter values are obtained by using the Diebold-
Li two-step ordinary least squares regression. The estimated
decay parameters vary across banks.

Table 3 reports summary statistics for the estimated DNS
factors, which will be used in the subsequent network analy-
sis. The level factors present least variance compared with the
slope and curvature factors. The factor autocorrelations reveal
that all of the factors display persistent dynamics, with the
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Figure 1. CDS spreads data. Note: (log) Credit default swap spreads 1 January 2008 to 31 December 2015 with daily data for Goldman
Sachs and HSBC Bank across 10 maturities. The data in our study is presented after logarithm transformation.
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Table 3. Descriptive statistics for the estimated DNS factor.

Factor Mean Std.dev. Min Max ρ(5) ρ(10)

Bank of America
lt 5.156 0.327 3.962 6.039 0.920 0.867
st − 1.475 1.160 − 3.613 1.181 0.989 0.976
ct 0.894 0.921 − 1.150 3.414 0.976 0.946
Citygroup
lt 5.242 0.270 4.273 6.379 0.891 0.827
st − 1.486 1.146 − 3.731 0.944 0.989 0.978
ct 1.040 0.799 − 0.823 3.276 0.972 0.944
Goldman Sachs
lt 5.175 0.323 3.867 6.498 0.914 0.854
st − 1.207 1.123 − 3.273 0.914 0.989 0.977
ct 0.751 0.822 − 0.497 3.817 0.976 0.949
J.P.Morgan
lt 4.841 0.329 3.651 5.631 0.951 0.916
st − 1.717 1.029 − 3.736 0.738 0.985 0.971
ct 1.198 0.817 − 0.083 4.275 0.966 0.932
Wells Fargo
lt 4.841 0.197 4.067 5.621 0.868 0.777
st − 1.868 1.232 − 5.051 0.718 0.977 0.959
ct − 0.932 1.228 − 3.984 1.453 0.985 0.969
Deutsche Bank
lt 4.864 0.267 4.151 5.754 0.930 0.880
st − 1.558 0.974 − 4.344 0.420 0.975 0.953
ct 1.405 1.054 − 0.589 5.226 0.954 0.916
Commerzbank
lt 5.027 0.439 3.927 5.898 0.966 0.945
st − 1.436 0.997 − 3.893 0.307 0.984 0.969
ct 0.996 0.885 − 0.361 4.757 0.965 0.932
Barclays Bank
lt 4.933 0.353 4.048 5.764 0.938 0.902
st − 1.394 0.908 − 3.464 0.385 0.979 0.959
ct 1.345 0.934 − 0.480 4.166 0.955 0.912
HSBC Bank
lt 4.778 0.321 3.948 5.329 0.972 0.945
st − 1.381 1.014 − 6.551 0.180 0.931 0.887
ct − 2.058 1.194 − 6.017 0.472 0.959 0.927
UBS
lt 4.819 0.325 4.023 5.819 0.946 0.891
st − 1.540 1.101 − 4.462 0.305 0.983 0.965
ct 1.585 1.295 − 0.277 6.928 0.964 0.927

Note: ρ(5) and ρ(10) denote the autocorrelation coefficients
with a lag of 5 or 10 periods.

level more persistent than the slope. Although the level, the
slope and the curvature factors behave distinctly, they clearly
display a certain degrees of similarity across banks, as shown
in figure 2.

The basis for the network analysis is the possible existence
of co-movements in the factor dynamics across banks, imply-
ing the existence of potential spillover effects or an underlying
transmission mechanism. To investigate this, we plot the esti-
mated factors for all of the banks in figure 2. The upper,
middle and bottom panels present the level, the slope and
the curvature factor, respectively. To visualize the difference
across the banks in the United States and Europe, we feature
the factors of five US banks with solid line, while the coun-
terparts of European banks are shown in dashed line. Figure 2
reveals clear evidence of co-movements in the factors dynam-
ics, especially for the level and slope factor. One can observe
that the slope/ST factors across 10 G-SIBs have climbed since
the outbreak of the European debt crisis, indicating possible
inverted credit curves (downward slope curves).

5. Empirical results

To characterize the evolution of the default risk connected-
ness among the US and European banks, we proceed to a
four steps analysis: we first perform a full-sample analysis
separately for level, slope, and curvature factor, to assess
the unconditional or average connectedness. After this static
connectedness analysis, a rolling-window sample analysis is
conducted for the three factors to portray the dynamics of
conditional connectedness. By doing so, one can monitor the
dynamics of the spillover effect between the US and European
banks over time. Using the total connectedness in the rolling-
sample framework as an indicator of systematic default risk,
we analyse the sources of the systematic risk. Finally, hav-
ing the predefined connectedness among bank default risk,
we report the forecasting performance when incorporating the
factors from other banks.

5.1. Network: static

Systemic risk is not easy to define but the universally accepted
characteristics are that it has a large impact, is widespread,
and has a ripple effect that endangers the financial system.
Network analysis enables us to cover three major concepts
of systemic risk by portraying the interplay among financial
institutions, measuring their interconnectedness and quantify-
ing the spillover effect.

The interconnectedness of financial institutions on the
interbank market is an absolute key to understanding systemic
risk. Interconnectedness captures the situations when financial
distress in one institution subsequently raises the likelihood
of financial distress in other institutions because of their
network of contractual relations and the interbank lending
among them, leading to a ‘too-interconnected-to-fail’ situa-
tion. Therefore, the resulting connectedness parameters, such
as C from (17), can be used to monitor systemic vulnerability.

In the following analysis, we examine the interconnected-
ness and spillover with respect to the default factors in the
ST, MT and LT perspectives. This effort can help to answer
the following questions: will credit spillover or contagion
be evenly observed in the short-term and long-term credit
horizon? And, can we use this information to foresee crisis
and evaluate the tension embedded in the credit assets with
different maturities?

5.1.1. Level factor. Table 4 reports the full-sample con-
nectedness of the level factors. As the level factors capture
the long-term component of CDS spreads, the entries in
table 4 turn to the long-term directional connectedness mea-
sures. Many features are revealed. Blocks of high pairwise
directional connectedness are notable, especially for the US
banks. The values in the first five columns, which capture the
spillover effect contributed to the US banks, are apparently
higher than those of the European banks. The total connect-
edness for level factor is on average 85.50%. In addition, the
‘From’ degree distribution is noticeably less volatile than the
‘To’ degree distribution in the case of the US group but is not
the case for the EU group. Through this table, one can find out
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Figure 2. DNS factors. Note: Data period: 1 January 2008 to 31 December 2015 with daily data. The upper panel collects the level factors,
middle panel collects the slope factors, and the bottom panel collects the curvature factors.

Table 4. Static Connectedness: Level factor.

BAC C GS JPM WFC DB CBG BCS HBC UBS FROM

BAC 19.95 14.00 13.27 12.39 12.84 6.79 5.01 5.27 5.06 5.43 80.05
C 16.85 17.91 14.13 13.05 13.47 5.98 4.14 4.76 4.65 5.05 82.09
GS 16.46 18.54 20.03 14.03 14.95 3.58 2.39 2.74 3.48 3.81 79.97
JPM 17.42 17.73 16.22 15.67 15.17 4.12 2.96 3.11 3.76 3.83 84.33
WFC 16.16 16.35 15.05 14.57 15.88 5.27 3.81 3.96 4.38 4.56 84.12
DB 11.82 13.05 12.26 11.61 11.06 12.28 6.50 7.02 6.96 7.45 87.72
CBG 10.29 10.84 10.84 9.81 9.47 12.29 12.49 8.26 7.58 8.13 87.51
BCS 8.84 10.46 10.22 9.57 8.99 12.97 8.40 12.71 8.55 9.29 87.29
HBC 11.37 12.94 12.45 11.48 11.10 10.05 7.05 8.12 7.88 7.56 92.12
UBS 11.27 12.57 11.74 10.89 10.40 10.45 6.03 8.98 7.44 10.23 89.77
TO 120.47 126.48 116.17 107.40 107.44 71.49 46.30 52.23 51.87 55.11 85.50
NET 40.42 44.39 36.20 23.07 23.33 − 16.23 − 41.22 − 35.07 − 40.25 − 34.65 –

Note: Data period: 1 January 2008 to 31 December 2015 with daily data.

that the US banks are exporting their LT default risk to the EU
banks.

Let us discuss some of the features of the long-term con-
nectedness table in more detail. The highest observed pairwise
connectedness is from C to GS (CGS←C = 18.54%), while, in
return, the pairwise connectedness from GS to C (CC←GS)
is slightly smaller 14.13%. The next highest pairwise con-
nectedness is from C to JPM (CJPM←C = 17.73%), which is
slightly higher than the pairwise connectedness from BAC to
JPM (BACJPM←C = 17.42%). Bank C had the largest market
capitalization before the 2008 financial crisis periods, and it is
reasonable that its total connectedness to others are the largest.
Banks with bigger market capitalization are more capable of

offering interbank loans to other banks, which is the so-called
‘too big to fail’. On the other hand, the long-term pairwise
directional connectedness among European banks is relatively
small (less than 10%), except a few relatively large measures
from DB to BCS (CBCS←DB = 12.97%) and from DB to CBG
(CCBG←DB = 12.29%).

The ‘From’ column is the row sum of the pairwise con-
nectedness except the own-effects (diagonal elements of the
matrix). It reveals the total directional connectedness from
others for each of the ten banks. In other words, it captures
the contribution of credit shocks resulting from other banks
to the total variance of the forecast error of bank i. While
the total directional connectedness is distributed tightly, the
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Table 5. Static Connectedness: Slope factor.

BAC C GS JPM WFC DB CBG BCS HBC UBS FROM

BAC 46.65 11.91 8.89 7.71 4.36 4.94 4.66 2.97 4.20 3.72 53.35
C 12.66 15.97 7.80 9.58 9.54 8.19 6.87 7.91 16.05 5.44 84.03
GS 12.20 14.42 9.73 11.00 9.83 9.74 7.55 7.87 10.72 6.93 90.27
JPM 7.00 8.76 3.72 12.13 6.42 10.56 5.48 8.52 33.71 3.70 87.87
WFC 10.08 13.86 6.86 13.84 17.56 8.27 6.26 7.12 10.68 5.48 82.44
DB 8.04 10.09 5.74 9.11 6.73 21.65 10.49 10.29 9.18 8.67 78.35
CBG 6.71 8.88 4.34 9.00 12.05 10.43 10.56 8.14 24.48 5.40 89.44
BCS 6.86 8.93 5.14 7.67 5.07 17.13 13.26 17.49 8.59 9.86 82.51
HBC 3.04 3.73 2.07 3.41 3.00 15.07 9.32 13.14 39.23 8.00 60.77
UBS 6.22 8.11 4.53 7.16 5.41 15.48 11.06 12.36 17.83 11.85 88.15
TO 72.81 88.67 49.09 78.48 62.41 99.81 74.95 78.31 135.43 57.21 79.72
NET 19.46 4.64 − 41.18 − 9.39 − 20.02 21.45 − 14.49 − 4.20 74.67 − 30.94 –

Note: Data period: 1 January 2008 to 31 December 2015 with daily data.

‘From’ effects of US banks appear consistently smaller than
those of the European banks, showing that the US banks are
less impacted by the EU credit shocks.

The column sum of pairwise connectedness quantify the
spillover effect of bank i to others. By definition, each bank’s
share in the forecast error variance of others is not compulso-
rily to add up to 1, therefore, elements in the ‘To’ row can
exceed 100%. ‘To’ effect varies over banks, ranging from
126% to 46%. The largest commercial banks (as of 2008)
were the ones that have the highest values of connectedness to
others. C generated the largest default transmission, 126%, to
others. This is consistent with the findings in Diebold and Yıl-
maz (2014), which is based on the volatility of stock returns
among US financial institutes. In addition, the five US banks
all generate significant (exceeding 100%) long-term default
risk spillover to others when compared with European banks,
which evidently implies the transmission of long-term default
risk shocks from US financial institutions to their European
counterparts.

Furthermore, the strong spillover effects between the con-
nectedness of US and European banks are clearly observed in
their ’Net’ row. The difference between the total directional
connectedness to others and the total directional from others
results in the net total directional connectedness to others. C
leads the highest net total directional connectedness (44.39%),
followed by BAC (40.42%), with other positive effects of US
banks. By contrast, the values of net total directional connect-
edness in European banks are all negative, indicating that the
contributions of European banks’ shock to other banks’ fore-
cast error variance are generally trivial in terms of the long
run default risk.

5.1.2. Slope factor. The short-term connectedness is shown
in table 5. The highest observed directional connectedness is
CJPM←HBC = 33.71%, followed by CCBG←HBC = 24.48%. As
one of the most vulnerable banks during the European debt
crisis, HSBC Bank clearly spreads its financial stress to other
banks.

It can be observed that Bank of America is weakly affected
by the shocks from others, with only CBAC←· = 53.35%.
Although, in the short term, banks in the same region still
have relatively large connectedness compared with the cross-
region connectedness, little evidence of consistent spillover

effects from US to Europe has been found compared with that
in the long-term investigation. In contrast to table 4, HBC cre-
ates the strongest risk spillover, followed by DB, both were
especially seriously hit during the European debt crisis. Con-
sistently, in terms of ’Net’ connectedness measures, HBC
leads the group, 74.67%, while the next highest is from DB.
Besides the positive values of BAC and C, negative values
are generated from other banks. Finally, the total connected-
ness is 79.72%, which is slightly smaller than the 85.50% that
was derived in the long-term total connectedness.

5.1.3. Curvature factor. The middle term directional con-
nectedness is summarized in table 6. The total connectedness,
62.94%, is obviously smaller than the short term and long
term connectedness. In terms of the pairwise directional con-
nectedness, the values vary more widely; for example, the
highest observed connectedness measure is from HBC to
WFC (CWFC←HBC = 33.18%) while, in return, the lowest one
from WFC to HBC (CHBC←WFC = 0.11%) is nearly zero. The
spillover effect in this case is obviously ‘asymmetric’. In the
case of DB, one can find its spillover power in the MT or ST,
but not in LT (see table 4). The default tensions emphasized
on ST and MT imply that DB may hold more short-term risky
loans, which endangers its short-term credit. Interestingly,
the ‘Net’ directional connectednesses are uniformly positive
among European banks compared with the consistent negative
ones in the United States.

In a nutshell, the three DNS factors and their connected-
ness convey information w.r.t the default risk at the particular
credit horizons. For banks like DB, the potential to experience
credit deterioration and subsequently create spillover to others
is more likely to happen in the short term. However, the credit
condition becomes resilient in the longer term and has con-
strictive transmission, as shown through a reverse spillover in
its level factor.

5.2. Network: dynamics

The DNS model coupled with a topological network can be
seen as a means of monitoring systemic vulnerability. In the
supervisory purpose, the updated assessment is even more
in demand. For this purpose, one studies the dynamics of
connectedness in which credit contagion can, therefore, be
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Table 6. Static Connectedness: Curvature factor.

BAC C GS JPM WFC DB CBG BCS HBC UBS FROM

BAC 22.08 10.89 6.26 6.82 1.19 16.77 9.25 10.36 0.18 16.20 77.92
C 6.40 19.77 7.55 8.62 1.73 16.19 9.16 14.00 2.64 13.94 80.23
GS 10.83 18.24 14.09 9.34 3.53 15.65 7.11 8.35 3.77 9.10 85.91
JPM 14.59 17.26 4.77 31.00 7.07 5.12 3.82 5.56 6.62 4.19 69.00
WFC 5.47 4.60 0.76 8.19 40.90 1.40 0.69 1.69 33.18 3.13 59.10
DB 1.50 5.91 3.35 4.34 0.33 52.11 10.00 11.48 2.57 8.39 47.89
CBG 0.68 2.17 1.16 1.18 0.10 17.45 40.38 10.49 5.35 21.03 59.62
BCS 1.10 5.07 2.60 3.53 0.23 27.17 13.86 29.46 0.12 16.86 70.54
HBC 0.12 2.83 2.80 1.55 0.11 1.71 0.53 2.10 84.39 3.85 15.61
UBS 0.83 5.29 3.53 3.35 0.09 20.97 12.03 17.13 0.35 36.41 63.59
TO 41.52 72.26 32.78 46.92 14.38 122.44 66.45 81.17 54.77 96.69 62.94
NET − 36.40 − 7.97 − 53.12 − 22.09 − 44.72 74.55 6.84 10.64 39.17 33.10 –

Note: Data period: 1 January 2008 to 31 December 2015 with daily data.

Figure 3. Rolling total connectedness. Note: Data period: 1 January 2009 to 31 December 2015 with daily data. The DNS factors and the
corresponding dynamic of networks are computed by one-year rolling window estimation (260 observations). The variance decomposition
is performed by the forecast horizon with 12 days. The red line denotes the smoothing line by one-week moving average.

identified in time. Accordingly, they will be asked by the FSB
and Basel Committee on Banking Supervision (BCBS) for
additional loss absorption capacities to ensure the sufficiency
of their common equities in the case of a default.

5.2.1. Time-varying total connectedness. Figure 3 presents
time-varying connectedness, Ct, estimated via C from (17) in
a one-year (260 observations) rolling window size. It reveals
clear default risk cycles. In the LT perspective, the period
of 2009 to middle-2014 exhibits a long lasting cycle, coin-
ciding with the outbreak of the European sovereign debt
crisis. Despite short spells of recovery at the end of 2014, an

increasing connectedness signals an upcoming systemic risk
starting from middle of 2015.

The long continuous cycle in the LT connectedness (upper
panel) reveals similar patterns compared with the short term
total connectedness by the slope factor (middle panel). The
total connectedness declined from the high 90% to around
74% at the end of 2009, followed by a raising connectedness
period during European debt crisis starting from 2012 to 2013.
In this study, we point out that an increasing total intercon-
nectedness signals a higher likelihood of credit contagion in
the system. As the European debt crisis becomes widespread
with a systemic danger, the short term total connectedness
measures stay at the range of 85%–90% until the end of 2014.
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Figure 4. Rolling connectedness: level factors. Note: Data period: 1 January 2009 to 31 December 2015 with daily data. The DNS factors and
the corresponding dynamic of networks are computed by one-year rolling window estimation (260 observations). The variance decomposition
is performed by the forecast horizon with 12 days.

The banking industry suffered credit tension again as the Chi-
nese stock market went out of control in June 2015. A third
of the value of A-shares on the Shanghai Stock Exchange
was lost within one month and this caused a large collapse
in global financial markets, leading again to concerns about
the stability of the global economy. The LT, ST and MT
connectedness all reflect systemic fear in 2015.

5.2.2. Time-varying risk contribution. Figures 4, 5, and 6
present the dynamics of individual default risk contribution
to total directional connectedness, which are quantified by
equation (12) for level factor, slope factor and curvature fac-
tor. One can interpret that bank i has a higher marginal risk
contribution in the long-term default risk, if the shock of level
factor of bank i contributes more on the forecasting errors of
level factors of the remaining banks. The upper panel depicts
‘To’ others, the middle panel displays ‘From’ others, and the
bottom panel collects the ‘Net’ results. In each panel, the five
US banks lie in the first row while other five European banks
are in the second row.

Except for the Bank of America, in figure 4, the total direc-
tional connectedness ‘To’ others from US banks appears to be
rising from 2008 until 2010; however, they show a downward
trend after 2010. Conversely, the directional connectedness
‘To’ others from the five European banks tends to substan-
tially rise during the period of 2010 to 2015. Overall, the
long-term default risk connectedness analysis documents a

declined spillover effect from US banks to others and, in
return, the default risk shocks resulting in the forecast error
variance are increasingly remarkably transmitted from the
European banks. This fact may reflect the supervisory effort
of the US banking authority after the outbreak of the US
subprime crisis.

Figure 5 reports a similar pattern of short term total direc-
tional connectedness dynamics. In the short term default risk
connectedness, the ‘To’ effect from US banks, except for
Bank of America, tends to fall roughly from 2012, after a
rising trend during 2009 to 2012. In reverse, the short-term
‘To’ effect from European banks declined until 2012, sub-
sequently followed by a rising trend. In summary, the ‘Net’
effect of US banks declines from 2012 after a consistent rise,
while the ‘Net’ effect of European banks shows a reverse
patten. In other words, being analogous to the long term direc-
tional connectedness, in the short term, the shocks arising
from European banks tend to be dominantly transmitted to
others, especially after 2012, which coincides with the burst
of the European sovereign debt crisis during 2012 to 2013.

In the three figures, one can see that Bank of America
during the period of 2014 to 2015 creates a very promis-
ing ‘Net’ effect, regardless of default horizons. Obviously,
BAC is a overwhelming default shock transmitter and it
needs to be asked for an additional loss buffer. Due to
the 2008 acquisition of Countrywide Finance, which was
a high-flying mortgage company that fuelled many of the
excesses of the housing boom, BAC took huge losses on
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Figure 5. Rolling connectedness: Slope. Note: Data period: 1 January 2009 to 31 December 2015 with daily data. The DNS factors and the
corresponding dynamic of networks are computed by a one-year rolling window estimation (260 observations). The variance decomposition
is performed by the forecast horizon with 12 days.

Figure 6. Rolling connectedness: curvature factors. Note: Data period: 1 January 2009 to 31 December 2015 with daily data. The DNS
factors and the corresponding dynamic of networks are computed by one-year rolling window estimation (260 observations). The variance
decomposition is performed by the forecast horizon with 12 days.
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Figure 7. Level pairwise directional connectedness network. Notes: Node size and node color indicate C•←i of the bank’s level factor. Edge
thickness indicates the pairwise directional connectedness. Edge color does not vary with edge weight.

distressed Countrywide mortgages. In March 2014, the bank
announced an unexpected $6 billion in mortgage related legal
expenses. Additionally, a further payment of more than $16
billion in penalties to settle claims was also reported, which
was formally announced in August. After these problems, in
April, BAC disclosed a significant accounting error of $4 bil-
lion capital loss, which has been undetected for several years.
The capital error weighed heavily on the bank’s shares, which
fell by more than 6% on that trading day, wiping out $10
billion in market value, which was far more than the actual
losses. This indicated the collapse of trust from investors,
which simultaneously triggered large shocks to other financial
institutions.

5.2.3. Graphical representation. The network dynamics
can be displayed graphically, where the node size and node
color are designed to capture the ’To’ effect. Meanwhile,
directional edge thickness indicates the strength of pairwise
directional connectedness, while edge color does not vary

with edge weight. Consider the three snapshots for 2008, 2011
and 2012 in figure 7.

In 2008, the node size of US banks is apparently larger than
that of EU banks, indicating a credit spillover from the US.
Besides, the thickness of the edge implies that the spillover
effects are not only closely intertwined among US banks but
are also transmitted to EU banks (e.g. from GS to DB or CBG,
from BAC to CBG). This evidence had not yet fade away at
the end of 2011 where BAC, JPM, and C are still sizable.
However, the node sizes of European banks at the end of 2011
tend to enlarge compared with that in 2008, owning to the con-
tinuous negative impact from the Greece, Irish, and Portugal
debt crisis. When the European sovereign debt crisis was at
its peak at the end of 2012, the European banks’ debts turned
out to be enormously large, especially for those banks with
a large market capitalization (such as DB, CBG, and BCS).
Furthermore, the edge thickness indicates that the default risk
shocks are mutually conducted not only among European
banks but also substantially outflowed from EU banks to
US Banks.
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Figure 8. Dynamics of connectedness across the United States and
Europe. The blue line presents the measures from US banks to Euro-
pean banks, the red line presents the measures from European banks
to US banks.

5.3. The network between US and European banks

In order to have a clear picture on the cross-region spillover
effects, we look at two groups - the US versus EU banks - and
analyse the dynamics of their default risk transmission.

Figure 8 reveals that the transmission of overall default risk
shocks, in the long term, has been increasing from European
banks to US banks since 2010, while that of the short term has
a crossing point in 2013 but falls down around 2014, seem-
ingly followed by a new cycle of climbing periods, which is
consistent with figures 3 and 5. The default shocks still orig-
inate from Europe even 5–6 years after the outburst of the
European sovereign debt crisis.

5.4. The drivers of default connectedness

Having the dynamics of default connectedness in a system, we
dive deeper to investigate the determinants of these dynam-
ics which may give the insights into the channel of default
contagion. In our analysis, the total connectedness can be
viewed as an overall measure of default risk in the system
and also as an indicator of credit contagion, in which a high
value implies a widespread default risk. To understand the
evolution of systemic default risk in the banking industry,
and to control it further, the policy makers may rely on the
model-implied indicators to monitor the frailty of default in a
system.

Hence, in this part, we take the total connectedness
derived from level factor, slope factor, and curvature factor
in section 5.2.1 as a measure of long term, short term, and
middle term systemic default risk respectively, and opt for a
vector of state variables to analyse what drives the system-
atic default risk. We estimate the following regression on the

basis of daily data for the determinants of the connectedness
of credit curves:

Cω,t = αω + β�ω Mt−1 + εω,t, εω,t ∼ N(0, σ 2) (22)

where Cω,t denotes total connectedness of level factor, slope
factor, and curvature factor at time t respectively, ω = {l, s, c}.
Mt−1 denotes state variables at time t− 1.

Adrian and Brunnermeier (2016) propose to use the fol-
lowing macro published variables, e.g. (1) The change in
the three-month yield; (2) The change in the slope of the
yield curve, measured by the spread between the compos-
ite long-term bond yield and the three-month bill rate; (3)
A short-term TED spread, defined as the difference between
the three-month LIBOR rate and the three-month secondary
market Treasury bill rate - this spread measures short-term
funding liquidity risk; (4) The change in the credit spread
between Moody’s Baa-rated bonds and the ten-year Trea-
sury rate; (5) The daily market return computed from the
S&P500; (6) The daily real estate sector return in excess of
the market financial sector return; (7) VIX. In addition we
employ common principal components (CPC), which is the
average variance explained by the first principle component
through the common principle component approach (CPCA),
see Flury (1984), Fengler et al. (2003) and Chen and Här-
dle (2015). The CPC factor is used here to capture a common
factor that may not be directly observed.

Estimating PCs simultaneously in different groups (banks)
can result in a joint dimension reduction transformation, as
well as yielding a joint eigenstructure across groups (banks).
The basic assumption of CPCA is that the space spanned by
the eigenvectors is identical across several groups (banks),
whereas the variances associated with the components are
allowed to vary. The CPCA essentially tests whether the prin-
cipal components for different banks are the same across
different maturities. More formally, for the covariance matrix
across K different maturities of bank i, �i, the hypothesis of
CPCA is:

HCPC : �i = ��i�
�, i = 1, . . . , N (23)

where �i is K × K positive definite covariance matrix; � =
(γ1, . . . , γK) is an K × K orthogonal eigenvector matrix,
which is identical for N banks; and, �i = diag(λi1, . . . , λiK)

is an diagonal eigenvalues matrix of bank i. For more details
on the estimation, see Appendix A.2. Through averaging the
variance explained by first principal component of each bank,
we estimate the CPC variance explained variable using a fixed
rolling window of 260 observations, which is in line with the
similar procedure in section 5.2.1.

Table 7 provides summary statistics of the total connect-
edness and state variables. In line with the previous results
in section 5.1, the mean value of total connectedness of level
factor is larger than that of the slope factor, followed by that of
the curvature factor. The negative skewness values, as well as
kurtosis values of nearly 3, indicate that total connectedness
measures seem to follow right-skewed asymmetric normal
distribution. As for the CPC first factor variance explained
variable, the range is roughly 13%–92%, which is reasonable
with a large deviation of 15%.
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Table 7. Summary of the variables.

Mean S.t.d. Skew Kurt Min Max

Total connectedness: Level 86.99 2.63 − 1.26 3.47 79.61 90.26
Total connectedness: Slope 84.07 4.60 − 1.15 3.49 69.52 90.44
Total connectedness: Curvature 78.37 6.09 − 0.88 3.66 55.39 89.18
Three month yield change 0.01 1.18 0.22 7.84 − 7.00 6.00
Term spread change 0.00 5.76 − 0.15 6.24 − 48.00 25.00
TED spread 29.35 19.21 2.85 11.67 8.76 133.50
Credit spread change − 0.15 2.78 0.34 11.46 − 14.00 28.00
Market return 0.05 1.11 − 0.27 7.69 − 6.90 6.84
Real estate excess return 0.00 0.93 0.01 10.92 − 6.00 6.98
VIX 20.17 8.04 1.58 5.27 10.32 56.65
CPC first factor variance explained 50.77 15.06 0.26 2.69 13.35 92.64

Note: Data period: 1 January 2009 to 31 December 2015 with daily data. The change, return data, and CPC factor variance explained are in
percentage. We list the standard deviation (S.t.d.), skewness (Skew), kurtosis (Kurt) and so on.

Table 8. Determinants of Total connectedness.

Level Slope Curvature

NW HH NW HH NW HH

Three month yield change 0.010 0.010 − 0.007 − 0.007 − 0.003 − 0.003
(0.682) (0.590) (− 0.490) (− 0.385) (− 0.197) (− 0.184)

Term spread change − 0.016 − 0.016 − 0.009 − 0.009 0.001 0.001
(− 0.888) (− 0.746) (− 0.453) (− 0.406) (0.025) (0.026)

TED spread 0.125∗∗∗ 0.125∗∗ 0.153∗∗∗ 0.153∗∗ − 0.363∗∗∗ − 0.363∗∗∗
(2.483) (1.906) (3.286) (2.289) (− 4.473) (− 5.811)

Credit spread change 0.056∗∗∗ 0.056∗∗ 0.044∗∗ 0.044∗ 0.042∗ 0.042∗
(3.035) (2.107) (2.108) (1.631) (1.543) (1.644)

Market return − 0.046∗∗∗ − 0.046∗∗ − 0.018 − 0.018 − 0.022 − 0.022
(− 2.550) (− 2.082) (− 0.953) (− 0.805) (− 0.954) (− 1.044)

Real estate excess − 0.005 − 0.005 − 0.021 − 0.021 − 0.023 − 0.023
return (− 0.260) (− 0.213) (− 1.061) (− 0.950) (− 1.078) (− 1.110)
VIX 0.298∗∗∗ 0.298∗∗∗ − 0.010 − 0.010 − 0.120∗ − 0.120∗∗

(4.886) (4.545) (− 0.170) (− 0.151) (− 1.428) (− 1.924)
CPC factor 0.303∗∗∗ 0.303∗∗∗ 0.434∗∗∗ 0.434∗∗∗ 0.260∗∗∗ 0.260∗∗∗
variance explained (7.996) (8.543) (11.793) (11.994) (9.119) (7.677)
Adjusted R2 (%) 23.04 23.04 19.91 19.91 29.79 29.79

Note: ∗∗∗, ∗∗, ∗ denotes the significance at the level of 1%, 5% and 10% respectively. ‘NW’ presents that the t-statistics displayed in
parentheses are calculated by Newey-West standard errors allowing for up to five periods of autocorrelation. ‘HH’ represent the t-statistics
displayed in parentheses are calculated by Hansen and Hodrick standard errors with five periods of lag.

After standardizing all the variables in table 7, we obtain
the estimated parameters through (22) in table 8. In column
’NW’ and column ’HH’, the values in parentheses under the
corresponding estimated parameters, present t-statistics based
on Newey-West standard errors (Newey and West 1987), and
Hansen-Hodrick standard errors (Hansen and Hodrick 1980)
respectively, both with five periods of lag. In addition, the last
line reports the adjusted R2 value of the model.

In table 8, higher VIX, higher TED spread, higher credit
spread, and lower market return result in high long term
default risk. Consistent with Pan and Singleton (2008), we
find that VIX, which measures investor appetite for risk, sig-
nificantly triggers a credit comovement or contagion. Pan
and Singleton (2008) argue that VIX is a key factor in an
investor’s appetite for global credit risk in credit markets.
They find that there is a higher correlation between VIX and
the first principle component (PC) of CDS spreads, we, how-
ever, link VIX to total connectedness. Total connectedness,
as an aggregated measure, is quantified by a dynamic sys-
tem, whereas the PC is more or less commonality and lacks
of dynamics. The short-term connectedness is driven by the

TED spread and credit spread, while the medium-term con-
nectedness is sensitive to the TED spread and VIX. The CPC
factor is used to capture the latent common factor and is sig-
nificant across the LT, MT and ST connectedness, implying
that the existing latent determinants need to be further dis-
covered. Overall, the average significance of the conditioning
variables reported in table 8 show that the state variables do
indeed contribute to the variation of total connectedness, par-
ticularly in the long-term. In summary, the channels of credit
contagion vary with credit horizons. In the long-term credit
contagion is more likely to experience through the credit mar-
ket (TED and credit spread) and a change of investor risk
attitude, while in the short-term contagion the conditions of
credit market are exclusively relevant.

5.5. Out-of-sample forecasts

To evaluate the informativeness of the predefined network
connectedness, it is of interest to compare the forecasting
performance between the network-based DNS model and the
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Figure 9. Difference of RMSE in percentage of CDS spreads forecast between network DNS model and DNS model, for horizon
h = {1day, 5day, 10day}. The left panel lists the values of Goldman Sachs, the right panel for HSBC bank. The points correspond to different
maturities. The forecast period is 1 January 2011 to 31 December 2013.

conventional DNS model. Using (3), one predicts:

ŷi,t+h|t(τ ) = β̂i1,t+h|t + β̂i2,t+h|t

{
1− exp(−δτ)

δτ

}
+ β̂i3,t+h|t

{
1− exp(−δτ)

δτ
− exp(−δτ)

}
(24)

where β̂is,t, s = 1, 2, 3 denotes l̂it, ŝit, ĉit respectively, and can
be estimated through (5) and (6).
(a) Network DNS model
To implement the forecast model comparison, the transition
equation in a multivariate factor framework to undertake their
interaction, named as DNS-VAR(1), is

β̂is,t+h|t = γ̂ 0
is + γ̂isβ̂is,t + φ̂jsβ̂js,t, j �= i (25)

where β̂js,t is the latent factors from other banks j, which are
estimated in the initial step, such as using (5) and (6). The
parameter γ̂ 0

is , γ̂is and φ̂js are estimated by the Kalman filter
method. The technical details are specified in an appendix.

(b) DNS model

The autoregressive process of transition equation without the
influence from the latent factors of other banks, named as
DNS-AR(1), is

β̂is,t+h|t = γ̂ 0
is + γ̂isβ̂is,t (26)

(c) VAR-elasticnet model
In addition, following Bostanci and Yilmaz (2015), we
directly forecast CDS spreads of all the firms using elas-
tic net estimation for each maturity respectively, named as
VAR-elasticnet model,

ŷt+h|t(τ ) =
p∑

k=1

θ̂yt−k+1(τ )

yt(τ ) = (y1t(τ ), y2t(τ ), . . . , yNt(τ ))
�

θ̂ = arg max
θ

⎧⎨⎩
T∑

t=2

{
yt(τ )−

∑
i

p∑
k=1

θi,kyi,t−k(τ )

}2

+ λ
K∑

i=1

p∑
k=1

{α|θi,k| + (1− α)θ2
i,k}
}

(27)
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Figure 10. Difference of RMSE in percentage of CDS spreads forecast between network DNS model and VAR-elasticnet model, for horizon
h = {1day, 5day, 10day}. The left panel lists the values of Goldman Sachs, the right panel for HSBC bank. The points correspond to different
maturities. The forecast period is 1 January 2011 to 31 December 2013.

where p is the lag order in the VAR model. Following the
literature, we choose p = 2.

We present the forecasting performance of model (a) in
comparison with the alternatives model (b) and model (c).
The forecast horizons are selected as 1 day, 5 days, and
10 days. We report the difference of root mean squared
errors (RMSE) when comparing the network DNS model
with conventional DNS model and VAR-elasticnet model.
When taking the European crisis period, from 2011 to 2013,
as the out-of-sample forecast period, we present the results
of GS and HSBC bank as examples. Each point in figure 9
denotes the difference between the RMSE of network DNS
model and that of DNS model while figure 10 represents
the difference of RMSE between network DNS model and
VAR-elasticnet model at each maturity period. The resulting
negative values in the difference in both figures indicate the

superiority of the model with network perspective. One can
observe the negative values in the difference of RMSE, which
are homogenously distributed in the majority of maturities,
especially as the forecast horizons increase. This reveals that
RMSE of forecasting CDS spreads in network DNS model
is smaller than that of DNS model as well as VAR-elasticnet
model, the network DNS model performs even better as the
forecast horizon increases.

By overall summarizing the performance of European
banks and US banks, we present the average value of RMSE
difference of network DNS model with the alternative mod-
els in table 9. This reveals a similar pattern to what has
been discovered in figures 9 and 10. More interestingly, the
more frequent negative values shown in the EU group implies
that the network information advantage in forecasting CDS
curve seems to have more support in the EU area. To predict
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Table 9. US and EU: average value of RMSE difference (%).

h 6M 1Y 2Y 3Y 4Y 5Y 7Y 10Y 20Y 30Y

(a) Network DNS model versus DNS model
US 1d 0.156 0.029 0.094 − 0.031 − 0.102 − 0.076 − 0.029 − 0.026 0.158 0.198

5d − 0.132 − 0.235 − 0.116 − 0.356 − 0.318 − 0.108 0.140 − 0.037 − 0.031 0.092
10d − 0.609 − 0.637 − 0.209 − 0.480 − 0.597 − 0.566 − 0.161 − 0.290 − 0.121 0.111

EU 1d 0.264 − 0.162 − 0.110 − 0.027 0.091 0.022 − 0.018 − 0.041 0.048 0.081
5d − 0.486 − 0.973 − 0.516 − 0.318 − 0.058 − 0.098 − 0.237 − 0.354 − 0.174 − 0.011

10d − 1.580 − 1.388 − 0.685 − 0.446 − 0.388 − 0.524 − 0.700 − 0.804 − 0.309 − 0.014
(b) Network DNS model versus VAR-elasticnet model
US 1d − 22.232 − 19.466 − 14.295 − 11.950 − 9.449 − 4.581 − 3.362 − 5.238 − 4.571 − 2.492

5d − 14.184 − 13.604 − 10.836 − 9.138 − 6.564 − 2.607 − 1.668 − 3.152 − 3.259 − 2.174
10d − 11.014 − 10.747 − 8.657 − 7.262 − 4.941 − 1.617 − 0.887 − 2.178 − 2.429 − 1.633

EU 1d − 16.757 − 14.500 − 10.727 − 8.799 − 7.658 − 3.258 − 3.449 − 5.357 − 6.688 − 4.479
5d − 10.020 − 9.878 − 7.625 − 6.145 − 4.636 − 1.365 − 1.686 − 3.240 − 5.222 − 3.998

10d − 7.805 − 7.842 − 5.856 − 4.642 − 3.261 − 0.382 − 0.743 − 2.114 − 4.142 − 3.296

Note: The average RMSE difference of CDS spreads forecast of network DNS model in comparison with DNS model in panel (a) and VAR-
elasticnet model in panel (b). The values of US and EU banks are averaged in total. All the values are in percentage. The forecast period is 1
January 2011 to 31 December 2013.

Table 10. Forecast comparison between network DNS model and DNS model: DM test.

h 6M 1Y 2Y 3Y 4Y 5Y 7Y 10Y 20Y 30Y

1d
BAC 1.036 2.356∗∗ 0.703 − 2.514∗∗ − 2.105∗∗ − 2.954∗∗∗ − 2.389∗∗ − 1.286 3.402∗∗∗ 5.344∗∗∗
C 3.259∗∗∗ − 2.933∗∗∗ − 1.270 − 3.529∗∗∗ 0.156 3.543∗∗∗ 4.836∗∗∗ 4.593∗∗∗ − 0.968 − 1.831∗
GS − 3.290∗∗∗ 1.906∗ 4.159∗∗∗ − 2.043∗∗ − 2.034∗∗ − 3.774∗∗∗ − 6.257∗∗∗ − 3.802∗∗∗ 5.118∗∗∗ 7.390∗∗∗
JPM 3.202∗∗∗ − 2.067∗∗ − 4.887∗∗∗ − 7.285∗∗∗ 0.754 4.240∗∗∗ 4.331∗∗∗ 1.772∗ 1.666∗ 4.398∗∗∗
WFC 1.437 3.347∗∗∗ 7.637∗∗∗ 6.896∗∗∗ − 4.741∗∗∗ − 9.662∗∗∗ − 5.940∗∗∗ − 4.403∗∗∗ 10.599∗∗∗ 15.143∗∗∗
DB 2.859∗∗∗ − 2.218∗∗ − 4.947∗∗∗ − 6.677∗∗∗ 2.902∗∗∗ 4.732∗∗∗ 4.827∗∗∗ 2.006∗∗ − 1.064 0.292
CBG − 2.258∗∗ 4.540∗∗∗ 4.045∗∗∗ 3.719∗∗∗ 0.560 − 4.488∗∗∗ − 4.772∗∗∗ − 1.648∗ 4.138∗∗∗ 5.802∗∗∗
BCS 7.258∗∗∗ − 6.434∗∗∗ − 6.738∗∗∗ − 0.524 8.014∗∗∗ 7.809∗∗∗ 2.624∗∗∗ − 1.156 − 0.406 2.002∗∗
HBC 3.041∗∗∗ − 6.318∗∗∗ − 5.654∗∗∗ − 2.964∗∗∗ 2.325∗∗ 2.404∗∗ 2.195∗∗ 1.939∗ − 3.762∗∗∗ − 4.773∗∗∗
UBS − 0.533 2.535∗∗ 3.148∗∗∗ 2.773∗∗∗ − 3.367∗∗∗ − 4.665∗∗∗ − 6.062∗∗∗ − 7.829∗∗∗ 7.208∗∗∗ 9.688∗∗∗
5d
BAC 0.027 0.242 − 0.763 − 1.618 − 0.896 − 0.911 − 0.362 − 0.615 − 0.479 − 0.172
C 0.178 − 2.284∗∗ − 2.459∗∗ − 2.490∗∗ 0.840 3.394∗∗∗ 4.498∗∗∗ 3.255∗∗∗ − 1.285 − 2.572∗∗
GS − 2.329∗∗ − 1.035 − 0.656 − 2.747∗∗∗ − 2.316∗∗ − 1.811∗ − 2.223∗∗ − 1.913∗ − 0.996 − 0.412
JPM 0.348 − 0.660 − 1.559 − 2.667∗∗∗ − 1.047 0.560 1.347 − 0.155 − 0.599 0.487
WFC 0.124 0.863 2.756∗∗∗ 2.576∗∗∗ − 1.383 − 3.892∗∗∗ − 2.022∗∗ − 1.570 2.431∗∗ 4.420∗∗∗
DB − 0.572 − 1.703∗ − 2.158∗∗ − 2.799∗∗∗ − 0.073 0.421 0.415 − 1.344 − 2.286∗∗ − 1.383
CBG − 2.955∗∗∗ − 1.140 − 1.377 − 1.104 − 1.050 − 1.748∗ − 2.187∗∗ − 1.625 − 0.613 − 0.091
BCS 0.976 − 2.924∗∗∗ − 2.126∗∗ − 0.141 1.372 1.414 − 0.485 − 1.840∗ − 0.852 0.335
HBC − 0.993 − 3.938∗∗∗ − 2.475∗∗ − 1.690∗ − 0.944 − 0.530 − 0.559 − 0.930 − 1.994∗∗ − 2.198∗∗
UBS − 0.891 0.571 1.185 0.847 − 0.731 − 1.839∗ − 2.878∗∗∗ − 2.929∗∗∗ 1.124 2.242∗∗
10d
BAC − 0.219 − 0.130 − 0.349 − 0.778 − 0.779 − 0.958 − 0.503 − 0.583 − 0.438 − 0.212
C − 0.760 − 2.301∗∗ − 1.992∗∗ − 1.955∗ − 0.107 1.855∗ 2.939∗∗∗ 2.075∗∗ − 0.405 − 1.175
GS − 1.896∗ − 1.153 − 0.888 − 1.851∗ − 2.224∗∗ − 2.579∗∗∗ − 2.751∗∗∗ − 2.149∗∗ − 1.096 − 0.605
JPM 0.031 − 0.726 − 1.051 − 1.710∗ − 0.890 − 0.301 0.041 − 0.807 − 0.771 − 0.034
WFC 0.111 0.588 2.065∗∗ 2.056∗∗ − 0.140 − 2.124∗∗ − 1.075 − 0.871 1.405 2.838∗∗∗
DB − 1.265 − 1.098 − 0.891 − 1.489 − 0.981 − 0.972 − 0.782 − 2.014∗∗ − 1.792∗ − 0.995
CBG − 2.696∗∗∗ − 1.534 − 1.379 − 1.079 − 0.985 − 1.220 − 1.464 − 1.299 − 0.787 − 0.449
BCS − 0.295 − 1.843∗ − 1.256 − 0.170 − 0.154 − 0.789 − 2.253∗∗ − 3.134∗∗∗ − 0.901 0.334
HBC − 2.296∗∗ − 3.564∗∗∗ − 2.595∗∗∗ − 2.037∗∗ − 1.758∗ − 1.426 − 1.555 − 1.750∗ − 1.405 − 1.086
UBS − 0.964 0.029 0.614 0.609 − 0.127 − 1.086 − 2.235∗∗ − 2.289∗∗ 0.780 1.726∗

Note: This table gives the t-statistics of Diebold-Mariano test, that is, H0 : μ = 0 in the regression e2
t,net − e2

t = μ+ εt where et,net and
et denote the forecast error of network DNS model and DNS model respectively. The test is modified with robust Newey-West variances
for heteroscedasticity and autocorrelation with the lags equal to the forecast horizon. ∗ denotes a significance level of 10%, ∗∗ denotes a
significance level of 5%, ∗∗∗ denotes a significance level of 1%. The forecast period is 1 January 2011 to 31 December 2013.

the CDS curve in EU banks, one has to opt for a network-
perspective model. The prediction can then be used to decide
the timing of entering a CDS contract to lock up the hedge
cost in terms of default from the buyer side. For the seller

side, they are able to avoid underestimating CDS prices after
incorporating default spillover through their network.

Tables 10 and 11 report the Diebold-Mariano test statis-
tics (Diebold and Mariano 1995) to compare the network
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Table 11. Forecast comparison between network DNS model and VAR-elasticnet model: DM test.

h 6M 1Y 2Y 3Y 4Y 5Y 7Y 10Y 20Y 30Y

1d
BAC 1.895∗ 0.343 − 2.398∗∗ − 4.424∗∗∗ − 7.715∗∗∗ − 4.766∗∗∗ − 3.274∗∗∗ − 5.760∗∗∗ − 5.278∗∗∗ − 0.514
C 4.581∗∗∗ 2.620∗∗∗ − 0.375 − 0.716 − 1.709∗ 1.763∗ 6.773∗∗∗ 5.278∗∗∗ 7.130∗∗∗ 11.808∗∗∗
GS 3.356∗∗∗ 2.670∗∗∗ − 0.138 − 1.435 − 3.694∗∗∗ 0.809 1.154 − 1.540 − 1.011 3.034∗∗∗
JPM 7.192∗∗∗ 7.370∗∗∗ 5.551∗∗∗ 5.020∗∗∗ 4.838∗∗∗ 9.188∗∗∗ 9.742∗∗∗ 5.142∗∗∗ 2.738∗∗∗ 6.167∗∗∗
WFC 0.942 0.847 − 0.920 − 1.397 − 1.160 5.361∗∗∗ 10.414∗∗∗ 9.758∗∗∗ 11.901∗∗∗ 14.973∗∗∗
DB 4.966∗∗∗ 5.279∗∗∗ 4.870∗∗∗ 3.674∗∗∗ 2.769∗∗∗ 4.453∗∗∗ 4.364∗∗∗ 0.524 − 1.801∗ 1.854∗
CBG 7.986∗∗∗ 8.064∗∗∗ 5.465∗∗∗ 2.576∗∗∗ − 2.453∗∗ 0.231 − 1.177 − 6.083∗∗∗ − 7.597∗∗∗ − 2.815∗∗∗
BCS 5.978∗∗∗ 6.884∗∗∗ 6.772∗∗∗ 6.468∗∗∗ 4.538∗∗∗ 5.837∗∗∗ 4.675∗∗∗ − 1.096 − 4.122∗∗∗ − 0.884
HBC 4.471∗∗∗ 3.451∗∗∗ 4.580∗∗∗ 4.581∗∗∗ 2.821∗∗∗ 4.410∗∗∗ 1.603 − 4.729∗∗∗ − 7.382∗∗∗ − 3.088∗∗∗
UBS − 0.773 − 1.977∗∗ − 3.097∗∗∗ − 2.222∗∗ − 0.750 5.250∗∗∗ 8.979∗∗∗ 6.609∗∗∗ 6.828∗∗∗ 10.772∗∗∗
5d
BAC − 0.751 − 1.613 − 3.364∗∗∗ − 4.761∗∗∗ − 6.574∗∗∗ − 5.275∗∗∗ − 4.167∗∗∗ − 5.646∗∗∗ − 5.221∗∗∗ − 2.942∗∗∗
C 2.250∗∗ 0.462 − 1.910∗ − 2.416∗∗ − 3.697∗∗∗ − 1.490 1.503 0.314 1.101 4.804∗∗∗
GS 1.283 0.679 − 1.763∗ − 2.712∗∗∗ − 4.124∗∗∗ − 1.321 − 0.498 − 2.180∗∗ − 2.225∗∗ 0.002
JPM 2.908∗∗∗ 2.859∗∗∗ 1.770∗ 1.325 1.111 4.820∗∗∗ 5.383∗∗∗ 2.527∗∗ 0.984 3.192∗∗∗
WFC − 0.746 − 0.918 − 2.324∗∗ − 2.960∗∗∗ − 3.493∗∗∗ 0.300 3.167∗∗∗ 3.176∗∗∗ 5.018∗∗∗ 7.375∗∗∗
DB 0.581 0.579 0.832 − 0.111 − 1.010 0.312 0.440 − 1.925∗ − 2.673∗∗∗ − 0.651
CBG 3.332∗∗∗ 2.972∗∗∗ 1.318 − 0.373 − 2.992∗∗∗ − 1.691∗ − 1.969∗∗ − 4.153∗∗∗ − 4.814∗∗∗ − 2.419∗∗
BCS 2.089∗∗ 2.662∗∗∗ 2.236∗∗ 1.474 − 0.701 0.126 − 0.630 − 4.841∗∗∗ − 5.302∗∗∗ − 3.333∗∗∗
HBC 0.560 − 0.742 0.709 0.592 − 0.726 0.898 − 0.599 − 4.421∗∗∗ − 5.454∗∗∗ − 2.877∗∗∗
UBS − 3.327∗∗∗ − 4.038∗∗∗ − 4.787∗∗∗ − 4.364∗∗∗ − 3.564∗∗∗ 0.556 3.133∗∗∗ 1.430 0.818 4.002∗∗∗
10d
BAC − 1.690∗ − 2.235∗∗ − 3.460∗∗∗ − 4.252∗∗∗ − 5.322∗∗∗ − 4.700∗∗∗ − 3.908∗∗∗ − 4.748∗∗∗ − 4.377∗∗∗ − 3.009∗∗∗
C 1.024 − 0.830 − 3.187∗∗∗ − 3.688∗∗∗ − 4.590∗∗∗ − 2.675∗∗∗ − 0.772 − 1.622 − 1.409 2.008∗∗
GS 0.193 − 0.603 − 2.796∗∗∗ − 3.193∗∗∗ − 4.068∗∗∗ − 1.853∗ − 0.962 − 2.214∗∗ − 2.345∗∗ − 0.772
JPM 1.330 1.352 0.500 0.078 − 0.041 3.434∗∗∗ 4.236∗∗∗ 1.938∗ 0.424 2.199∗∗
WFC − 1.340 − 1.636 − 2.945∗∗∗ − 3.600∗∗∗ − 4.119∗∗∗ − 1.509 0.405 0.610 2.423∗∗ 4.689∗∗∗
DB − 1.169 − 1.606 − 1.260 − 1.840∗ − 2.382∗∗ − 0.880 − 0.817 − 2.696∗∗∗ − 2.774∗∗∗ − 1.294
CBG 1.194 0.679 − 0.154 − 1.379 − 3.379∗∗∗ − 2.608∗∗∗ − 2.597∗∗∗ − 4.284∗∗∗ − 4.675∗∗∗ − 2.781∗∗∗
BCS 0.298 0.821 0.298 − 0.586 − 2.222∗∗ − 1.518 − 1.580 − 3.977∗∗∗ − 4.024∗∗∗ − 2.790∗∗∗
HBC − 1.084 − 2.461∗∗ − 1.238 − 1.083 − 1.903∗ − 0.291 − 1.141 − 4.302∗∗∗ − 4.627∗∗∗ − 2.533∗∗
UBS − 4.071∗∗∗ − 4.768∗∗∗ − 5.329∗∗∗ − 5.551∗∗∗ − 5.047∗∗∗ − 1.596 0.514 − 1.253 − 2.552∗∗ 0.603

Note: This table gives the t-statistics of Diebold-Mariano test, that is, H0 : μ = 0 in the regression e2
t,net − e2

t = μ+ εt where et,net and
et denote the forecast error of network DNS model and VAR-elasticnet model respectively. The test is modified with robust Newey-West
variances for heteroscedasticity and autocorrelation with the lags equal to the forecast horizon. ∗ denotes a significance level of 10%, ∗∗
denotes a significance level of 5%, ∗∗∗ denotes a significance level of 1%. The forecast period is 1 January 2011 to 31 December 2013.

DNS model versus DNS model and VAR-elasticnet model
forecasts. In the Diebold-Mariano (DM) test, we conduct
a pairwise test of the equality of the mean squared fore-
cast errors by analyzing the difference between the squared
forecast errors of the network DNS model and the DNS
model, e2

t,net − e2
t = μ+ εt. The null hypothesis of equal per-

formance is that H0 : μ = 0. We focus on the t-statistics of
parameter μ, denoted as DM t-stat, which supports the net-
work DNS model if it is significantly negative (significance
level marked by asterisks). Regardless of the forecast hori-
zons, we find that the negative DM t-stat are prevalent for the
maturities less than 10Y lying on the CDS curves, either when
comparing with DNS model or VAR-elasticnet model. In
other words, the network DNS model is superior to the DNS
model as well as VAR-elasticnet model in an out-of-sample
forecast, especially for the EU CDS curves.

6. Conclusions

Systemic risk, the risk of disruption to financial services, can
be teased out directly through an investigation of CDS curves,
in comparison with the conventional market-based approach

that uses stock returns as alternatives, such as the CoVaR
measure. This study shows the information content of a CDS
curve for its term structure implications. The changing shape
of a credit curve implies credit deterioration over different
time horizons (ST, MT or LT), which can be used to manage
credit exposures with different maturities.

The extant literature has paid insufficient attention to the
shape of CDS curves, the dynamics of CDS curves and the
co-movement or interplay between curves. We contribute by:
(1) using the DNS model to extract the ST, MT and LT default
factors from a CDS curve; (2) quantifying the co-movement
of CDS curves through a total connectedness indicator to
measure the tendency of credit contagion; (3) measuring
the default spillover/contagion in the ST, MT and LT per-
spectives; (4) documenting the channel of credit contagion
from the LT, ST and MT perspectives; and, (5) conduct-
ing out-of-sample predictions for CDS curves based on the
network-based DNS model.

The evidence from G-SIB banks shows that their CDS
curves co-move tightly with high connectedness, especially
in the long-term. The US banks contributed more to the long-
term default spillover before 2012, whereas the European
banks were major default transmitters during and after the
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European debt crisis, both in the long-term and the short-term.
The time-varying default connectedness and spillover can be
viewed as an indicator that can be used to monitor systemic
default risk and credit contagion, especially to identify the
trouble makers that could trigger a clustered default in the
system. We find that the channels of credit contagion are con-
ducted through the TED spread, credit spread, and VIX. In
particular, the VIX, representing investors’ appetite for global
credit risk, is especially effective for finding the trigger for a
long-term credit contagion. The outperformance of the net-
work DNS model indicates that predictions based on CDS
curves require network information.
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A. Appendix

A.1. CDS spreads

A.2. Common principal component analysis (CPCA)

Here we introduce the maximum likelihood estimation procedures
of CPC under the hypothesis in (23). The theoretical proof and the

asymptotic properties of the estimates are referred to Flury (1984)
and Flury and Gautschi (1986).

Let Si be the (unbiased) sample covariance matrix of an under-
lying K-variate normal distribution NK(μ,�i) with sample size ni.
Then niSi follows a Wishart distribution with degrees of freedom
ni − 1, Härdle and Simar (2015)

niSi ∼WK(�, ni − 1) (A1)
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Figure A1. CDS spreads data.
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Hence for N Wishart matrices Si with sample size ni, the likelihood
function is

L (�1, . . . ,�N )

= C
N∏

i=1

exp

{
tr

(
−1

2
(ni − 1)�−1

i Si

)}
|�i|−(1/2)(ni−1) (A2)

where C is a constant not depending on the parameters�i. Maximiz-
ing the likelihood is equivalent to minimizing the function

g(�1, . . . ,�N ) =
N∑

i=1

(ni − 1){log |�i| + tr(�−1
i Si)} (A3)

Assuming that HCPC in equation (23) holds, replacing�i by ��i�
�,

yields,

g(�,�1, . . . ,�N ) =
N∑

i=1

(ni − 1)
K∑

j=1

(
log λij +

γ�j Siγj

λij

)
. (A4)

We impose the orthogonal constraints in � by using the Lagrange
multipliers μj for the K constraints γ�j γj = 1, and using the mul-

tipliers μhj for the remaining K(K − 1)/2 constraints γ�h γj = 0 for

(h �= j). Hence the Lagrange function is

g∗(�,�1, . . . ,�N ) = g(·)−
K∑

j=1

μj(γ
�
j γj − 1)− 2

K∑
h<j

μhjγ
�
h γj.

Taking partial derivatives with respect to all λim and γm, the solution
of the CPC model is given by the generalized system of characteristic
equations, Flury (1984)

γ�m

{
N∑

i=1

(ni − 1)
λim − λij

λimλij
Si

}
γj = 0, m, j = 1, . . . , K, m �= j.

(A5)
This is solved using

λim = γ�m Sγm, i = 1, . . . , N , m = 1, . . . , K

under the constraints

γ�m γj =
{

0 m �= j
1 m = j

. (A6)

Flury (1984) proves existence and uniqueness of the maximum of
the likelihood function, and Flury and Gautschi (1986) provide a
numerical algorithm.
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Abstract
High-frequency data can provide us with a quantity of information for forecasting and
help to calculate and prevent the future risk based on extremes. This tail behaviour is
very often driven by exogenous components and may be modelled conditionally on
other variables. However,many of these phenomena are observed over time, exhibiting
non-trivial dynamics and dependencies.Wepropose a functional dynamic factormodel
to study the dynamics of expectile curves. The complexity of themodel and the number
of dependent variables are reduced by lasso penalization. The functional factors serve
as a low-dimensional representation of the conditional tail event, while the time-
variation is captured by factor loadings. We illustrate the model with an application to
climatology, where daily data over years on temperature, rainfalls or strength of wind
are available.

Keywords Factor model · Functional data · Expectiles · Extremes

1 Introduction

Statistical analysis of high-dimensional data nowadays plays a crucial role in various
fields. Usually, one observes a high-dimensional vector evolving in time, that can be
not only correlated to other variables but hide various types of inter-dependencies.
One solution on how to analyze such data for further modelling is to treat it as dis-
crete observations of functional times series. For example, observed as a function of
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time over the year, the evolution of temperature curves; see e.g. Ramsay and Silver-
man (2005), the wind speed; see e.g. Burdejova et al. (2017), or pollution data; see
e.g. Ignaccolo et al. (2008), can exhibit the trend for interesting periodical patterns
supporting the thesis of climate change.

The same approach of functional data analysis was applied in health-care and clin-
ical research, when Erbas et al. (2007) tested the trend in breast-cancer mortality, or
Lee and Carter (1992) who performed the population analysis for mortality and fertil-
ity curves. Countless applications can be found in financial engineering, for example,
yield curve modelling as Nelson and Siegel (1987) or Härdle and Majer (2016), mod-
elling the collateralised debt obligations; see Choros-Tomczyk et al. (2016), analyzing
the dynamics of limit order book or implied volatility; see e.g. Benko et al. (2009) or
even the intraday price curves; see Kokoszka et al. (2014).

However, inmost of the above-mentioned applications, one is interested in capturing
the tail behaviour of the variables rather than variation around the mean. The majority
of recent research in functional data has nonetheless focused only on the variation
around the mean, as can be seen in the monographs of Ramsay and Silverman (2005),
Ferraty and Vieu (2006) or Horváth and Kokoszka (2012).

For that purpose, in our work, we generalise one of the functional analytical models
for expectiles. Expectiles, similar to quantiles, are tail measures, which uniquely char-
acterise the conditional distribution of random variables. The sameway as the quantile
for the level of τ = 0.5 corresponds to the median, and the τ = 0.5 expectiles corre-
spond to the mean. In case of the conditional expectiles on the other variable (e.g. time
over year for the temperature or time over day for intra-day price curves) we refer to,
so-called, expectile curves. Useful discusion about the advantages of such expectile
regression and its comparison to quantile regression can be found for example inKneib
(2013).

Guo et al. (2015) modelled such expectile and quantile curves by rewriting them
via Karhunen–Loève expansion. Tran et al. (2018) also presented analogue principal
components of such tail event curves in an asymmetric norm. Both of these approaches
assume the observations to be the independent realizations of a stationary stochastic
process. Even though Hörmann and Kokoszka (2010) showed that the Karhunen–
Loève expansion approach is suitable for the temporal dependence between functional
observations, the question of modelling strong-dependent or non-stationary functional
observations of extremes remains open. Therefore, the goal of our model is two-
fold: focus on modeling of the conditional extreme events for different expectile-
levels, capture the dynamics of such tail event curves concerning any hidden pattern,
dependence or non-stationarity.

In this work, we extend the generalized dynamic semi-parametric factor model for
expectiles and provide the convergent algorithm for its estimation. This approach offers
to focus onmodelling the time-development of tail-event expectile curves with respect
to possible strong-dependency or non-stationarity as well. Ourwork refers to the factor
models as in Park et al. (2009) and Song et al. (2014), who did similar dynamic semi-
parametric factor models for the L2-norm, which, for our model, corresponds as a
specific case of expectile at 0.5-level.

As a motivation, let us assume that there is a need to estimate a collection of expec-
tile curves, each coming from a separate data-set. Our first motivation example used
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in Sect. 5 regards a set of daily observations of average temperature, i.e. the data as
a vector Xn ∈ R

365 for a year n = 1, . . . , N . In this situation, one needs to analyse
jointly the time (over years for n = 1, . . . , N ) as well as space dynamics (within
the year for t th element of Xn[t] for t = 1, . . . , 365) by simultaneous fitting. In
the factor model, functional factors serve as a low-dimensional representation of the
conditional tail event, while the time-variation is captured by factor loadings. All of
them we approximate by a linear combination of basis-functions. Since the temporal
dependencies and non-stationarity can arise from different sources, we start with an
overparametrized model. That captures almost any behaviour or trend, including the
cycles and the linear or quadratic trend. Then we seek a sparse solution and reduce the
complexity of the model and the number of dependent variables by lasso penalization.
Further, we apply the proposed model for estimation and forecasting of daily tempera-
ture. Other applicable examples can also be found in the analyses of customer demand
planning, such as forecasting of electricity consumption as seen in López-Cabrera and
Schulz (2017) via VAR-model or finance, economics, climatology or neurobiology as
mentioned above.

The paper is organised as follows. After reviewing the concept of expectile curves
in the first section, we present the dynamic semi-parametric factormodel for expectiles
and the algorithm to estimate this model based on the iterative weighted least squares.
In Sect. 3we examine the performance of ourmodel. The performance of the algorithm
is examined in the simulation study in Sect. 4. Finally, we apply themodel to a Chinese
temperature dataset in Sect. 5 and the dataset of the wind speed of hurricanes in Sect. 6.
The last section summarises our findings. All codes used to obtain the results in this

paper are available at Quantlet, see details in Borke and Härdle (2017a, b).

2 Expectiles and expectile curves

The concept of expectiles was first presented by Newey and Powell (1987). Expectiles
have a similar interpretation as quantiles, but are more efficient, and easier to compute
due to the L2-norm in addition to being a coherent risk measure. Having a random
variable Y the τ -expectile can be obtained by minimizing the expected loss:

eτ = arg min
θ

E {ρτ (Y − θ)}

with asymmetric loss function

ρτ (u) = |u|α ∣
∣τ − I{u<0}

∣
∣ ,

where α = 2. In case of α = 1 we get the quantiles. By generalization we can also get
M-quantiles, see Breckling and Chambers (1988) or Jones (1994), who also showed
that expectiles can be expressed as quantiles.

Expectiles can be understood intuitively in a similar way as quantiles. Though the
τ -quantile can be defined as a value above the τ · 100% observations, expectile also
takes the distance into account. τ -expectile is defined such that τ ·100% of the distance
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of observations to it corresponds to the observations below it. Thus, expectiles aremore
sensitive to extreme observations and outliers.

However, in reality Y is usually associated with a vector of covariates X. For
example, the variable X can express the development over time, i.e.:

eτ (x) = arg min
θ

E {ρτ (Y − θ) | X = x} .

One is then interested in studying the conditional expectile as a function of x . For
that purpose, we define the generalized regression τ -expectile as:

eτ (·) = arg min
f ∈F

E {ρτ (Y − f (X))} .

where f (·) is a nonparametric function of covariates X from a set of functionsF , such
that the expectation is well defined.

There are more possibilities on how to estimate such an expectile curve from an
observed dataset. For example, expectile curve eτ (·) can be approximated by any
basis and estimated iteratively. Schnabel and Eilers (2009) proposed to approximate
the curves with P-splines and combine it with the LAWS (least average weighted
squares) algorithm.

The aim of our work is to model a collection of N generalized expectiles curves
eτ
n(·), n = 1, . . . N with a semi-parametric factor model.

3 Dynamic semi-parametric factor model for expectile curves

Let us fix the level τ and assume the functional time series en , n = 1, . . . , N . We
represent such a random process via factor model :

en(t) =
K

∑

k=1

Znkmk(t) = Z�
n m(t),

with time-varying factor loadings Znk and functional factors mk(t). Index t captures
the spatial dependency while the index n express the evolution over time.

Suppose both sequences factorize over space and time with respect to some fixed
bases. Thus, for some J -dimensional time basis U� = (U1, . . . ,UJ ) with Ui =
(Ui (1), . . . ,Ui (N )), i = 1, . . . , J and L-dimensional space basisΨ = (Ψ1, . . . , ΨL)

with Ψi = (Ψi (1), . . . , Ψi (T )), we have the decomposition:

Znk =
J

∑

j=1

αk jU j (n) i.e. Zn = AK×J ·U (n)

and

mk(t) =
L

∑

l=1

βklΨl(t) i.e. m(t) = BK×LΨ (t),
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where U�(n) = (U1(n), . . . ,UJ (n)) and Ψ (t) = (Ψ1(t), . . . , ΨL)(t). Those lead to
the final dynamic semi-parametric factor model (DSFM):

en = (AU (n))�(BΨ (t)) = U (n)�CΨ (t), (1)

where C = A�B is a J × L matrix of coefficients needed to be estimated.
For the choice of both bases, one may employ various basis functions. To capture

the periodic variation in time one can use the fourier basis, for the global trend over
time, any orthogonal polynomial basis may be suitable. For the space basis, either
B-splines, any polynomial basis or even principal components or their alternatives
such as principal expectile components defined by Tran et al. (2018) may be used.

In order to estimate this model, we propose the iterative algorithm for minimising
the penalized loss function. We define the weights in a similar manner as in Schnabel
and Eilers (2009). Once the space and time basis are pre-specified, the choice of
significantly loaded space and time basis functions is done via LASSO-penalization
of the coefficient matrix C . As before, assume the fixed expectile level τ ∈ (0, 1) and
for the observed discrete datapoints Yn,t , n = 1, . . . , N and t = 1, . . . , T :

1. Start with a setup for the weightswn,t = 0.5. This corresponds to the mean curves.
2. Estimate the matrix Ĉ by minimising

argmin
C

N
∑

n=1

T
∑

t=1

wn,t

{

Yn,t −U (n)�CΨ (t)
}

︸ ︷︷ ︸

l(C)

+λ

J
∑

j=1

‖CG j ‖2,

where the penalization term λ
∑J

j=1 ‖CG j ‖2 is a group-Lasso penalization. The
subsets for group-Lasso are pre-defined.

3. Update the weights

wn,t =
{

τ ifYn,t > U (s)�ĈΨ (t),
1 − τ otherwise.

4. Iterate via Steps 2. and 3. Recompute the weights until convergence, i.e. until there
is no change in weights wn,t .

Even though we can set the separate elements ofC-matrix as the groups in LASSO-
penalization, the group-LASSO would also allow us to give some specific structure
or importance into the pre-defined basis if needed. In general, e.g. Huang and Zhang
(2010) show and discuss the benefits of group-lasso. Note that function l(C) in Step
2 is continuously differentiable and obtains a global minimum. Yang and Zou (2015)
proposed the algorithm to solve such an optimization problem and proved its con-
vergence for different types of “empirical loss + group lasso penalty” optimisation
problems satisfying a quadratic majorization condition. Since for each iteration, the
weights in Step 2 are fixed, it can be seen that our specific definition of weighted
least squares combined with group-lasso penalization fulfills these requirements. Liao
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et al. (2018) was also analyzing the similar optimization problem from the theoret-
ical point of view, particularly the penalized expectile regression with an addaptive
LASSO penalty and its asymptotic properties. The model proposed in this paper can
be considered as an extension of work (Song et al. 2014). They proposed the general-
ized dynamic semi-parametric factor model in L2 norm. Regarding prediction error,
we refer to their work. Our model serves as an extension for asymmetric norm.

4 Simulation study

In order to evaluate the performance of the proposed model and the algorithm above
we performed a simulation study.We followed the set up of Guo et al. (2015) and Tran
et al. (2018), since they both proposed the alternatives for the modelling of tail event
expectile curves. The data Yn,i , n = 1, . . . , N and i = 1, . . . T , are simulated as:

Yn,i = μ(ti ) + α1,n f1(ti ) + α2,n f2(ti ) + εn,i ,

where ti ’s are the equidistant points on [0, 1]. We set the mean function μ(t) as
μ(t) = 1+t+exp

{−(t − 0.6)2/0.05
}

and the principal component curves as f1(t) =√
2 sin(2π t) and f2(t) = √

2 cos(2π t).
Further, we consider the two following different scenarios for the scores of principal

components α1,n and α2,n and 4 different error scenarios:

1. The scores set as α1i ∼ N(0, 36) and α2i ∼ N(0, 9) are both iid. The error term
εn,i ’s is: (1) iid N(0, σ 2

1 ), (2) iid t(5), (3) independent N{0, μ(t j )σ 2
1 } and (4) iid

logN(0, σ 2
1 ). With σ 2

1 = 1.
2. The scores set as α1i ∼ N(0, 16) and α2i ∼ N(0, 9) are both iid. The error term

εni ’s is: (1) iid N(0, σ 2
2 ), (2) iid t(5), (3) independent N{0, μ(t j )σ 2

2 } and (4) iid
logN(0, σ 2

2 ). With σ 2
2 = 0.5.

For each of the parameter settingswe ran the simulations 200 times. These scenarios
allow us to analyse the different coefficient-to-coefficient-to-noise variations as well
as the scenarios for fat tail errors (scenario of ε2), heteroscedastic (scenario of ε3) and
skewed errors (scenario of ε4).We analysed the performance for τ = 0.5, 0.6, . . . , 0.9
based on the mean squared error (MSE) and its standard deviation (SD). Table 1
summarises the recorded MSE for the simulations. The standard deviations are given
in brackets.

Regarding the choice of basis in all scenarios we chose to use T /2 b-spline curves
for the space basis. The time basis was created as N/2 curves of the fourier basis and
3 trend curves: linear, quadratic and logarithmic. One has to be aware that the choice
of basis, i.e. the number of basis functions can also have an impact on the results.

From the observed MSEs we concluded that whenever the error distribution is
skewed, the model is likely to produce big MSEs. The model performs, in general,
very well for different τ -levels and comparable to the already mentioned alternatives
proposed by Guo et al. (2015) or Tran et al. (2018). However, since for higher tau
levels fewer observations are taken into account with higher weights, the accuracy
decreases and the MSEs increase with higher τ–s.
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5 Application for temperature curves

We apply our model to Chinese temperature data, which consists of daily average
temperatures of 159 weather stations from the years 1957 to 2009. In this case n =
1, . . . , 53 corresponds to the year and t = 1, . . . , 365 corresponds to the day during
the year. The model is applied for each station separately. It is obvious that while the
factor loadings Znk vary over the years, the dependence within the year is captured by
factors mk(t) themselves.

5.1 The choice of time basis U

The proper time basis allows us to capture any periodic variation as well as any trend.
In the case of temperature data, we do not assume only linear trend, but also add
quadratic and logarithmic function to the basis:

u1(n) = n

N ,
u2(n) = n2

N 2 , u3(n) = log n

log N
.

For the periodicity we use N − 1 fourier basis functions with period N = 53:

u4 = constant,

u5 = 1
√

N
2

sin

(
2 · π · n

N

)

,

u6 = 1
√

N
2

cos

(
2 · π · n

N

)

,

. . .

u52 = 1
√

N
2

sin

(
(N−1)

2 · π · n
N

)

,

u53 = 1
√

N
2

cos

(
(N−1)

2 · π · n
N

)

.

In general, onemay operatewith various types of basis functions, such as higher-power
polynomials, local polynomials, trigonometric or periodic functions, splines, etc., with
regard to follow various types of non-linearity concerning the specific design of the
given data. In this step the group-lasso approach could be beneficial. In case of any
previous meteorological information about the periodicity and the cycles, the structure
can be taken into account and implemented into the model thus an appropriate subset
of bases is chosen.
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5.2 The choice of space basis�

In order to model the specific structure and pattern within the year, we set the space
basis Ψ as simple B-splines, particularly T−1

2 functions of the order 5. That corre-
sponds to the polynomials of degree 4. Classical approach is to arbitrary use at least
degree 3 (the lowest degree that supports curves inflection) or higher. We wanted to
increase the degree, however, avoiding the overfitting that leads to jumpy curves. One
can also choose to use the first few principal components explaining 85% of variance
or evenmore complex principal expectile components introduced by Tran et al. (2018)
in order to not lose the specific information in tails.

5.3 Forecasting

One of the traditional approaches for the forecasting of functional data can be done
via Karhunen–Loève expansion. The functional time series is rewritten via principal
components and their scores are consequently modeled separately with an appropriate
model. The forecast, obtained by the model of the scores, together with the original
principal components, are used for the prediction of functional time series. A similar
approach can be done for expectiles; see e.g. López-Cabrera and Schulz (2017) who
did a two-step approach. In the first step, for a fixed level of τ , the series of expectiles
curves is computed. Second, the principal component decomposition of the curves and
the forecast of their scores are done via a vector auto-regressive model. However, one
of the main restrictions of such an approach is the assumption of the weak-dependent
data.

The proposed DSFM model for expectile curves provides us with the easy method
of forecasting. Since the matrix of coefficients Ĉ is estimated once and the space basis
is already predefined as well, one only needs to forecast the time basis. The basis
consists of a set of functions, each of which can be simply prolonged for the value in
time N + 1. For each i = 1, . . . , J denote the values of prolonged basis function as
Ũi = (Ui (1), . . . ,Ui (N ),Ui (N + 1)) and the new updated prolonged time basis as
Ũ = (Ũ1, . . . , ŨJ ) . We obtain the forecast as:

êN+1(t) = (AŨ )� (BΨ ) = Ũ�ĈΨ.

Aiming to demonstrate the model, we applied the proposed DSFM-model to Chi-
nese temperature data sets. The daily observations for a specific station No.1. from
1957 to 2008 were used for the estimation of the model and matrix Ĉ . Consequently,
the model with prolonged time basis was used for the prediction of an expectile curve
for the upcoming year 2009. We used two other benchmark approaches to compare
the quality of our forecast. First, the VAR-model used the principal components
of the pre-computed expectiles curves from the years 1957–2008, forecasting their
scores via VAR(4) model. The second model takes into consideration the possible
non-stationarity and thus uses the ARIMAmodel to forecast the score of each compo-
nent separately. Figure 1 shows the data for the year 2009, together with the expectile
curve for fixed level τ = 0.8. According to MSE, the DSFM-forecast (green) better
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Fig. 1 Chinese temperature data
for the year 2009 (grey) with its
smoothed expectile curve
(black). Predictions of expectile
curve for level τ = 0.8 by
DSFM model (green), VAR
model (red) and ARIMA model
(blue)

( DYTEC_temperature)
(colour figure online)
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predicts the expectile curve than the VAR-model (red) or the ARIMA-model (blue),
which are constructed by forecasting the scores of principal components.

6 Application to wind speed data

As a second application, we used our DSFM-model for modeling expectile curves of
the wind speed of hurricanes in a hurricane season across the North Atlantic basin
from 1962 to 2011. As earlier, the observed data has the form Xn(ti ), where the
times ti are here separated by six hours, and the index n stands for the year. The
value Xn(ti ) is the wind speed in knots (1kn=0.5144m/s). The data is accessible on
the Unisys Weather Information website, UNISYS (2015). We focused only on the
hurricane-period from July till October, thus having T = 400 observations for every
year n = 1962, . . . , 2011, i.e. N = 50. We treated time 0 ≤ t ≤ T within a year as
continuous, and the observed curves as functional data.

Motivated by the work of Burdejova et al. (2017), who tested the hypothesis of
linear trends for hurricanes, we modeled the hurricane data with our DSFM-model
and focused primarily on the estimation of coefficients for different trend curves in
time basis.

6.1 The choice of time basis U

For the periodicity we used also ten fourier basis functions with period N = 50 and a
constant function. Since we were mainly interested not only in linear trends, we also
added quadratic and logarithmic function to the basis, so we set as before:
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TIME BASIS 12
TIME BASIS 13
TIME BASIS 14
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0
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TIME BASIS 12
TIME BASIS 13
TIME BASIS 14
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5 10 15 20
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−200
0
200

Fig. 2 Graphical representation of Ĉ for hurricane data and level τ = 0.5 (upper)
and τ = 0.8 (lower). The rows correspond to the last three time basis functions, i.e.
logarithmic (time basis 12), quadratic (time basis 13) and linear (time basis 14). The

columns correspond to the space basis, i.e. 20 principal components ( data_load_hurricanes

DYTEC_hurricanes)

u12(n) = log n

log N
, u13(n) = n2

N 2 , u14(n) = n

N ,
.

6.2 The choice of space basis�

In order to model the specific structure within the yearly period we use the principal
components. We set the first 20 components as the space basis Ψ , since they explain
90% of the variance.

6.3 The estimates of matrix̂C

The proposed algorithm was performed for two different τ -levels, τ = 0.5 and τ =
0.8. The estimations of matrices are shown in Fig. 2, for τ = 0.5 (upper panel) and
τ = 0.8 (lower panel). Two conclusions are obvious from the estimations:

1. The coefficients related to the linear trend for all principal components are not as
significant as the coefficients for quadratic and even logarithmic trend.

2. The linear trends have similar pattern for both τ -levels. However, this does not
hold for the other two trends, whose coefficients related to all principal components
differing with respect to τ , especially for logarithmic trend.

One could conclude that in the case of the historical observation of hurricanes, the
question of testing models incorporating the trends other than linear is lying in the
interest of future research.
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7 Conclusion

In this paper, we propose the dynamic semi-parametric factor model for a joint estima-
tion of expectile curves. For that purpose,weutilised a non-parametric series expansion
for both factors and their (time-developing) scores. We have provided the convergent
algorithm for its estimation that is based on the idea of iterative least squares. The
presented model is thus a utile extension of the commonly known factor model for the
mean, where L2 norm is used.

This novel approach provides us with several advantages. One can easily directly
estimate the extreme curves from the data without any need of pre-computing the
expectile curves separately, i.e. not using two-step approach estimate each curve by
expectile regression separately first and model the set of functions afterwards. More-
over, themethodmay be applied for non-stationary data aswell. Any dynamics, hidden
intra-dependencies, trends, or patterns of such tail event curves can be easily captured
with the proper choice of time basis.

We have demonstrated good estimation properties in a simulation study for different
setups of error terms and different expectile τ -levels as well. A method was applied
to the Chinese temperature dataset of average daily temperatures over years in order
to show its easy usability not only for modelling but also for forecasting, where it
performs as well as any traditional approach predicting this type of functional data.
The second application to the wind speed data of hurricanes showed not only the
importance of considering various trends but also pointed out the fact of diverse factor
structure for different τ -levels.
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Abstract

Cryptocurrencies have left the dark side of the finance universe and become an
object of study for asset and portfolio management. Since they have low liquidity
compared to traditional assets, one needs to take into account liquidity issues when
adding them to a portfolio. We propose a Liquidity Bounded Risk-return Optimization
(LIBRO) approach, which is a combination of risk-return portfolio optimization under li-
quidity constraints. Cryptocurrencies are included in portfolios formed with stocks of
the S&P 100, US Bonds, and commodities. We illustrate the importance of the liquidity
constraints in an in-sample and out-of-sample study. LIBRO improves the weight opti-
mization in the sense that it only adds cryptocurrencies in tradable amounts depend-
ing on the intended investment amount. The returns greatly increase compared to
portfolios consisting only of traditional assets. We show that including cryptocurren-
cies in a portfolio can indeed improve its risk–return trade-off.

Key words: asset classes, blockchain, crypto-currency, CRIX, portfolio investment

JEL classification: C01, C58, G11

1 Introduction

With the emergence of cryptocurrencies, not only has a new kind of currency and transac-

tion network arisen, but also a new kind of investment product. The cryptocurrency (CC)

market has shown strong gains over the past years, which can be inferred from the CRIX,

developed by Trimborn and Härdle (2018) and visualized at thecrix.de. The CRIX index

indicates a gain of the market of 500% over the past 2 years, which makes it attractive for

investors. Simultaneously the market bears high risk in terms of price variations and oper-

ational risk. In the past years, users and exchanges were vulnerable in many ways, for
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example, the traders on the exchange Mt. Gox experienced fraud and exchanges like

Bitfinex got hacked. Also single users were subject to larceny. The situation has already

improved a lot but there still remains a problem of trust, since the market is not fully devel-

oped. It has often been pointed out that a procedure called “cold-storage” should be used

to secure one’s CCs. This refers to storing the access codes for the coins in such a way that

they are disconnected from any device under threat of a hostile attack. While this source of

risk can be managed comparably easily, the market risk is difficult to handle.

A natural question is why an investor should engage in such a risky market given these

volatility effects. Advantages beside the opportunity for strong gains need to be present to

make an investment worth the risk. An important perk is that CCs have a low linear de-

pendency with each other and also the top 10 CCs (by market capitalization) have low cor-

relations with traditional assets, Elendner et al. (2018). Since CCs have low correlations

with each other and are uncorrelated with traditional assets, they are indeed interesting for

investors due to the diversification effect. Making use of this advantage, Brière, Oosterlinck

and Szafarz (2015) and Eisl, Gasser, and Weinmayer (2015) added Bitcoin to a portfolio of

traditional assets and found an enhanced portfolio in terms of risk-return. Since alternative

CCs (alt-coins, other than Bitcoin), have favorable properties too, we aim to construct port-

folios consisting of traditional assets and several cryptocurrencies. Lee Kuo Chuen, Guo,

and Wang (2017) worked in a related direction by investigating a portfolio mimicking the

CRIX, the CRyptocurrency IndeX. Treating CRIX as a financial asset, Chen et al. (2017,

2018) investigated options pricing based on CRIX.

When investing in CCs, one is confronted with a higher volatility than for traditional

assets, see Figure 1. Markowitz (1952) developed a method which optimizes the portfolio al-

location in terms of a minimum variance portfolio according to a target return. The approach

was applied in a broad variety of applications and showed its usefulness especially in the case

of Gaussian distributed data. But CCs are known to behave differently from the normal distri-

bution, Elendner et al. (2018). In particular, the stronger tails come with higher risk, arising

from higher moments, Scaillet, Treccani, and Trevisan (2018). Tail risk optimized portfolios

might be worth considering in this market, for example, taking into account Conditional

Value-at-Risk (CVaR), Rockafellar and Uryasev (2000). But there is another issue that cannot

be handled by these risk optimization methods, namely the low liquidity of the CC market.

Figure 1 (right plot) presents a comparison of the liquidity measured by median daily trading

amount of CCs and S&P 100 component stocks. It is obvious that the median daily trading

amounts of CCs are all lower than the 25% quantile of S&P 100 stocks.

If we want to include CCs and stocks in the same portfolio, we need to avoid giving CCs

too big a weight since this will induce a severe liquidity problem on adjusting the position

when reallocating the portfolio. For example, if one holds a long position on an asset that is

equal to twice its average daily trading amount, then one expects to take about two days to

clear this position, following the same pace of the market. However, this may result in miss-

ing a trading opportunity. A proper way to deal with such a liquidity issue is the introduc-

tion of liquidity constraints on the weights. Krokhmal, Palmquist, and Uryasev (2002)

utilized liquidity constraints in the sense of restricting the change in a position. Darolles,

Gourieroux, and Jay (2012) choose a related approach by incorporating a penalty term into

the optimization function, balancing the risk and change of positions in the portfolio.

However we intend to be able to clear all positions at once, which is assumed to be in the

interest of an investor engaging in a risky market like the CC market. Instead our definition
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of liquidity constraints is concentrated on the entire weight given to a CC, rather than the

allowed change in a position. Additionally, such an approach has the advantage of tackling

a drawback of Markowitz portfolios. Minimum Variance optimized portfolios often suffer

from extreme positive and negative weights, Härdle et al. (2018). This may result from a

single dominant factor in the covariance matrix, Green and Hollifield (1992). In an empir-

ical study, Jagannathan and Ma (2003) find nonnegativity constraints on the weights to

have an equal efficacy at removing the effect of a single dominant eigenvalue from the co-

variance matrix. Fan, Zhang, and K. Yu.June (2012) provide theoretical insights into their

findings and find that constraining the weights from taking extreme positions is more ef-

fective than nonnegativity constraints. Thus introducing weight constraints gives us the op-

portunity to “kill two birds with one stone.”

Due to these challenges and the advantage from investing in cryptocurrencies, we aim at

a portfolio optimization method which takes into account volatility or tail risk and low li-

quidity. We call it LIBRO—which is a combination of a risk optimization portfolio forma-

tion method and an additional restriction, which prevents big weights on assets with low

liquidity. The portfolios are formed with Mean-Variance (Markowitz) and Conditional

Value-at-Risk as risk measures. Due to the huge dimensionality of the asset universe and

limited data availability, the sample covariance matrix may not be a well-conditioned esti-

mator of its theoretical counterpart (well-conditioned in the sense that inverting the covari-

ance matrix does not amplify the estimation error, Ledoit and Wolf (2004)). A well-

conditioned and more accurate estimator was introduced by Ledoit and Wolf (2004), which

we apply to the estimation of the Markowitz portfolios. Reduced factor model approaches

were, for example, investigated by Kozak, Nagel, and Santosh (2017) and sparse estimation

by, for example, Friedman, Hastie, and Tibshirani (2008). To investigate the robustness of

the results, the reallocation dates in the out-of-sample study are set to be monthly and

weekly. In order to overcome estimation difficulties driven by too short time series, we

work under an extending window approach. Two datasets are compared in the application.

The first one is a portfolio formed with S&P 100 components and CCs. The excess returns

from the portfolio with CCs over the pure stock one range from 13.5 to 88% (gained over
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Figure 1 Boxplots of standard deviation and median trading volume (measured in US dollars) of all

CCs and S&P 100 components, from April 22, 2014 to October 30, 2017. Obviously CCs have much

lower daily trading volumes and higher volatilities than the stocks, highlighting the importance of

volatility and liquidity risk management when investing in them.

(a) Comparison of standard deviation of CCs and S&P100 Equity Index components. (b) Comparison

of median trading volume of CCs and S&P100 Equity Index components.
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3.5 years) in the in-sample analysis, and from 13.7 to 60% (gained over 2.75 years) in the

out-of-sample analysis. When using stocks, bonds and commodities as the traditional

assets, the results still range from 6 to 20.43% in-sample (3.5 years) and 6.7–24.38% out-

of-sample (2.75 years). Summary statistics of the return series indicate that including CCs

can increase the Sharpe Ratio, thus we show that including CCs can indeed improve the

risk-return trade-off of the portfolio. Furthermore, the present article illustrates the import-

ance of the liquidity constraints and their effects.

This article is organized as follows. Section 2 introduces the data. Section 3 presents the

portfolio optimization methods. Section 4 introduces the liquidity constraints and Section 5

gives an in-sample and out-of-sample application with S&P 100 component stocks,

Barclays Capital US Aggregate Index (US Bonds Index), S&P GSCI (Commodities Index),

and CCs. The portfolios based on stocks are indicated by S, while the Stock, Bonds, and

Commodities ones are indicated by SBC. The results are summarized in Section 6. The

codes used to obtain the results in this article are available at www.quantlet.de, Borke and

Härdle (2018) and Borke and Härdle (2017).

2 Data Description

In this article, 42 CCs are used to form portfolios together with traditional financial assets,

with a sample period from April 22, 2014 to October 30, 2017. The daily prices (in USD)

and trading volumes were downloaded from the CRIX cryptocurrencies database (the-

crix.de), kindly provided by CoinGecko. The CCs were selected so that the average market

cap during the sample period is no less than 10,000 US dollar. This criterion was applied

since we target portfolios consisting of a reasonably high investment size, thus the CCs

should have enough market capitalization to be added to a portfolio.

For the traditional financial assets, we chose the components of the S&P 100, Barclays

Capital US Aggregate Index (US-Bonds Index), S&P GSCI (Commodities Index). The daily

closing price (in USD) and trading volume, dated from April 22, 2014 to October 30, 2017,

are downloaded from Datastream. To get the daily trading volume of stocks measured in

US dollars, we multiplied the daily trading volume by the daily closing price. Three stocks

were omitted: DowDuPont Inc., The Kraft Heinz Company, and PayPal Holdings, Inc.,

since they have a shorter sample period due to company mergers or spin-offs. For the indi-

ces we did not chose a particular Exchange Traded Fund, instead we assume perfect liquid-

ity for both of them.

We show the summary statistics for the top 10 CCs over time in Table 1. For the full

list, see Table A1 in the Appendix. In both tables, the CC statistics are arranged in decreas-

ing order of their mean daily trading volume. For comparison, we list the summary statis-

tics of stocks, a bond index, and a commodity index too. The summary statistics for the

stocks are the average values for all stocks. The first 5 columns focus on the return series,

while the remaining two list the mean trading volume and market capitalization. We will

focus on Table 1 to analyze the summary statistics of the CCs. Compared to the average

annualized mean returns for stocks, which is 8%, and for the bond index, 5%, those for

CCs can be quite shocking: except for PPC and BLK, all the other eight have returns that

exceed 10%. What’s more, five of them exceed 20%, three of them exceed 50%, and there

is even one of them, DASH, that has an annualized average return that exceeds 100%. One

can observe that three of the alt-coins, viz., Ripple (XRP), Dashcoin (DASH), and DigiByte
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(DGB), have a higher return than BTC, the dominant CC in the market, indicating that it is

time to take these alt-coins into account for portfolio formation as well. However, the out-

standing returns come at a price. Judging from Table 1, CCs also have much higher volatil-

ity and tail risk. All CCs have an annualized volatility that exceeds 50%, with 7 of them

even exceeding 100%. In contrast, S&P 100 stocks have an average annualized volatility of

20%, as does the commodity index, and the bond index has only 5%. Thus there is a trade-

off in terms of high returns yet high standard deviations for the CCs. This finding is consist-

ent with the size effect reported by Elendner et al. (2018). A similar picture is observed for

the kurtosis: all the listed CCs, except for BTC and NXT, have a higher kurtosis than the

stocks (10.29), bond index (12.38), and commodity index (4.84). Among these CCs, BTC

has the lowest volatility of the 10, which is not surprising since it has the largest market

capitalization, largest trading volume, and longest trading history, which makes it the most

mature CC. Besides, BTC is the only CC that has a negative skewness, akin to stocks and

bonds, while the other CCs all have positive skewness. This may imply that the other CCs

are in a different developmental phase than BTC. For the auto-correlation, most of the top

10 CCs have negative or slightly positive q, like stocks and bonds.

The influence of liquidity is a major focus of this study. The evolution of the log of the

trading volume of the top 10 CCs by trading volume is shown in Figure 2, which, for each

of the CCs, shows the daily changes. Table 2 provides descriptive statistics of the log

returns of the turnover value. For all of the 10 CCs one can see that they vary around a

mean value of roughly 0. The median is slightly negative for all CCs, suggesting that there

are more frequent decreases in the liquidity than increases. However the first and third

quantiles show more or less opposing values, which hints that the variation around the

Table 1 Summary statistics of top ten CCs by trading volume. Ann.Ret and Ann.STD indicates

annualized mean and standard deviation of the return of each CC, which are calculated by mul-

tiplying their daily counterparts by 250 and
ffiffiffiffiffiffiffiffi
250
p

respectively. For the purpose of comparison,

we list the summary statistics of traditional financial assets at the bottom part of the table as

well. “Bond” and “Commodity” indicate the summary statistics of the daily return of the bond

index and commodity index, while “Stocks” indicates the average level of the summary statis-

tics for the daily return of each individual stock

Ann.Ret Ann.STD skewness kurtosis q mean volume market cap

BTC 0.49 0.55 –0.61 10.87 –0.01 4.71eþ 08 1.07eþ 10

LTC 0.29 0.87 0.34 23.70 0.02 9.04eþ 07 3.22eþ 08

XRP 0.68 1.09 2.72 37.76 0.01 4.88eþ 06 8.35eþ 08

DASH 1.16 1.37 0.62 50.60 –0.14 1.61eþ 06 1.52eþ 08

DOGE 0.11 0.96 0.97 15.54 0.01 3.87eþ 05 3.11eþ 07

NXT 0.17 1.08 0.80 8.42 –0.03 2.28eþ 05 2.08eþ 07

DGB 0.73 1.70 2.93 29.89 –0.03 1.63eþ 05 7.24eþ 06

PPC –0.17 1.00 0.62 12.51 –0.05 1.05eþ 05 1.54eþ 07

BLK –0.05 1.27 1.82 17.72 –0.08 7.15eþ 04 4.21eþ 06

VTC 0.33 1.76 1.84 17.83 –0.01 5.93eþ 04 2.42eþ 06

Stocks 0.08 0.20 –0.26 10.29 0.00 5.40eþ 08

Bond 0.05 0.05 –1.91 12.38 –0.04

Commodity –0.20 0.20 0.05 4.84 –0.07
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median value is symmetric. In extreme cases, min and max values, this does not hold. The

variance and extreme values suggest that fixing liquidity weights based on the mean turn-

over value could result in boundaries that are too high. Thus, an approach based on a ro-

bust measure, the median, will be employed. In the next section, we will introduce the

portfolio optimization methods that we will use.

3 Constrained Portfolio Optimization

Markowitz (1952) introduced the theory of optimizing weights so that the variance of

the portfolio would be minimized according to a certain target return. When the

variance serves as a risk measure, this translates into risk minimization. Consider now N

assets with T returns given by an ðN � TÞ matrix X and let R̂ be the estimated covariance

3
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Figure 2 Common Logarithm of turnover value of top 10 CCs by their daily trading volume, BTC, LTC,

XRP, DOGE, NXT, PPC, NMC, DASH, XCP, DGB.

LIBROliquidity

Table 2 Summary statistics of the trading volume of top 10 CCs

BTC LTC XRP DOGE NXT PPC NMC DASH XCP BLK

min –5.50 –4.85 –3.65 –4.00 –2.06 –3.00 –2.95 –3.07 –2.64 –4.15

1st Quantile –0.26 –0.36 –0.39 –0.37 –0.38 –0.50 –0.57 –0.35 –0.56 –0.50

mean 0.01 0.00 0.01 –0.00 0.01 0.00 –0.00 0.01 0.00 0.00

median –0.03 –0.06 –0.02 –0.01 –0.02 –0.05 –0.04 –0.01 –0.04 –0.03

3rd Quantile 0.23 0.29 0.36 0.33 0.36 0.46 0.48 0.32 0.53 0.47

max 5.44 4.47 4.86 3.39 2.53 4.50 4.90 2.89 4.40 4.28

variance 0.26 0.41 0.48 0.41 0.38 0.63 0.84 0.33 0.83 0.67
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matrix of the respective assets. Then the Markowitz portfolio is defined as, Härdle and

Simar (2015):

min
w

w>R̂w

s:t:1>Nw ¼ 1; l�x>w
(1)

where w ¼ ðw1;w2; . . . ;wNÞ> are the weights on the assets, x is the (N � 1) vector of

expected returns of the assets, 1N is an ðN � 1Þ matrix (vector) with all elements equal to 1,

and l is the target return. The optimization problem is extended by a bound for each

weight. The vector of constraints a ¼ ða1; . . . ; aNÞ> with ai 2 ½0;1Þ for all i ¼ f1; . . . ;Ng is

an (N � 1) vector and can be given (or estimated) upfront. Furthermore, an upper bound

for the sum over the absolute values of the weights is introduced. Then, a constrained

Markowitz portfolio is defined as

min w>R̂w (2)

s:t: 1>Nw¼ 1; l�x>w;

jjwjj1�c; jwij�ai 8i:
(3)

The parameter c controls the amount of shortselling, c 2 ½1;1Þ. Fan et al. (2012)

showed how the risk of the estimated portfolio is influenced by the choice of c while ai ¼
1 for all ai. The estimation of R̂ is crucial for the method, yet the huge dimensionality of

the asset universe and limited data availability make the estimation of R̂ difficult. Thus we

employ the covariance estimator of Ledoit and Wolf (2004). It has been shown to be invert-

ible, well-conditioned, and asymptotically more accurate than the sample covariance ma-

trix. The estimator is a weighted average of the identity matrix and the sample covariance

matrix. The identity matrix is a well-conditioned matrix and due to its being combined

with the sample covariance matrix under a quadratic loss function, the resulting estimator

has respective property and is more accurate than the sample covariance matrix, Ledoit and

Wolf (2004). For more details, we refer to Section A.1 in the Appendix.

However, Markowitz portfolio optimization neglects the effect of higher moments

when minimizing the risk. Due to the often occurring strong decreases in the CC market,

portfolios optimized for Conditional Value-at-Risk (CVaR) will be employed to compare

their performance with the Markowitz portfolio.

Define yðwÞ ¼ w>X as the returns of the portfolio with weights w and a as the probabil-

ity level such that 0 < a < 1, the Value-at-Risk (VaR) is defined by

VaRaðwÞ ¼ �inf fyjFðyjwÞ�ag (4)

with FðyjwÞ being the distribution function of the portfolio returns with weights w. VaRaðwÞ
is the corresponding a-quantile of the cdf, defining the loss to be expected ða � 100Þ% of the

time. A negative sign is added to turn the negative return into a loss, which is defined on the

positive domain. Considering the VaR only captures one quantile rather than the whole shape

of the tails of the return distribution, it is silent on losses beyond that critical point.

Overcoming the limitations of the VaR measure, the CVaR was introduced which measures

the expected loss larger or equal to the VaRaðwÞ. Since CCs are at times subject to huge

losses, the CVaR will give a more accurate impression of the investment at risk.
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The Conditional Value-at-Risk is defined as, Rockafellar and Uryasev (2000),

CVaRaðwÞ ¼ �
1

1� a

ð
yðwÞ��VaRaðwÞ

yf ðyjwÞdy; (5)

with @
@y FðyjwÞ ¼ f ðyjwÞ the probability density function for the portfolio returns y with

weights vector w. Thus CVaRaðwÞ includes the expected value over the tail of the pdf left of

the VaRaðwÞ.
The optimization problem is, then,

min CVaRaðwÞ (6)

s:t: 1>Nw¼ 1; l�x>w;

jjwjj1�c; jwij�ai 8i:
(7)

So far we have taken into consideration the parameter c. However, short-selling is still

rare in the CC market. Thus, the value of c is an issue. First exchanges started to offer the

possibility of short selling for larger CCs, and the launch of Bitcoin Futures allows it too.

But it is still not possible for most CCs to be shorted. Due to the inability to sell short in the

CC market, the exposure is set to c¼1, which produces a no short-sell constraint combined

with 1>Nw ¼ 1. Surely it is only a matter of time until short selling is common in the CC

market too. In that case, our optimization problem could be amended to allow for it, which

would enable one to use hedging effects to decrease the historical risk. However, this ap-

proach can cause extreme weights on single assets, so that the position is not tradable in a

real market situation.

4 LIBRO

So far, the actual measure for liquidity for the constraints was not further explained. Yet

this is a central point of this study, because CCs have far lower daily trading amounts than

traditional financial assets, causing a liquidity problem for any portfolio construction. To

address this issue, one tries to avoid holding too many illiquid assets by employing weight

constraints jwij�ai for all i ¼ 1; . . . ;N.

Many different liquidity measures have been proposed in the literature, tackling either

one aspect of liquidity or several aspects at the same time, Wyss (2004). In the context of

this paper, we are interested in

1. being able to trade the assets on the reallocation date,

2. being able to sell or buy between two reallocation dates, if necessary.

Naturally, a more liquid asset should be allowed to have a higher weight in the

portfolio.

Our data set consists of daily price and turnover value observations, which enables us to

use the turnover value as a proxy for liquidity. An even better measure would be Limit

Order Book based measures since they allow a deeper look into the behaviour of the mar-

kets. As we do not possess of a sufficient history of these data to run an analysis, for the

moment the liquidity measures using such information are not applicable. Since the time

period of interest for a trading action is one day, daily closing data for the standard assets
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and CCs are going to be used. The trading volume of asset i at date t, measured in USD, is

defined to be1

TVit ¼ pit � qit (8)

where pit is the closing price of asset i at date t, and qit is the number of shares of asset i

traded at date t. The liquidity of asset i in a sample with time length T can be measured by,

e.g. the mean or median of the daily trading volume. The mean has the disadvantage that

days with outliers in the trading volume will distort the liquidity measure. The median is a

robust measure and therefore better suited for this situation. We define the sample median

of the trading volume to be

TVi;m ¼
1

2
ðTVi;u þ TVi;lÞ (9)

where TVi;u ¼ TVi; Tþ1
2d e; TVi;l ¼ TVi; Tþ1

2b c and d�e; b�c indicate the ceiling and floor opera-

tors respectively.

Next we construct the liquidity bound. Taking into account that investors enter the mar-

ket with different sizes of portfolios, this has to be reflected in the liquidity bound. For ex-

ample, an investor with a portfolio of 100 USD will not be as strongly affected by low

liquidity as an investor with 10, 000, 000 USD. Denote by M the total amount we are going

to invest and recall that wi; i ¼ 1; . . . ;N is the weight for asset i, so Mwi is the market value

of the position in asset i. Hence the constraint on wi concerning the liquidity of asset i is

Mwi�TVi;m � fi; (10)

where fi is a factor controlling the maximum ratio of the position in asset i to its median

trading volume, i.e. liquidity. The larger the fi, the more bullish the investor is on asset i,

and the more likely the position in asset i will suffer from a low liquidity problem when

clearing or rebalancing. For example, setting fi ¼ 0:1 corresponds to a position in asset i

not larger than 10% of the median trading amount of asset i. Dividing both sides of

Equation (10) by M yields the bound for wi:

wi�
TVi;m � fi

M
¼ âi:

Hence, the Markowitz portfolio optimization framework we will use in this article is

min w>R̂w

s:t:1>Nw¼ 1; l�x>w; jjwjj1¼ 1;

wi�
1

M
�dLiqi ¼ âi 8i;

(11)

4 Note this is an approximation of the actual trading volume. The trading volume of asset i on date t,

measured in USD, is calculated as TVit ¼
PNt

j¼1 pit ;j � qit ;j , where Nt is the number of times that

asset i is traded on date t, and pit ;j and qit ;j are the trading price and number of traded shares for

the jth trade, j ¼ 1; � � � ;Nt . However, due to the lack of sufficient historical data on the per-trade

data of the CCs, the theoretical definition is not available for a sufficiently large sample size.
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where dLiq ¼ ðTV1;m � f1; � � � ;TVN;m � fNÞ>. The CVaR optimization problem can thus be

expressed as

min CVaRaðwÞ

s:t: 1>Nw¼ 1; l�x>w; kwk1¼ 1;

wi�
1

M
�dLiqi ¼ âi 8i:

(12)

5 Application

For the application we treat three kinds of settings. First we perform an in-sample analysis

without liquidity constraints to investigate whether including CCs in traditional financial

portfolios increases the risk–return trade-off. Furthermore, we intend to determine whether

including alt-coins (i.e. CCs other than Bitcoin) is profitable and confirm whether the intro-

duction of liquidity constraints is necessary. Second, when liquidity constraints are included

in the in-sample analysis, we set fi ¼ 0:01 for all i ¼ 1; . . . ;N, that is, we assume that our

position in a certain asset cannot exceed 1% of its daily trading volume. This is a quite con-

servative setting, and investors who want to be more aggressive can enlarge this factor. We

choose to be conservative because the CC market, especially the alt-coin market, exhibits

swings in its daily trading volume. Thus we are securing our portfolio choice against these

swings. Furthermore, trading on the entire daily trading volume would be a rather strict an-

ticipation. In both cases, the portfolio and weights are formed over the entire time period.

For the out-of-sample portfolio formation, we choose an extending window approach. The

initial portfolio weights are derived for the time period from April 22, 2014 until December

31, 2014. Due to the limited data availability in the CC market, the April 2014 data are not

omitted, so as to enhance the estimation. Two kinds of portfolio rebalancing frequencies

are employed: weekly and monthly, while the underlying data period is extended. Thus for

the monthly case, on the next re-evaluation date, which is February 1, 2015, the derivation

period is extended to the period from April 22, 2014 until January 1, 2015. For the port-

folio formation under CVaR, the quantile level in all cases is chosen to be a ¼ 0:05. For the

liquidity constraint, we maintain the same setting for the whole of the analysis, which is ei-

ther unbounded (without liquidity constraint), or bounded with investment amount equal

to one of either 1:0� 105; 1:0� 106, or 1:0� 107 US dollars, see Equations (11) and (12).

For selecting the target return l, the Sharpe Ratio is maximized for the Markowitz port-

folio, and the Return-to-CVaR Ratio for the CVaR portfolio. The median over the trading

volume, necessary for the constraints, is chosen in-sample over the entire sample and out-

of-sample over the extending window. We compare two different data sets consisting of

traditional assets by adding CCs to them: one based solely on stocks from the S&P 100 (S),

and one on stocks plus US Bonds and Commodities (SBC). We denote the S and SBC plus

CCs portfolios as S-CC and SBC-CC, respectively.

5.1 In-sample portfolio formation

5.1.1 Without liquidity bounds

The cumulative returns of the portfolios formed by the S&P 100 component stocks and

SBC with or without CCs for both definitions of risk are shown in Figure 3. One can see
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that the improvement in the returns is remarkable and consistent throughout the sample.

Starting from the very beginning, the portfolio with CCs (S-CC/SBC-CC) outperforms the

one without, with the difference becoming larger and larger as time goes on. At the end of

the sample, the S-CC Markowitz portfolio gives a cumulative return of 173.3%, while the

S portfolio ends at 85.3%, only one-half of the former. However, comparing the S-CC and

the SBC-CC, the former outperforms the latter, with double the cumulative return. This is

because the latter reaches the maximum Sharpe ratio at a lower target return. In fact, the

optimal Sharpe ratio of the latter portfolio is always higher than those of the former port-

folio, see Tables 3 and 4. The case is similar for the CVaR portfolio, with the difference

being even larger. It is interesting to observe that the portfolio returns for the CVaR port-

folio are higher than those for the Markowitz, since this suggests that the returns increase

due to holding CCs rises more significantly than does the risk induced from the tails. The

summary statistics of the Markowitz portfolio returns are given in Tables 3 and 4, where

the S column is the one for the S portfolio and the SBC column is that for the SBC portfolio,

and the “unbounded” column is for the S-CC and SBC-CC without implementing the li-

quidity constraints. As an example of the results of both strategies (Markowitz and CVaR)

with S and SBC, we will now look in more detail at the S Markowitz portfolio results,

Table 3. Coinciding with the previous finding, the annualized average returns of the S-CC

(48%) is twice that of the S portfolio (23%). Though the volatility is a bit higher, the whole

risk–return trade-off has improved after adding CCs, since the Sharpe Ratio increases from

0.12 to 0.18. The higher moments of portfolio returns are also improved: after adding CCs,

the skewness changes from –0.31 to 0.14, and the kurtosis decreases from 5.50 to 4.55.

The Maximum drawdown, which measures the downside risk of the portfolio, stays the

same. Similar results can be observed when forming a CVaR portfolio, see Tables 3 and 4.

When using the SBC portfolio, the average returns roughly halve, while the standard devi-

ation shrinks by more than one-half, resulting in an improvement in the Sharpe ratio.

Even though these are striking results, a check on the weights suggests that a liquidity

constraint aiming at lowering the weight on illiquid assets is needed. The weights different
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Figure 3 The panels 3a and 3 b indicate the cumulative return performance of S/S-CC and SBC/SBC-CC

portfolios. The dashed (- - -) and dotted (� � � �) lines indicate the S/SBC portfolios formed with CVaR and

Markowitz method respectively, while the solid (—) and long-dashed (– –) lines correspond to the S-

CC/SBC-CC portfolios formed with CVaR and Markowitz method. The coloured version is available

online.

(a) A comparison of the cumulative returns of the S-CC portfolios. (b) A comparison of the cumulative

returns of the SBC-CC portfolios.
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from 0 given to CCs in the unbounded case for the Markowitz and CVaR portfolios are

shown in Tables 5–8.

The key information conveyed from the tables is that the more liquid (traded) CCs are

not generally given a larger weight. The biggest weight on a CC is given to NLG (Gulden),

Table 4 Summary statistics of in-sample SBC/SBC-CC Markowitz/CVaR portfolio return. All indi-

ces are calculated using daily returns. Ann.Ret and Ann.STD indicate annualized mean return

and standard deviation, q refers to the autocorrelation parameter

SBC-CC

SBC Unbounded M ¼ 1:0� 105 M ¼ 1:0� 106 M ¼ 1:0� 107

Markowitz Ann.Ret 0.13 0.25 0.18 0.15 0.15

Ann.STD 0.06 0.08 0.07 0.06 0.06

Sharpe-ratio 0.14 0.19 0.17 0.16 0.15

Skewness –0.34 0.01 –0.27 –0.46 –0.48

Kurtosis 4.95 4.33 4.81 5.04 5.20

Max drawdown 0.04 0.05 0.05 0.05 0.05

Auto correlation 0.03 –0.01 0.01 0.03 0.04

CVaR Ann.Ret 0.13 0.28 0.19 0.16 0.15

Ann.STD 0.06 0.09 0.07 0.06 0.06

Sharpe-ratio 0.13 0.19 0.16 0.16 0.15

Skewness –0.26 0.29 0.03 –0.39 –0.38

Kurtosis 4.77 4.59 4.69 4.90 4.86

Max drawdown 0.05 0.05 0.05 0.05 0.05

Auto correlation 0.01 –0.02 –0.02 0.00 0.01

Table 3 Summary statistics of in-sample S/S-CC Markowitz/CVaR portfolio return. All indices

are calculated using daily returns. Ann.Ret and Ann.STD indicate annualized mean return and

standard deviation, q refers to the autocorrelation parameter

S-CC

S unbounded M ¼ 1:0� 105 M ¼ 1:0� 106 M ¼ 1:0� 107

Markowitz Ann.Ret 0.23 0.48 0.33 0.27 0.27

Ann.STD 0.13 0.17 0.14 0.13 0.13

Sharpe-ratio 0.12 0.18 0.15 0.14 0.13

Skewness –0.31 0.14 –0.24 –0.54 –0.55

Kurtosis 5.50 4.55 5.20 5.70 5.68

Max drawdown 0.10 0.10 0.11 0.11 0.11

Auto correlation –0.02 –0.04 –0.01 0.00 0.01

CVaR Ann.Ret 0.22 0.52 0.32 0.26 0.26

Ann.STD 0.12 0.18 0.14 0.12 0.12

Sharpe-ratio 0.12 0.18 0.15 0.14 0.13

Skewness –0.27 0.28 –0.00 –0.47 –0.48

Kurtosis 5.50 4.81 4.89 5.60 5.54

Max drawdown 0.10 0.09 0.10 0.10 0.10

Auto correlation –0.03 –0.05 –0.02 –0.02 –0.02
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which has a medium level of liquidity. However, Bitcoin (BTC), the CC that has the largest

trading volume, is given a zero weight. Considering the CCs in the unbounded S-CC

Markowitz portfolio, their weights account for 16.3% of the whole portfolio. The top three

CCs by weight are NLG (Gulden), XRP (Ripple), and DASH (Dash coin), at 5.3%, 3.7%

and 3.2% respectively. This shows that alt-coins are more appealing than BTC in terms of

variance minimization, at least during the period covered by this paper. Furthermore, the

inclusion of liquidity constraints appears necessary, since the highly weighted CCs have,

partly, low liquidity compared to BTC. For instance, with an investment amount of M ¼
1:0� 106 US dollars, and considering S-CC, one needs to hold a position of 5, 300 US

Table 6 Weights (in %) given to CCs in in-sample SBC-CC Markowitz portfolios. Only CCs that

have a positive weight in at least one portfolio are shown in the Table. The “unbounded” refers

to the portfolio formed without liquidity constraint included; the remaining three are all formed

under liquidity constraint with different investment amounts M. Underline/bold indicates that

the weight equals to its liquidity upper bound

Unbounded M ¼ 1:0� 105 M ¼ 1:0� 106 M ¼ 1:0� 107

BTC 0.00 2.11 3.14 3.68

XRP 1.47 1.77 0.80 0.08

DASH 1.34 1.41 0.21 0.02

DGB 0.43 0.13 0.01 0.00

VTC 0.13 0.10 0.01 0.00

NLG 2.26 0.02 0.00 0.00

FLO 0.64 0.01 0.00 0.00

RBY 0.37 0.03 0.00 0.00

total 6.65 5.57 4.18 3.79

Table 5 Weights (in %) given to CCs in in-sample S-CC Markowitz portfolios. Only CCs that have

a positive weight in at least one portfolio are shown in the Table. The “unbounded” refers to

the portfolio formed without liquidity constraint included; the remaining three are all formed

under liquidity constraint with different investment amounts M. Underline/bold indicates that

the weight equals to its liquidity upper bound

Unbounded M ¼ 1:0� 105 M ¼ 1:0� 106 M ¼ 1:0� 107

BTC 0.00 5.37 8.28 9.01

XRP 3.72 4.53 0.80 0.08

DASH 3.17 2.13 0.21 0.02

DGB 0.95 0.13 0.01 0.00

VTC 0.18 0.10 0.01 0.00

NLG 5.30 0.02 0.00 0.00

FLO 1.53 0.01 0.00 0.00

RBY 0.84 0.03 0.00 0.00

NOTE 0.18 0.01 0.00 0.00

CBX 0.12 0.00 0.00 0.00

total 16.00 12.32 9.32 9.11
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dollars in NLG, which is equal to 47.3% of its average daily trading volume. Taking into

consideration the price impact, this position is neither easy to obtain nor to clear. Table 7

shows the weights for the CVaR p1:0� 106ortfolio, providing similar results. In fact, the

influence of the CCs and NLG in particular is even higher. However, when relying on the

SBC portfolio, the weights given to CCs shrink markedly, Table 8. It seems the inclusion of

bonds and commodities shifts the Mean–Variance and Mean–CVaR Frontier so strongly

that the resulting portfolio favors having fewer CCs. However one can see that this harms

the returns achieved from the portfolio.

Table 8 Weights (in %) given to CCs in in-sample SBC-CC CVaR portfolios. Only CCs that have a

positive weight in at least one portfolio are shown in the Table. The ‘unbounded’ refers to the

portfolio formed without liquidity constraint included; the remaining three are all formed under

liquidity constraint with different investment amounts M. Underline/bold indicates that the

weight equals to its liquidity upper bound

Unbounded M ¼ 1:0� 105 M ¼ 1:0� 106 M ¼ 1:0� 107

BTC 0.00 1.27 4.38 4.73

XRP 1.32 2.33 0.80 0.08

DASH 1.80 2.15 0.22 0.02

DGB 0.00 0.12 0.01 0.00

NLG 3.18 0.02 0.00 0.00

FLO 1.35 0.01 0.00 0.00

RBY 0.53 0.03 0.00 0.00

MAX 0.26 0.01 0.00 0.00

total 8.44 5.94 5.40 4.84

Table 7 Weights (in %) given to CCs in in-sample S-CC CVaR portfolios. Only CCs that have a

positive weight in at least one portfolio are shown in the Table. The “unbounded” refers to the

portfolio formed without liquidity constraint included; the remaining three are all formed under

liquidity constraint with different investment amounts M. Underline/bold indicates that the

weight equals to its liquidity upper bound

Unbounded M ¼ 1:0� 105 M ¼ 1:0� 106 M ¼ 1:0� 107

BTC 0.00 3.82 8.71 9.61

XRP 3.30 5.57 0.80 0.08

DASH 3.72 2.15 0.22 0.02

DGB 0.00 0.12 0.01 0.00

NLG 6.22 0.02 0.00 0.00

FLO 2.79 0.01 0.00 0.00

RBY 1.11 0.03 0.00 0.00

MAX 0.50 0.01 0.00 0.00

CBX 0.28 0.00 0.00 0.00

ZEIT 0.12 0.00 0.00 0.00

total 18.03 11.73 9.74 9.71
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5.1.2 Including liquidity constraints

The cumulative returns of portfolios with liquidity constraints included are shown in

Figure 4, with the summary statistics of these returns in Table 3. When liquidity constraints

are imposed, the cumulative returns shift downward compared to those without liquidity

constraints. The larger the amount to invest, the lower the cumulative returns. This is not

surprising, since adding a liquidity constraint makes the global optimal Sharpe ratio point

and Return-to-CVaR point unreachable, and the larger the investment amount, the tighter

the liquidity constraint. Hence, the constrained optimal Sharpe ratio point is further from

the unconstrained one. When the investment amount is set to 1:0� 105 or US dollars, the

cumulative returns of the Markowitz portfolios still outperform the one formed by only

traditional assets throughout the sample, and by the end of the sample period, the cumula-

tive returns are 128.5% and 117.0% respectively, still 43.2% and 31.7% higher than the S

portfolio, by considering this setting as an example. When the investment amount is

increased to 1:0� 107 US dollar, the portfolio does not outperform the one containing only

stocks until 2017, however it ends at 98.8%, still 13.5% higher. For the CVaR portfolios,

the constrained portfolios still outperform the S and SBC portfolios, however only after

2017 and with excess returns of 12.2% and 5.8%, respectively.

Summary statistics also favour the portfolios with CCs, see the last three columns of

Tables 3 and 4. When the investment amounts are set to 1:0� 105; 1:0� 106 or 1:0� 107

US dollars, the liquidity constrained portfolios have higher average return and higher

Sharpe-ratio than the S/SBC portfolios, with, however, a slightly higher standard deviation

and almost the same downside risk. Kurtosis and Skewness show a mixed picture. Mostly

the absolute value of either increases, making it less of a Gaussian distribution. Yet this ob-

servation is not surprising, taking into account the strong deviations of CC return series

from normality. Overall, the summary statistics provide support for adding CCs to port-

folios consisting of the chosen traditional assets.

To see how the liquidity constraint affects the optimization procedure, we turn to an

analysis of the weights. For the comparison, we focus on the weights given to the CCs, since

the impact of CCs on the portfolio is of greater interest and no liquidity bound on the trad-

itional assets is binding in any situation. The weights are shown in Tables 5–8, where we

show the weights for the CCs included in the portfolio in any considered situation. The first

column shows the weights when no liquidity constraint is implemented, while the remain-

ing three columns show those when liquidity constraints are included with the three differ-

ent investment amounts. The weights coloured red indicate that its liquidity upper bound is

binding, i.e. the weight given to this CC just equals its liquidity upper bound. Before imple-

menting the liquidity upper bound, the CCs account for 16% of the total position for the

S-CC Markowitz portfolio, with the largest weight 5.3% given to NLG, and zero weight to

Bitcoin. After including a liquidity constraint, the total weights on the CCs decrease to

12.3%, 9.3% and 9.1% as the investment amount increases from 1:0� 105 to 1:0� 107

US dollars. This is not surprising, since the liquidity upper bounds limit the weight given to

the CCs. When the investment amount equals 1:0� 105 US dollars, the lower 8 CCs are

binding, including NLG, which only has a weight of 0.02%. When the investment increases

to 1:0� 106 and 1:0� 107 US dollars, only the bound on Bitcoin is not binding.

As the liquidity constraints tighten, the weight on Bitcoin increases from 5.4% to 9.0%,

which shows the great investment potential of the Bitcoin market, since it can account for

about 9% of the portfolio when formed together with S&P 100 stocks, while not being
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constrained. When considering the CVaR portfolio, the cumulative weight on the CCs in

the unbound case is 18%, thus even larger, however in the constrained cases this shrinks to

9.71%. For the SBC portfolios, with either definition of risk (Markowitz or CVaR), the

weight given to CCs is considerably lower, so the portfolios favour bonds and commodities.

Still no weight is given to BTC in the unbounded case. However, when optimizing with li-

quidity constraints, BTC receives a weight and the constraints become active on various

CCs. This shows that the constraints are necessary for achieving the goal set in this study,

namely constructing portfolios with CCs in which the positions in the CCs can be easily

cleared. After illustrating the potential effect of CCs on portfolio performance and the ef-

fect of liquidity constraints on the in-sample analysis, we turn next to an out-of-sample

study to investigate the performance of the portfolios under pseudo-real conditions.

5.2 Out-of-sample portfolio formation

After having analysed the potential of CCs for enhancing the performance of a combined

portfolio, an out-of-sample analysis remains to justify their applicability in real-world

investments. The S portfolio and the SBC portfolio will be constructed with monthly reba-

lanced weights, calculated using all the sample data before the rebalancing day. First, the
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Figure 4 The solid and dashed lines indicate the cumulative return performance of Markowitz and

CVaR portfolios. The solid line (—) and dashed line (- - -) stand for S/SBC and S-CC/SBC-CC without li-

quidity constraints respectively. The remaining 3 portfolios are S-CC/SBC-CC ones containing the

bounds M ¼ 1� 105 USD ( ), M ¼ 1� 106 USD (–�–), M ¼ 1� 107 USD (– –). The coloured version

is available online.

LIBROinsample

(a) In-sample cumulative returns of S-CC Markowitz portfolios (b) In-sample cumulative returns of

SBC-CC Markowitz portfolios (c) In-sample cumulative returns of S-CC CVaR portfolios (d) In-sample

cumulative returns of SBC-CC CVaR portfolios
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portfolio is formed on January 1, 2015 and held to January 31, 2015, with weights calcu-

lated using the sample from April 22, 2014 to December 31, 2014. Then, data from April

22, 2014 to January 31, 2015 is used to calculate the new weights, and the portfolio is reba-

lanced accordingly at February 1, 2015. For subsequent periods, the portfolio will be reba-

lanced at the first day of each month, with the weights calculated using all the sample data

before that day. We choose this extending window approach to calculate the rebalancing

weights due to the limited amount of data in the sample.

The cumulative returns of the Markowitz portfolios are illustrated in Figure 5, where

panel 5a shows S/S-CC portfolios, and panel 5c shows S/SBC-CC portfolios. For each

panel, it is obvious that the S-CC/SBC-CC portfolio, no matter whether liquidity bounded

or not, outperforms its counterpart without CCs at the end of the sample. For the S-CC

portfolio, when no liquidity constraint is applied, the cumulative returns exceed the S port-

folio at the very beginning of 2015, with the difference continuing to increase until the end

of the sample. In the whole out-of-sample period, the cumulative returns of the S-CC port-

folio without liquidity constraints is over 80%, while that of the S portfolio is 15.5%, a

quite substantial improvement. The SBC-CC portfolio without liquidity constraints outper-

forms the SBC portfolio from March 2016 onwards, and the difference keeps enlarging in

the remaining periods. At the end of the sample, the cumulative returns of the SBC-CC

portfolio reach 37.4%, which is substantially higher than the 12.1% of the SBC portfolio.

The big improvement of the S-CC/SBC-CC portfolio over the S/SBC one indicates the huge

potential investment gain that can be obtained by including CCs in a portfolio. However,

as stated in the in-sample cases, only when these improvements persist when liquidity con-

straints are included, can one infer that the profits are feasible in practice.

Now comes the situation when liquidity constraints are included. In Figure 5, we label

the cumulative returns calculated with liquidity constraints with black, brown and green,

indicating an investment amount equal to 1� 105; 1� 106, and 1� 107 US dollars, re-

spectively. For all three investment amounts, the S-CC portfolios exceed the S one starting

from March of 2016, and the difference does not become large until 2017. At the end of

the sample, the liquidity bounded portfolios with investment amounts 1� 105; 1�
106; 1� 107 US dollars end with a cumulative return equal to 40.0%, 28.6% and 29.2%,

which is 24.5%, 13.1% and 13.7% higher than the pure stock portfolio. When bond and

commodity indexes are included, the liquidity bounded cumulative return under an invest-

ment amount of 1� 105; 1� 106; 1� 107 US dollars reaches 21.2%, 17.7% and 16.4%,

all of which outperform the SBC portfolio. All in all, adding CCs into portfolios is profit-

able even after controlling for low liquidity by imposing constraints.

Summary statistics also favour the portfolios with CCs added, see Tables 9 and 10. In ei-

ther the S-CC or SBC-CC case, the portfolios with CCs always dominate the one without,

regarding returns and Sharpe ratio. When no liquidity bound is applied or when the invest-

ment amount is 1� 105 US dollars, the portfolio show less negative skewness and less

heavy tails. Although the skewness and kurtosis may get worse under a tighter liquidity

constraint when the investment amount gets larger, the maximum drawdown improves

after CCs are added, which is somehow surprising, since the CC market is considered high-

ly risky. Interestingly, the mean returns on SBC/SBC-CC are lower than for S/S-CC, yet in

combination with a lower volatility as well. The SBC-CC portfolio outperforms S-CC in

two ways: first, it only has about one-half the max drawdown, which is a substantial
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Figure 5 Out-of-sample cumulative returns with monthly and weekly adjusted Markowitz portfolios.

The solid line (—) and dashed line (- - -) stand for S/SBC and S-CC/SBC-CC without liquidity constraints

respectively. The remaining 3 portfolios are S-CC/SBC-CC ones containing the bounds M ¼ 1� 105

USD ( ), M ¼ 1� 106 USD (–�–), M ¼ 1� 107 USD (– –). The coloured version is available online.

(a) Out-of-sample cumulative returns for monthly adjusted S-CC Markowitz portfolios (b) Out-of-sam-

ple cumulative returns for weekly adjusted S-CC Markowitz portfolios (c) Out-of-sample cumulative

returns for monthly adjusted SBC-CC Markowitz portfolios (d) Out-of-sample cumulative returns for

weekly adjusted SBC-CC Markowitz portfolios

Table 9 Summary statistics of out-of-sample monthly rebalanced S/S-CC Markowitz/CVaR port-

folio return. All indices are calculated using daily returns. Ann.Ret and Ann.STD indicate

annualized mean return and standard deviation, q refers to the autocorrelation parameter

S-CC

S Unbounded M ¼ 1:0� 105 M ¼ 1:0� 106 M ¼ 1:0� 107

Markowitz Ann.Ret 0.05 0.28 0.13 0.10 0.09

Ann.STD 0.13 0.19 0.15 0.14 0.14

Sharpe-ratio 0.03 0.09 0.06 0.04 0.04

Skewness –0.38 0.09 –0.29 –0.44 –0.44

Kurtosis 5.98 5.23 5.95 6.20 6.15

Max drawdown 0.17 0.17 0.16 0.16 0.16

Auto correlation 0.03 –0.02 0.03 0.04 0.04

CVaR Ann.Ret 0.07 0.28 0.12 0.08 0.16

Ann.STD 0.14 0.21 0.16 0.17 0.18

Sharpe-ratio 0.03 0.08 0.05 0.03 0.06

Skewness –0.21 0.12 –0.48 –0.31 –0.11

Kurtosis 5.83 5.13 6.39 9.36 9.44

Max drawdown 0.16 0.19 0.18 0.25 0.23

Auto correlation –0.00 –0.05 0.04 0.10 0.12
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decrease in the downside risk; second, at larger investment amounts, it has higher Sharpe

ratios.

Looking at the weights of the CCs gives an answer for how CCs influence the perform-

ance of the portfolios. For the monthly rebalanced weights, see Figures 7 and 8. Obviously

the CCs taking strong positions in the portfolios in the unbounded case, for example, NLG,

which even reaches 8% in the fourth quarter of 2016, get ruled out when liquidity con-

straints are added. Furthermore, by the red rectangles we indicate that the weight reaches

its respective upper bound on that reallocation date. The constraints are mostly in place,

giving support for their introduction into the method. For the S-CC Markowitz portfolios,

when the investment amount equals 1:0� 105 US dollars, 6 CCs are included over time.

When the investment amount increases to 1:0� 106 and 1:0� 107 US dollars, only 3 and 1

CCs are included over time, respectively, and BTC becomes the only one that is not affected

by the liquidity bound. A further observation is the absence of Bitcoin, the largest and most

liquid CC, in the unbounded portfolio. Yet with liquidity constraints, it is always part of

the portfolio and does not reach its upper bound. Additionally, it becomes apparent that

Bitcoin and also Ripple receive higher weights in 2017, due to their better Sharpe ratios,

thus adding value to the portfolios due to the strong gains in the CC market in this period.

Shifting our analysis to the CVaR portfolios provides partly different observations. Still

the unbounded portfolios with CCs clearly outperform those without CCs, and in the con-

strained portfolios, the cumulative returns perform better at the end of the sample,

Figure 6. However, for the constrained case with investment amounts M ¼ 1:0� 105 and

M ¼ 1:0� 106 US dollars, the improvements are not consistent throughout the sample: the

pure S portfolio still outperforms until March of 2017 and August of 2017. It is interesting

to observe that in this case the portfolio having the highest investment amount, and there-

fore the strongest constraints, performs the best among the constrained ones, with a stable

Table 10 Summary statistics of out-of-sample monthly rebalanced SBC/SBC-CC Markowitz/

CVaR portfolio return. All indices are calculated using daily returns. Ann.Ret and Ann.STD indi-

cate annualized mean return and standard deviation, q refers to the autocorrelation parameter

SBC-CC

SBC Unbounded M ¼ 1:0� 105 M ¼ 1:0� 106 M ¼ 1:0� 107

Markowitz Ann.Ret 0.04 0.13 0.07 0.06 0.06

Ann.STD 0.07 0.10 0.08 0.07 0.07

Sharpe-ratio 0.04 0.08 0.06 0.06 0.05

Skewness –0.33 –0.10 –0.34 –0.37 –0.38

Kurtosis 5.98 5.63 6.33 6.31 6.40

Max drawdown 0.08 0.10 0.08 0.07 0.07

Auto correlation 0.08 0.03 0.07 0.08 0.08

CVaR Ann.Ret 0.03 0.17 0.07 0.05 0.11

Ann.STD 0.07 0.11 0.11 0.14 0.14

Sharpe-ratio 0.03 0.10 0.04 0.02 0.05

Skewness –0.36 0.30 –0.94 –0.92 –0.51

Kurtosis 5.47 5.87 14.16 14.93 15.48

Max drawdown 0.11 0.06 0.14 0.22 0.23

Auto correlation 0.05 –0.02 0.09 0.19 0.22
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Figure 7 Weights given to CCs for S-CC Markowitz portfolios at each monthly rebalancing date under

the three different investment amounts. Only CCs that have a non-zero weight on at least one reba-

lancing date are given. The darker the color, the larger the weight. Weights in are bounded by their

upper bounds.
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Figure 6 Out-of-sample cumulative returns with monthly and weekly adjusted CVaR portfolios. The

solid line (—) and dashed line (- - -) stand for S/SBC and S-CC/SBC-CC without liquidity constraints, re-

spectively. The remaining 3 portfolios are S-CC/SBC-CC ones containing the bounds M ¼ 1� 105 USD

( ), M ¼ 1� 106 USD (–�–), M ¼ 1� 107 USD (– –). The coloured version is available online.

(a) Out-of-sample cumulative returns for monthly adjusted S-CC CVaR portfolios (b) Out-of-sample cu-

mulative returns for weekly adjusted S-CC CVaR portfolios (c) Out-of-sample cumulative returns for

monthly adjusted SBC-CC CVaR portfolios (d) Out-of-sample cumulative returns for weekly adjusted

SBC-CC CVaR portfolios
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improvement compared to the pure S portfolio, and the highest cumulative returns at the

sample end. A similar observation can be made for the SBC-CC portfolio. Looking at the

weights for the monthly reallocation, Figures 9 and 10, one observes only Bitcoin being

included in the most strongly restricted portfolio. Since CVaR gives less weight to assets

having high tail risk, it can be inferred that for larger investment amounts, only the tail risk

of Bitcoin is sufficiently low to be appropriate for the portfolio. Interestingly, this causes

the portfolio to outperform the other constrained ones, although the unbounded one still

outperforms.

Looking at the summary statistics, Tables 9 and 10, the SBC-CC unbounded portfolio

performs better, with an annualized return of 0.17, than the corresponding Markowitz

portfolio, with an annualized return 0.13. Also the Sharpe Ratio is enhanced. It is quite

remarkable that the annualized return is high for M ¼ 1:0� 107 US dollars, yet the

Sharpe Ratio (0.05) is the same as for the corresponding Markowitz portfolio. For the S-

CC portfolios, again they perform better than their SBC-CC CVaR counterparts, both in

terms of annualized return and Sharpe Ratio. Again the M ¼ 1:0� 107 US dollars port-

folio shows a remarkably high annualized return. Comparing the weights, Figures 7–10,

one observes that only BTC was included, yet for the CVaR portfolios with higher values,

only from mid-2016 onwards. For the Markowitz portfolios, BTC was also included in

2015.

5.3 Robustness: Weekly versus monthly rebalancing

Since the CCs’ market has a great deal of variation, it is an interesting question to ask how

will the portfolio perform if we readjust the portfolio more frequently, for example weekly
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Figure 8 Weights given to CCs for SBC-CC Markowitz portfolio at each monthly rebalancing date under

the three different investment amounts. Only CCs that have a non-zero weight on at least one reba-

lancing date are given. The darker the color, the larger the weight. Weights in are bounded by their

upper bounds.
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Figure 10 Weights given to CCs for SBC-CC CVaR portfolio at each monthly rebalancing date under

the three different investment amounts. Only CCs that have a non-zero weight on at least one reba-

lancing date are given. The darker the color, the larger the weight. Weights in are bounded by their
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rather than monthly. In this section, a weekly rebalancing portfolio is constructed, with

weights updated every Wednesday. Again, the weights are calculated using an extending

window approach: all the data before the readjustment date are used for the calculation,

and the first portfolio is formed on January 1, 2015.

The cumulative return plots for the Markowitz and CVaR portfolios are shown in pan-

els 5 b, 5d, 6 b and 6d. An overview of the results leads to the conclusion that the cumula-

tive returns of the weekly rebalanced portfolios show almost the same pattern as those of

the monthly ones; however, in most cases, they perform worse. For the Markowitz method,

the cumulative returns at the end of the sample of the S and S-CC portfolio are 9.4% and

72.6% respectively, which are 6.7% and 8.5% smaller than those of their monthly read-

justed counterparts. When liquidity constrained, the cumulative returns are 4.9%, 4.7%

and 5.3% lower than for the monthly readjusted case at investment amounts 1� 105; 1�
106; 1� 107 US dollars. The same deterioration happens when bond and commodity indi-

ces are included. For the case with CVaR portfolios, the situation is similar: in both the S-

CC and SBC-CC cases, all the portfolios have a smaller cumulative return than their month-

ly counterpart.

Furthermore, rebalancing the portfolio weekly instead of monthly harms the perform-

ance. Apart from this issue, the return curves appear almost similar, suggesting robust

results regarding the reallocation frequency. However the better performance with monthly

rebalancing gives support for the interpretation that at times, swings in the return series of

CCs have to be endured to ensure a better performance at the end of the day.

6 Conclusion

In this article, we have explored the potential gain of including CCs into risk optimized

portfolios, taking into consideration the low liquidity of the CC market. On the one

hand, the rapid rise in CCs make them promising investment assets, while on the other

hand, they are more volatile, have heavy tails, and relatively low liquidity, so investing in

them is somewhat challenging. To control the risk as well as the liquidity problem, we

have proposed LIBRO method, which extends the framework employed in Fan et al.

(2012) to contain an additional liquidity constraint, depending on the intended invest-

ment amount. Applying this method to monthly and weekly re-allocated Markowitz and

CVaR portfolios consisting of S&P 100 component stocks, Barclays Capital US

Aggregate Index (US Bonds Index), S&P GSCI (Commodities Index), and adding CCs to

them, the results show a strong improvement in terms of volatility/quantile risk to

returns. However, it is worth noting that Bitcoin (BTC), the earliest and most dominant

CC, is given a zero weight when no liquidity constraint is included, and this under both

definitions of risk: volatility and quantile risk. Two key conclusions can be inferred from

this result: first, although the one most discussed in the literature, BTC is not the most

appealing CC in terms of risk–return optimization, at least during the period covered by

the present paper, which highlights our contribution to include CCs other than BTC for

portfolio formation. Second, the inclusion of liquidity constraints appears necessary,

since some high-weight CCs are less liquid than BTC. In this situation, one can no longer

assume that positions in these CCs would not distort the market or be tradable in the ne-

cessary amounts. To improve the applicability of the portfolio formation strategy,

302 Journal of Financial Econometrics

D
ow

nloaded from
 https://academ

ic.oup.com
/jfec/article-abstract/18/2/280/5510100 by C

harité - M
ed. Bibliothek user on 27 M

ay 2020



including an upper bound becomes necessary. It should be correlated with the daily trad-

ing volume of these assets.

The results of the in-sample analysis are already remarkable, while the out-of-sample

analysis provides impressive results too. In the Markowitz portfolio the increase in cumu-

lative returns reaches up to 80%. When including the liquidity upper bounds, the S-CC

and SBC-CC portfolios still outperform the ones without constraints. For the Markowitz

portfolios with monthly and weekly reallocation, the cumulative excess returns range

from 10 to 22% with investment amounts equal to 1� 105; 1� 106; 1� 107 US dollars.

Over an investment period of roughly three years, this is a substantial gain. For the largest

investment amount, which is, by construction, the most strongly restricted portfolio, one

observes that the only CC included is BTC. Since CVaR gives less weight to assets having

high tail risks, it can be inferred that for larger investment amounts, only the tail risk of

BTC is sufficiently low to be appropriate for the portfolio. Furthermore, the monthly re-

allocated portfolios clearly outperformed the weekly adjusted ones. The better perform-

ance with monthly rebalancing gives support for the interpretation that, at times, swings

in the return series of CCs have to be endured to ensure a better performance at the end of

the day.

The main implications of this article are that including CCs into a portfolio can bring

huge gains for the investor, even under the situation with the largest investment amount,

which incurs the tightest liquidity constraint. In addition investing in alt-coins can provide

much higher gains in the returns than just including BTC, but is more likely to encounter a

liquidity problem; thus we have proposed LIBRO to tackle the low liquidity issue of certain

CCs.
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Supplementary data are available at Journal of Financial Econometrics online.
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Appendix

A.1 A Well-Conditioned Estimator for Large-Dimensional Covariance Matrices

For an (N�T) de-meaned matrix X with T iid observations, define S to be the sample co-

variance matrix S ¼ XX>=T, IN to be the N-dimensional identity matrix, and trð�Þ to indi-

cate the trace of a matrix. Define jj � jj to be the Frobenius norm normalized by the

dimension N, that is, jjXjj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðXX>Þ=N

p
. Further define f ¼ trðRINÞ=N; c2 ¼
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Table A1 Summary statistics of CCs. Ann.Ret and Ann.STD indicate annualized mean return

and standard deviation, which are calculated by multiplying 250 and
ffiffiffiffiffiffiffiffi
250
p

by their daily coun-

terparts. Mean volume and market cap are measured in US dollars.

Ann.Ret Ann.STD Skewness kurtosis q mean volume market cap

BTC 0.49 0.55 –0.61 10.87 –0.01 4.71eþ 08 1.07eþ 10

LTC 0.29 0.87 0.34 23.70 0.02 9.04eþ 07 3.22eþ 08

XRP 0.68 1.09 2.72 37.76 0.01 4.88eþ 06 8.35eþ 08

DASH 1.16 1.37 0.62 50.60 –0.14 1.61eþ 06 1.52eþ 08

DOGE 0.11 0.96 0.97 15.54 0.01 3.87eþ 05 3.11eþ 07

NXT 0.17 1.08 0.80 8.42 –0.03 2.28eþ 05 2.08eþ 07

DGB 0.73 1.70 2.93 29.89 –0.03 1.63eþ 05 7.24eþ 06

PPC –0.17 1.00 0.62 12.51 –0.05 1.05eþ 05 1.54eþ 07

BLK –0.05 1.27 1.82 17.72 –0.08 7.15eþ 04 4.21eþ 06

VTC 0.33 1.76 1.84 17.83 –0.01 5.93eþ 04 2.42eþ 06

NMC –0.17 1.07 1.30 25.81 –0.09 5.26eþ 04 8.60eþ 06

POT 0.44 1.57 0.79 19.40 –0.05 3.95eþ 04 2.30eþ 06

XCP 0.36 1.46 1.16 9.52 –0.10 3.69eþ 04 7.51eþ 06

RDD 0.90 2.38 0.36 14.59 –0.25 2.55eþ 04 2.83eþ 06

XPM –0.39 1.29 0.85 16.66 –0.07 2.05eþ 04 1.54eþ 06

NVC –0.07 1.09 2.39 24.07 –0.01 1.73eþ 04 1.58eþ 06

EMC2 0.56 1.93 1.63 14.47 –0.02 1.57eþ 04 7.16eþ 05

EAC –0.04 2.70 1.08 25.71 –0.27 1.50eþ 04 7.92eþ 05

IFC –0.09 2.15 1.73 19.11 –0.13 1.26eþ 04 8.37eþ 05

NLG 1.00 1.46 0.90 12.35 –0.08 1.12eþ 04 4.28eþ 06

FTC –0.00 1.76 0.59 13.66 –0.04 1.02eþ 04 1.84eþ 06

FLO 0.77 1.83 1.35 10.87 –0.07 8.35eþ 03 7.74eþ 05

ZET –0.35 2.03 0.96 19.83 –0.16 5.80eþ 03 7.54eþ 05

WDC –0.33 1.86 1.45 29.43 –0.12 5.65eþ 03 7.94eþ 05

RBY 1.16 2.18 0.98 28.41 –0.26 5.16eþ 03 2.83eþ 06

NOTE 0.79 1.60 1.59 15.01 –0.10 4.76eþ 03 1.11eþ 06

QRK –0.27 2.91 �0.05 36.12 –0.35 4.38eþ 03 1.29eþ 06

MAX –0.48 4.37 0.54 96.94 –0.38 3.69eþ 03 4.13eþ 05

HUC –0.04 2.31 0.42 8.39 –0.19 3.25eþ 03 2.31eþ 05

SLR 0.72 1.92 0.44 9.59 –0.21 3.01eþ 03 2.39eþ 06

AUR –0.03 1.51 1.08 19.12 –0.08 2.55eþ 03 1.17eþ 06

UNO 0.57 1.53 �0.24 15.64 –0.21 2.10eþ 03 9.14eþ 05

DMD 0.66 1.47 0.85 12.79 –0.20 1.57eþ 03 6.89eþ 05

GRS 0.99 2.86 1.52 15.80 –0.22 1.45eþ 03 4.72eþ 05

MINT –0.01 3.63 0.27 7.76 –0.32 1.04eþ 03 9.71eþ 05

DGC –0.43 1.92 0.71 27.86 –0.15 8.42eþ 02 2.95eþ 05

MOON 0.66 2.76 0.24 18.84 –0.16 6.83eþ 02 1.09eþ 06

EFL 0.58 1.87 �0.56 18.73 –0.16 6.19eþ 02 2.24eþ 05

NET 1.76 5.84 7.84 201.18 –0.22 5.45eþ 02 2.84eþ 05

CBX 0.17 3.33 0.81 28.53 –0.33 2.45eþ 02 1.80eþ 05

ZEIT 0.15 4.47 0.24 63.85 –0.25 2.10eþ 02 3.78eþ 05

AC –0.30 3.05 1.17 26.52 –0.20 7.66eþ 01 4.13eþ 05

S&P stocks average 0.08 0.20 –0.26 10.29 0.00 5.40eþ 08

Bond index 0.05 0.05 –1.91 12.38 –0.04

Commodity index –0.20 0.20 0.05 4.84 –0.07
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jjR� fIN jj2; b2 ¼ EðjjS� Rjj2Þ and d2 ¼ EðS� fINÞ. Assuming EðX4Þ < 1, the optimiza-

tion problem considered is

min
q1q2

¼ EðjjR̂ � Rjj2Þ

s:t: R̂¼q1INþq2S

which solves to q1 ¼ b2

d2 f and q2 ¼ c2

d2, thus the estimator is

R̂ ¼ b2

d2
fIN þ

c2

d2
S:

Since the estimator depends on the true covariance matrix R, a consistent estimator R̂
�

has been introduced. Define x�k as the (N � 1) column k of X and rewrite the sample covari-

ance matrix S as S ¼ 1
T

PT
k¼1 x�kx>�k. Since the matrices x�kx>�k are iid across k;b2 can be esti-

mated by b
2 ¼ 1=N2

PN
i¼1 jjx�ix>�i � Sjj2, Ledoit and Wolf (2004). Further define

m ¼ trðSINÞ=N; d2 ¼ jjS�mIN jj2; b
2 ¼ min ðb2

;d2Þ and k2 ¼ d2 � b2. A consistent esti-

mator is then

R̂
� ¼ b2

d2
mI þ k2

d2
S:
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In this paper, we study the statistical properties of the moneyness scaling transformation, which
adjusts the moneyness coordinate of the implied volatility smile in an attempt to remove the dis-
crepancy between the IV smiles for levered and unlevered ETF options. We construct bootstrap
uniform confidence bands which indicate that the implied volatility smiles are statistically differ-
ent after moneyness scaling has been performed. An empirical application shows that there are
trading opportunities possible on the LETF market. A statistical arbitrage type strategy based on
a dynamic semiparametric factor model is presented. This strategy presents a statistical decision
algorithm which generates trade recommendations based on comparison of model and observed
LETF implied volatility surface. It is shown to generate positive returns with a high probability.
Extensive econometric analysis of the LETF implied volatility process is performed including out-
of-sample forecasting based on a semiparametric factor model and a uniform confidence bands’
study. These provide new insights into the latent dynamics of the implied volatility surface. We also
incorporate Heston stochastic volatility into the moneyness scaling method for better tractability of
the model.

Keywords: Exchange-traded funds; Options; Implied volatilities; Moneyness scaling; Bootstrap;
Dynamic factor models; Trading strategies

JEL Classification: C00, C14, C50

1. Introduction

Exchange-traded funds (ETFs) are financial products that
track indices, commodities, bonds and baskets of assets. They
have become increasingly popular due to diversification ben-
efits as well as the investor’s ability to perform short-selling,
buying on margin and lower expense ratios than, for instance,
those of mutual funds.

Leveraged ETFs (LETFs) are used to generate multiples
or inverse multiples of returns on the underlying asset. For
instance, the LETF ProShares Ultra S&P500 (SSO) with a
leverage ratio β = +2 is supposed to grow 2% for every 1%
daily gain in the price of the S&P500 index, minus an expense
fee. An inverse leveraged ETF would invert the gain/loss of
the underlying index and amplify it proportionally to the ratio:
the ProShares UltraShort S&P500 (SDS) with leverage ratio
β = −2 would generate a 2% gain for every 1% daily loss in
the price of the underlying S&P500 index. Selected financial

*Corresponding author. Email: sergey.nasekin@gmail.com

information on LETFs relevant for this study is summarized
in table 1.

Due to their growing popularity and the nature of ETF
and LETF similar dynamics, recently there has been grow-
ing research on leveraged ETFs and their consistent pricing.
Avellaneda and Zhang (2010) found that the terminal value of
an option on a LETF depends on the integrated variance of the
underlying LETF. Ahn et al. (2015) show that given Heston
dynamics for the underlying ETF, the corresponding LETF
also has Heston dynamics with different parameters. Leung
and Santoli (2016) give a broad overview of LETFs, LETF
options, their pricing and implied volatility.

Studies on LETF options’ implied volatility should be
mentioned as most relevant for this work. Figueroa-Lopez
et al. (2016) derived asymptotic equivalence of options
on ETFs and LETFs under restricted conditions. Lee and
Wang (2015) studied a direct relationship between volatil-
ity skews of leveraged and unlevered products, providing
asymptotic error estimates. Leung et al. (2017) studied the
relationship between the ETF and LETF implied volatility
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Table 1. Summary financial information on (leveraged) ETFs on S&P 500 underlying index.

(L)ETF Ticker Lev. ratio Exp. ratio (%) Div. yield (%)

SPDR S&P 500 SPY +1 0.090 1.867
ProShares Ultra S&P500 SSO +2 0.900 0.440
ProShares UltraPro S&P500 UPRO +3 0.950 0.263
ProShares UltraShort S&P500 SDS −2 0.890 0.000
ProShares UltraPro Short S&P500 SPXU −3 0.900 0.000

surfaces when the underlying ETF is modeled by a general
class of local-stochastic volatility models.

Various studies including Aït-Sahalia et al. (2001), Cont
and da Fonseca (2002) and Fengler et al. (2003, 2007)
apply non- and semiparametric approaches to model implied
volatility surfaces (IVS). Some important issues of IVS esti-
mation and modeling include choice between parametric and
non-parametric methods, model selection and out-of-sample
forecasting.

Leung and Sircar (2015) introduced the so-called ‘money-
ness scaling’ technique which links implied volatilities (IV)
between ETF and LETF in the way that the discrepancy
between the implied volatility ‘smile’ pattern is removed.
The question arises whether the moneyness scaling method
indeed removes discrepancies consistently in time. To answer
this question, we need to verify whether IV deviations are
significant from the statistical point of view.

In this study, we use an econometric approach to study
the issue of errors describing the difference between lever-
aged and unleveraged volatility smiles. Unlike Lee and
Wang (2015), who derive an asymptotic error estimate
directly for implied volatilities, we investigate the indirect
approach of Leung and Sircar (2015) further, invoking a
stochastic volatility framework. This approach allows one to
apply the moneyness scaling technique under more general
assumptions.

We consider the statistical properties of the moneyness
scaling transformation which adjusts the moneyness coordi-
nate of the implied volatility smile in an attempt to remove
the discrepancy between the IV smiles for levered and unlev-
ered ETF options. We construct bootstrap uniform confidence
bands which allow for more flexible error analysis. The results
indicate that the implied volatility smiles are statistically
different, even after moneyness scaling has been performed.

Furthermore, we develop a trading strategy based on a
dynamic semiparametric factor model. This strategy utilizes
the dynamic structure of the implied volatility surface allow-
ing out-of-sample forecasting and information on unleveraged
ETF options to construct theoretical one-step-ahead implied
volatility surfaces. This strategy exploits statistical discrep-
ancies on (L)ETF markets and falls within the class of
model-driven statistical arbitrage described in Avellaneda and
Lee (2010).

2. Confidence analysis of moneyness scaling

2.1. Moneyness scaling

We begin by introducing basic results on (L)ETF options and
moneyness scaling. The dynamics of the underlying asset is
assumed to follow a stochastic process under a risk-neutral

measure Q:
dSt

St
= (r − δ) dt + σt dWQ

t , (1)

where r is the risk-free interest rate, δ the dividend yield,
(σt)t≥0 is some stochastic volatility process.

The moneyness scaling technique proposed by Leung and
Sircar (2015) proposes a coordinate transformation for the
LETF option implied volatility and potentially reflects the
increase of risk in the underlying index.

Figure 1 compares empirical implied volatilities for SSO,
UPRO, SDS, SPXU before moneyness scaling has been
applied and afterwards. In this example, the log-moneyness

LM
def= log(K/Lt) is used, where K is the strike of the LETF

option and Lt the LETF price at time t. After re-scaling, there
are still visible discrepancies between the implied volatilities
for the SPY ETF and its leveraged counterparts. The money-
ness scaling procedure yields a more coherent picture when
the LETF and ETF implied volatilities overlap visually better.

Based on the assumption that the distribution of the termi-
nal price of the β-LETF depends on the leverage ratio β, the
moneyness scaling formula includes an expectation of the β-
LETF log-moneyness conditional on the terminal value of the
unleveraged counterpart. For the LETF log-moneyness LM (β)

(consider ETFs as LETFs with β = 1) the result linking the
log-moneyness coordinates LM (β) and LM (1) of the leveraged
and unleveraged ETF is written as follows:

LM (β) = βLM (1) − {r(β − 1)+ c∗}T − β(β − 1)

2

EQ
{∫ T

0
σ 2

t dt

∣∣∣∣log

(
ST

S0

)
= LM (1)

}
, (2)

where T is the time to maturity/expiration (TTM), c∗ = c+ δ
is the LETF expense ratio c corrected for dividend yield δ.
The expense ratio c is expressed in percent and approximates
an annual fee charged by the ETF from the shareholders to
cover the fund’s operating expenses.

More generally, for two LETFs with different leverage
ratios β1, β2 expression (2) takes the form:

LM (β1) = β1

β2
LM (β2) +

[{
β1

β2
(β2 − 1)− (β1 − 1)

}
r

+ β1

β2
c∗2 − c∗1

]
T

+ β1(β2 − 1)− β1(β1 − 1)

2

EQ
{∫ T

0
σ 2

t dt

∣∣∣∣log

(
ST

S0

)
= LM (1)

}
, (3)

with c∗k = ck + δk , k= 1,2.
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Figure 1. SPY (blue) and LETFs (red) implied volatilities before (left column) and after scaling (right column) on June 23, 2015 with 207
days to maturity, plotted against log-moneyness.
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It is worth mentioning that declared leverage ratios are
not always the same as the empirical ones. Leung and San-
toli (2016) introduce a novel method to estimate the empirical
leverage ratio realized by ETFs. Particularly for longer hold-
ing periods, return discrepancies between ETFs and LETFs
increase. This can cause, e.g. for both long and short ETFs
to have negative cumulative returns over a longer horizon. In
this study we use declared leverage ratios. This is motivated
by the use of short time horizons in the empirical study of
LETF option portfolios’ returns in section 5.

2.2. Confidence bands

Cont and da Fonseca (2002), Fengler et al. (2007) and Park et
al. (2009) studied the implied volatility as a random process
in time, so that the data generating process includes some non-
parametric function m:

Yt = m(Xt)+ εt, t = 1, . . . , T , (4)

or can be driven by a latent factor process Zt:

Yt = Z�t m(Xt)+ εt, t = 1, . . . , T , (5)

where Yt stands for an implied volatility process, the covari-
ates Xt can be one- or multi-dimensional, including, for
instance, moneyness and time-to-maturity.

The statistical properties of the estimators m̂(Xt) and
Ẑ�t m̂(Xt) for models (4) and (5) have been outlined, respec-
tively, in, e.g. Härdle (1990), Ruppert and Wand (1994) and
Park et al. (2009). To study the consistency of the implied
volatility difference between the ETF and the moneyness-
scaled LETF case, one needs to consider statistical differences
of the corresponding estimators. Confidence band analysis
may provide an insight into the matter. An important issue
for smooth confidence bands for functions is the correct
probability of covering the ‘true’ curve.

The approach of Härdle et al. (2015) proposes a uni-
form bootstrap bands construction for a wide class of non-
parametric M and L-estimates. It is logical to use a robust
M -type smoother for the estimation of (4) for implied volatil-
ity, as IV data often suffer from outliers. The procedure runs as
follows: considering the sample {Xt, Yt}Tt=1, where Yt denotes
the IV process, Xt is taken to be one-dimensional and includes
the log-moneyness covariate LM (β), do the following:

(i) compute the estimate m̂h(Xt) by a local linear M -
smoothing procedure (see appendix A.1) with some
kernel function and bandwidth h chosen by, e.g. cross-

validation, and obtain residuals ε̂t
def= Yt − m̂h(Xt),

(ii) do bootstrap resampling from ε̂t: for each t =
1, . . . , T , generate random variables ε∗t,b ∼ F̂ε |Xt(z)
for b = 1, . . . , B according to the conditional edf

F̂ε | x(z)
def=
∑T

t=1 Kh(x− Xt)1{ε̂t ≤ z}∑T
t=1 Kh(x− Xt)

, (6)

which is further centered as shown in Härdle et
al. (2015). Then construct the bootstrap sample Y ∗t,b

as follows:

Y ∗t,b = m̂g(Xt)+ ε∗t,b, (7)

with an ‘oversmoothing’ bandwidth g � h such as
g = O(T−1/9) to allow for bias correction,

(iii) for each bootstrap sample {Xt, Y ∗t,b}Tt=1 compute m̂∗h,g
using the bandwidth h and construct the random
variable

db
def= sup

x∈J

⎡⎣ |m̂∗h,g(x)− m̂g(x)|
√

f̂X (x)f̂ε |Xt(ε
∗
t )√

ÊY | x{ψ2(ε∗t )}

⎤⎦ , (8)

where J is a finite compact support set of f̂X and
ψ(u) = ρ ′(·) as described in appendix A.1; the con-
ditional expectation ÊY | x(·) is defined with respect to
the edf

F̂Y | x(z)
def=
∑T

t=1 Kh(x− Xt)1{Yt ≤ z}∑T
t=1 Kh(x− Xt)

, (9)

where f̂ε |Xt(·) and f̂X (x) are consistent estimators of
conditional density corresponding to (6) and the den-
sity fX (x), respectively; for more details, see Härdle et
al. (2015),

(iv) calculate the 1− α quantile d∗α of d1, . . . , dB,
(v) construct the bootstrap uniform confidence band cen-

tered around m̂h(x):

m̂h(x)±
⎡⎣
√

ÊY | x{ψ2(ε∗t )}d∗α√
f̂X (x)f̂ε |Xt(ε

∗
t )

⎤⎦ . (10)

Such an approach utilizes bootstrap confidence bands while
the distribution of the original data is ‘mimicked’ via a pre-
specified random mechanism achieving both uniformity and
better coverage. Additionally, it performs better than asymp-
totic confidence bands which generally tend to underestimate
the true coverage probability, see Hall and Horowitz (2013).
Compared to a Bonferroni approach, bootstrap uniform con-
fidence bands would be less conservative and make use of
the substantial positive correlation of the curve estimates at
nearby points, see Härdle (1990).

3. Moneyness scaling under Heston stochastic volatility

3.1. An analytical approach

In the study of moneyness scaling, one needs to estimate the
following conditional expectation:

EQ
{∫ T

0
σ 2

t dt

∣∣∣∣log

(
ST

S0

)
= LM (1)

}
. (11)

Taking σt = σ constant, one obtains σ 2T . As empirical evi-
dence shows, constant volatility is not a plausible assumption,
therefore one needs to determine the measure Q for the case
of random volatility under a model which allows random
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dynamics of σt. Second, one needs to estimate the integrated
variance ∫ T

0
σ 2

t dt. (12)

Stochastic volatility presents a viable alternative to the con-
stant case. One could choose among different specifications
of stochastic volatility models. Popular special cases include
specifications of Heston (1993), Hull and White (1987)
and Schöbel and Zhu (1999). An example of a more gen-
eral stochastic volatility system is given in Leung and Sir-
car (2015). Simpler models tend to generate semi-closed-form
solutions for return distributions. For instance, a solution
for the Heston model by Heston (1993) was proposed by
Dragulescu and Yakovenko (2002).

We use the Heston model to compute the quantity in (11).
As noticed in Leung and Santoli (2016), this approach allows
for tractability and efficient numerical pricing of options on
LETFs. Stochastic volatility framework also allows to better
assess volatility decay, i.e. value erosion due to the increase
of the realized variance with the holding horizon.

The Heston model with risk-neutral dynamics under a
risk-neutral measure Q and zero volatility risk premium is
described by a two-dimensional system of stochastic differ-
ential equations

dSt = (r − c− 0.5)St dt +
√

VtSt dWQ
S,t, (13)

dVt = κ(θ − Vt) dt + σ dWQ
V ,t, (14)

where we have put Vt = σ 2
t ; r− c are costs of carry on St, θ is

the long-run variance level, κ is the rate of reversion to θ , σ
is the ‘volatility of the volatility’ parameter which determines
the variance of Vt; WS,t, WV ,t are correlated with parameter
ρ. The tails of the Heston-implied densities for log-returns
xt = log(St/St−1) are exponential and heavier than those of
the normal distribution with the dispersion parameter equal to
the long-term variance θ , see, i.e. Cizek et al. (2011).

An analytical solution to (11) requires knowledge of the
conditional distribution of the integrated variance (12) given
the logarithm of terminal stock price log(ST ). If we define:

Ṽ
def=
∫ T

0
Vt dt,

XT
def= log(ST ),

then we can write

EQ
{∫ T

0
Vt dt

∣∣∣∣log

(
ST

S0

)
= LM (1)

}
= EQ
{

Ṽ
∣∣∣XT = L̃M

(1)
}

=
∫ ∞

0
fṼ |XT

(
ṽ
∣∣∣xT = L̃M

(1)
)

dṽ, (15)

where fṼ |XT
(ṽ | xT ) is the conditional density of Ṽ given XT

under the measure Q and L̃M
(1) = log(S0)+ LM (1).

Unfortunately, fṼ |XT
(ṽ | xT ) does not assume a simple form

and is ultimately expressed in terms of Fourier transforms of

characteristic functions of these quantities. Technical details
are given in appendix A.2. As follows from the details, four
improper integrals have to be estimated. Numeric integration
methods can be used to approximate (11).

Additional complexity arises from the necessity to evalu-
ate a modified Bessel function of the first kind which takes
a complex argument. Numerical approximation methods for
such evaluations such as the trapezoidal rule are outlined in
Broadie and Kaya (2006).

Considering the complexity of the density estimation, we
consider a Monte-Carlo approach to evaluate (11). This
method is feasible and straightforward from a practical point
of view.

3.2. A Monte-Carlo approach

Alternatively, the conditional expectation in (11) can be com-
puted using Monte-Carlo simulations. The simulations are
performed using the Heston model and the calibrated param-
eters obtained minimizing the squared difference between
theoretical Heston prices C�(K, τ) obtained from the model
and observed market prices CM (K, τ),

min
�∈R5

N∑
i=1

(
C�

i (Ki, τi)− CM
i (Ki, τi)

)
, (16)

where �
def= (κ , θ , σ , v0, ρ) Heston parameters, N number of

options used for calibration, K strikes and τ times-to-maturity.
Theoretical prices C�(K, τ) are obtained via numeric integra-
tion of the Heston characteristic function.

The Monte-Carlo algorithm is motivated by van der Stoep
et al. (2014) and can be formulated as follows:

(i) Generate N pairs of observations (si, vi), i = 1, . . . , N .
(ii) Order the realizations si: s1 ≤ x2 ≤ · · · ≤ sN .

(iii) Determine the boundaries of M bins (lk , lk+1], k =
1, . . . , M on an equidistant grid of values S∗ def=
S0 eLM (1)

(iv) For the kth bin approximate the conditional expecta-
tion (11) by

EQ
(∫ T

0
σ 2

t dt |ST ∈ (lk , lk+1]

)
≈ h

NQ(k)

H∑
i=1

∑
j∈Jk

Vij,

(17)
where h is the discretization step for Vt, Jk the set of
numbers j, for which the observations ST are in the kth
bin and Q(k) is the probability of ST being in the kth
bin.

The results of the simulation are presented in figure 2. Poly-
nomial smoothing is applied to produce the smoothed version
of SCO LETF realized variance. The generated expected real-
ized variance has the form of a ‘smile’ which confirms the
intuition behind using average square implied volatility in the
case of constant-volatility moneyness scaling approach.

We use the Monte-Carlo approach given Euler discretiza-
tion scheme for the empirical application in later sections
given its tractability and theoretical justification. Both meth-
ods, analytical and Monte-Carlo, introduce errors into the
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Figure 2. Upper panel: estimated value of EQ(
∫ T

0 σ
2
t dt | log(ST/S0) = LM (1)); lower panel: smoothed estimate.

calculation of (11). For the analytical method, discretization
and truncation errors appear when the integral is estimated at
discrete points and is truncated to be approximated as a finite

sum. If the trapezoidal rule is used to approximate the inte-
grals in the analytical method, then the discretization error
is of order O(M−2) where M − 1 is the number of discrete
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intervals. However, as the integral dimensionality d increases,
the discretization error order increases to O(M−2/d) (‘curse of
dimensionality’).

For the current example, the discretization error order
for (11) becomes O(M−1/2), which matches the convergence
order of Monte-Carlo discretization bias. Additionally, analyt-
ical approximation of (11) effects a truncation error which is
potentially significant due to the oscillatory nature of the inte-
grand. Monte-Carlo approach inherently induces a statistical
error of order O(N−1/2) which can be made sufficiently small
by taking a large number N of samples. As noted in Higham
and Mao (2005) and Lord et al. (2010), a simple discretization
scheme such as the Euler scheme converges to the true pro-
cess under certain conditions on the discretization size. This
was shown to be true for the Heston model in particular by
Higham and Mao (2005).

4. Dynamic semiparametric factor model

4.1. Model description

A generalized version of the model in (4) represented by (5)
assumes the implied volatility Yt to be a stochastic pro-
cess driven by a latent stochastic factor process Zt con-

taminated by noise εt. To be more specific, define J def=
[κmin, κmax]× [τmin, τmax], Yt,j implied volatility, t = 1, . . . , T
time index, j = 1, . . . , Jt option intraday numbering on day t,

Xt,j
def= (κt,j, τt,j)

�, κt,j, τt,j are, respectively, a moneyness mea-
sure (log-, forward, etc.) and time-to-maturity at time point t
for option j. Then the dynamic semiparametric factor model (
DSFM) is defined as follows: assume

Yt,j = Z�t m(Xt,j)+ εt,j, (18)

where Zt = (1, Z�t ), Zt = (Zt,1, . . . , Zt,L)
� unobservable L-

dimensional stochastic process, m = (m0, . . . , mL)
�, real-

valued functions; ml, l = 1, . . . , L+ 1 are defined on a subset
of Rd . One can estimate:

Ŷt = Ẑ�t m̂(Xt) (19)

= Ẑ�t Âψ(Xt), (20)

with ψ(Xt)
def= {ψ1(Xt), . . . ,ψK(Xt)}� being a space basis

such as a tensor B-spline basis, A is the (L+ 1)× K coef-
ficient matrix. In this case K denotes the number of tensor
B-spline sites: let (su)

U
u=1, (sv)

V
v=1 be the B-spline sites for

moneyness and time-to-maturity coordinates, respectively,
then K = U · V . Given some spline orders nκ and nτ for
both coordinates and sets of knots (tκi )

M
i=1, (tτj )

N
j=1, one of the

Schoenberg–Whitney conditions requires that U = M − nκ ,
V = N − nτ , see deBoor (2001). The usage of the parameter
K is roughly analogous to the bandwidth choice in Fengler
et al. (2003) and Fengler et al. (2007); however the results
of Park et al. (2009) demonstrate insensitivity of DSFM
estimation results to the choice of K, n.

The estimates for the IV surfaces m̂l are re-calculated on a
fine 2-dimensional grid of tensor B-spline sites: the estimated

coefficient matrix Â is reshaped into a U × V × L+ 1 array
of L+ 1 matrices Â of dimension U × V . Factor functions ml

can then be estimated as follows:

m̂l;i,j =
U∑
i

V∑
j

Âl;i,jψi,kκ (κi)ψj,kτ (τj), (21)

where kκ , kτ are knot sequences for the moneyness and time-
to-maturity coordinates, respectively.

The estimated factor functions m̂l together with stochastic
factor loadings Ẑt are combined into the dynamic estimator of
the implied volatility surface:

ÎV t;i,j = m̂0;i,j +
L∑

l=1

Ẑl,tm̂l;i,j, (22)

where Ẑl,t can be modeled as a vector autoregressive process.
It should be noted that m̂l and Ẑl,t are not uniquely defined, so
an orthonormalization procedure must be applied.

An indication of possible mispricing of LETF options
allows to test a trading strategy based on the comparison of
the theoretical price obtained from the moneyness scaling cor-
rection as well as the application of the DSFM model and the
market price. Such a strategy would mainly exploit the two
essential elements of information from these two approaches.
The first element is obtaining evidence of statistical discrepan-
cies resulting from the mismatch between ETF and LETF IVs.
The moneyness scaling approach allows to estimate LETF IV
using richer unleveraged ETF data which also would make
the DSFM IV estimator more consistent. The second element
is implied volatility forecasting. The DSFM model allows to
forecast a whole IV surface via the dynamics of stochastic
factor loadings Zt.

4.2. Model estimation

The DSFM model is estimated numerically. The num-
ber of factors has to be chosen in advance. One should
also notice that for ml to be chosen as eigenfunctions of

the covariance operator K(u, v)
def= Cov{Y (u), Y (v)} in an L-

dimensional approximating linear space, where Y is under-
stood to be the random IV surface, they should be properly
normalized, such that ‖ml(·)‖ = 1 and 〈ml, mk〉 = 0 for l �= k.

The choice of L can be based on the explained variance by
factors:

EV(L)
def= 1−

∑T
t=1

∑Jt
j=1

{
Yt,j −
∑L

l=0 Ẑt,lm̂l(Xt,j)
}2

∑T
t=1

∑Jt
j=1(Yt,j − Ȳ )2

. (23)

The model’s goodness-of-fit is evaluated by the root mean
squared error (RMSE) criterion:

RMSE
def=

√√√√√ 1∑
t Jt

T∑
t=1

Jt∑
j=1

{
Yt,j −

L∑
l=0

Ẑt,lm̂l(Xt,j)

}2

. (24)
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The prediction quality at time point t+1 is measured by the
root mean squared prediction error (RMSPE) given by

RMSPE
def=

√√√√√ 1

Jt+1

Jt+1∑
j=1

{
Yt+1,j −

L∑
l=0

Ẑt+1,lm̂l(Xt+1,j)

}2

.

(25)

5. Empirical application

5.1. Data description

For the purpose of an empirical application, we use data on
SPY, SSO, UPRO and SDS (L)ETF call options in the period
November 2014–June 2015. The data summary statistics are
outlined in table 2. The data were taken from the Datastream
database by Thomson Reuters.

To give an impression of leveraged ETF option tradabil-
ity, we give an illustration of the existing bid-ask spreads and
actual trades of the SSO LETF, as these data will be used for
the trading strategy example below. Figures 3 and 4 show
variation of existing trade prices and volumes for various
option contacts based on exercise price and time to expira-
tion. We can see that shorter-term contracts are traded more
broadly. It has been also found that trades predominantly
occur at or near mid-quotes. In figure 5 we show bid-ask
spreads for the same range of option contracts, which tend to
be quite high, but somewhat lower for longer-term contracts.

The option data we use for the empirical application are
trade-based data, i.e. each observation corresponds to an
actual trade, not price quotes or settlement data. Implied
volatility and option prices are taken from the database and
computed in accordance with standard conventions used by
market participants using the midpoint of the best closing
bid price and best closing offer price for the options, taking
account of liquidity and dividends.

Additionally, we remove data which may contain noise,
potential misprints and other errors. Such data include anoma-
lous and outlier data resulting, e.g. from artificial extrapola-
tion of implied volatilities for non-traded options or feature
lower liquidity for the out-of-the-money or options which are
deeply in-the-money.

5.2. Confidence bands

We use the data described above to construct bootstrap con-
fidence bands for the M -smoother of implied volatility Y
given log-moneyness X, according to methodology described
in section 2.2. Accordingly, X is transformed using (3). The
results are shown in figures 6 and 7 for time-to-maturity 0.5
and 0.6 years, respectively. In figure 8 combined bands are
provided.

We can observe clear discrepancy between the implied
volatilities of leveraged ETFs and their unleveraged counter-
part SPY. For all LETFs, non-overlapping confidence bands
imply that there is a statistically significant difference between
IV functions at the significance level α = 0.05. It is more
pronounced for in- and out-of-the-money options. This phe-
nomenon may occur due to lower liquidity of in- and out-of-
the-money options compared to at-the-money options. On the
other hand, as shown, e.g. in Etling and Miller (2000), the
relationship between option moneyness and liquidity is more
complex than quadratic, maximized for at-the-money options.
Therefore, liquidity need not be the only reason for this fact.

We can see from figure 8 that the bands for SSO demon-
strate particularly strong deviation from those of SPY. This
implies that discrepancies not removed by the moneyness
scaling procedure are the largest for this LETF. Therefore we
conclude this section with a trading strategy which is meant
to exploit such statistical discrepancies on the market of SPY
and SSO options.

5.3. DSFM estimation and forecasting

The EV, RMSE and RMSPE criteria are displayed in table 3.
The model order L= 3 is chosen for estimation. The data for
the SPY ETF option are used with parameters nκ , nτ = 3;
M = 9, N = 7, so that U = 6, V = 4, K = 6× 4 = 24.

Figure 9 shows the dynamics of Ẑt in time. Two largest
‘spikes’ in the value of the third stochastic loading in the
beginning of the period correspond to the period of relatively
large values of the CBOE volatility index (VIX). The second
of the ‘spikes’ precedes in time an increase in the VIX value
implying that the model has predictive value with respect to
market instability dynamics. This shows that DSFM captures
leading dynamic effects as well as can explain effects like
skew or term structure changes.

Table 2. Summary statistics on (L)ETF options data (τ is time to maturity, LM
log-moneyness, σI implied volatility).

Min. Max. Mean Stdd. Skewn. Kurt.

SPY τ 0.258 2.364 1.202 0.515 0.421 2.316
LM − 3.061 0.477 − 0.381 0.574 − 1.513 5.871
σI 0.086 2.677 0.271 0.195 3.228 18.522

SSO τ 0.208 2.236 1.239 0.585 − 0.044 1.795
LM − 1.704 0.558 − 0.484 0.461 − 0.089 2.264
σI 0.154 1.340 0.363 0.091 1.774 12.224

UPRO τ 0.208 2.236 1.205 0.585 0.043 1.795
LM − 1.182 0.665 − 0.168 0.331 − 0.360 2.719
σI 0.250 1.669 0.503 0.099 1.335 9.080

SDS τ 0.208 2.236 1.146 0.581 0.196 1.852
LM − 0.738 0.858 0.187 0.344 − 0.276 2.226
σI 0.107 1.262 0.424 0.129 0.792 4.830
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Figure 3. Intraday trade prices for various option contracts on SSO on 6 January, 2015; data source: Option Price Reporting Authority.

Theoretical and simulation results in Park et al. (2009) jus-
tify using vector autoregression (VAR) analysis to model Ẑt.
To select a VAR model, we computed the Schwarz (SC), the
Hannan-Quinn (HQ) and the Akaike (AIC) criteria, as shown
in table 4. All three criteria select the VAR(1) model. Further-
more, the roots of the characteristic polynomial all lie inside
the unit circle, which shows that the specified model is station-
ary. Portmanteau and Breusch-Godfrey LM test results with
12 lags for the autocorrelations of the error term fail to reject
residual autocorrelation at 10% significance level.

The degenerate nature of implied volatility data is reflected
by the fact that empirical observations do not cover estima-
tion grids at given time points. This is due to the fact that
contracts at certain maturities or strikes are not always traded.
The DSFM fitting procedure introduces basis functions which
approximate a high-dimensional space and depend on time.
This allows to account for all information in the dataset
simultaneously in one minimization procedure which runs
over all m̂l and Ẑt and avoid bias problems which would
inevitably occur if some kernel smoothing procedure such as
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Figure 4. Intraday trade volumes for various option contracts on SSO on 6 January, 2015; data source: Option Price Reporting Authority.

Nadaraya–Watson were applied for this type of degenerate
data.

5.4. Option trading strategy

5.4.1. Description. Ability to forecast the whole surface of
implied volatility can be used in combination with the mon-
eyness scaling technique to exploit potential discrepancies in
ETF and LETF option prices or implied volatilities to build
a trading strategy. A suitable strategy would be the so-called

‘trade-with-the-smile/skew’ strategy adapted for the special
case of ETF-LETF option IV discrepancy. It would use the
ETF option data to estimate the model (theoretical) smile of
the leveraged counterpart and the information from the IV
surface forecast to recognize the future (one-period-ahead)
possible IV discrepancy.

Going back to the results in section 5.2, we see that
the largest statistical discrepancy between leveraged and
unleveraged ETF implied volatilities is the one between SPY
and SSO, so we consider these two options in the strategy
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Figure 5. Intraday bid-ask spreads (percentage of the ask price) for various option contracts on SSO on January 6, 2015; data source: Option
Price Reporting Authority.

setup. The strategy can be outlined as follows: choose a
moving window width w; then for each t = w, . . . , T (T is the
final time point in the sample) do the following:

(i) given two leverage ratios βSPY = 1, βSSO = 2, re-scale
the log-moneyness coordinate LM (βSPY ) according to
the moneyness scaling formula (3) to obtain L̂M

(βSSO).
This will be the ‘model’ moneyness coordinate for
DSFM estimation,

(ii) map the space [L̂M
(βSSO)

min , L̂M
(βSSO)

max ]× [τ SPY
min , τ SPY

max ] to
[0, 1]× [0, 1] using marginal transformation,

(iii) estimate the DSFM model (18) on [0, 1]× [0, 1]. This
will yield the IV surface estimates ÎV

SSO
1 , . . . , ÎV

SSO
t ,

(iv) forecast the IV surface estimate ÎV
SSO
t+1 using the VAR

structure of the estimated stochastic loadings Ẑt and
the factor functions m̂l,

(v) choose a time-to-maturity τ ∗ at time point t, take
the corresponding real-world values of SSO log-
moneyness LM (βSSO) and map them to [0, 1] using the
marginal distribution of L̂M

(βSSO); denote the output as
LM (βSSO)

τ ∗;M ,
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Figure 6. Fitted implied volatility and bootstrap uniform confidence bands for 4 (L)ETFs on S&P500; τ : 0.5 years.

Figure 7. Fitted implied volatility and bootstrap uniform confidence bands for 4 (L)ETFs on S&P500; τ : 0.6 years.

(vi) using the marginally re-scaled grid [L̂M
(βSSO)

min , L̂M
(βSSO)

max ]

× [τ ∗, τ ∗] and ÎV
SSO
t+1 , obtain interpolated values

ÎV
SSO
t+1;LM

(βSSO)
τ∗ ;M ,τ ∗ corresponding to LM (βSSO)

τ ∗;M , τ ∗,

(vii) compare the ‘theoretical’ values ÎV
SSO
t+1;LM

(βSSO)
τ∗ ;M ,τ ∗ with

known real-world implied volatilities IV SSO
t;LM

(βSSO)
τ∗ ;M ,τ ∗

corresponding to LM (βSSO)
τ ∗;M , and construct a delta-

hedged option portfolio:
(a) if ÎV

SSO
t+1;LM

(βSSO)
τ∗ ;M ,τ ∗ > IV SSO

t;LM
(βSSO)
τ∗ ;M ,τ ∗

for all LM (βSSO)
τ ∗;M ,

then buy (long) options corresponding to the larg-

est difference Dlong
def= ÎV

SSO
t+1;LM

(βSSO)
τ∗ ;M ,τ ∗ − IV SSO

t;LM
(βSSO)
τ∗ ;M ,τ ∗

,
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Figure 8. Combined uniform bootstrap confidence bands for SPY, SSO, UPRO and SDS after moneyness scaling (τ = 0.5 (top) and τ = 0.6
years (bottom), respectively).

Table 3. EV, RMSE and RMSPE criteria for
different model order sizes.

Criterion L= 2 L= 3 L= 4 L= 5

EV 0.915 0.921 0.925 0.930
RMSE 0.090 0.088 0.087 0.082
RMSPE 0.095 0.096 0.099 0.102

Table 4. The VAR model selection criteria.

Model order n AIC(n) HQ(n) SC(n)

1 − 4.20∗ − 4.10∗ − 3.96∗
2 − 4.13 − 3.96 − 3.72
3 − 4.07 − 3.83 − 3.48
4 − 4.03 − 3.72 − 3.27
5 − 3.97 − 3.59 − 3.03

Note: The smallest value is marked by an asterisk.

(b) if ÎV
SSO
t+1;LM

(βSSO)
τ∗ ;M ,τ ∗ < IV SSO

t;LM
(βSSO)
τ∗ ;M ,τ ∗

for all LM (βSSO)
τ ∗;M ,

then sell (short) options corresponding to the

largest difference Dshort
def= IV SSO

t;LM
(βSSO)
τ∗ ;M ,τ ∗

−
ÎV

SSO
t+1;LM

(βSSO)
τ∗ ;M ,τ ∗ ,

(c) if it holds that both ÎV
SSO
t+1;LM

(βSSO)
τ∗ ;M ,τ ∗ > IV SSO

t;LM
(βSSO)
τ∗ ;M ,τ ∗

and ÎV
SSO
t+1;LM

(βSSO)
τ∗ ;M ,τ ∗ < IV SSO

t;LM
(βSSO)
τ∗ ;M ,τ ∗

for different

LM (βSSO)
τ ∗;M , then buy (long) options with the largest

Dlong and sell (short) options with the largest
Dshort. In all three cases use the underlying SSO
LETF asset to make the portfolio delta-neutral,

(viii) at time point t+ 1, terminate the portfolio via an offset-
ting sale/purchase, calculate profit/loss and repeat until
time T.

The strategy described above aims to exploit the infor-
mation from the statistical discrepancies between the fore-
cast ‘theoretical’ (model) SSO LETF implied volatilities and
the historical (‘true’) ones. It protects the portfolio against
unfavorable moves in the underlying asset Lt through delta-
hedging and aims to gain from forecast moves in another
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Figure 9. Time dynamics of Ẑt,1, Ẑt,2, Ẑt,3, VIX index.

Figure 10. Cumulative performance of the trading strategy.

option risk factor, the implied volatility via its explicit esti-
mation and forecasting.

The key transformation L̂M
(βSSO) can be also perceived to

drive a statistical equilibrium for IV SSO
t+1 through ÎV

SSO
t+1 , devia-

tions from which induce entry and exit points for trading. This
reasoning is in line with that of Avellaneda and Lee (2010)
who introduce a model-driven pairs-trading strategy in US
equities.

The real-world SSO implied volatility IV SSO
t;LM

(βSSO)
τ∗ ;M ,τ ∗

at time

step t is expected to converge to the forecast implied volatil-
ity ÎV

SSO
t+1;LM

(βSSO)
τ∗ ;M ,τ ∗ , which has been constructed using scaled

moneyness and implied volatility input from the unleveraged
LETF, i.e. SPY.

Such a strategy would fall into the class of model-driven
statistical arbitrage in equities and equity options. It has the
three characteristic features of statistical arbitrage described
by Avellaneda and Lee (2010): (i) trading signals are sys-
tematic or rules-based, as opposed to driven by fundamen-
tals, (ii) the trading portfolio is market-neutral, i.e. has
zero sensitivity to the market, and (iii) the algorithm for
generating excess returns is statistical. The market here is
defined by the SSO LETF and delta neutrality implies market
neutrality.

In the following section, we present the strategy’s per-
formance as well as a numerical example. It occurs that
the existing statistical discrepancies between implied volatil-
ities of leveraged and unlevered ETF options together with
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Figure 11. LM (βSPY ) (top panel), L̂M (βSSO) (middle panel), L̂M (βSSO) after marginal transformation (bottom panel).
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Figure 12. Values of LM (βSSO) and LM (βSSO)
τ ∗;M .

Figure 13. Values of real-world IV SSO
147;LM

(βSSO)
τ∗ ;M ,τ ∗

and predicted ÎV
SSO
148;LM

(βSSO)
τ∗ ;M ,τ ∗

; the IV points at which long and short trades are done, are

indicated by arrows.

predictive capacity of the DSFM model can provide non-
negative trading gains on the option market.

5.4.2. Numerical example. For the purpose of the estima-
tion of the strategy from the previous section, the DSFM
model parameters are taken to be the same as in section 5.3.
The rolling window width is assumed to be w=100 and the
forecasting horizon is 1 day ahead.

The dynamic strategy performance in the period April 2015
– June 2015 is displayed in figure 10. Out of 55 investment
periods, in 30 cases long-only portfolios were constructed, the
remaining 25 cases short and long positions were taken; net
portfolios were short portfolios in 42 cases, long portfolios in
the remaining 13 cases.

For the sake of illustration, let us go through one step
from the outlined strategy in a numerical example. Assume
that we are at the step t= 147 of the sample, which corre-
sponds to June 18, 2015. At this point, we have a training
sample of 100 days for DSFM estimation, encompassing
14,859 observations of the option data for contracts with
various strike prices and time-to-maturity. The histogram
and density estimates for SPY log-moneyness LM (βSPY ),
‘theoretical’ SSO log-moneyness L̂M

(βSSO) (that is, rescaled
LM (βSPY )) and its marginally transformed version are given
in figure 11. Further we proceed as proposed in the strategy
above:

(i) estimate (18) and perform a forecast to obtain ÎV
SSO
148 on

June 19, 2015 (day 148 in the sample),
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Figure 14. Model and real-world IVs before (top panel) and after (bottom panel) the split on May 20, 2015.

(ii) choose τ ∗ = 0.6; we have 37 values of LM (βSSO) for
τ ∗ = 0.6. We use the marginal distribution of L̂M

(βSSO)

shown in figure 11 to calculate the corresponding ‘the-
oretical’ values LM (βSSO)

τ ∗;M implied by SPY data and the
moneyness scaling procedure, both shown in figure 12,

(iii) using the forecast IVS ÎV
SSO
148 , we can determine

‘theoretical’ IV values corresponding to LM (βSSO)
τ ∗;M ∈

[0, 1], ÎV
SSO
148;LM

(βSSO)
τ∗ ;M ,τ ∗ and the real-world IV values

IV SSO
147;LM

(βSSO)
τ∗ ;M ,τ ∗

corresponding to the same LM (βSSO)
τ ∗;M

through the mapping of LM (βSSO), described above,
(iv) the resulting ÎV

SSO
148;LM

(βSSO)
τ∗ ;M ,τ ∗ and IV SSO

147;LM
(βSSO)
τ∗ ;M ,τ ∗

are

demonstrated in figure 13. We buy an option corre-
sponding to the largest Dlong = 0.052 at the closing
price Clong;147 = $27.375 and sell an option corre-
sponding to the largest Dshort = 0.163 at the closing
price Cshort;147 = $2.740,

(v) additionally, we delta-hedge the resulting option port-
folio using portfolio delta Port f ;147 = long;147 −

short;147 = 0.859− 0.461 = 0.398 and the underly-
ing SSO which has a closing price of L= $66.960; the
total portfolio value on June 18, 2015 is: Clong;147 −
Cshort;147 −Port f ;147 × L147 = $27.375− $2.740
− 0.398× $66.960 = −2.015,

(vi) at the start of the next day, i.e. June 19, 2015, we check
the prices of the options Clong;148 and Cshort;148 as well
as the price of the underlying L148. We find that on June
19, 2015, Clong;148 = $28.450 and Cshort;148 = $0.320,
L148 = $68.300. With the share of L148 still equal to the
previous-day portfolio delta Port f ;147, the portfolio is
now worth Clong;148 − Cshort;148 −Port f ;147 × L148 =
$28.450− $0.320− 0.398× $68.300 = 0.947. We
sell that portfolio in an offsetting trade and have
secured a gain of $2.962. As expected, Clong gained
in value while Cshort went down in value. The coupled
gain was larger than an offsetting loss of $0.533 from
the delta hedge which resulted in the total gain.

In the end, the cumulative gain of the strategy applied
daily as shown in the illustrating example above, is 19.043
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Table 5. Stationarity tests’ statistics for SPY, SSO price series.

SPY SSO

Lags PP ADF KPSS PP ADF KPSS

1 − 3.621∗∗ − 3.505∗∗ 0.216∗∗ − 3.685∗∗ − 3.578∗∗ 0.200∗∗
2 − 3.693∗∗ − 3.593∗∗ 0.157∗∗ − 3.784∗∗ − 3.779∗∗ 0.145∗
3 − 3.752∗∗ − 3.725∗∗ 0.127∗ − 3.855∗∗ − 3.940∗∗ 0.118
4 − 3.730∗∗ − 3.402∗ 0.110 − 3.837∗∗ − 3.601∗∗ 0.102
5 − 3.716∗∗ − 3.400∗ 0.098 − 3.824∗∗ − 3.622∗∗ 0.092
6 − 3.664∗∗ − 3.133 0.091 − 3.770∗∗ − 3.360∗ 0.085
7 − 3.610∗∗ − 2.970 0.085 − 3.706∗∗ − 3.152∗ 0.081
8 − 3.575∗∗ − 2.908 0.081 − 3.660∗∗ − 3.094 0.077
9 − 3.537∗∗ − 2.897 0.078 − 3.613∗∗ − 3.103 0.074
10 − 3.513∗∗ − 3.003 0.075 − 3.572∗∗ − 3.125 0.072

Notes: PP: Phillips–Perron test; ADF: augmented Dickey–Fuller test; KPSS: KPSS
test for trend stationarity. ∗ ∗ ∗, ∗∗, ∗: significant on 1%, 5%, 10% level, respectively

Figure 15. Bootstrapped performance of the strategy; in red: 2.5% and 97.5% empirical percentiles of the cumulative performance; in blue:
median of the cumulative performance.

after 55 investment periods. It occurs that 39 out of 55
investment decisions correctly determined the direction of
one-step-ahead implied volatility smile change. In the strat-
egy, this smile change is anticipated according the relation
between the ‘model’ IVS computed using the moneyness
scaling approach and the real-world IVS of a LETF option.
There is a high positive chance of generating positive cumu-
lative returns exploiting statistical deviations of leveraged and
unlevered implied volatility smiles in the ETF option market.

It should be mentioned that the sample period includes the
day of an underlying SSO stock 2-for-1 split which took place
on May 20, 2015. The split was implemented to attract a wider
range of buyers at the resulting lower price per share. It has
been shown by many researchers, such as Ohlson and Pen-
man (1985), Sheikh (1989) and Desai et al. (1998) that stock
splits result in post-split increases of implied stock volatili-
ties. For instance, Ohlson and Penman (1985) show that stock
splits cause short-term increases in volatility upon announce-
ment and long-term increases in volatility after the date the
split is effective.

In figure 14, we show real-world and DSFM-forecast IVS
on two different dates: before (19 June, 2015) and after the
split (21 June, 2015). It can be seen that the model antici-
pates a significant increase in implied volatilities after the split
which indeed takes place.

5.4.3. Robustness check. The performance of the option
trading strategy obtained in section 5.4.2 above may seem
to have occurred purely by chance. Therefore some sort of
a robustness check is necessary.

We perform a bootstrap resampling exercise on the time
series of the underlying prices of SPY and SSO (L)ETFs and
re-run the strategy on the resampled data. Overlapping block
bootstrap approach proposed by Künsch (1989) is applied.
It works as follows: given the data observations {Xi : i =
1, . . . , T}, a block size b is specified. With overlapping blocks
of length b, block 1 is then observations {Xj : j = 1, . . . , b},
block 2 is {Xj+1 : j = 1, . . . , b} and so on. Random sampling
is then performed on the level of blocks.
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Overlapping block bootstrap assumes the data to be station-
ary. However, in the current case we do not do inference on
the resampled data, so this stringent assumption is less rele-
vant here. Nevertheless, we run standard stationarity tests on
SPY and SSO price series in the period from November 2014
to June 30, 2015 such as Phillips–Perron, augmented Dickey–
Fuller and KPSS tests. The first two tests have presence of
unit root in the series as a null hypothesis, while the KPSS
test tests trend stationarity as the null.

We perform a series of tests for each approach using the
number of lags from 1 to 10 in the Newey-West estimator
of the long-run variance. In table 5 the results of station-
arity tests are demonstrated. Most of this evidence does
not reject the hypothesis of possible trend stationarity of
price series of the (L)ETFs. Therefore we proceed with the
bootstrap.

We run 500 bootstrap iterations on 2-dimensional series of
SPY and SSO prices in the period from November 2014 to
June 30, 2015 and take the block size equal to 5. In figure 15
cumulative performance of the strategy on bootstrapped time
series is shown. At each of the 155 time steps the values
of 2.5% and 97.5% empirical percentiles are found. We can
see that at the end of the period, positive performance occurs
with more than a 95% probability. Positive performance with
this probability occurs from period 23 onwards until the end
of of the test sample, which yields 32 periods out of 55 in
total.

6. Conclusion

In this paper, we provide statistical and econometric analy-
sis of the moneyness scaling transformation for leveraged and
unlevered exchange-traded funds’ options’ implied volatility
smiles. This transformation adjusts the moneyness coordinate
of the smile in an attempt to remove the discrepancy between
the levered and unlevered counterparts.

We incorporate stochastic volatility into the money-
ness scaling method by explicit estimation of the condi-
tional expectation of the realized variance. We present two
approaches to implement this estimate: via an analytical
approach and using a Monte-Carlo method.

We construct bootstrap uniform confidence bands which
reveal a statistically significant discrepancy between the
implied volatility smiles, even after moneyness scaling has
been performed. We find that this discrepancy is stronger for
in- and out-of-the-money options which, however, is unlikely
to be explained by liquidity issues alone.

This discrepancy allows one to define a theoretical sta-
tistical equilibrium value of LETF moneyness. Based on
deviations from this equilibrium, possible trading gain oppor-
tunities on the (L)ETF market which can be exploited. We
construct a trading strategy based on a dynamic semipara-
metric factor model. This model-based statistical arbitrage
strategy utilizes the dynamic structure of implied volatility
surface allowing out-of-sample forecasting and information
on unleveraged ETF options to construct theoretical one-step-
ahead implied volatility surfaces.

The proposed strategy has the potential to generate trad-
ing gains due to simultaneous use of the information from
the discrepancies between the forecast ‘theoretical’ (model)
SSO LETF implied volatilities and the historical (‘true’)
ones. It protects the portfolio against unfavorable moves in
the underlying asset through delta-hedging and aims to gain
from forecast moves in volatility. The strategy is shown via
bootstrap technique to generate positive returns with a high
probability.
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Appendix

A.1. The local linear M-smoothing estimator

M -type smoothers apply a non-quadratic loss function ρ(·) to make
estimation more robust. Given the model

Yi = m(Xi)+ εi, (A1)

where Yi ∈ R, Xi ∈ R
d , εi

def= σ(Xi)ui, ui ∼ (0, 1), i.i.d, X def=
{(Xi, Yi); 1 ≤ i ≤ n}, the local linear M -smoothing estimator is
obtained from:

min
α∈R,β∈Rp

n∑
i=1

ρ
{

Yi − α − β�(Xi − x)
}

Wih(x), (A2)

where

Whi(x)
def= h−2K′{(x− Xi)/h}

f̂h(x)
− Kh(x− Xi)f̂ ′h(x)

f̂ 2
h (x)

(A3)

is a kernel weight sequence with f̂ ′h(x)
def= n−1∑n

i=1 K′h(x− Xi), h

is the bandwidth, K is a kernel function;
∫

K(u)du = 1, Kh(·) def=
h−1K(·/h). The function ρ(·) is designed to provide more robust-
ness than the quadratic loss. An example of such a function is given
by Huber (1964), see also Härdle (1989):

ρ(u) =
{

0.5u2, if |u| ≤ c;
c|u| − 0.5c2 if |u| > c.

(A4)

with the constant c regulating the degree of resistance.

A.2. Derivation of the conditional density of Heston
integrated variance given terminal log-price

As pointed out in (15), we require the conditional density
fṼ |XT

(ṽ | xT ), under the measure Q, to analytically determine the
expression (11). As noted by Broadie and Kaya (2006) and Glasser-
man and Kim (2011), the conditional distribution of XT is condition-
ally normal given Ṽ and

∫ T
0

√
Vt dWQ

V ,t:

XT ∼ N

(
(r − c− 0.5)T − 0.5Ṽ + ρ

∫ T

0

√
Vt dWQ

V ,t,
√

1− ρ2Ṽ

)
,

∼ N

(
(r − c− 0.5)T − 0.5Ṽ + ρ

σ
(VT − V0 − κθT + κṼ ),√

1− ρ2Ṽ

)
, (A5)

where (A5) follows from∫ T

0

√
Vt dWQ

V ,t = σ−1(VT − V0 − κθT + κṼ ),

which, in turn, follows from (14).
Expression (A5) yields the conditional density fXT | Ṽ ,VT

given
Heston parameters κ , θ , V0, σ and ρ. The joint density fṼ ,XT ,VT

can
then be obtained by simply multiplying fXT | Ṽ ,VT

by fṼ ,VT
, the joint

density of Ṽ and VT given some starting Heston variance level V0.
Broadie and Kaya (2006) have derived the characteristic func-

tion of the distribution of Ṽ given variance endpoint values VT and
V0. This function is quite complex and involves modified Bessel
functions of a complex variable of the first kind:

ϕṼ |VT
(ω) = γ (ω) e−0.5(γ (ω)−κ)T (1− e−κT )

κ(1− e−γ (ω)T )
exp{

VT + V0

σ 2

κ(1+ e−κT )

1− e−κT − γ (ω)(1+ e−γ (ω)T )
1− e−γ (ω)T

}

×
B2κθσ−2−1

(√
VT V0

4γ (ω) e−0.5γ (ω)T

σ 2(1−e−γ (ω)T )

)
B2κθσ−2−1

(√
VT V0

4κ e−0.5κT

σ 2(1−e−κT )

) , (A6)

where γ (ω) = √κ2 − 2σ 2iω, i = √−1 and Bν(z) is the modified
Bessel function of the first kind given by

Bν(z)
def= (z/2)ν

∞∑
j=0

(z2/4)j

j!�(ν + j+ 1)
,
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where �(x)
def= ∫∞0 tx−1 e−t dt is the gamma function.

Using the inversion formula for characteristic functions, we can
compute the density fṼ |VT ,V0

as follows:

fṼ |VT
(ṽ | vT ) = 1

2π

∫ +∞
−∞

e−iṽωϕṼ |VT
(ω) dω.

To find the joint density fṼ ,XT ,VT
, the transitional density fVT |V0 is

required. As noted by Cox et al. (1985) in the context of short interest
rate process, VT given V0 follows a scaled non-central chi-squared
distribution:

VT = σ 2(1− e−κT )

4κ
χ̃2

d

(
4κ e−κTV0

σ 2(1− e−κT )

)
, (A7)

where χ̃2
d (λ) stands for the non-central chi-squared random vari-

able with d degrees of freedom and non-centrality parameter λ. The
probability density function of χ̃2

d (λ) is defined using Bν(z):

fχ̃2
d (λ)

(x) = 0.5 e−0.5(x+λ)(xλ−1)0.25d−0.5B0.5d−1(
√
λx).

Using a change-of-variables technique, it is straightforward to show
that the density fVT |V0 takes the form:

fVT |V0(vT |V0)

= 2κ

σ 2(1− e−κT )
exp

{
κ2θT

σ 2 − 0.5κT − 2κ(vT + e−κT V0)

σ 2(1− e−κT )

}

×
(

vT

V0

)κθσ−2−0.5

B2κθσ−2−1

(
4κ e−0.5κT

σ 2(1− e−κT )

√
V0vT

)
.

Using known rules for computing joint densities via conditional and
marginal densities, it follows that

fṼ ,XT ,VT
(ṽ, xT , vT ) = fXT | Ṽ ,VT

(xT | ṽ, vT )fṼ |VT
(ṽ | vT )fVT |V0(vT |V0),

fṼ ,XT
(ṽ, xT ) =

∫ ∞
0

fṼ ,XT ,VT
(ṽ, xT , vT ) dvT .

Therefore we have for fṼ ,XT
estimated at ṽ, xT , given the Heston

parameters:

fṼ ,XT
(ṽ, xT ) = 2κ

(2π)3/2
√
(1− ρ2)ṽσ 2(1− e−κT )

∫ ∞
0

exp

{
κ2θT

σ 2 − 0.5κT − 2κ(vT + e−κT V0)

σ 2(1− e−κT )

+ (vT + V0)κ(1+ e−κT )

σ 2(1− e−κT )

− (xT − log(S0)− (r − c− 0.5)T

+ 0.5ṽ− ρ
σ
(vT − V0 − κθT + κ ṽ)

)2
2(1− ρ2)ṽ

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
×
(

vT

V0

)κθσ−2−0.5 ∫ +∞
−∞

e−iṽω

×
[
γ (ω) e−0.5(γ (ω)−κ)T (1− e−κT )

κ(1− e−γ (ω)T )
exp

{
−γ (ω)(1+ e−γ (ω)T )(vT + V0)

σ 2(1− e−γ (ω)T )

}

×B2κθσ−2−1

(√
vT V0

4γ (ω) e−0.5γ (ω)T

σ 2(1− e−γ (ω)T )

)]
dω dvT .

Finally, the density fṼ |XT
(ṽ | xT ) is found as

fṼ |XT
(ṽ | xT ) =

fṼ ,XT
(ṽ, xT )

fXT (xT )
,

where fXT (xT ) is the probability density of XT estimated at xT . This
marginal density under the risk-neutral measure Q is again found via
inversion of the characteristic function, see Rouah (2013):

ϕ(ω)XT = exp {C(ω)+ D(ω)V0 + iω log(S0)} ,
where

C(ω) = riωT + κθ
σ 2
{(κ − ρσ iω + d(ω))T

− 2 log

(
1− g(ω) e−d(ω)T

1− g(ω)

)}
,

D(ω) = (κ − ρσ iω + d(ω))

σ 2

(
1− e−d(ω)T

1− g(ω) e−d(ω)T

)
,

g(ω) = κ − ρσ iω + d(ω)

κ − ρσ iω − d(ω)
,

d(ω) =
√
(ρσ iω − κ)2 + σ 2(iω − ω2).
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a b s t r a c t 

High-dimensional, streaming datasets are ubiquitous in modern applications. Examples range from fi- 

nance and e-commerce to the study of biomedical and neuroimaging data. As a result, many novel algo- 

rithms have been proposed to address challenges posed by such datasets. In this work, we focus on the 

use of � 1 regularized linear models in the context of (possibly non-stationary) streaming data. Recently, it 

has been noted that the choice of the regularization parameter is fundamental in such models and several 

methods have been proposed which iteratively tune such a parameter in a time-varying manner; thereby 

allowing the underlying sparsity of estimated models to vary. Moreover, in many applications, inference 

on the regularization parameter may itself be of interest, as such a parameter is related to the underly- 

ing sparsity of the model. However, in this work, we highlight and provide extensive empirical evidence 

regarding how various (often unrelated) statistical properties in the data can lead to changes in the reg- 

ularization parameter. In particular, through various synthetic experiments, we demonstrate that changes 

in the regularization parameter may be driven by changes in the true underlying sparsity, signal-to-noise 

ratio or even model misspecification. The purpose of this letter is, therefore, to highlight and catalog var- 

ious statistical properties which induce changes in the associated regularization parameter. We conclude 

by presenting two applications: one relating to financial data and another to neuroimaging data, where 

the aforementioned discussion is relevant. 

© 2019 Elsevier B.V. All rights reserved. 
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1. Introduction 

High-dimensional, streaming datasets pose a unique challenge

to modern statisticians. To date, the challenges associated with

high-dimensional and streaming data have been extensively stud-

ied independently. In the case of the former, a popular avenue

of research is the use of regularization methods such as the

Lasso [9] . Such methods effectively address issues raised by high-

dimensional data by assuming the underlying model is sparse,

thereby having only a small number of non-zero coefficients.

Sparse models are often easier to both estimate and interpret. Con-

currently, many methods have been developed to handle streaming

datasets; popular examples include sliding window methods and

their generalizations to weighted moving averages [10] . 
∗ Corresponding author. 

E-mail address: r.monti@ucl.ac.uk (R.P. Monti). 
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Recently, the intersection of these two avenues of research

as begun to receive increasing attention as large-scale, stream-

ng datasets become commonplace. Prominent examples include

5] and [8] who propose methods through which to efficiently esti-

ate � 1 penalized models in a streaming data context. However, an

mportant aspect, which has been largely overlooked, corresponds

o the optimal choice of the regularization parameter. While it

s possible to employ a fixed regularization parameter, it may be

he case that the statistical properties of the data vary over time,

uggesting that the optimal choice of the regularization parame-

er may itself also vary over time. Throughout this work, we con-

ider the optimal choice of regularization parameter both in terms

f negative log-likelihood on unseen data as well as in terms of

orrectly recovering the true underlying model (i.e., sparse sup-

ort recovery). We choose to consider two distinct criteria for the

hoice of the regularization parameter in order to systematically

tudy how changes in the statistical distribution of observations af-

ect the choice of regularization parameter. Examples of large-scale,

on-stationary datasets, where the choice of the regularization

https://doi.org/10.1016/j.patrec.2019.06.021
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2019.06.021&domain=pdf
mailto:r.monti@ucl.ac.uk
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arameter has been reported to be time-varying, include finance

22] and neuroscience [16] . 

We note that many methods have been proposed for select-

ng the regularization parameter in the context of non-streaming

ata, the standard approach being to employ some variant of

ross-validation or bootstrapping, e.g. in Hastie et al. [9] or Cher-

ozhukov et al. [7] . However, such methods are infeasible in

he domain of streaming datasets due to limited computational

esources. More importantly, the statistical properties of a data

tream may vary, further complicating the use of sub-sampling

ethods. Recently, methods to handle time-varying regularization

arameters have been proposed. Monti et al. [14] propose a novel

ramework through which to iteratively infer a time-varying regu-

arization parameter via the use of adaptive filtering. The proposed

ramework is developed for penalized linear regression (i.e., the

asso) and subsequently extended to penalized generalized linear

odels. Zbonakova et al. [23] study the dynamics of the regulariza-

ion parameter, focusing particularly on quantile regression in the

ontext of financial data. Using the sliding windows method, they

emonstrate that the choice of time-varying regularization param-

ter based on the adjusted Bayesian information criterion (BIC) is

losely correlated with the financial volatility. The BIC criterion

as employed, as such a choice of the parameter has been proved

o consistently select a true model [21] . 

While the aforementioned methods correspond to valuable con-

ributions, the purpose of this paper is to highlight potential short-

omings when interpreting time-varying regularization parameters.

n particular, through a series of simulation studies, we enumer-

te several (often unrelated) statistical properties of the underly-

ng data which may lead to changes in the optimal choice of the

egularization parameter. This paper, therefore, serves to highlight

mportant issues associated with the interpretation of time-varying

egularization parameters as well as the associated model param-

ters. Given the increased importance of both regularization-based

ethods as well as streaming algorithms within modern applica-

ions of statistics, this work serves as an important precursor. 

The remainder of this paper is organized as follows. We for-

ally outline the challenge of tuning time-varying regularization

arameters as well as related work in Section 2 . In Section 3 ,

e present extensive empirical results, highlighting how various

spects of the underlying data may result in changes in the es-

imated regularization parameter. Computations included in this

ork were performed with the help of the R software environ-

ent [19] and we provide code to reproduce all experiments on

he Quantlet platform. 1 

. Preliminaries and related work 

In this work, we focus on streaming linear regression problems.

ormally, it is assumed that we observe a sequence of pairs ( X t ,

 t ), where X t ∈ R 

p corresponds to a p -dimensional vector of pre-

ictor variables and y t ∈ R is a univariate response. We write sub-

cript t ∈ N to denote the time index of observations. The objective

f penalized streaming linear regression problems consists in ac-

urately predicting future responses, y t+1 , from predictors X t+1 via

 linear model. Following the work of [20] , an � 1 penalty, parame-

erized by λ ∈ R + , is subsequently introduced in order to encour-

ge sparse solutions as well as ensure the associated optimization

roblem is well-posed. For a pre-specified choice of a fixed regu-

arization parameter, λ, time-varying regression coefficients can be

stimated by minimizing the following convex objective: 

 t (β, λ) = 

t ∑ 

i =1 

w i 

(
y i − X 

� 
i β
)2 + λ|| β|| 1 , (1)
1 http://quantlet.de/ . 

t  

s  

e

here w i > 0 are weights indicating the importance given to past

bservations [1] . For example, it is natural to allow w i to decay

onotonically in a manner which is proportional to the chronolog-

cal proximity of the i th observation. While the weights w i may be

uned using a fixed forgetting factor, throughout this work we opt

or the use of a sliding window due to the simplicity of the latter

ethod. We note that in the case of sliding windows the weights,

 i , are either set to 0 or 1 depending on whether the correspond-

ng observation falls within the specified window. 

As noted in Section 1 , in the context of non-stationary data the

ptimal estimates of regression coefficients, ˆ βt , may vary over time

nd several methods have been proposed in order to address this

ssue [5,8] . In this work, we note that the same argument may be

osed in terms of the associated regularization parameter, λ. The

hoice of such a parameter dictates the severity of the associated

 1 penalty, implying that different choices of λ will result in vastly

ifferent estimated models. However, the issue of iteratively tun-

ng the regularization parameter has, until recently, been largely

verlooked. 

Formally, [17] clearly outline the relationship between the Lasso

arameter, λ, and the data. They note that the regularization pa-

ameter may be interpreted as the Lagrange multiplier associated

ith a constraint on the � 1 norm of the regression coefficients. As

uch, considering the dual formulation yields: 

= 

{ Y − X ̂

 β(λ) } � X ̂

 β(λ) 

|| ̂  β(λ) || 1 
, (2) 

here we have omitted the weights, w i , for simplicity and use bold

otation to denote vectors and matrices respectively. Note that in

q. (2) we clearly denote the dependence of the estimated regres-

ion coefficients on λ. As a result, we observe three main effects

riving the optimal choice of the regularization parameter: 

1. Variance or magnitude of the residuals: Y − X ̂

 β(λ) . As the vari-

ance of residuals increases (decreases) so does the associated

regularization parameter, leading to an increase (decrease) in

sparsity of ˆ β(λ) . This is natural as an increase in the variance

of residuals is indicative of a drop in the signal-to-noise ratio

of the data. 

2. The � 1 norm of the model coefficients: || ̂  β(λ) || 1 . As this term

appears in the denominator of Eq. (2) , it is inversely correlated

with the regularization parameter. This is to be expected as we

require a small regularization parameter in order to accurately

recover regression coefficients with large � 1 norm. We further

note that the � 1 norm will often be closely associated with the

� 0 norm, indeed the � 1 is often employed as the convex approx-

imation to the � 0 norm. As such, we further expect there to be

an inverse correlation between the � 0 norm and the regulariza-

tion parameter. 

3. Covariance structure of the design matrix: X . The term related

to the covariance structure of the design matrix, X 

� X , can be

extracted from the elements in the numerator of Eq. (2) . This

suggests that the covariance matrix of the predictors will have

a significant impact on the value of the regularization param-

eter, λ. We note that this effect will also affect the � 1 and � 0 
norms of the model coefficients, resulting in a complicated re-

lationship with the regularization parameter. In Section 3.1.3 we

demonstrate the non-linear nature of this relationship. 

As such, it follows that multiple aspects of the data may in-

uence the choice of the associated regularization parameter. Cru-

ially, whilst such a parameter is often interpreted as being indica-

ive of the sparsity of the underlying model, Eq. (2) together with

he aforementioned discussion demonstrates that this is not neces-

arily the case. In the remainder of this work, we provide extensive

mpirical evidence to validate these claims. 

http://quantlet.de/
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Fig. 1. Relative changes of λ in as a function of the on relative changes of the stan- 

dard deviation σ . 
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Fig. 2. Standardized series of average λ over 100 scenarios with a change point at 

t = 200 and σ1 = 1 and σ2 = 1 . 5 . 
3. Experimental results 

In this section, we provide an extensive simulation study to

demonstrate the effects of the three aforementioned model prop-

erties on the choice of the optimal regularization parameter. Based

on the observations from Section 2 , we designed a series of exper-

iments where one property of the data was allowed to vary whilst

the remaining two were left unchanged. A further concern is to

show that if two or more of the properties of the data should si-

multaneously change it can result in cancelling out their effects on

the regularization parameter. Further experiments were designed

to study those scenarios. The purpose of the experimental results

presented in this section is two-fold. First, we identify the various

statistical properties which cause the optimal choice of regulariza-

tion parameter to vary. Second, we also highlight how changes of

such properties interact with each other and catalog their joint ef-

fects on the choice of the regularization parameter. 

3.1. Synthetic data generation 

We focus exclusively on a linear model of the form: 

y t = X t βt + ε t . 

We define the number of observations as n , the number of

non-zero parameters as q = || β|| 0 ≤ p and an iid error term ε =
(ε 1 , . . . , ε n ) 

� , such that ε t ∼ N (0 , σ 2 
t ) . The p -dimensional vector

of predictor variables X t was generated from the normal distribu-

tion N p (0, �), where the elements of the ( p ×p ) covariance matrix

� = (σi j ) 
p 
i, j=1 

were set to be σi j = ρ| i − j| , for i, j = 1 , . . . , p, with

a correlation parameter ρ . The choice of such a model for the

covariance structure of predictor variables, X t , was motivated by

three considerations. First, it is a widely studied class of covariance

model [4] . Second, it yields a family of covariance matrices which

are indexed by a single parameter, ρ . This is important in the con-

text of visualizing and interpreting the results of our experiments.

Finally, such a structure is often encountered in real-data applica-

tions. For example, in the context of functional MRI data, which

we consider in Section 3.2 , such covariance structure is often re-

ported due to the spatial auto-correlation present in the data [18] .

The same is true in financial applications where one can use this

matrix form to approximate an empirical correlation matrix of as-

set returns [2] . 

We generate synthetic data where one of the following proper-

ties varies over time (thereby resulting in non-stationarity): 

1. Time-varying variance of residuals: σ 2 
t varies over time. 

2. Time-varying � 1 or � 0 norm of regression coefficients: q varies

over time. 

3. Time-varying correlation within design matrix: ρ varies over

time. 

For each experiment, the total number of observations was set

to n = 400 with a dimensionality of p = 20 . In order to study the

effects of the aforementioned properties on the regularization pa-

rameter, we consider the use of three distinct methods. First, we

consider the use of the sliding windows of length of 50 obser-

vations in combination with both the Bayesian information crite-

rion (BIC) and the generalized cross-validation (GCV) to select the

associated regularization parameter. Finally, the gradient method

proposed by [14] , named Real-time Adaptive Penalization (RAP), is

also applied. The use of BIC and GCV based methods is motivated

by the fact that such methods are frequently employed to select

regularization parameters [9] , while the RAP method is a recently

proposed streaming algorithm motivated by adaptive filtering [10] .

The fundamental difference between the sliding window methods

and RAP is that the RAP algorithm directly computes the deriva-

tive of the negative log-likelihood (in the case of the Lasso this is
he mean squared error) of unseen data with respect to λ. This

radient information is then used to tune the regularization pa-

ameter in a streaming fashion. In contrast, sliding window based

pproaches perform a grid search at each iteration, optimizing ei-

her the BIC of GCV scores. 

For each of the three methods, a burn-in period of 50 observa-

ions was employed to obtain an initial estimate for the regression

oefficients as well as λ. Each experiment was repeated 100 times

nd the mean value of the regularization parameter was studied. 

.1.1. Change of the variance of residuals 

We begin by studying the effect of residual variance on the

hoice of the regularization parameter, λ. The regression coeffi-

ients were set to βt = (1 , 1 , 1 , 1 , 1 , 0 , . . . , 0) � , yielding q = 5 and

he covariance parameter was set to be ρ = 0 . 5 . The vector of

esiduals was simulated according to a piece-wise stationary dis-

ribution as follows: 

 t ∼
{

N (0 , σ 2 
1 ) , for t < 200 ;

N (0 , σ 2 
2 ) , t ≥ 200 , 

(3)

esulting in a change in the variance of residuals at the 200th ob-

ervation. Throughout these experiments, we set σ1 = 1 and al-

owed σ 2 to vary from σ2 ∈ { 0 . 5 , . . . , 1 . 5 } . In order to study the

ffects of changes in the variance of residuals, we consider the

hange in the estimated regularization parameter defined by the

atio of the values of λ after ( λ2 ) and before ( λ1 ) the change point

s a function of the ratio σ 2 / σ 1 . Following the discussion from

ection 2 , we would expect increasing values of the ratio to result

n increasing values of the regularization parameter and vice versa.

Fig. 1 plots the effect of the changes in the standard deviation

f residuals on the Lasso parameter λ. As expected when looking

t the formula (2) , there is a linear dependency visible. In the case

f all the methods employed (BIC, GCV, RAP), the lines are almost

dentical and the dependence of 
λ2 
λ1 

on 

σ2 
σ1 

can clearly be seen. 

In order to illustrate how the series of values of the Lasso pa-

ameter changes over time and how long it takes to adjust for the

ew settings of the model, we depict the average λ over the 100

cenarios in Fig. 2 , where σ1 = 1 and σ2 = 1 . 5 . We normalize the

IC, GCV and RAP values of λ to fit into the interval [0, 1]. 



L. Zbo ̌náková, R.P. Monti and W.K. Härdle / Pattern Recognition Letters 125 (2019) 542–548 545 

Fig. 3. Standardized series of average λ over 100 scenarios with a change point at 

t = 200 and regression coefficients β t defined by (4) . 
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Fig. 4. Relative changes of λ in dependence on relative changes of the size of the 

active set q . 

Fig. 5. Relative changes of λ in dependence on relative changes of the correlation 

parameter ρ . 

Fig. 6. Standardized series of average λ over 100 scenarios with a change point at 

t = 200 and ρ1 = 0 . 5 and ρ2 = 0 . 1 . 
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From Fig. 2 it is clear that the values of λ adjust for the new

odel settings for the whole length of the moving window (50 in

his case) if this approach is implemented. We note there is a clear

hange in the regularization parameter following t = 200 , indicat-

ng the need to adaptively estimate the regularization parameter

nd demonstrating the drawback of using a fixed and pre-specified

alue of λ. 

.1.2. Change of the � 1 and � 0 norm of β
It follows that the choice of the regularization parameter is

losely related to the true underlying � 1 and � 0 norm of the re-

ression coefficients; the relation to the latter is because the Lasso

onstraint is introduced as a convex relaxation of the � 0 norm. 

In this set of simulations, we therefore quantify the effects of

hanges in both the � 0 and � 1 norms on the optimal choice of the

egularization parameter. In particular, we set σ1 = σ2 = 1 and ρ =
 . 5 . As a first example, we consider the following changes in the

 1 norm: 

t = 

{
(1 , 1 , 1 , 1 , 1 , 0 , . . . , 0) � , for t < 200 ;
(1 , 0 . 8 , 0 . 6 , 0 . 4 , 0 . 2 , 0 , . . . , 0) � , t ≥ 200 . 

(4) 

e note that the changes induced by Eq. (4) correspond to a drop

n the signal-to-noise ratio at time t = 200 . This is a phenomenon

hat is often encountered in neuroimaging data analysis and is fre-

uently attributed to the subjects losing interest in the task at

and [11,18] . The time series of estimated λ values is presented

n Fig. 3 . 

We note that the change in the � 1 norm of the model coeffi-

ients β results in an upward trend in λ for the BIC and GCV pa-

ameter choice which is visible in the long run. For a short period

fter the change, exactly the period of 50 observations from the

oving window, the misspecification of the model drives the size

f residuals and with them, the values of λ higher and lower again

n a “bump”-shaped line. The same holds for the RAP algorithm,

owever, because of the fixed forgetting factor, the values of λ are

djusting to the new model settings more slowly. 

In order to study the effect of changes in the � 0 norm (i.e., the

ize of the active set) we generated synthetic data whereby: 

| βt || 0 = 

{
q 1 , for t < 200 ;
q 2 , t ≥ 200 , 

(5) 

ith q 1 = 10 and q 2 ∈ { 5 , . . . , 15 } . 
Fig. 4 visualizes the relative changes of λ as a function of the

elative changes in the size of the active set, defined as q 2 / q 1 . We

ote there is a clear decay of values of λ2 / λ1 as q 2 / q 1 increases.

his is to be expected, as an increase in the latter ratio implies

 larger active set in the second part of the time series and thus

auses a decrease in λ2 . Hence, this figure provides empirical val-

dation of the inverse correlation between the magnitude of the

ctive set and the estimated regularization parameter. 
.1.3. Change of covariance parameter ρ
Finally, we study the effect of changes in the covariance struc-

ure of features, X t , on the regularization parameter. We note that

hilst it is possible to vary the covariance structure in many ways,

e consider a simple model whereby � = (σi j ) 
p 
i, j=1 

and set σi j =
| i − j| . The benefit of such a model is that it only depends on a sin-

le parameter, ρ , simplifying the interpretation and visualization of

esults. As such, we investigate changes in the covariance parame-

er ρ , while fixing σ = 1 and q = 5 . Formally, piece-wise stationary

ata was generated such that: 

t = 

{
ρ1 , for t < 200 ;
ρ2 , t ≥ 200 , 

(6) 

here ρ1 = 0 . 5 and ρ2 ∈ { 0 . 1 , . . . , 0 . 9 } . 
As in the previous experiments, we visualize the relative

hanges of λ with respect to the relative changes of ρ in Fig. 5 .

he time series of the estimated values of λ over the whole sam-

le size are depicted in Fig. 6 . 

From Fig. 5 it is important to note that the changes of λ no

onger demonstrate a linear dependency with the statistical prop-

rty of interest. The values of λ tend to decay with both decreas-

ng and rising covariance of the predictors. A potential explana-

ion for the non-linear nature of the relationship demonstrated in

ig. 5 is due to the selection properties of the Lasso. It is widely

cknowledged that in the presence of strongly correlated variables
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Fig. 7. Relative changes of λ corresponding to the combination of relative changes 

of q and σ . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Relative changes of λ corresponding to the combination of relative changes 

of ρ and σ . 

Fig. 9. Relative changes of λ corresponding to the combination of relative changes 

of q and ρ . 
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(corresponding to large ρ values) the Lasso tends to choose only a

single variable form the group of strongly correlated covariates (in-

deed this phenomenon is the inspiration for the elastic net [24] ).

As such, as ρ increases, the term X 

� X from the numerator of λ
drives its values higher. If the ρ value is too high, we speak of

multicollinearity, where the denominator of λ is affected and be-

comes larger, which consequently causes the λ values to drop. 

In Fig. 6 the change from ρ1 = 0 . 5 to ρ2 = 0 . 1 is depicted. We

note there is a change in λ despite the fact that the � 1 and � 0 
norms remain unchanged. 

3.1.4. Simultaneous changes of model specifications 

While the previous experiments have examined the effects of

changing a single property of the data, we now consider combina-

tions of specific changes. In particular, the purpose of the remain-

ing experiments is to highlight how simultaneous changes to two

properties of the data result in a cancellation of their effects on the

regularization parameter. The purpose of this section is, therefore,

to highlight the fact that it is possible to have non-stationary data

where the three properties discussed in Section 2 vary, and yet the

optimal choice of the sparsity parameter is itself constant. 

We begin by studying simultaneous changes in the � 0 or � 1 
norm of the regression parameters, β t , together with changes in

the variance of residuals, σ 2 . Recall that the optimal choice of reg-

ularization parameter was positively correlated with the magni-

tude of residuals (see Fig. 1 ) whilst being negative correlated with

q (see Fig. 4 ). Fig. 7 shows the relative change of λ as a function of

both q 2 / q 1 and σ 2 / σ 1 . It is important to note the diagonal trend,

which indicates that for any increase in q , a proportional increase

in σ directly cancels out the change in the estimated regulariza-

tion parameter. This is a natural result as the changes in σ influ-

ence the numerator, whilst changes in the � 0 or � 1 norm affect the

denominator in (2) . 

Next, we consider the combination of varying the covariance

parameter, ρ , and the variance of the residuals, parameterized by

σ . Recall from the previous discussion that the covariance param-

eter, ρ , did not have a linear relationship with the regularization

parameter, λ. Such a non-linear relationship can be clearly seen

again in Fig. 8 . Furthermore, we note that changes in σ tend to

dominate the changes in ρ , as is illustrated by the rising values of

λ in the upper part of the plot. 

Finally, we also studied the combination of changes in the � 0 
norm, denoted by q , together with changes in the covariance pa-

rameter, ρ . Note that changes in these parameters are strongly

coupled due to the effect of multicollinearity induced by simulta-

neously increasing the number of non-zero regression coefficients

together with their correlations. The results, provided in Fig. 9 ,

highlight these dependencies. The left-hand side of the heatmap
hows a diagonal pattern for changes in ρ and q where the num-

er of non-zero coefficients tends to have a larger influence on the

alues of λ. However, as the values of ρ2 get greater and the effect

f multicollinearity becomes relevant, the diagonal pattern disap-

ears and values of λ do not decrease as significantly as for the

maller ρ2 ’s. 

.2. Application to financial and neuroimaging data 

Until now we have provided empirical evidence based on a va-

iety of simulations, each varying one or more of the statistical

roperties of the data. In this section, we conclude by present-

ng two distinct real-world datasets where we observe significant

ariability in the time-varying regularization parameter. The two

atasets presented in this section serve as two examples from di-

erse applications where non-stationary data is encountered. 

We study two high-dimensional real-world datasets from dis-

inct applications: the first consists of stock returns and the sec-

nd corresponds to functional MRI (fMRI) dataset taken from an

motion task. The stock return data consists of daily stock returns

f 100 largest financial companies over a period of 11 years from

007 to 2018. The companies listed on NASDAQ are ordered by the

arket capitalization and downloaded from Yahoo Finance. This

ata is particularly interesting as it covers the financial crisis of

0 08–20 09. 

The second dataset we consider corresponds to fMRI data col-

ected as a part of the Human Connectome Project (HCP). This

ataset consists of measurements of 15 distinct brain regions taken
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Fig. 10. Standardized series of average λ in the US stock returns data, daily obser- 

vations from January 3, 2007 to August 10, 2018. 

Fig. 11. Standardized series of average λ in the fMRI dataset. Distinct tasks are indi- 

cated by the background color (red indicates a neutral task, blue indicates an emo- 

tion task and white denotes the resting period). (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this ar- 

ticle.) 
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uring an emotion task, as described in [3] . Data was analyzed

ver a subset of 50 subjects. While traditional neuroimaging stud-

es were premised on the assumption of stationarity, an exciting

venue of neuroscientific research corresponds to understanding

he non-stationary properties of the data and how these may po-

entially correspond to changes induced by distinct tasks [16,26] or

hanges across subjects [13] . We note that within the context of

euroimaging, understanding variability induced by distinct tasks

r across a population of subjects is an important challenge [27–

0] . 

The modelling procedure employed for both of the datasets

onsisted of regressing each of the components of the multivari-

te time series on the rest. Length of the sliding windows corre-

ponded to 126 observations (approximately 6 months) in case of

he stock returns data and 30 observations in case of the fMRI data.

his way we got either 100 or 15 sequences of the Lasso parame-

er values, for financial and neuroimaging data respectively, which

ere then averaged and normalized to the [0, 1] interval as before.

he resulting time series for the US stock market data are depicted

n Fig. 10 and for the fMRI data the graphical output can be seen

n Fig. 11 . 

From Fig. 10 it is visible that the values of λ react to the sit-

ation on the market in both of the algorithms, the standard one

ith the BIC and GCV as selecting rules and the RAP. Especially

ronounced is the change of the values during the financial cri-

is of 20 08–20 09 where the volatility observable on the market

as elevated and thus results in increased values of the Lasso pa-

ameter, too. Interestingly, both of the considered methods react

nstantly if some change occurs, but take a different amount of ob-

ervations to adjust back to the standard situation. 

Fig. 11 shows the time series of the average regularization pa-

ameter over eight distinct subjects performing an emotion re-

ated task. The task required participants to perform a series of

rails presented in blocks. The trails either required them to de-
ide which of the two faces presented on the bottom of the screen

atch the face at the top of the screen, or which of the two shapes

resented at the bottom of the screen match the shape at the top

f the screen. The former was considered the emotion task (and

enoted in blue in Fig. 11 ) and the latter the neutral task (denoted

n red in Fig. 11 ). From Fig. 11 we see clear changes in the es-

imated regularization parameter induced by changes in the un-

erlying cognitive task, and thus, changes in the connectedness of

he brain regions. This finding is in line with the current trend in

he study of the fMRI data, which is interested in quantifying and

nderstanding the non-stationarity properties of such datasets and

ow these relate to changes in cognitive state [6,15,31] . 

. Discussion 

In this work, we have highlighted and provided empirical evi-

ence for the various statistical properties which affect the optimal

hoice of a regularization parameter in a penalized linear regres-

ion model. Based on the theory of the Lasso, we specifically con-

ider three distinct properties: the variance of residuals, the � 0 and

 1 norms of the regression coefficients and the covariance structure

f the design matrix. Throughout a series of experiments, we con-

rm the manner in which each of these properties affects the op-

imal choice of the regularization parameter. We relate the depen-

encies between each of the aforementioned statistical properties

nd estimated regularization parameter to the theoretical proper-

ies presented in [17] . In particular, we conclude that: 

• There is a (positive) linear relationship between changes in the

variance of residuals, σ 2 , and the estimated regularization pa-

rameter, as clearly demonstrated in Fig. 1 . 
• There is a (negative) linear relationship between changes in the

size of the active set (either � 0 or � 1 norm) and the estimated

regularization parameter, as shown in Fig. 4 . 
• There is a non-linear relationship between changes in the cor-

relation structure in the design matrix and the estimated regu-

larization parameter, as visualized in Fig. 5 . 

We further provide a series of experiments where two of the

tatistical properties jointly varied in order to demonstrate the

ossibility of having non-stationary time-series data where the op-

imal regularization parameter does not alter. This is most clearly

een in the case of changes in the active set, q , together with

hanges in the residual variance, σ 2 , shown in Fig. 7 . It should

e pointed out that throughout the various simulation studies we

ave focused primarily on � 1 penalized linear regression models.

s such, our conclusions cannot be directly translated to the do-

ain of alternative regularization schemes (e.g., � 2 regularization

s in ridge regression) or alternative regression methods (e.g., gen-

ralized linear models). However, we believe the use of � 1 penal-

zed linear regression serves as a useful case study to highlight

he many aforementioned issues associated with the interpretation

f the regularization parameter. Moreover, due to the many simi-

arities between the Lasso and more general penalized regression

ethods (many of which can often be directly written in terms of

 Lasso problem e.g., [12,13,24,25] ), we expect the aforementioned

ssues to be relevant beyond the Lasso. 

It is also important to note that the choice of the regulariza-

ion parameter will be affected by the choice of the window length

mployed. This follows intuitively from Eq. (1) , where the differ-

nt choices of the window length will give the observations differ-

nt weightings. This can be seen by considering various extreme

hoices for the window length. If we set the window length to

e as large as possible, effectively performing offline linear re-

ression, the corresponding regularization parameter will be static.

his, however, comes at the cost of potentially misspecifying the

odel and ignoring any non-stationarity present. Conversely, if the
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window length is set to be too small, then relevant observations

may be unnecessarily discarded, leading to increased variability in

the estimated regularization parameter. 

Finally, we conclude by presenting two case studies involving

high-dimensional time-series data in the context of finance and

neuroimaging. Both datasets demonstrate significant temporal vari-

ability in the estimated regularization parameter, thereby validat-

ing the need for the methods through which to iteratively tune

such a parameter. 

In conclusion, the purpose of this letter is to highlight and rig-

orously catalog the various statistical properties which may lead

to changes in the choice of the regularization parameters in � 1 pe-

nalized models. Such models are widely employed, indicating that

an appreciation of the relationships between the various statistical

properties of the data and the choice of the regularization param-

eter is important. 
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Abstract: Increasingly volatile and distributed energy production challenges traditional mechanisms
to manage grid loads and price energy. Local energy markets (LEMs) may be a response to those
challenges as they can balance energy production and consumption locally and may lower energy
costs for consumers. Blockchain-based LEMs provide a decentralized market to local energy consumer
and prosumers. They implement a market mechanism in the form of a smart contract without the
need for a central authority coordinating the market. Recently proposed blockchain-based LEMs use
auction designs to match future demand and supply. Thus, such blockchain-based LEMs rely on
accurate short-term forecasts of individual households’ energy consumption and production. Often,
such accurate forecasts are simply assumed to be given. The present research tested this assumption
by first evaluating the forecast accuracy achievable with state-of-the-art energy forecasting techniques
for individual households and then, assessing the effect of prediction errors on market outcomes in
three different supply scenarios. The evaluation showed that, although a LASSO regression model is
capable of achieving reasonably low forecasting errors, the costly settlement of prediction errors can
offset and even surpass the savings brought to consumers by a blockchain-based LEM. This shows
that, due to prediction errors, participation in LEMs may be uneconomical for consumers, and thus,
has to be taken into consideration for pricing mechanisms in blockchain-based LEMs.

Keywords: blockchain; local energy market; smart contract; smart meter; short-term energy forecasting;
machine learning; least absolute shrinkage and selection operator (LASSO); long short-term memory
(LSTM); prediction errors; market mechanism; market simulation

JEL Classification: Q47; D44; D47; C53

1. Introduction

The “Energiewende”, or energy transition, is a radical transformation of Germany’s energy sector
towards carbon free energy production. This energy revolution led in recent years to widespread
installation of renewable energy generators [1,2]. In 2017, more than 1.6 million photovoltaic
micro-generation units were already installed in Germany [3]. Although this is a substantial step
towards carbon free energy production, there is a downside: The increasing amount of distributed and
volatile renewable energy resources, possibly combined with volatile energy consumption, presents
a serious challenge for grid operators. As energy production and consumption have to be balanced
in electricity grids at all times [4], modern technological solutions to manage grid loads and price
renewable energy are needed. One possibility to increase the level of energy distribution efficiency
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on low aggregation levels is the implementation of local energy markets (LEMs) in a decentralized
approach, an example being the Brooklyn Microgrid [5].

LEMs enable interconnected energy consumers, producers, and prosumers to trade energy in near
real-time on a market platform with a specific pricing mechanism [6]. A common pricing mechanism
used for this purpose are discrete double auctions [7–9]. Blockchain-based LEMs utilize a blockchain as
underlying information and communication technology and a smart contract to match future supply
and demand and to settle transactions [10]. As a consequence, a central authority that coordinates
the market is obsolete in a blockchain-based LEM. Major advantages of such LEMs are the balancing
of energy production and consumption in local grids [11], lower energy costs for consumers [12],
more customer choice (empowerment) [13], and less power line loss due to shorter transmission
distances [14].

In the currently existing energy ecosystem, the only agents involved in electricity markets are
utilities and large-scale energy producers and consumers. Household-level consumers and prosumers
do not actively trade in electricity markets. Instead, they pay for their energy consumption or they
are reimbursed for their infeed of energy into the grid according to fixed tariffs. In LEMs, on the
contrary, households are the participating market agents that typically submit offers in an auction [7,15].
This market design requires the participating households to estimate their future energy demand
and/or supply, to be able to submit a buy or sell offer to the market [16]. Therefore, accurate forecasts
of household energy consumption/production are a necessity for such LEM designs. This is due to the
market mechanism employed and does not depend on whether an LEM is implemented on a blockchain
or not. However, research on blockchain-based LEM mostly employ market mechanisms that require
accurate forecasts of household energy consumption/production making the aspect of forecasting
especially relevant here. Despite this, it is frequently assumed in existing research on (blockchain-based)
LEMs that such accurate forecasts are readily available (see, e.g., [6–8,16,17]). However, forecasting
the consumption/production of single households is difficult due to the inherently high degree of
uncertainty, which cannot be reduced by the aggregation of households [18]. Hence, the assumption
that accurate forecasts are available cannot be taken in practice to be correct. Additionally, given the
substantial uncertainty in individual households’ energy consumption or production, prediction errors
may have a significant impact on market outcomes.

This is where we focused our research: We evaluated the possibility of providing accurate
short-term household-level energy forecasts with existing methods and currently available smart
meter data. Moreover, our study aimed to quantify the effect of prediction errors on market outcomes
in blockchain-based LEMs. For the future advancement of the field, it seemed imperative that the
precondition of accurate forecasts of individual households’ energy consumption and production for
LEMs is assessed. Because, if the assumption cannot be met, the proposed blockchain-based LEMs
may not be a sensible solution to support the transformation of our energy landscape. This, however,
is urgently necessary to limit CO2 emissions and the substantial risks of climate change.

1.1. Related Research

Although LEMs started to attract interest in academia already in the early 2000s, it is
still an emerging field [11]. Mainly driven by the widespread adoption of smart meters and
Internet-connected home appliances, recent work on LEMs focuses on use cases in developed and
highly technologized energy grid systems [19]. While substantial work regarding LEMs in general has
been done (e.g., [7,8,15]), there are only few examples of blockchain-based LEM designs in the existing
literature. Mengelkamp et al. [10] derived seven principles for microgrid energy markets and evaluated
the Brooklyn Microgrid according to those principles. With a more practical focus, Mengelkamp et al.
[6] implemented and simulated a local energy market on a private Ethereum-blockchain that enables
participants to trade local energy production on a decentralized market platform with no need for
a central authority. Münsing et al. [20] similarly elaborate a peer-to-peer energy market concept on
a blockchain but focus on operational grid constraints and a fair payment rendering. Additionally,



Energies 2019, 12, 2718 3 of 27

there are several industry undertakings to put blockchain-based energy trading into practice, such
as Grid Singularity (gridsingularity.com) in Austria, Powerpeers (powerpeers.nl) in the Netherlands,
Power Ledger (powerledger.io) in Australia, and LO3 Energy (lo3energy.com) in the United States.

Interestingly, none of the above cited works, that employ market mechanisms requiring household
energy forecasts for bidding, check whether the assumed availability of such forecasts is given.
However, without this assumption, trading through an auction design, as described by, e.g., Block
et al. [9] or Buchmann et al. [8], and implemented in a smart contract by Mengelkamp et al. [6] is
not possible. Unfortunately, this forecasting task is not trivial due to the extremely high volatility of
individual households’ energy patterns [18]. However, research by Arora and Taylor [21], Kong et al.
[22], Shi et al. [23], and Li et al. [24] shows that advances in the energy forecasting field also extend to
household-level energy forecasting problems and serve as a promising basis for the present study.

1.2. Present Research

We investigated the prerequisites necessary to implement blockchain-based distributed local
energy markets. In particular this means:

(a) forecasting net energy consumption and production of private consumers and prosumers one
time-step ahead;

(b) evaluating and quantifying the effects of forecasting errors; and
(c) evaluating the implications of low forecasting quality for a market mechanism.

The prediction task was fitted to the setup of a blockchain-based LEM. Thereby, the present
research distinguishes itself notably from previous studies that solely try to forecast smart meter
time series in general. The evaluation of forecasting errors and their implications was based on the
commonly used market mechanism for discrete interval, double-sided auctions, while the forecasting
error settlement structure was based on the work of Mengelkamp et al. [6]. The following research
questions were examined:

1. Which prediction technique yields the best 15-min ahead forecast for smart meter time series
measured in 3-min intervals using only input features generated from the historical values of the
time series and calendar-based features?

2. Assuming a forecasting error settlement structure, what is the quantified loss of households
participating in the LEM due to forecasting errors by the prediction technique identified in
Question (a)?

3. Depending on Question (b), what implications and potential adjustments for an LEM market
mechanism can be identified?

The present research found that regressing with a least absolute shrinkage and selection
operator (LASSO) on one week of historical consumption data is the most suitable approach to
household-level energy forecasting. However, this method’s forecasting errors still substantially
diminish the economical benefit of a blockchain-based LEM. Thus, we conclude that changes to the
market designs are the most promising way to still employ blockchain-based LEMs as means to meet
some of the challenges generated by Germany’s current energy transition.

The remainder of the paper is structured as follows: Section 2 presents the forecasting models
and error measures used to evaluate the prediction accuracy. Moreover, it introduces the market
mechanism and simulation used to evaluate the effect of prediction errors in LEMs. Section 3 describes
the data used. Section 4 presents the prediction results of the forecasting models, evaluates their
performance relative to a baseline model and assesses the effect of prediction errors on market
outcomes. The insights gained from this are then used to identify potential adjustments for future
market mechanisms. Finally, Section 5 concludes with a summary, limitations, and an outlook on
further research questions that emerge from the findings of the present research.

All code and data used in the present research are available through the Quantnet website
(www.quantlet.de). They can be easily found by entering BLEM (Blockchain-based Local Energy

https://gridsingularity.com
https://powerpeers.nl
https://powerledger.io
https://lo3energy.com
www.quantlet.de
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Markets) into the search bar. As part of the Collaborative Research Center, the Center for Applied
Statistics and Economics and the International Research Training Group (IRTG) 1792 at the
Humboldt-University Berlin, Quantnet contributes to the goal of strengthening and improving
empirical economic research in Germany.

2. Method

To select the forecasting technique, we applied the following criteria:

1. The forecasting technique has to produce deterministic (i.e., point) forecasts.
2. The forecasting technique had—for comparison—to be used in previous studies.
3. The previous study or studies using the forecasting technique had to use comparable data,

i.e., recorded by smart meters in 60-min intervals or higher resolution, recorded in multiple
households, and not recorded in small and medium enterprises (SMEs) or other business or
public buildings.

4. The forecasting task had to be comparable to the forecasting task of the present research, i.e., single
consumer household (in contrast to the prediction of aggregated energy time series) and very
short forecasting horizon (≤ 24 h).

5. The forecasting technique had to take historical and calendar features only as input for the
prediction.

6. The forecasting technique had to produce absolutely and relative to other studies promisingly
accurate predictions.

Based on these criteria, two forecasting techniques were selected for the prediction task at
hand. As short-term energy forecasting techniques are commonly categorized into statistical and
machine learning (or artificial intelligence) methods [25–27], one method of each category was chosen:
Long short-term memory recurrent neural network (LSTM RNN) adapted from the procedure outlined
by Shi et al. [23] and autoregressive LASSO as implemented by Li et al. [24]. Instead of LSTM RNN,
gated recurrent unit (GRU) neural networks could have been used as well. However, despite needing
fewer computational resources, their representational power may be lower compared to LSTM RNNs
[28] and their successful applicability in household-level energy forecasting has not been proven in
previous studies. The forecasting techniques used data from 1 January 2017 to 30 September 2017
as training input and the forecast was evaluated on data from 1 October 2017 to 31 December 2017.
This means that no data from autumn were included in the training data. However, this seems unlikely
to influence the forecasting performance as the German climate in the months from February to April
(which are included in the training data) is comparable to the climate in the months from October to
December; the forecasting horizon is very short-term; and the input for the forecasting techniques is
too short to reflect any seasonal changes in temperature or sunshine hours.

2.1. Baseline Model

A frequent baseline model used for deterministic forecasts is the simple persistence model [29].
This model assumes that the conditions at time t persist at least up to the period of forecasting interest
at time t + h. The persistence model is defined as

x̂t+1 = xt. (1)

There are several other baseline models commonly used in energy load forecasting. Most of them
are, in contrast to the persistence model, more sophisticated benchmarks. However, as the forecasting
task at hand serves the specific use case of being an input for the bidding process in a blockchain-based
LEM, the superiority of the forecasting model over a benchmark model is of secondary importance.
Hence, in the present research, only the persistence model served as a baseline for the forecasting
techniques presented in Sections 2.2 and 2.3.
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2.2. Machine Learning-Based Forecasting Approach

The first sophisticated forecasting technique that was employed in the present research to produce
as accurate as possible predictions for the blockchain-based LEM is a machine learning algorithm.
Long short-term memory (LSTM) recurrent neural networks (RNN) have been introduced only very
recently in load forecasting studies (e.g., [22,23,27,30]).

Neural networks do not need any strong assumptions about their functional form, such as
traditional time series models (e.g., autoregressive moving average, ARMA). However, they are
universal approximators for finite input [31] and, therefore, are especially well suited for the prediction
of volatile time series such as energy consumption or production. The most basic building blocks of
any neural network are three types of layers: an input layer, one or more hidden layer(s), and an output
layer. Each layer consists of one or more units (sometimes called neurons). Each unit in a layer takes in
an input, applies a transformation to this input, and outputs it to the next layer. Formally, this can be
written as

h1,i = φ1 (W1xi + b1)

h2,i = φ2 (W2h1,i + b2)

...

oi = φn

(
Wnh(n−1),i + bn

)
= ŷi,

(2)

where n denotes a layer, φn is the activation function, Wn is the weight matrix, and bn is the bias
vector in layer n. xi is the ith input vector and oi is the output value of the output layer, which is the
estimation of the true value yi. The weight matrices and bias vectors in each layer are parameters that
are adjusted during the training of the model.

However, such a simple neural network is not particularly well-suited for time series learning [28].
This is because simple neural networks, such as the one described above, do not have an internal state
that could retain a memory of previously processed input. That is, to learn a sequence or time series,
the described neural network would always need the complete time series as a single input. It cannot
retain a memory of something learned in a previous chunk of the time series to apply it to the next
chunk that is fed into the model. This problem is tackled by recurrent neural networks.

RNNs still consist of the basic building blocks of units and layers. However, the units not only feed
forward the transformed input as output but also have a recurrent connection that feeds an internal
state back into the unit as input. Thereby, a RNN unit loops over individual elements of an input
sequence, instead of processing the whole sequence in a single step. This means that the RNN unit
applies the transformation to the first element of the input sequence and combines it with its internal
state. This introduces the notion of time into neural networks. Formally, this can be written as

h1,t = φ1

(
W (i)

1 xt + W (r)
1 h1,(t−1) + b1

)
h2,t = φ2

(
W (i)

2 h1,t + W (r)
2 h2,(t−1) + b2

)
...

ot = φn

(
W (i)

n h(n−1),t + bn

)
= ŷt,

(3)

where n denotes a layer, φn is the activation function, W (i)
n is the weight matrix for the input, W (r)

n is
the weight matrix for the recurrent input (i.e., the output of layer n in the previous time step), and bn is
the bias vector in layer n. xt is the input vector at time t and ot is the output value of the output layer
which is the estimation of the true value yt. Note that the output layer has no recurrent units but is the
same as in a simple feed forward network.
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The cyclical structure of an RNN unit can be unrolled across time (see Figure 1). This illustrates
that a RNN is basically a simple neural network that has one layer for each time step that has to
be processed per input. Theoretically, this feedback structure enables RNNs to retain information
about sequence elements that have been processed many steps before the current step and use it
for the prediction of the current step. However, in practice, the vanishing gradient problem occurs
(for more details on the vanishing gradient problem, see, e.g., [32]). This problem makes RNNs
basically untrainable for very long sequences.

!"#$ !" !"%$

ℎ$,"#$ ℎ$," ℎ$,"%$

ℎ$,"#$ ℎ$,"

input

output
hidden layer 1

Figure 1. Schematic representation of an unfolded RNN unit. Adapted from [28].

To overcome the vanishing gradient problem, Hochreiter and Schmidhuber [33] developed LSTM
units. LSTM RNN is an advanced architecture of RNN that is particularly well suited to learn long
sequences or time series due to its ability to retain information over many time steps [28]. LSTM units
extend RNN units by an additional state. This state can retain information for as long as needed.
In which step this additional state is updated and in which state the information it retains is used in
the transformation of the input is controlled by three so-called gates [34]. These three gates have the
form of a simple RNN cell. Formally, by slightly adapting the notation of Lipton et al. [35]—who used
ht−1 instead of st−1, whereas the notation used here (st−1) accounts for the modern LSTM architecture
with peephole connections—the gates can be written as

it = σ
(

W (ix)xt + W (is)st−1 + bi

)
f t = σ

(
W ( f x)xt + W ( f s)st−1 + b f

)
ot = σ

(
W (ox)xt + W (os)st−1 + bo

)
,

(4)

where σ is the sigmoid activation function σ(z) = 1
1+e−z , W denotes the weight matrices that are

intuitively labeled (ix for the weight matrix of gate it multiplied with the input xt etc.), and b denotes
the bias vectors. Again, following the notation of Lipton et al. [35], the full algorithm of a LSTM unit is
given by the three gates specified above, the input node,

gt = σ
(

W (gx)xt + W (gh)ht−1 + bg

)
, (5)

the internal state of the LSTM unit at time step t,

st = gt � it + st−1 � f t, (6)

where � is pointwise multiplication, and the output at time step t,

ht = φ (st)� ot. (7)

The internal structure of a LSTM cell is further clarified in Figure 2. For an intuitive but more
detailed explanation of LSTM neural networks, see [28] (Ch. 6.2).
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Figure 2. Schematic representation of an LSTM unit. Adapted from [36]. The filled in circles represent
the pointwise multiplication operation denoted by � in Equations (6) and (7).

In summary, LSTM RNNs are capable of learning highly complex, non-linear relationships in
time series data, which makes them a promising forecasting technique to predict households’ very
short-term energy consumption and production.

The specific LTSM RNN approach adopted in the present research was based on the procedure
employed by Shi et al. [23] to forecast individual households’ energy consumption. According to the
relevant use case in the present research, LSTM RNNs were trained for each household individually
using only the household’s historic consumption patterns and calendar features. Specifically, seven
days of past consumption, an indicator for weekends, and an indicator for Germany-wide holidays
were used as input for the neural network in the present research. This follows the one-hot encoding
used by Chen et al. [30]. Seven days of lagged data were used as input because preliminary results
indicated that the autocorrelation in the time series becomes very weak in lags beyond one week.
Moreover, using the previous week as input data still preserves the weekly seasonality and represents
a reasonable compromise between as much input as possible and the computational resources needed
to process the input in the training process of the LSTM neural network. The target values in the model
training were single consumption values in 15-min aggregation. The following example serves as
illustration: Assume the consumption values in 3-min intervals from 13 November 2017 13:00 to 20
November 2017 13:00 and zero/one-indicators for weekends and holidays (i.e., 3 × 3360 data points)
are fed into the neural network. The model then produces a single output value that estimates the
household’s energy consumption in kWh from 20 November 2017 13:00 to 20 November 2017 13:15.

A neural network is steered by several hyperparameters: the number and type of layers,
the number of hidden units within each layer, the activation functions used within each unit, dropout
rates for the recurrent transformation, and dropout rates for the transformation of the input. To identify
a well working combination of hyperparameter values, tuning is necessary which is unfortunately
computationally very resource intensive. Table 1 presents the hyperparameters that were tuned and
their respective value ranges. The tuning was done individually for each network layer. Optimally,
the hyperparameters of all layers should be tuned simultaneously. However, due to computational
constraints, that was not possible here and, thus, the described, second-best option was chosen. As the
hyperparameter values specified in Table 1 for layer 1 alone result in 81 possible hyperparameter
combinations, only random samples of these combinations were taken, the resulting models trained
on a randomly chosen dataset and compared. In total, 16 models with one layer, 13 models with two
layers and 13 models with three layers were tuned. The model tuning was conducted on four Tesla
P100 graphical processing units (GPUs) through the Machine Learning (ML) Engine of the Google
Cloud Platform. The job was submitted to the Google Cloud ML Engine via Google Cloud SDK
and the R package cloudml. Although neural networks can be trained much faster on GPUs than
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on conventional central processing units (CPUs) [28], usage of GPUs through the Google Cloud ML
Engine incurs substantial monetary cost. Thus, they were only used for the model tuning in this study.

Table 1. The hyperparameters that were tuned for an optimal LSTM RNN model specification.

Hyperparameter Possible Possible Sampling # of Assessed
Values Combinations Rate Combinations

layer 1

batch size {128, 64, 32}

81 0.2 16hidden units {128, 64, 32}
recurrent dropout {0, 0.2, 0.4}
dropout {0, 0.2, 0.4}

hidden units {128, 64, 32}
layer 2 recurrent dropout {0, 0.2, 0.4} 26 0.5 13

dropout {0, 0.2, 0.4}

hidden units {128, 64, 32}
layer 3 recurrent dropout {0, 0.2, 0.4} 26 0.5 13

dropout {0, 0.2, 0.4}

Based on the hyperparameter tuning results, a model with the specification shown in Table 2 was
used for the prediction of a single energy consumption value for the next 15 min.

The total length of data points covered in the training process equals the batch size times the input
data points times the number of data points that are aggregated for each prediction (i.e., 5 data points):
700 × 32 × 5 = 112,000 data points. This is equivalent to the time period from 1 January 2017 00:00 to
22 August 2017 09:03. The tuning process and results can be replicated by following the Quantlet link
in the caption of Table 2.

Table 2. Tuned hyperparameters for LSTRM RNN prediction model. BLEMtuneLSTM (github.com
/QuantLet/BLEM/tree/master/BLEMtuneLSTM)

Hyperparameter Tuned Value

layers 1
hidden units 32
dropout rate 0
recurrent dropout rate 0
batch size 32
number of input data points 3360
number of training samples 700
number of validation samples 96

The general procedure of model training, model assessment and prediction generation is
shown in Procedure 1. The parameter tuple was set globally for all household datasets based on
the hyperparameter tuning. Thereafter, the same procedure was repeated for each dataset: First,
the consumption data time series was loaded, target values were generated, and the input data were
transformed. The transformation consisted of normalizing the log-values of the consumption per
3-min interval between 0 an 1. This ensured fast convergence of the model training process. The data
batches for the model training and the cross-validation were served to the training algorithm by
so-called generator functions. Second, the LSTM RNN was compiled and trained with Keras, which is
a neural network application programming interface (API) written in Python. The Keras R package
(v2.2.0.9), which was used with RStudio v1.1.453 and TensorFlow 1.11.0 as back-end, is a wrapper
of the Python library and is maintained by Chollet et al. [37]. The model training and prediction for
each household was performed on a Windows Server 2012 with 12 cores and 24 logical processors
of Intel Xeon 3.4 GHz CPUs. The model training was done in a differing number of epochs as early
stopping was employed to prevent overfitting: Once the mean absolute error on the validation data
did not decrease by more than 0.001 in three consecutive epochs, the training process was stopped.
Third, the trained model was used to generate predictions on the test set that comprised data from
1 October 2017 00:00 to 1 January 2018 00:00 (i.e., 44,180 data points). As the prediction was made

https://github.com/QuantLet/BLEM/tree/master/BLEMtuneLSTM
https://github.com/QuantLet/BLEM/tree/master/BLEMtuneLSTM
https://github.com/QuantLet/BLEM/tree/master/BLEMtuneLSTM
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in 15-min intervals, in total, 8836 data points were predicted. Using the error measures described in
Section 2.4, the model performance was assessed. Finally, the predictions for all datasets were saved
for the evaluation in the LEM market mechanism.

Procedure 1 Supervised training of and prediction with LSTM RNN.
1: Set parameter tuple < l, u, b, d >: number of layers l ⊆ L, number of hidden LSTM-units u ⊆ U, batch size b ⊆ B, and dropout rate d ⊆ D.

2: Initiate prediction matrix P and list for error measures Θ.

3: for Household i in dataset pool I do

4: Load dataset Ψi .

5: Generate target values y by aggregating data to 15-min intervals.

6: Transform time series in dataset Ψi and add calendar features.

7: Set up training and validation data generators according to parameter tuple < b, d >.

8: Split dataset Ψi into training dataset Ψi,tr and testing dataset Ψi,ts .

9: Build LSTM RNN ζi on Tensorflow with network size (l, h).

10: repeat

11: At kth epoch do:

12: Train LSTM RNN ζi with data batches ϕtrain ⊆ Ψi,tr supplied by training data generator.

13: Evaluate performance with mean absolute error Λk on cross-validation data batches ϕval ⊆ Ψi,tr supplied by validation data generator.

14: until Λk−1 −Λk < 0.001 for the last 3 epochs.

15: Save trained LSTM RNN ζi .

16: Set up testing data generator according to tuple < b, d >.

17: Generate predictions ŷi with batches ϕts ⊆ Ψi,ts fed by testing data generator into LSTM RNN ζi .

18: Calculate error measures Θi to assess performance of Xi .

19: Write prediction vector ŷi into column i of matrix P.

20: end for.

21: Save matrix P.

22: End.

2.3. Statistical Method-Based Forecasting Approach

To complement the machine learning approach of a LSTM RNN with a statistical approach,
a second, regression-based method was used. For this purpose, the autoregressive LASSO approach
proposed by Li et al. [24] seemed most suitable. Statistical methods have the advantage of much
lower model complexity compared to neural networks which makes them computationally much less
resource intensive.

Li et al. [24] used LASSO [38] to find a sparse autoregressive model that generalizes better to new
data. Formally, the LASSO estimator can be written as

β̂LASSO = arg min
β

1
2
‖(y− Xβ)‖2

2 + λ ‖β‖1 , (8)

where X is a matrix with row t being [1 xT
t ] (the length of xT

t is the number of lag-orders n available),
and λ is a parameter that controls the level of sparsity in the model, i.e., which of the n available
lag-orders are included to predict yt+1. This model specification selects the best recurrent pattern in
the energy time series by shrinking coefficients of irrelevant lag-orders to zero and, thereby, improves
the generalizability of the prediction model. In the present research, the sparse autoregressive LASSO
approach was implemented using the R package glmnet [39]. As for the LSTM RNN approach, model
training and prediction were performed for every household individually. Following the procedure of
Li et al. [24] , only historical consumption values were used as predictors. Specifically, for comparability
to the LSTM approach, seven days of lagged consumption values served as input to the LASSO model.
The response vector consisted of single consumption values in 15-min aggregation. The same example
as above serves as illustration: Assume the consumption values in 3-min intervals from 13 November
2017 13:00 to 20 November 2017 13:00 (i.e., 3360 data points) are available to the model for prediction.
Based on the training data, the model chooses the lagged values with the highest predictive power
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and makes a linear estimation of a single value for the household’s energy consumption in kWh from
20 November 2017 13:00 to 20 November 2017 13:15.

The detailed description of the model estimation and prediction is presented in Procedure 2.
As the LASSO model requires a predictor matrix, the time series of each household was split in
sequences of length n = 3360 with five data points skipped in between. The skip accounted for the fact
that the response vector was comprised of 15-min interval consumption values (i.e., five aggregated
3-min values). After generating the predictor matrix for the model estimation, the optimal λ was
found in a K-fold cross-validation. Here, K was set to 10. The sequence of λ-values that was tested
via cross-validation was of length L = 100 and was constructed by calculating the minimum λ-value
as a fraction of the maximum λ-value (λmin = ελmax, where λmax was such that all β-coefficients
were set equal to zero) and moving along the log-scale from λmax to λmin in L steps. However,
the glmnet algorithm used early-stopping to reduce computing times if the percent of null deviance
explained by the model with a certain λ did not change sufficiently from one to the next λ-value.
The cross-validation procedure identified the biggest λ that is still within one standard deviation
of the λ with the lowest mean absolute error. The final coefficients for each household were then
computed by solving Equation (8) for the complete predictor matrix. Thereafter, the predictions were
made on the testing data. Again, the time series was sliced according to the sliding window of length
n = 3360 skipping five data points and written into a predictor matrix. This matrix comprised data
from 1 October 2017 00:00 to 1 January 2018 00:00 (i.e., 8836 cases of 3360 lagged values), resulting
again in 8836 predicted values as in the case of the LSTM approach. The predictions on all datasets
were assessed using the error measures described in Section 2.4 and saved for the evaluation of the
prediction in the context of the LEM market mechanism.

Procedure 2 Cross-validated selection of λ for LASSO and prediction.
1: Initiate prediction matrix P and list for error measures Θ.

2: for Household i in dataset pool I do

3: Load dataset Ψi .

4: Generate target values y by aggregating data to 15-min intervals.

5: Split dataset Ψi into training dataset Ψi,tr and testing dataset Ψi,ts .

6: Generate predictor matrix Mtr by slicing time series Ψi,tr with sliding window.

7: Generate sequence of λ-values {ls}L
s=1.

8: Set number of cross-validation (CV) folds K.

9: Split predictor matrix Mtr into K folds.

10: for k in K do

11: Select fold k as CV testing set and folds j 6= k as CV training set.

12: for each ls in {ls}L
s=1 do

13: Compute vector β̂k,ls on CV training set.

14: Compute mean absolute error Λk,ls on CV testing set.

15: end for.

16: end for.

17: For each β̂k,ls calculate average mean absolute error Λ̄s across the K folds.

18: Select cross-validated λ-value lCV
s with the highest regularization (min no. of non-zero β-coeff.) within one SD of the minimum Λ̄s .

19: Compute β̂lCV
s

on complete predictor matrix Mtr .

20: Generate predictor matrix Mts by slicing time series Ψi,ts with sliding window.

21: Generate predictions ŷi from predictor matrix Mts and coefficients β̂lCV
s

.

22: Calculate error measures Θi to assess performance.

23: Write prediction vector ŷi into column i of matrix P.

24: end for.

25: Save matrix P.

26: End.
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2.4. Error Measures

Forecasting impreciseness is measured by a variety of norms. The L1-type mean absolute error
(MAE) is defined as the average of the absolute differences between the predicted and true values [40]:

MAE =
1
N

N

∑
t=1
|x̂t − xt| , (9)

where N is the length of the forecasted time series, x̂t is the forecasted value and xt is the observed
value. As MAE is only a valid error measure if one can assume that for the forecasted distribution the
mean is equal to the median (which might be too restrictive), an alternative is the root mean square
error (RMSE), i.e., the square root of the average squared differences [29,41]:

RMSE =

√√√√ 1
N

N

∑
t=1

(x̂t − xt)
2. (10)

Absolute error measures are not scale independent, which makes them unsuitable to compare
the prediction accuracy of a forecasting model across different time series. Therefore, they are
complemented with the percentage error measures mean absolute percentage error (MAPE) and
normalized root mean square error (NRMSE) normalized by the true value:

MAPE =
100
N

N

∑
t=1

∣∣∣∣ x̂t − xt

xt

∣∣∣∣ , (11)

and

NRMSE =

√√√√100
N

N

∑
t=1

(
x̂t − xt

xt

)2
. (12)

However, as Hyndman and Koehler [42] pointed out, using xt as denominator may be problematic
as the fraction x̂i−xi

xt
is not defined for xt = 0. Therefore, time series containing zero values cannot be

assessed with this definition of the MAPE and NRSME.
To overcome the shortage of an undefined fraction in the presence of zero values in the case of

MAPE and NRMSE, the mean absolute scaled error (MASE) as proposed by Hyndman and Koehler
[42] was used. That is, MAE was normalized with the in-sample mean absolute error of the persistence
model forecast:

MASE =
MAE

1
n−1 ∑N

t=2 |xt − xt−1|
. (13)

In summary, in the present research, the forecasting performance of the LSTM RNN and the
LASSO were evaluated using MAE, RMSE, MAPE, NRMSE, and MASE.

2.5. Market Simulation

We used a market mechanism with discrete closing times in 15-min intervals. Each consumer
and each prosumer submit one order per interval and the asks and bids are matched in a closed
double auction that yields a single equilibrium price. The market mechanism was implemented in
R. This allows for a flexible and time-efficient analysis of the market outcomes with and without
prediction errors.

The simulation of the market mechanism followed five major steps: First, the consumption and
production values of each market participant per 15-min interval from 1 October 2017 00:00 to 1 January
2018 00:00 were retrieved. These values are either the true values as yielded by the aggregation of
the raw data or the prediction values as estimated by the best performing prediction model. Second,
for each market participant, a zero-intelligence limit price was generated by drawing randomly from
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the discrete uniform distribution U{12.31, 24.69}. The lower bound is the German feed-in tariff of
12.31 EURct

kWh and the upper bound is the average German electricity price in 2016 of 28.69 EURct
kWh [43].

This agent behavior has been shown to generate efficient market outcomes in double auctions [44] and
is rational in so far as electricity sellers would not accept a price below the feed-in tariff and electricity
buyers would not pay more than the energy utility’s price per kWh. However, this assumes that the
agents do not consider any non-price related preferences, such as strongly preferring local renewable
energy [6]. Third, for each trading slot (i.e., every 15-min interval), the bids and asks were ordered
in price-time precedence. Given the total supply is lower than the total demand, the lowest bid price
that can still be served determines the equilibrium price. Given the total supply is higher than the
total demand, the overall lowest bid price determines the equilibrium price. In the case of over- or
undersupply, the residual amounts are traded at the feed-in (12.31 EURct

kWh ) or the regular household
consumer electricity tariff (28.69 EURct

kWh ) with the energy utility. Fourth, the applicable price for each bid
and ask was determined and the settlement amounts, resulting from this price and the energy amount
ordered, were calculated. In the case of using predicted values for the bids, there was an additional
fifth step: After the next trading period, when the actual energy readings were known, any deviations
between predictions and true values were settled with the energy utility using the feed-in or household
consumer electricity tariff. This led to correction amounts that were deducted or added to the original
settlement amounts. For the market simulation, perfect grid efficiency and, hence, no transmission
losses were assumed.

3. Data

The raw data used for the present research were provided by Discovergy GmbH and are available
at BLEMdata (github.com/QuantLet/BLEM/tree/master/data), hosted at GitHub. Discovergy
describes itself as a full-range supplier of smart metering solutions offering transparent energy
consumption and production data for private and commercial clients [45]. To be able to offer such
data-driven services, Discovergy smart meters record energy consumption and production near
real-time—i.e., in 2-s intervals—and send the readings to Discovergy’s servers for storage and analysis.
Therefore, Discovergy has extremely high resolution energy data of their customers at their disposal.
This high resolution is in stark contrast to the half-hourly or even hourly recorded data used in previous
studies on household energy forecasting (e.g., [21,23,46,47]). To our knowledge, there is no previous
research using Discovergy smart meter data, apart from Teixeira et al. [48], who used the data as
simulation input but not for analysis or prediction.

The data come in 200 individual datasets each containing the meter readings of a single smart
meter; 100 datasets belong to pure energy consumers and 100 datasets belong to energy prosumers
(households that produce and consumer energy). The meter readings were aggregated to 3-min
intervals and range from 1 January 2017 00:00 to 1 January 2018 00:00. This translated into 175,201
observations per dataset. Each observation consists of the total cumulative energy consumption and
the total cumulative energy production from the date of installation until time t, current power over
all phases installed in the meter at time t and a timestamp in Unix milliseconds.

For further analysis, the power readings were dropped and the first differences of the energy
consumption and production readings were calculated. These first differences are equivalent to
the energy consumption and production within each 3-min interval between two meter recordings.
The result of this computation leaves each dataset with two time series (energy consumption and
energy production in kWh) and 175,200 observations.

Figure 3 shows the energy consumption time series of Consumer 082. In the first panel of Figure 3,
the consumption per 3-min interval for all of 2017 is shown. Notably, there are two extended periods
(in March and June) and three shorter periods (in July, September, and December) with a clearly
distinguishable low consumption level and low fluctuation. The most likely explanations for these low,
stable energy consumption periods are holidays, in which the household members are on vacation
and leave appliances that are on standby or always turned on as the only energy consumers.

https://github.com/QuantLet/BLEM/tree/master/data
https://github.com/QuantLet/BLEM/tree/master/data
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The second panel zooms to just one month making daily fluctuation patterns visible. The last
panel zooms in to a single day of energy consumption. It exemplifies well a usual pattern of
energy consumption: There is low and rather stable energy consumption from midnight until about
07:30, which only fluctuates in a systematic and repeated way due appliances in standby and “always
on" appliances, such as a fridge and/or freezer. At around 07:30, the household members probably
wake up and the energy consumption spikes for the next 30 min—the lights are turned on, coffee is
made, the stove is turned on, and maybe a flow heater is used to shower with hot water. As the
household members leave the house (13 May is a Monday), the consumption slowly decreases
again. In the evening at about 18:30 the energy consumption spikes again, probably caused by
dinner preparations.

Figure 3. Energy consumption recordings of Consumer 082. The first panel shows the full year 2017,
the second panel zooms in to one month (May), and the third panel zooms in to one day (13 May).

BLEMplotEnergyData (github.com/QuantLet/BLEM/tree/master/BLEMplotEnergyData)

Out of the 100 consumer datasets, five exhibited non-negligible shares of zero consumption values
leading to their exclusion. One consumer dataset was excluded as the consumption time series was
flat for the most part of 2017 and one consumer was excluded due to very low and stable consumption
values with very rare, extreme spikes. Four more consumers were excluded due to conspicuous
regularity in daily or weekly consumption patterns. Lastly, one consumer was excluded not due to
peculiarities in the consumption patterns but due to missing data. As the inclusion of this shorter time
series would have led to difficulties in the forecasting algorithms, this dataset was excluded as well.

Out of the 100 prosumer datasets, 86 were excluded due to zero total net energy production in
2017. These “prosumers" would not act as prosumers in an LEM as they would never actually supply
a production surplus to the market. Of the remaining 14 prosumer datasets, one prosumer dataset
was excluded because the total net energy it fed into the grid in 2017 was just 22 kWh. Additionally,

https://github.com/QuantLet/BLEM/tree/master/BLEMplotEnergyData
https://github.com/QuantLet/BLEM/tree/master/BLEMplotEnergyData
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one prosumer dataset was excluded as it only fed energy into the grid in the period from 6 January
2017 to 19 January 2017. For all other measurement points, the net energy production was zero.

Overall, 88 consumer and 12 prosumer datasets remained for the analysis. All datasets include
a timestamp and the consumption time series for consumers and the production time series for
prosumers with a total of 175,200 data points each.

4. Results

4.1. Evaluation of the Prediction Models

Three prediction methods were used to forecast the energy consumption of 88 consumer
households 15 min ahead: a baseline model, a LSTM RNN model, and a LASSO regression. All three
prediction models were compared and evaluated using the error measures presented in Section 2.4.
The performance of the prediction models was tested on a quarter of the available data. That is,
the prediction models were fitted on the consumption values from 1 January 2017 00:00 to 30 September
2017 00:00, which is equivalent to 131,040 data points per dataset. For all 88 consumer datasets,
the models were fitted separately resulting in as many distinct LASSO and LSTM prediction models.
The fitted models were then used to make energy consumption predictions in 15-min intervals for each
household individually on the data from 1 October 2017 00:00 to 1 January 2018 00:00. This equates to
8836 predicted values per dataset per prediction method.

Figure 4 displays the total sum of over- and underestimation errors in kWh of each prediction
method per dataset. That is, for each consumer, the total sum of overestimation errors is
calculated as summing all differences between true and forecasted value, when the forecasted
value is greater than the true value (formally, δo

i = ∑N
t=1 (x̂i,t − xi,t) [(x̂i,t − xi,t) > 0]; red bars)

and the total sum of underestimation errors is calculated as summing all differences between
true and forecasted value, when the forecasted value is smaller than the true value (formally,
δu

i = ∑N
t=1 (x̂i,t − xi,t) [(x̂i,t − xi,t) < 0]; blue bars). Thus, the red and blue bars added together depict

the total sum of errors in kWh for each prediction method per dataset.
The LASSO technique achieved overall lower total sums of errors than the baseline model. Notably,

the sum of underestimation errors is higher across the datasets than the sum of overestimation errors.
This points towards a general tendency of underestimating sudden increases in energy consumption
by the LASSO technique. The LSTM model on the other hand shows a much higher variability in the
sums of over- and underestimation errors. By tendency, the overestimation errors of the LSTM model
are smaller than those of the LASSO and baseline model. Nevertheless, the underestimation is much
more pronounced in the case of the LSTM model. Especially, some datasets stand out regarding the
high sum of underestimation errors. This points towards a much higher heterogeneity in the suitability
of the LSTM model to predict consumption values depending on the energy consumption pattern of
the specific dataset. The LASSO technique on the other hand seems to be more equally well suited for
all datasets and their particular consumption patterns.
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Figure 4. Sum of total over- and underestimation errors of energy consumption per consumer dataset
and prediction model. BLEMplotPredErrors (github.com/QuantLet/BLEM/tree/master/BLEMp
lotPredErrors)

The average performance of the three prediction models across all 88 datasets is shown in Table 3.
As can be seen, LASSO and LSTM consistently outperformed the baseline model according to MAE,
RMSE, MAPE, NRMSE and MASE. The LASSO model performed best overall with the lowest median
error measure scores across the 88 consumer datasets.

https://github.com/QuantLet/BLEM/tree/master/BLEMplotPredErrors
https://github.com/QuantLet/BLEM/tree/master/BLEMplotPredErrors
https://github.com/QuantLet/BLEM/tree/master/BLEMplotPredErrors
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Table 3. Median of error measures for the prediction of energy consumption across all 88 consumer
datasets. BLEMevaluateEnergyPreds (github.com/QuantLet/BLEM/tree/master/BLEMevaluateE
nergyPreds)

Model MAE RMSE MAPE NRMSE MASE

LSTM 0.04 0.09 22.22 3.30 0.85
LASSO 0.03 0.05 17.38 2.31 0.57
Benchmark 0.05 0.10 27.98 5.08 1.00
Improvement LSTM (in %) 16.21 12.61 20.57 34.98 14.78
Improvement LASSO (in %) 44.02 48.73 37.88 54.61 43.02

The superior performance of the LASSO model is also clearly visible in Figure 5. This might be
surprising, as from a theoretical point of view, a linear model should not outperform a non-linear
neural network that fulfills the conditions for a universal approximator for finite input. The most
reasonable explanation seems to be that the LSTM RNN model used here missed a good local minimum
for a number of datasets and converged to suboptimal parameter combinations. If the main focus of
this paper were finding an optimal forecasting algorithm for individual households’ short-term energy
consumption, this would require further investigation. However, this study focused on the achievable
forecasting accuracy with state-of-the-art methods already employed in previous studies. The results
imply that it seems unwise to use a general set of hyperparameters on a number of household energy
consumption datasets that differ quite substantially in their energy consumption patterns. However,
as the LASSO technique employed here achieved an error score that is competitive with comparable
research applications, the underperformance of the LSTM RNN compared to the LASSO technique is
of no further concern.

Boxplots of RMSE for consumption predictions
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Boxplots of MASE for consumption predictions
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Figure 5. Box plots of RMSE and MASE scores across 88 consumer datasets for the three different
prediction models (the upper 3%-quantile of the error measures is cut off for better readability).

BLEMevaluateEnergyPreds (github.com/QuantLet/BLEM/tree/master/BLEMevaluateEnergyP
reds)

https://github.com/QuantLet/BLEM/tree/master/BLEMevaluateEnergyPreds
https://github.com/QuantLet/BLEM/tree/master/BLEMevaluateEnergyPreds
https://github.com/QuantLet/BLEM/tree/master/BLEMevaluateEnergyPreds
https://github.com/QuantLet/BLEM/tree/master/BLEMevaluateEnergyPreds
https://github.com/QuantLet/BLEM/tree/master/BLEMevaluateEnergyPreds
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Interestingly, some consumer datasets exhibit apparently much harder to predict consumption
patterns than the other datasets. This is exemplified by the outliers of the box plots, as well as
by the heat map displayed in Figure 6. It confirms that there is quite some variation among the
same prediction methods across different households. Therefore, one may conclude that there is no
“golden industry standard” approach for households’ very short-term energy consumption forecasting.
Nevertheless, it is obvious that the LASSO model performed best overall. Hence, the predictions on
the last quarter of the data produced by the fitted LASSO model for each consumer dataset were used
for the evaluation of the market simulation presented next.
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Figure 6. Heat map of MASE scores for the prediction of consumption values per consumer dataset.
BLEMevaluateEnergyPreds (github.com/QuantLet/BLEM/tree/master/BLEMevaluateEnergyP

reds)

4.2. Evaluation of the Market Simulation

The market simulation used the market mechanism of a discrete interval, closed double auction
to assess the impact of prediction errors on market outcomes. In total, 88 consumers and 12 prosumer
datasets were available. To evaluate different supply scenarios, the market simulation was conducted
three times with a varying number of prosumers included. The three scenarios consisted of a market
simulation with balanced energy supply and demand, a simulation with severe oversupply and
a simulation with severe undersupply. To avoid extreme and unusual market outcomes over the
time period of the simulation, two prosumers with high production levels, but long periods of no
energy production in the simulation period were not included as energy suppliers in the market.
The remaining prosumers were in- or excluded according to the desired supply scenario. That is,
the undersupply scenario comprised six prosumers, the balanced supply scenario additionally included
one more, and the oversupply scenario included additionally to the balanced supply scenario two
more prosumers.

4.2.1. Market Outcomes in Different Supply Scenarios

The difference between supply and demand for each trading period, the equilibrium price of each
double auction, and the weighted average price—termed LEM price—is shown in Figure 7. The LEM
price is computed in each trading period as the average of the auctions equilibrium price and the
energy utilities energy price (28.69 EURct

kWh ) weighted by the amount of kWh traded for the respective
price. The three graphs below depicting the market outcomes are results of the market simulation with
true consumption values.

As can be seen, the equilibrium price shown in the middle panel of Figure 7 moves roughly
synchronous to the over-/undersupply shown in the top panel. As there is by tendency more
undersupply in the balanced scenario (the red line in the top panel indicates perfectly balanced
supply and demand), the equilibrium price is in most trading periods close to its upper limit and the
LEM price is almost always above the equilibrium price. There is by tendency more undersupply due to
the fact that four of the relevant prosumer datasets are from producers with large capacities (>10 kWh
per 15-min interval) that dominated the remaining prosumers’ production capacity substantially and
therefore a more balanced supply scenario could not be created.

https://github.com/QuantLet/BLEM/tree/master/BLEMevaluateEnergyPreds
https://github.com/QuantLet/BLEM/tree/master/BLEMevaluateEnergyPreds
https://github.com/QuantLet/BLEM/tree/master/BLEMevaluateEnergyPreds
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Balanced supply: Market outcomes per trading period with true consumption values
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Figure 7. Market outcomes per trading period simulated with true values and a balanced supply
scenario. BLEMmarketSimulation (github.com/QuantLet/BLEM/tree/master/BLEMmarketSim
ulation)

This observation is in contrast to the oversupply scenario shown in Figure 8. Here, the prosumers’
energy supply surpasses the consumers’ energy demand in the majority of trading periods.
Accordingly, the equilibrium price in each auction is close to the lower limit of the energy utility’s
feed-in tariff of 12.31 EURct

kWh . However, trading periods with undersupply lead to visible spikes in
the equilibrium price, which are, as expected, even more pronounced in the LEM price. In all other
periods, the equilibrium price equals the LEM price as all demand is served by the prosumers and
there is no energy purchased from the grid.

Figure 9 shows the market simulation performed in an undersupply scenario. Here, the market
outcomes are the opposite to the oversupply scenario: The equilibrium prices move in a band between
20 EURct

kWh and the upper limit of 28.69 EURct
kWh . The LEM prices are even higher as the deficit in supply

has to be compensated by energy purchases from the grid. This means that, the more severe the
undersupply is, the more energy has to be purchased from the grid, and the more the LEM price
surpasses the equilibrium price.

In summary, one can conclude that the market outcomes are the more favorable to consumers,
the more locally produced energy is offered by prosumers. Assuming a closed double auction as
market mechanism and zero-intelligence bidding behavior of market participants, oversupply reduces
the LEM prices substantially leading to savings on the consumer side. On the other hand, prosumers
will favor undersupply in the market as they profit from the high equilibrium prices while still being
able to sell their surplus energy generation at the feed-in tariff without a loss compared to no LEM.

https://github.com/QuantLet/BLEM/tree/master/BLEMmarketSimulation
https://github.com/QuantLet/BLEM/tree/master/BLEMmarketSimulation
https://github.com/QuantLet/BLEM/tree/master/BLEMmarketSimulation
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Oversupply: Market outcomes per trading period with true consumption values
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Figure 8. Market outcomes per trading period simulated with true values and an oversupply scenario.
BLEMmarketSimulation (github.com/QuantLet/BLEM/tree/master/BLEMmarketSimulation)

Undersupply: Market outcomes per trading period with true consumption values
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Figure 9. Market outcomes per trading period simulated with true values and an undersupply scenario.
BLEMmarketSimulation (github.com/QuantLet/BLEM/tree/master/BLEMmarketSimulation)

https://github.com/QuantLet/BLEM/tree/master/BLEMmarketSimulation
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4.2.2. Loss to Consumers due to Prediction Errors

To assess the adverse effect of prediction errors on market outcomes, the LASSO-predicted energy
consumption values per 15-min interval are used. The predictions of the model served as order
amounts in the auction bids. After the true consumption in the respective trading period was observed,
payments to settle over- or underestimation errors were made. That is, if a consumer bid with a higher
amount than actually consumed, it still bought the full bid amount from the prosumers but had to sell
the surplus to the energy utility over the grid at the feed-in tariff. On the other hand, if a consumer bid
with a lower amount than actually consumed, it bought the bid amount from the prosumers but had to
purchase the surplus energy consumption from the grid at the energy utility’s tariff. Thus, prediction
errors are costly as the consumer always has to clear the order in less favorable conditions than the
equilibrium price provides.

Table 4 contrasts the results of the market simulation with true consumption values with the
results of the market simulation with predicted consumption values in three different supply scenarios.
The equilibrium and LEM prices almost do not differ within the three scenarios whether the true or
predicted consumption values are used. The prices between the scenarios, however, differ substantially.
The average total revenue over the three-month simulation period of prosumers is largely unaffected
by the use of true or predicted consumption values. This is not surprising as the revenue is a function of
the equilibrium price, which is apparently largely unaffected by whether true or predicted consumption
values are used, and the electricity produced, which is obviously completely unaffected by whether
true or predicted consumption values are used.

Table 4. Average results of the market simulation for three different supply scenarios. Prices are
averaged across all trading periods. Revenues and costs for the whole simulation period are averaged
across all prosumers and consumers, respectively. BLEMevaluateMarketSim (github.com/QuantLe
t/BLEM/tree/master/BLEMevaluateMarketSim)

Mean Balanced Supply Oversupply Undersupply
True Predicted True Predicted True Predicted

Equilibrium price (in EURct) 24.64 24.61 12.50 12.49 25.68 25.69
LEM price (in EURct) 27.31 27.28 12.51 12.49 28.08 28.10
Revenue (in EUR) 1113.84 1108.88 3454.62 3451.69 1035.90 1036.12
Cost with LEM (in EUR) 439.26 457.94 200.75 226.61 451.60 470.69
Cost without LEM (in EUR) 459.83 446.93 459.83 446.93 459.83 446.93

What differs according to Table 4, however, is the cost for consumers. The cost without the LEM is
on average across all consumers smaller when using predicted consumption values compared to using
true consumption values. This can be explained by the LASSO model’s tendency to underestimate
on the data at hand and because correction payments for the prediction errors are not factored into
this number. The average total cost for electricity consumption in the whole simulation period is with
an LEM higher when using predicted consumption values compared to using true consumption values.
This is due to the above-mentioned need to settle prediction errors at unfavorable terms.

The percentage loss induced by prediction errors is shown in Table 5. Depending on the supply
scenario it ranges between about 4.8% and 13.75%. These numbers have to be judged relative to the
savings that are brought to consumers by the participation in an LEM. It turns out, that in the balanced
supply scenario, the savings due to the LEM are almost completely offset by the loss due to prediction
errors. As consumers profit more from an LEM, the lower the equilibrium prices are, this is not the
case in the oversupply scenario. Here, the savings are substantial and amount to about 130%, which is
almost ten times more than the percentage loss due to the prediction errors. However, the problem of
the settlement structure for prediction errors becomes very apparent in the undersupply scenario. Here,
the savings due to an LEM are more than offset by the loss due to prediction errors. Consequently,
consumers would be better off not participating in an LEM.

https://github.com/QuantLet/BLEM/tree/master/BLEMevaluateMarketSim
https://github.com/QuantLet/BLEM/tree/master/BLEMevaluateMarketSim
https://github.com/QuantLet/BLEM/tree/master/BLEMevaluateMarketSim
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Table 5. Average savings for consumers due to the LEM and average loss for consumers due to
prediction errors in the LEM. BLEMevaluateMarketSim (github.com/QuantLet/BLEM/tree/master
/BLEMevaluateMarketSim)

Mean Balanced Supply Oversupply Undersupply

Cost without LEM (in EUR) 459.83 459.83 459.83
Cost predicted values (in EUR) 457.94 226.61 470.69
Cost true values (in EUR) 439.26 200.75 451.60
Savings due to LEM (in %) 4.82 129.08 1.90
Loss due to pred. errors (in %) −4.80 −13.75 −4.76

This result is visualized in a more differentiated way in Figure 10. The figure shows for each
supply scenario, for each consumer, the total energy cost over the whole simulation period in: (1)
no LEM; (2) an LEM with the use of predicted consumption values; and (3) an LEM with the use of
true consumption values. For each supply scenario, the bottom panel shows the percentage loss due
to not participating in the LEM and the loss due to participating and using predicted consumption
values compared to participating and using true consumption values. In the balanced scenario, there
are some consumers who would make a loss due to the participation in the LEM and relying on
predicted values.

For them, the loss due to no LEM (yellow bar) is smaller than the loss due to prediction errors
(green bar). However, 56 out of 88 consumer (i.e., 64%) also profit from the participation in the
LEM despite the costs induced by prediction errors. Due to the much lower equilibrium prices
in the oversupply scenario, the LEM participation here is, despite prediction errors, profitable for
all consumers. However, even in this scenario, the savings for the consumers are diminished by
more than 10%, which is quite substantial. In contrast, in the undersupply scenario, the loss due
to the prediction errors leaves the participation in the LEM for almost all consumers unprofitable.
Merely three consumers would profit and have lower costs in an LEM than without an LEM,
despite prediction errors.

Overall, it becomes clear that prediction errors significantly lower the economic profitability
of an LEM for consumers. This, however, is often argued to be one of the main advantages of
LEMs. The result is especially concerning in LEMs where locally produced energy is undersupplied.
Here—still assuming the closed double auction market mechanism and zero-intelligence bidding
strategies—the savings from the participation in the LEM are marginal. Therefore, the costs induced
by prediction errors mostly outweigh the savings from the participation. This results in an overall loss
for consumers due to the LEM, which makes the participation economically irrational. Only in cases
of substantial oversupply, the much lower equilibrium price, compared to the energy utility’s price,
compensates for the costs from prediction errors.

In conclusion, this means that LEMs with a discrete interval, closed double auction as market
mechanism and a prediction error settlement structure as proposed in [6] combined with the prediction
accuracy of state-of-the-art energy forecasting techniques require substantial oversupply in the LEM
for it to be beneficial to consumers.

https://github.com/QuantLet/BLEM/tree/master/BLEMevaluateMarketSim
https://github.com/QuantLet/BLEM/tree/master/BLEMevaluateMarketSim
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Figure 10. Total energy cost to consumers from 01 October 2018 to 31 December 2017 in the case of
no LEM, LEM with true values, and LEM with predicted values in three different supply scenarios.

BLEMevaluateMarketSim (github.com/QuantLet/BLEM/tree/master/BLEMevaluateMarketSim)

4.3. Implications for Blockchain-Based Local Energy Markets

In light of these results, it remains open to derive implications and to propose potential
adjustments for an LEM market mechanism. After all, there are substantial advantages of LEMs
which have been established in various studies and still make LEMs an attractive solution for the
challenges brought about by the current energy transition. Adjustments mitigating the negative effect
of prediction errors on the profitability of LEMs could address one or more of the following areas: first,
the forecasting techniques employed; second, the demand and supply structure of the LEM; and, third,
the market mechanism used in the blockchain-based LEM.

https://github.com/QuantLet/BLEM/tree/master/BLEMevaluateMarketSim
https://github.com/QuantLet/BLEM/tree/master/BLEMevaluateMarketSim
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The first and most intuitive option is to improve the forecasting accuracy with which the
predictions, which serve as the basis of bids and asks, are made. For example, a common approach
to reduce the bias of LASSO-based predictions are post-LASSO techniques such as presented
by Chernozhukov et al. [49]. Another aspect that seems relevant for the improvement of forecasting
models is the evaluation method. Using economic measures for the evaluation of forecasting model
performance may address a potential mismatch between statistical measures of forecasting accuracy
and the resulting economic profits [50]. However, these approaches most likely result only in small
improvements. Thus, the most obvious way to achieve a substantial improvement is the inclusion
of more data. More data may hereby refer either to a higher resolution of recorded energy data or
to a wider range of data sources such as behavioral data of household members or data from smart
appliances. A higher resolution of smart meter readings is already easily achievable. The smart
meters installed by Discovergy that also supplied the data for the present research are capable of
recording energy measurements up to every two seconds. However, data at such a fine granularity
requires substantial data storage and processing capacities which are unlikely to be available in
an average household. Especially, the training of prediction models with such vast amounts of input
data points is computationally very resource intensive. The potential solution of outsourcing this,
however, introduces new data privacy concerns that are already a sensible topic in smart meter
usage and blockchain-based LEMs (e.g., [8,51]). Increasing the forecasting intervals to 30 or 60 min,
as an alternative way to reduce the computational resources needed, would presumably decrease
the forecasting accuracy which, in turn, might increase the cost for consumers. However, the effect
of this potential solution on the cost for consumers due to forecasting errors seems reasonable to be
investigated in future studies. The inclusion of behavioral data into prediction models such as the
location of the person within their house and the inclusion of smart appliances’ energy consumption
(as done by Kong et al. [22]) and running schedules raises important privacy concerns as well. Pooling
and using energy consumption data of several households, as done by Shi et al. [23], again introduces
privacy concerns as it implies data sharing between households, which in relatively small LEMs cannot
be guaranteed to preserve the anonymity of market participants. For all these reasons, it seems unlikely
that in the near future qualitative jumps in the prediction accuracy of very short-term household
energy consumption or production of individual households will be available.

The second option addresses the demand and supply structure in the blockchain-based LEM.
As shown in Section 4.2, the cost induced by prediction errors and their settlement is more than
compensated in an oversupply scenario. Hence, employing LEMs only in a neighborhood in which
energy production surpasses energy consumption would mitigate the problem of unprofitability due
to prediction errors as well. Where this is not possible, participation to the LEM could be restricted,
such that oversupply in a majority of trading periods is ensured. However, this might end up in
a market manipulation that most likely makes most of LEMs’ advantages obsolete. Moreover, it is
unclear on what basis the restriction to participate in the market should be grounded.

The third option to mitigate the problem is the market mechanism and the prediction error
settlement structure. A simple approach to reduce forecasting errors is to decrease the forecasting
horizon. Thus, instead of having 15-min trading periods, which also require 15-min ahead
forecast, the trading periods could be shrunk to just 3 min. This would increase the forecasting
accuracy, and, thereby, lead to lower costs due to the settlement of prediction errors. However,
in a blockchain-based LEM, more frequent market closings come at the cost of more computational
resources needed for transaction verification and cryptographic block generation. Depending on
the consensus mechanism used for the blockchain, the energy requirements for the computations,
which secure transactions and generate new blocks, may be substantial. This, of course, is rather
detrimental to the idea of promoting more sustainable energy generation and usage. Nevertheless,
using consensus mechanisms based on identity verification of the participating agents may serve as
a less computational, and thus energy intensive alternative, which might make shorter trading intervals
reasonable. Another, more radical, approach might be to change the market mechanism of closed
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double auctions altogether and use an exposed market instead. Hereby, the energy consumption and
production is settled in an auction after the true values are known, instead of in advance. This means
that market participants submit just limit prices in their bids and asks without related amounts and
the offers are matched in an auction in regular time intervals. Then, the electricity actually consumed
and produced in the preceding period is settled according to the market clearing price. Related to this
approach is a solution, where bidding is based on forecasted energy values, while the settlement is
shifted by one period such that the actual amounts can be used for clearing. This approach, however,
may introduce the possibility of fraud and market manipulation as agents can try to deliberately bid
using false amounts. While in the smart contracted developed by Mengelkamp et al. [6] funds needed
to back up the bid are held as pledges until the contract is settled (this ensures the availability of
the necessary funds to pay the bid), this would be senseless, if settlement is only based on actual
consumption without considering the amount specified in the offer. However, the extent of this
problem and ways to mitigate it should be assessed from a game theoretical perspective that is out of
scope of the present research.

Overall, prediction errors have to be taken into account for future designs of blockchain-based
LEMs. Otherwise, they may substantially lower the profitability and diminish the incentive to
participate in an LEM for consumers. In addition, the psychological component of having to rely on
an unreliable prediction algorithm that may be more or less accurate depending on the household’s
energy consumption patterns seems unattractive. Even though possible solutions are not trivial and
each comes with certain trade-offs, there is room for future improvement of the smart contracts and
the market mechanism they reproduce.

5. Conclusions

The present research had the objectives: (1) to evaluate the prediction accuracy achievable
for household energy consumption with state-of-the-art forecasting techniques; (2) to assess the
effect of prediction errors on an LEM that uses a closed double auction with discrete time intervals
as market mechanism; and (3) to infer implications based on the results for the future design of
blockchain-based LEMs.

In the performance assessment of currently used forecasting techniques, the LASSO model yielded
the best results with an average MAPE across all consumer datasets of 17%. It was subsequently
used to make predictions for the market simulation. The evaluation of the market mechanism and
prediction error settlement structure revealed that, in a balanced supply and demand scenario, the costs
of prediction errors almost completely offset savings brought by the participation in the LEM. In an
undersupply scenario, the cost due to prediction errors even surpassed the savings and made market
participation uneconomical. The most promising approach to mitigate this problem seemed to be
adjustment of the market design, which can be two-fold: either shorter trading periods could be
introduced, which would reduce the forecasting horizon, and therefore prediction errors, or the
auction mechanism could be altered to not use predicted consumption values to settle transactions.

For the present research, data from a greater number of smart meters and more context information
about the data would have been desirable. However, due to data protection legislation, no information
regarding locality of the households, household characteristics or the type of power plant prosumer
households used could be provided. Thus, unfortunately, no other covariates (e.g., temperature)
could be used in the forecasting of energy consumption. In addition, the large-scale differences in the
production capacities of the prosumers, contained in the data, complicated the analysis of the market
simulation further. Additionally, it is worth mentioning that the market simulation did not account for
taxes or fees, especially grid utilization fees, which can be a substantial share of the total electricity
cost of households. The simulation also did not take into account compensation costs for blockchain
miners that reimburses them for the computational cost they bear.

Evidently, future research concerned with blockchain-based LEMs should take into account the
potential cost of prediction errors. Furthermore, to our knowledge, there has been no simulation
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of a blockchain-based LEM with actual consumption and production data conducted. Doing so on
a private blockchain with the market mechanism coded in a smart contract should be the next step for
the assessment of potential technological and conceptual weaknesses.

In conclusion, previous research has shown that blockchain technology and smart contracts
combined with renewable energy production can play an important role in tackling the challenges of
climate change. The present research, however, emphasizes that advancement on this front cannot be
made without a holistic approach that takes all components of blockchain-based LEMs into account.
Simply assuming that reasonably accurate energy forecasts for individual households will be available
once the technical challenges of implementing an LEM on a blockchain are solved, may steer research
into a wrong direction and bears the risk of missing the opportunity to quickly move into the direction
of a more sustainable and less carbon-intensive future.
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A B S T R A C T

In this paper we propose a regularization approach for network modeling of German power derivative
market. To deal with the large portfolio, we combine high-dimensional variable selection techniques with
dynamic network analysis. The estimated sparse interconnectedness of the full German power derivative
market, clearly identify the significant channels of relevant potential risk spillovers. Our empirical find-
ings show the importance of interdependence between different contract types, and identify the main risk
contributors. We further observe strong pairwise interconnections between the neighboring contracts espe-
cially for the spot contracts trading in the peak hours, its implications for regulators and investors are also
discussed. The network analysis of the full German power derivative market helps us to complement a
full picture of system risk, and have a better understanding of the German power market functioning and
environment.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Affordable and reliable energy supply is essential for industrial
growth. Achieving these in times of growing demand, raw materi-
als shortage and climate change pose challenges. Germany’s power
system for the industry and the consumers is undergoing radical
change; this transformation is being driven by the restructuring of
electricity supply and by intense competition between suppliers (see
BMWi (2016), Spiecker et al. (2014), Seifert et al. (2016), Grossi et al.
(2017), Sinn (2017) among others). However, the ongoing expansion
of renewable energy and the phase-out of nuclear energy for power
generation will change the composition of the electricity mix, which
in return, will generate pricing signals affecting the electricity trad-
ing (e.g. Benhmad and Percebois (2018), Ketterer (2014), Ballester
and Furió (2015), Paraschiv et al. (2014)). As we know, electricity
is the commodity that should be supplied immediately. Unlike coal,
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“High Dimensional Non Stationary Time Series” and SCHI - 1127/2 is gratefully
acknowledged.

* Corresponding author.
E-mail address: shi.chen@kit.edu (S. Chen).

oil, gas or other typical commodities, electricity cannot be stored.
This results in the price of electricity being volatile and very depen-
dent on a secure supply. To hedge against the uncertainty that has
arisen in the market, we study the system-wide market risk of the
whole German power derivative market. Therefore energy compa-
nies may invest in both electricity spot and derivative markets to
diversify their existing portfolios. As electricity grids worldwide also
begin relying more heavily on renewable energy sources, analysis
of German power market thus provides useful insights for power
generation companies and transmission organizations across the
globe.

However, the number of variables and relevant factors is typically
huge. A properly designed subset selection has to be employed to
identify the most informative power contracts representing energy
market risk. The German power market is highly interconnected
with a dense and wide range of electricity contracts, this motivates
us to build up an ultra high-dimensional network and investigate
its sparse property. To better understand the interaction between
power contracts, the iterated sure independence screening (iterated-
SIS, Fan et al., 2009) method combined with regularization estima-
tors are applied to estimate the sparse web of connections. Our
network of interest is constructed in the context of time series based

https://doi.org/10.1016/j.eneco.2019.06.021
0140-9883/© 2019 Elsevier B.V. All rights reserved.
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on vector autoregression (VAR) models, the iterated-SIS method is
important when building VAR models since the number of param-
eters to estimate increases quadratically in the number of variables
included. To quantify the associations between individual power
contract and energy exchange market, the network we constructed
is obtained from the forecast error variance decomposition (FEVD)
based on VAR estimates in the framework of Koop et al. (1996)
and Pesaran and Shin (1998). This kind of connectedness measure is
also used by Diebold and Yilmaz (2009), Diebold and Yılmaz (2014)
for conceptualizing and empirically measuring weighted, directed
networks at a variety of levels. They proposed this variance decom-
position networks as tools for quantifying and ranking the systemic
risk of individual component in a portfolio.

In this paper we investigate the concept of connectedness in
a realistic high-dimensional framework, which is important for
system-wide risk measurement and management. We aim to obtain
a sparse network in which nodes represent power contracts and
links represent the magnitude of connectedness, local shocks and
events can therefore be easily amplified and turned into global
events. While estimates of the network yield the qualitative links
between power contracts, individual impact from specific contract
can be estimated and speculated accordingly. Hence the risk contri-
bution from the market component can be identified, this will help
us to learn more about the German power market functioning and
environment. Following Diebold and Yılmaz (2014), Demirer et al.
(2018), Hautsch et al. (2014) and similar connectedness literature,
the risk refers to the uncertainty that has arisen in the system, and
it measures the amount of future uncertainty caused by other com-
ponent in the system. For example, the market uncertainty may be
caused by economic and financial uncertainties, or weather condi-
tions, energy prices and regulation. While the systemic risk network
yields qualitative information on risk channels and roles of assets
within the constructed portfolio, the risk is quantified by its con-
tribution to the forecast error variance of other components in the
whole system. Therefore we are able to capture the systemic risk of
the component by summing up its total contribution. Understanding
the risk transmission channels for investors is of great importance,
for example, our results show that day-ahead spot power contracts
bidding between 9 am and 13 am are in the core of the German
energy power market, the key derivatives in connecting markets can
be identified.

The rest of the paper proceeds as follows. Section 2 reviews the
relevant literature and introduces the German energy market. In
Section 3, we describe in details how the regularization approach is
applied to estimate the large portfolio and how the network is con-
structed. Section 4 reports the data and discusses the model selection
result. Section 5 presents a static analysis of full-sample connect-
edness. Section 6 provides the empirical results of the dynamic
network. Finally Section 7 concludes.

2. Background

2.1. Related literature

As a tradable commodity electricity is relatively new, its dynamic
properties have been analyzed with many different approaches,
some recent contributions are Weron (2007), Geman and Roncoroni
(2006), Bierbrauer et al. (2007) and Knittel and Roberts (2005). There
is also a strand of literature that analyzes the multivariate behav-
ior of electricity prices. For examples, Higgs (2009) examines the
inter-relationships of wholesale spot electricity prices across four
Australasian markets by a multivariate GARCH model. Henriques and
Sadorsky (2008) develop a four variable VAR model to explain the
dependence structure of a variety of energy equities, where they
find that shocks to technology actually have a larger impact on
the stock prices of alternative energy companies than do oil prices.

Castagneto-Gissey et al. (2014) study the interactions of a repre-
sentative sample of 13 European (EU) electricity spot prices with
dynamic Granger-causal networks.

We take our starting point in the energy literature based on a
vector regression framework, where the network of interest is con-
structed based on Diebold and Yilmaz (2009), Diebold and Yılmaz
(2014). Most relevant studies explore the relationship between oil
and energy equity prices in terms of volatility spillovers, they esti-
mate the implied volatility linkages across markets as a source of
future uncertainty. For example Du et al. (2011) conduct a Bayesian
analysis to explain volatility spillovers among crude oil and vari-
ous economic factors. Arouri et al. (2012) investigate the volatility
spillovers between oil and stock markets in Europe using VARGARCH
approach. Sadorsky (2012) applies a multivariate GARCH model to
estimate the volatility spillovers between oil prices and the stock
prices of clean energy/technology companies. Joo and Park (2017)
examine the time-varying causal relationship between the stock and
crude oil price uncertainties using a DCC GARCH-in-Mean specifica-
tion. More empirical work are Diebold and Yilmaz (2012), Reboredo
(2014), Maghyereh et al. (2016), Awartani et al. (2016), Zhang (2017),
Apergis et al. (2017), among others. There is also a fairly sizable
literature exploring the electricity market integration using vector
regression framework, for example Worthington et al. (2005), Zach-
mann (2008), Bunn and Gianfreda (2010), Balaguer (2011), Böckers
and Heimeshoff (2014), Castagneto-Gissey et al. (2014).

However, relatively little research has focused on the systemic
directional interaction between energy equities. A recent study by
Lundgren et al. (2018) is the first to analyze the connectedness
network among different energy asset classes, their analysis exam-
ines the connectedness network among renewable energy stock,
four investments, and uncertainties. Demirer et al. (2018) use Lasso
method to select, shrink and estimate a high-dimensional network.
Other empirical work are with more focus on financial banking con-
texts, like Yi et al. (2018) use the VARX-L framework developed
by Nicholson et al. (2017) to conduct static and dynamic volatility
spillovers among cryptocurrencies. More relevant work are Wang
et al. (2018), Acharya et al. (2012), Hautsch et al. (2014), Giglio et
al. (2016), Babus (2016), Brownlees and Engle (2016), Acharya et al.
(2017) among others.

However, almost all existing energy literature are based only on
moderate dimensions. This motivates us to examine the systemic
risk transmission channels in a realistic high-dimensional frame-
work. The main argument is that the contracts trading in both spot
and derivative markets share the same underlying contracts, and it
is therefore natural to consider a high-dimensional portfolio. High-
dimensional statistical problems arise from diverse fields of scientific
research and technological development, including energy markets.
The traditional idea of best subset selection methods is computation-
ally too expensive for many modern statistical applications. Variable
selection techniques have therefore been successfully developed in
recent years and they indeed play a pivotal role in contemporary sta-
tistical learning and techniques. Researchers have proposed various
regularized estimators with different penalty terms, a preeminent
example being the least absolute selection and shrinkage operator
(Lasso) of Tibshirani (1996). In recent years, Lasso has been extended
to high-dimensional case, see Bickel et al. (2009). Other popular
methods contribute to the literature, such as smoothly clipped abso-
lute deviation (SCAD) (Fan and Li, 2001) , adaptive Lasso of Zou
(2006), elastic net estimator of Zou and Hastie (2005), Dantzig selec-
tor of Candes and Tao (2007). In an ultra high-dimensional case
where the dimensionality of the model is allowed to grow expo-
nentially in the sample size, it is helpful to begin with screening
to delete some significantly irrelevant variables from the model.
Fan and Lv (2008) introduce a method called sure independence
screening for this goal. Even when the regularity conditions may not
hold, Fan et al. (2009) extend the iterated-SIS method to work by
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iteratively performing feature selection to recruit a small number of
features. Furthermore, the asymptotic properties of Lasso for high-
dimensional time series have been considered by Loh and Wain-
wright (2011) and Wu et al. (2016). Kock and Callot (2015) establish
the high-dimensional VAR estimation with focus on Lasso and adap-
tive Lasso. Basu et al. (2015) investigate the theoretical properties of
regularized estimates in sparse high-dimensional time series models
when the data are generated from a multivariate stationary Gaussian
process.

We address the above high-dimensional problem by combining a
regularization approach with classic VAR model. In doing so, we con-
tribute to the energy literature in several ways: First, we extend the
current literature to investigate the sparse linkage between energy
equities in a very large portfolio. Second, we identify the main risk
contributor to help investors diversify their existing portfolio rather
than having large holdings of individual electricity contract. Third,
our study may further be extended by including renewable energy
assets and oil price across European energy market; this may pro-
vide a better understanding of the overall energy market. In addition,
our study can also be applied to investigate electricity market inte-
gration by estimating the total connectedness for a wide range of
components.

2.2. Overview of German power market

2.2.1. German electricity market
The German electricity market is Europe’s largest, with annual

power consumption of around 530 TWh and a generation capacity
of 184 GW. As a net energy exporter, the export capacity of Ger-
many is expected to continue to grow as planned interconnections
expand cross-border transmission capacity with several neighbor-
ing countries. Germany has significant interconnection capacity with
neighboring EU member states as well. It is interconnected with Aus-
tria, Switzerland, the Czech Republic, Denmark, France, Luxembourg,
the Netherlands, Poland, and Sweden. To maintain stable and reliable
supply of electricity, the so-called Transmission system operators
(TSOs) keep control over available power. Primary control, secondary
control, and tertiary control reserve are procured by the respective
TSOs within a non-discriminatory control power market in accor-
dance with the requirements of the Federal Cartel Office. Demand for
control energy is created when the sum of power generated varies
from the actual load caused by unforeseeable weather fluctuations in
the case of renewable energies.

Electricity is traded on the exchange and over the counter. Stan-
dardized products are bought and sold in a transparent process on
the exchange, which, for Germany, is the European Energy Exchange
EEX in Leipzig, the European Energy Exchange EPEX SPOT in Paris and
the Energy Exchange Austria (EXAA) in Vienna. The European Energy
Exchange (EEX) is the leading energy exchange in Europe. It devel-
ops, operates and connects secure, liquid and transparent markets
for energy and commodity products. Contracts on power, coal and
CO2 emission allowances as well as freight and agricultural products
are traded or registered for clearing on EEX. EPEX SPOT, Powernext,
Cleartrade Exchange (CLTX) and Gaspoint Nordic are also members
of EEX Group. The German wholesale electricity market is broadly
made up of three elements, a forward market, a day-ahead market
and an intra-day market. These submarkets generate the pricing sig-
nal in which electricity production and consumption align to. The
objective of this paper is to analyze the interaction of different future
contracts traded in the forward market, whether forward market is
influenced by market power of spot prices traded in EPEX market.

Electricity providers and electricity purchasers submit their bids
in their national day-ahead market zones. The exchange price on
the day-ahead market is determined jointly for coupled markets.
Electricity providers and electricity purchasers submit their bids in

their national day-ahead market zones. In an iterative process, the
demand for electricity in the market zone is served by the low-
est price offers of electricity from all the market areas until the
capacity of the connections between the market zones (cross-border
inter-connectors) is fully utilized. As long as the cross-border inter-
connectors have sufficient capacity, this process aligns the prices
in the coupled market areas. On account of market coupling, the
national power demand is covered by the international offers with
lowest prices. The upshot is that on the whole less capacity is
required to meet the demand. As shown in Fig. 2.1, Phelix Future, as
the product traded in Germany, is a financial derivatives contract set-
tling against the average power spot market prices of future delivery
periods for the German/Austrian market area.

2.2.2. Phelix futures
Electricity supply deliveries in the forward market can be negoti-

ated up to seven years in advance, but for liquidity reasons typically
only look out three years, and in fact one year ahead futures are
traded at most. The Phelix Future is a financial derivatives contract
referring to the average power spot market prices of future delivery
periods of the German/Austrian market area.

As the most liquid contract and benchmark for European power
trading, the underlying of these future contracts is the Physical Elec-
tricity Index determined daily by EPEX Spot Exchange for base and
peak load profiles. To be more specific, the Phelix Base contract is
the average price of the hours 1 to 24 for electricity traded on spot
market, while the Phelix Peak is the average price of the hours 9
to 20 for electricity traded on spot market. EEX offers continuous
trading and trade registration of financially fulfilled Phelix Futures,
with Day/Weekend Futures, Week Futures, Month Futures, Quarter
Futures and Year Futures available.

The time series of Phelix day base and Phelix day peak prices are
displayed in Fig. 2.2. Phelix day peak exhibits a larger volatility and
more pronounced spikes than the Phelix day base. This is not sur-
prising, since the Phelix day peak corresponds to hours with high
and variable demand. Both price series exhibit positive skewness and
an excess kurtosis of about 1, implying a heavy-tailed unconditional
distribution that is skewed to the right.

In addition, the Phelix market is also successfully connected to
other European power markets. The products of Location Spread
enable members to trade price differences between markets, thus
enabling participants to benefit from improved liquidity and tighter
spreads, for instance, Phelix/French Power, Italian/Phelix Power,
Phelix/Nordic Power and Phelix/Swiss Power. For the empirical work
of this paper, we use the Phelix Future data to find price drivers and
important variables in the big system we construct. The decision-
making mechanism of energy companies will also be explored.

3. Econometric model

3.1. Basic model

When there is a high-dimensional portfolio consisting of various
power derivative contracts, standard methods are intractable and
therefore require novel statistical methods. Here we are interested
in addressing the following research questions, how all these con-
tracts interact with each other? Which variables are crucial for the
whole system? However, due to the large number of variables in the
system, some sparsity assumption must be imposed for the sake of
an accurate estimate. The large dimensionality in our model comes
from not only the varieties of power derivative products, but also the
large lag order in VAR model to avoid the correlation of error terms.

The standard VAR(p) model with lag order p is constructed
according to Lütkepohl (2005),
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Fig. 2.1. The distribution of European power derivatives in EEX market. Source: EEX website.

yt = m + A1yt−1 + A2yt−2 + · · · + Apyt−p + ut

= m + (A1, A2, . . . , Ap)
(

y�
t−1, y�

t−2, . . . , y�
t−p

)�
+ ut (3.1)

where yt = (y1t, y2t, . . . , yKt)� is a (K × 1) random vector con-
sisting of K variables at time t, t = 1, . . . , T. Ai are unknown
(K × K) coefficient matrices. m is a (K × 1) vector of intercept terms,
ut = (u1t, u2t, . . . , uKt)� is a K-dimensional innovation process.

Define

Y = (y1, y2, . . . , yT )

B = (m, A1, A2, . . . , Ap)

Zt =
(
1, yt , yt−p+1

)�

Z = (Z0, Z1, . . . , ZT−1) (3.2)

For multivariate case, rewrite Eq. (3.1) as

Y = BZ + U (3.3)

Fig. 2.2. Phelix day base (black) and Phelix day peak (red) index from 2013-01-01 to
2015-10-31. The red dotted line marks the end of the in-sample period.

where U = (u1, u2, . . . , uT). The compact form of Eq. (3.3) is

vec(Y) = (Z� ⊗ IK )vec(B) + vec(U)

y = (Z� ⊗ IK )b + u = Xb + u (3.4)

The dimension of model (3.4) to be estimated is pK2 and the num-
ber of observations is KT. The ratio Kp

T could be large due to the
reasons mentioned earlier, which deteriorates the accuracy of final
estimate. Worse still, if Kp > T, the model becomes high-dimensional
with more unknown parameters than observations. Therefore we
require techniques other than traditional OLS method. That’s why
most existing energy literature are based only on moderate dimen-
sions.

Here we use variable selection technique, for example Lasso,
to estimate the model. Besides, under normal assumption of error
term, the upper bound of error in estimation is positively corre-
lated in log(K2p)

T , part of oracle inequality. The estimation results can
be further developed by adding one more step of sure independent
screening (SIS) before variable selection step. Another advantage of
SIS is that it could mitigate the problem caused by multicollinearity,
which is common in time series setting. The techniques introduced
in the proceeding paragraph are of great importance in the sense that
the true underlying model has a sparse representation.

3.2. Regularization estimator and iterated-SIS algorithm

3.2.1. Regularization approach
Variable selection is an important tool for the linear regres-

sion analysis. A popular method is the Lasso estimator of Tibshirani
(1996), which can be viewed to simultaneously perform model selec-
tion and parameter estimation. Related literature includes bridge
regression studied by Frank and Friedman (1993) and Fu (1998), the
least angle regression of Efron et al. (2004) and adaptive Lasso pro-
posed by Zou (2006). Another remarkable example is a smoothly
clipped absolute deviation (SCAD) penalty for variable selection
proposed by Fan and Li (2001), they proved its oracle properties.

Let us start with considering model estimation and variable selec-
tion for Eq. (3.4),

y = Xb + u (3.5)
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The least square estimate is obtained via minimizing ‖y − Xb ‖2,
where the ordinary least squares (OLS) gives nonzero estimates
y = X�y to all coefficients. Normally the best subset selection
is implemented to select significant variables, but the traditional
idea of best subset selection methods is computationally too expen-
sive for many statistical applications. Therefore the penalized least
square with a penalty term that is separable with respect to the esti-
mated parameter b̂ is considered here. In this paper we consider two
popular estimators, Lasso and SCAD.

The Lasso is a regularization technique for simultaneous estima-
tion and variable selection, with the estimator given by,

b̂LASSO = arg min
b

‖ y − Xb‖2 + k

p∑
j=1

|bj|

= arg min
b

‖ y −
p∑

j=1

xjbj‖2 + k

p∑
j=1

|bj| (3.6)

where k is the tuning parameter. The second term in Eq. (3.6) is
known as the �1-penalty. The idea behind Lasso is the coefficients
shrink toward 0 as k increases. When k is sufficiently large, some of
the estimated coefficients are exactly zero. The estimation accuracy
comes from the trade-off between estimation variance and the bias.
Lasso is the penalized least square estimates with the �1 penalty in
the general least squares and likelihood settings. Furthermore, the
�2 penalty results in a ridge regression and �p penalty will lead to a
bridge regression.

We proceed to the SCAD method. In the present context, the SCAD
estimator is given by,

b̂SCAD =

⎧⎪⎨
⎪⎩

sgn(y)(|y| − k)+ when |y| ≤ 2k
{(a−1)y−sgn(y)ak}

a−2 when 2k < |y| ≤ ak
y when |y| > ak

(3.7)

where a > 2 is an additional tuning parameter. The continuous
differentiable penalty function for SCAD estimator is defined by,

p
′
k(b) = k

{
I(b ≤ k) +

(ak − b)+

(a − 1)k
I(b > k)

}
for a > 2 and b > 0

(3.8)

To sum up, both estimators are members of this penalized likeli-
hood family. Lasso has better performance when the noise to signal
ratio is large, but this approach creates bias. SCAD can generate
variable selection results without generating excess biases.

3.2.2. Iterated-SIS algorithm for estimation
SIS method is proposed by Fan and Lv (2008) to select impor-

tant variables in ultra high-dimensional linear models. The proposed
two-stage procedure can perform better than other methods in the
sense of statistical learning problems. The SIS method based on
the concept of sure screening, is defined as the correlation learning
which filters out the features that have weak correlation with the

response. By sure screening, all the important variables survive after
variable screening with probability tending to 1. Fan et al. (2009)
improve iterated-SIS to a general pseudo-likelihood framework by
allowing feature deletion in the iterative process. Fan et al. (2010)
further extend the SIS model and consider an independent learning
by ranking the maximum marginal likelihood estimator or maxi-
mum marginal likelihood itself for generalized linear models. Here
we combine the VAR(p) model and SIS algorithm to find out the key
elements in a big system. The basic idea of SIS is introduced in the
following.

Let y = (y1,y2, . . . ,yp)� be a p-vector that is obtained by
component-wise regression, i.e.,

y = X�y (3.9)

where y is n vector of response and X is a n × p data matrix. y
is a vector of marginal correlations of predictors with the response
of predictors with the response variable, rescaled by the standard
deviation of the response.

When there are more predictors than observation, LS (least
square) estimator is noisy, that’s why ridge regression is considered.
Let yk = (yk

1, . . . ,yk
p)� be a p−vector obtained by ridge regression,

i.e.,

yk = (X�X + kIp)−1X�y (3.10)

where k > 0 is a regularization parameter. Obviously, when k → 0,
yk → b̂LS and k → ∞, kyk → y. The component-wise regression is
a specific case of ridge regression with k = ∞.

The iterated-SIS algorithm applied for estimating the VAR(p)
model is as follows:

1. Apply SIS for initial screening, reduce the dimensionality to a
relative large scale d;

2. Apply a lower dimensional model selection method (such as
lLassoasso, SCAD) to the sets of variables selected by SIS;

3. Apply SIS to the variables selected in the previous step;
4. Repeat steps 2 and 3 until the set of selected variables do not

decrease.

3.3. Connectedness measure

We construct our network using the fashionable directional con-
nectedness measure proposed by Diebold and Yılmaz (2014). The
connectedness is measured by cross-sectional variance decomposi-
tion, where the forecast error variance of variable is decomposed into
parts attributed to the various variables in the system.

The interactions between the variables, i.e., the directional con-
nectedness measure hij(q) is given by,

hij(q) =
s−1

jj

∑Q−1
q=0

(
e�

i B̂qSej

)2

∑Q−1
q=0

(
e�

i B̂qSB̂�
q ei

) (3.11)

Table 3.1
Connectedness table of interest.

x1 x2 . . . xn From others

x1 h11(q) h12(q) . . . h1n(q)
∑n

j=1 h1j(q), j 	= 1
x2 h21(q) h22(q) . . . h2n(q)

∑n
j=1 h2j(q), j 	= 2

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

xn hn1(q) hn2(q) . . . hnn(q)
∑n

j=1 hnj(q), j 	= n
To others

∑n
i=1 hi1(q), i 	= 1

∑n
i=1 hi2(q), i 	= 2 . . .

∑n
i=1 hin(q), i 	= n 1

n

∑n
i=1,j=1 hij(q), i 	= j



S. Chen, W. Karl Härdle and B. López Cabrera / Energy Economics 83 (2019) 180–196 185

06.2000−07.2015

C
o
n
tr
a
c
ts

P
ric

e

20

40

60

80

(a) Ribbon plot of prices over 90 contracts

Time

T
y
p

e

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(b) Contour plot of log return

Fig. 4.1. Overview of dataset.

where q is the lag order, ei is a pK2 × 1 selection vector with unity
as its i-th element and zeros elsewhere. S = E

(
utu�

t

)
, is the covari-

ance matrix of the non-orthogonalized VAR(p) in Eq. (3.1), with s jj

the corresponding j-th diagonal element of S. B̂l are the coefficient
matrices of Eq. (3.12).

With iterated-SIS algorithm to estimate the sparse VAR structure,
we can acquire its moving average (MA) transformation,

yt =
∞∑

i=0

Biut−i (3.12)

where the coefficient matrices Bi obey Bi =
∑iy

j=1 Bi−jAj, with
B0 = IK and Aj = 0 for j > p. Aj, j = 1, 2, . . . , p is the coefficient
matrix of VAR(p) model.

To measure the persistent effect of a shock on the behavior of a
series, we aim to acquire the population connectedness Table 3.1,
according to Diebold and Yılmaz (2014).

The rightmost column gives the “from” effect of total connected-
ness, and the bottom row gives the “to” effect. In particular, the direc-
tional connectedness “from” and “to” associated with the forecast
error variation hij for specific power contract when the arising shocks
transmit from one asset to the other. These two connectedness

Fig. 4.2. Pattern of imputed data.
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Table 4.1
Model selection results according to the AIC, BIC and HQ criteria.

Model AIC HQ BIC

Iterated-SIS-Lasso, p = 1 4.5686 4.7249 5.7864
Iterated-SIS-Lasso, p = 2 4.5006 4.6426 5.6076
Iterated-SIS-Lasso, p = 3 6.9854 7.2315 10.0345
Iterated-SIS-SCAD, p = 1 4.5714 4.7277 5.7892
Iterated-SIS-SCAD, p = 2 6.1043 6.1043 9.5782
Iterated-SIS-SCAD, p = 3 7.2559 7.6820 10.5770

estimators can be obtained by adding up the row or column ele-
ments, the pairwise directional connectedness from j to i is given by,

Ci←j = hij(q) (3.13)

The total directional connectedness “from” Ci← • (others to i), “to”
C • ←j (j to others) and the corresponding net connectedness are
defined as

Ci←• =
n∑

j=1

hij(q), i 	= j

C•←j =
n∑

i=1

hij(q), i 	= j

Ci = Cto − Cfrom = C•←i − Ci←• (3.14)

The “to” connectedness measures its total contribution to the fore-
cast error variance of other components in the system, and therefore
captures the systemic risk of the component.

4. Data and model selection

4.1. Data sets

As introduced in Section 2.2, EEX offers continuous trading
data of Phelix Futures. The available load profiles are base, peak

and off-peak. The available products with different maturities have
five kinds: Day/Weekend Futures, Week Futures, Month Futures,
Quarter Futures and Year Futures. Nevertheless the products of
Day/Weekend Futures and Week Futures only have the off-peak load
data, for all other contracts base and peak only. Here we recall the
underlying of the Phelix Futures data, the Phelix Base contract is
average price of the hours 1 to 24 for electricity traded on spot mar-
ket, while the Phelix Peak is the average price of the hours 9 to
20 for electricity traded on spot market. Therefore we involve the
products of spot prices as well. The contracts of spot prices are diver-
sified in Hours from 00–01 h up to 23–24 h, and in Blocks of Base
Monthly, off-peak 01–08, off-peak 21–24, Peak Monthly. The dataset
we constructed is provided by Bloomberg, we have 90 kinds of con-
tracts in total. The time span is from 30.09.2010 to 31.07.2015. All
the contracts are listed in Table 8.1 with detailed information in
Table 8.2.

To remove the redundant variable, we apply screening technique
to select variables using the Phelix Futures consisting of differ-
ent contracts and over different maturities. To implement the VAR
model, first order difference of the data in Fig. 4.1a is required to
transform non-stationary data to stationary time series. The contour
plot of the constructed dataset is depicted in Fig. 4.1b.

In the market of Phelix Futures, final settlement at negative
price is also possible. There are some missing values after trans-
forming the original data to stationary time series by first order
difference. To deal with the missing data, some quick fixes such
as mean-substitution may be fine in some cases. While such sim-
ple approaches usually introduce bias into the data, for instance,
applying mean substitution leaves the mean unchanged (which is
desirable) but decreases variance, which may be undesirable. In our
paper, we impute missing values with plausible values drawn from
a distribution using an approach proposed by Van Buuren and Oud-
shoorn (2000). The patterns of missing data for the original dataset
and imputation dataset are compared in Fig. 4.2. The distributions of
the variables are shown as individual points, the imputed data for
each imputed dataset is shown in magenta while the density of the
observed data is shown in blue. The distributions are expected to be
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Fig. 4.3. Iterated-SIS-Lasso VAR(2) estimation results.
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Table 4.2
FMSE of out-of-sample forecasting during 31.12.2014–31.07.2015.

Lag Iterated-SIS-Lasso Iterated-SIS-SCAD

p = 1 0.0697 0.0697
p = 2 0.0670 0.0701
p = 3 0.0923 0.1413

similar based on the assumption. We can observe that the shape of
the magenta points (imputed) matches the shape of the blue ones
(observed). The matching shape tells us that the imputed values are
indeed plausible values.

4.2. Model selection

The purpose of this section is to compare the performance of the
regularization approaches and to select the best model used to con-
struct connectedness measure. The estimation steps are as follows :

1. Given the lag order p, p is a constant.
2. Recall iterated-SIS algorithm in Eq. 3.2, estimate VAR(p)

using either iterated-SIS-Lasso or iterated-SIS-SCAD.
3. Select the best model with model selection criterion given

by,

IC(p) = log |Ĥ(p)| + v(K, p)cT (4.1)

where v(K, p) is a penalty function. cT is a sequence indexed
by the sample size T. The residual covariance matrix Ĥ(p)
without a degrees of freedom correction is defined as,

Ĥ(p) =
1
T

T∑
t=1

u�
t ut (4.2)

Rewrite Eq. (4.1) with different penalty functions, the three
most common information criteria are the Akaike (AIC),
Schwarz-Bayesian (BIC) and Hannan-Quinn (HQ),

AIC = log |Ĥ(p)| +
2
T

pK2 (4.3)

HQ = log |Ĥ(p)| +
2 log log T

T
pK2 (4.4)

BIC = log |Ĥ(p)| +
log T

T
pK2 (4.5)

4. The selected model will be used to construct directional
connectedness hij(q) defined in Eq. (3.11).

The comparison of three information criteria is reported in
Table 4.1. We observe that the VAR(2) estimated by iterated-SIS-
Lasso performs best, with smallest IC values given by: AIC 4.5006,
HQ 4.6426 and BIC 5.6076. The model with smaller IC values is more
likely to be the true model.

We produce the coefficient paths for iterated-SIS-Lasso VAR esti-
mation in Fig. 4.3. Each curve corresponds to a variable. It shows the
path of its coefficient against �1-norm of the whole coefficient vector
as k varies. In addition, we partition the dataset into two samples:
we select the in-sample dataset as 30.09.2010 –28.11.2014, and the
out-of-sample dataset used to measure model forecast performance
is from 31.12.2014 to 31.07.2015. We roll each model through the
out-of-sample dataset one observation at a time while each time
forecasting the target variable one month ahead. By rolling window,
the forecast mean squared errors (FMSE) for different models are cal-
culated and compared in Table 4.2, VAR(2) with iterated-SIS-Lasso
has the smallest FMSE of 0.067, this is consistent with our previous
finding. For the full sample dataset, we find that iterated-SIS-Lasso
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Fig. 5.1. The graph for full-sample energy market network, across 11 different types within a total 90 contracts.
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Table 5.1
The connectedness table for the aggregated network, including 11 types of contracts.

GI GT HP GJ HI NE POA PDA PBA LPXBHR LPXBHxx From

GI 1.75 0.46 0.86 1.46 0.44 0.71 1.48 0.48 0.80 0.15 0.15 8.74
GT 0.46 2.33 0.98 0.58 2.41 0.93 0.42 2.03 0.84 0.30 0.41 11.70
HP 0.73 0.84 5.27 0.63 0.51 4.78 0.70 1.21 4.19 0.06 0.03 18.95
GJ 1.46 0.58 0.73 1.80 0.63 0.64 1.09 0.51 0.65 0.13 0.13 8.36
HI 0.44 2.41 0.60 0.63 2.65 0.63 0.37 1.92 0.49 0.34 0.48 10.96
NE 0.61 0.79 4.78 0.55 0.54 5.09 0.55 1.05 3.34 0.08 0.12 17.52
POA 1.48 0.42 0.81 1.09 0.37 0.64 1.60 0.48 0.79 0.19 0.18 8.04
PDA 0.48 2.03 1.42 0.51 1.92 1.23 0.48 1.99 1.27 0.26 0.32 11.91
PBA 0.68 0.72 4.19 0.56 0.42 3.34 0.67 1.09 3.88 0.20 0.12 15.88
LPXBHR 0.80 1.24 0.50 0.67 1.35 0.50 0.90 1.12 1.01 7.86 9.81 25.79
LPXBHxx 0.13 0.35 0.03 0.11 0.41 0.12 0.16 0.28 0.13 2.70 3.86 8.28
To 9.03 12.18 20.17 8.59 11.65 18.62 8.41 12.16 17.38 12.28 15.63 146.12
Net 0.29 0.48 1.22 0.23 0.70 1.10 0.37 0.25 1.50 −13.50 7.35

outperforms iterated-SIS-SCAD algorithm. Therefore the iterated-
SIS-Lasso algorithm is selected for constructing the corresponding
connectedness measure.

5. Static analysis of power market connectedness

5.1. The static network across contracts

The graph of our full-sample energy market network is depicted
in Fig. 5.1. We observe the cluster phenomena in this graph, which
motivates us to study the connectedness between contracts within
and across 11 different types of energy contracts. In general, the con-
tracts that belong to the same type tend to appear inside the same
cluster. We find out several pairs of strong connections between dif-
ferent types of contracts, for example, the upper-left area reveals
that the LPXBHR-type and LPXBHxx-type are massively connected.
In addition, a cluster consisting of HP-type (Phelix Base Year Option),
NE-type (Phelix Peak Year Future) and PBA-type (Phelix Off-Peak
Year Future) indicates the closer relationship among these contracts;
this implies that the Year derivative contracts are closer to each other
while the month future and quarter future remain distinct.

Given the cluster phenomena observed in the full sample con-
nectedness graph, we aggregate the pairwise connectedness of the
contracts that belong to the same type. The aggregated network is
then reported in Table 5.1, within a total of 11 types of contracts
(more details can be found in Table 8.2). The off-diagonal elements
represent the cross contractType connectedness, while within con-
tractType connectedness are on the diagonal.

Recall that for each component in the system, the “to” connect-
edness measures its total contribution to the forecast error variance
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Fig. 5.2. The graph for network across 11 different contract types.

of other components in the system, making possible to capture the
systemic risk of the component. In this table, it is obvious that the
HP-type, NE-type and PBA-type are main contributors to systemic-
wide risk. HP-type contracts have stronger links both from and to the
other contract types. This is potentially interesting because, although
HP-type, NE-type are important for the whole market as shown in
Fig. 5.2, their net connectedness are negligible, with 4.52% and 4.08%
of the total market power contracts. The reason is that these two
types of contracts (HP, NE) are mutually closely interconnected, they
also have “from” impacts to the system and thus offsetting their risk
contributions. Moreover, the strongest pairwise connectedness is the
impact of LPXBHxx-type on the LPXBHR-type, however the inverse
impact is not significant. We also observe very strong net impacts
from LPXBHxx-type on the LPXBHR-type contracts.

5.2. Determining important market component

In terms of magnitude for different contract types reported in
Table 5.1, the “net” directional connectedness is distributed rather
tightly, in total 77.21% of LPXBHR-type and LPXBHxx-type. We first
investigate pairwise connectedness across 24 LPXBHR-type contracts
(full connectedness table is available in Table 8.3).

Fig. 5.3 visualizes the connectedness network according to dif-
ferent trading hours, the numbered nodes correspond to the trading
hours from 00–01 to 23–24 h. Some blocks of high connectedness
are successfully detected and represented by darker purple color, i.e.
the peak spot contracts with trading hours ranging from 09–13 h to
16–20 h. We summarize the “from”, “to” and “net” effects for the 24
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Fig. 5.3. The connectedness network graph based on different trading hours for
LPXBHR-type spot contracts. The number in each node corresponds to the trad-
ing hours ranging from 00–01 to 23–24 h, e.g. 12 refers to the LPXBHR12 contract
with trading hours 11–12 h. The LPXBHR-type power contracts that bidding from
09–13 h to 1620 h are represented with darker purple color because of their higher
“to”-connectedness.
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Table 5.2
Summary of “from”, “to” and “net” connectedness for all LPXBHR-type contracts. The contracts are ranked by their
system risk measure “to”- connectedness.

Power contract “from”-connectedness “to”-connectedness “net”-connectedness

LPXBHR11.Index 12.48 11.08 −1.40
LPXBHR10.Index 12.27 10.83 −1.45
LPXBHR12.Index 11.83 10.55 −1.27
LPXBHR13.Index 11.55 10.28 −1.27
LPXBHR17.Index 11.46 10.05 −1.41
LPXBHR19.Index 11.27 10.05 −1.23
LPXBHR18.Index 11.06 9.79 −1.27
LPXBHR20.Index 10.61 9.73 −0.88
LPXBHR21.Index 9.51 9.31 −0.19
LPXBHR22.Index 8.77 8.51 −0.26
LPXBHR23.Index 7.80 8.48 0.68
LPXBHR14.Index 7.48 8.16 0.68
LPXBHR16.Index 7.02 7.16 0.14
LPXBHR15.Index 6.51 7.15 0.64
LPXBHR01.Index 5.99 6.99 0.99
LPXBHR09.Index 5.64 6.54 0.90
LPXBHR06.Index 5.60 6.42 0.83
LPXBHR05.Index 5.35 6.30 0.94
LPXBHR04.Index 5.28 6.19 0.91
LPXBHR08.Index 5.13 5.65 0.52
LPXBHR07.Index 5.04 4.98 −0.06
LPXBHR02.Index 4.66 4.87 0.21
LPXBHR03.Index 4.36 4.85 0.49
LPXBHR24.Index 2.07 4.84 2.77

LPXBHR-type contracts in descending order of importance, and rank
the contacts by their system risk in Table 5.2. Our finding clearly
shows that, the impacts from day-ahead spot power contracts bid-
ding between 09:00 and 13:00 have the highest “to”-connectedness
values, and therefore have the strongest impacts on the other day-
ahead spot contracts. The peak spot contracts (trading hours 09–13 h,
16–20 h) have very large negative “net”-connectedness, revealing that
they are main risk source in determining the electricity price.

The pairwise directional impacts between LPXBHR-type and
LPXBHxx-type are plotted in Fig. 5.4, the colors of the nodes are
the same as Fig. 5.1 (the connectedness table of the impacts from
the six LPXBHxx-type contracts to the 24 LPXBHR-type spot con-
tracts is available in the appendix, see Table 8.4). We find a cluster
of LPXBHR10, LPXBHR11, LPXBHR12, LPXBHR13, LPXBHRP, LPXBHRB

and LPXBHB. The LPXBHB (Base hours 00: 00–14:00) contract has
significant impacts on the spot contracts from hours 09 to 13, while
the impacts from the LPXBHP (Peak Hours 08: 00–20:00) contract
is negligible. In addition, both LPXBHRB (Baseload) and LPXBHRP
(Peakload) contracts exhibit strong interconnectedness with the spot
contracts from hours 09 to 13, however only the LPXBHRP (Peakload)
contract affects the spot prices trading from hours 16 to 18. More-
over, the graph exhibits strong mutual links between some of the
spot contracts, for example, the pairs of LPXBHR10 and LPXBHR11,
LPXBHR11 and LPXBHR12, LPXBHR12 and LPXBHR13, LPXBHR17 and
LPXBHR18 among others.

The network graph in Fig. 5.5 illustrates the pairwise directional
connectedness between HP-type and NE-type contracts. Compared
with Fig. 5.1, we can see that, the links between these two types are
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Fig. 5.5. The network graph for HP and NE-type power contracts.

very strong. NE-type contracts are the Year Futures with maturities
up to six years, the underlying of these contracts is the average price
of hours 9 to 20 for electricity traded on the spot market. HP-type
contracts are the European style options on the Phelix Base Future
provided by EEX, the underlying of Phelix Base is the average price
of the hours 1 to 24 for electricity traded on the spot market. It is
calculated for all calendar days of the year as the simple average
of the Auction prices for the hours 1 to 24 in the market area Ger-
many/Austria. This figure shows the similar connectedness pattern
between HP1 and NE1 contracts.

6. Dynamic analysis of power market connectedness

We now study the dynamic network using rolling estimation.
The number of observations used in the rolling sample to compute
prediction is 36 or correspondingly three years, and we examine

dynamic evolution of the network for the following one year. In
each window, we repeat model selection and conduct iterated-SIS
algorithm to obtain the sparse estimates.

6.1. System-wide connectedness over time

We first calculate full sample system-wide connectedness for
each window by summing up the total directional connectedness
whether “from” or “to”. In general, the full sample system-wide con-
nectedness reflects the overall uncertainty that has arisen in the
system. The dynamic evolution path is plotted in the left panel of
Fig. 6.1, with the peak of the system-wide connectedness is Decem-
ber. In most regions of Germany, the coldest days of the year are from
around mid December to late January, which results in more work
for the heating systems. In particular, the amount of electricity used
for the decorations increases dramatically over the holiday season in
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Fig. 6.1. The time-varying network for the system-wide connectedness from August 2014 to July 2015. The left panel is the time-varying full sample connectedness, it can be
decomposed into two parts: the cross contractType connectedness (upper curve in the right panel) and the within contractType connectedness (lower curve in the right panel).
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Table 6.1
The summary statistics of the connectedness measures for the aggregated network over one year, including 11 types of contracts. For each connectedness measure, we report the
corresponding mean(15% quantile–85% quantile) and the standard deviation.

“to”- connectedness “from”- connectedness “net”- connectedness

Mean S.d. Mean S.d. Mean S.d.

GI 9.29 (9.02–9.68) 0.37 9.08 (8.85–9.33) 0.27 0.22 (0.06–0.36) 0.16
GT 12.40 (12.09–12.57) 0.26 11.92 (11.80–12.05) 0.15 0.49 (0.24–0.69) 0.19
HP 21.02 (20.44–21.52) 0.46 19.93 (19.43–20.41) 0.43 1.09 (1.03–1.15) 0.06
GJ 8.49 (8.16–8.90) 0.32 8.31 (7.99–8.69) 0.32 0.18 (0.12–0.22) 0.06
HI 11.92 (11.53–12.20) 0.34 11.16 (10.98–11.27) 0.18 0.75(0.52–0.92) 0.18
NE 19.59 (19.24–19.92) 0.34 18.49 (18.07–18.89) 0.41 1.11 (1.02–1.20) 0.09
POA 8.73 (8.28–9.29) 0.49 8.37 (8.15–8.70) 0.29 0.36 (0.13–0.61) 0.24
PDA 12.35 (12.12–12.49) 0.20 12.15 (11.95–12.29) 0.19 0.20 (-0.03–0.40) 0.20
PBA 18.87 (17.61–20.39) 1.35 17.60 (16.28–19.18) 1.39 1.27 (1.19–1.33) 0.10
LPXBHR 15.16 (13.62–16.55) 1.46 29.92 (26.25–33.36) 3.33 -14.76 (-16.59–12.63) 1.89
LPXBHxx 18.31 (16.74–19.86) 1.51 9.21 (8.43–9.85) 0.71 9.10 (8.30–9.88) 0.82

December. After December, the value of the system-wide connect-
edness decreased to the lowest value of April, and it then increased
gradually with increasing temperature until September.

To measure the system-wide interaction, we further decompose
the full sample system-wide connectedness into two parts: cross
contractType connectedness and within contractType connected-
ness as shown in the right panel of Fig. 6.1. The cross contractType
connectedness sums up the directional connectedness between the
contracts coming from different contract types, while within con-
tractType connectedness is the sum of directional connectedness of
all the contracts within the same contract type. The higher values
of cross contractType connectedness (upper curve) indicate that it
is the main driving force for system-wide connectedness. However
the within-contractType connectedness becomes less important, its
values remain around 40 for the whole period.

We further conduct a robustness risk by computing full sam-
ple system-wide connectedness Ch,t at different forecast horizons
h1 = 8, h2 = 9. Then the dynamic networks of the resulting
time-varying Ch1,t , Ch2,t are compared with the above full sample
system-wide connectedness Ch0,t , h0 = 10 . To achieve this, we

apply a Welch two sample t-test on H0 : Ch0,t = Ch1,t against
Ha : Ch0,t 	= Ch1,t . The p-value of the Welsh t-test is 0.8994. We
therefore cannot reject the null hypothesis, indicating that there is
not enough evidence of a difference between the (true) averages of
the two groups at the usual significance level. Moreover, the p-value
of the Welch two sample t-test on H0 : Ch0,t = Ch2,t against Ha :
Ch0,t 	= Ch2,t is 0.9898. Both large p-values suggest the robustness
of dynamic network estimation. The time-varying evolution of full
sample system-wide connectedness estimated at different forecast
horizons can be found in Fig. 8.1.

6.2. System-wide cross-contractType connectedness

To investigate the cross contractType connectedness, we aggre-
gate the pairwise connectedness of the contracts that belong to
the same type. The resulting time-varying networks across differ-
ent contract types are summarized in Table 6.1. For each con-
tract type, we report the mean and standard deviation (s.d.), the
numbers inside the parentheses represent the 15% and 85% quan-
tiles respectively. In general, the results are consistent with the

Table 6.2
The connectedness table reflects how the LPXBHxx-type contracts may affect spot contract according to different trading hours. In this table we report the mean of the time-
varying networks, together with the s.d. inside the parentheses. Each element measures the directional pairwise connectedness from the jth contract of LPXBHxx-type to the ith
LPXBHR-type, i.e. CLPXBHRi←LPXBHxxj

. The numbers larger than 0.8 are marked with bold font.

LPXBHB LPXBHOP1 LPXBHOP2 LPXBHP LPXBHRB LPXBHRP

LPXBHR01.Index 0.28 (0.01) 0.45 (0.01) 0.11 (0.01) 0.15 (0.01) 0.28 (0.01) 0.19 (0.01)
LPXBHR02.Index 0.30 (0.01) 0.42 (0.02) 0.16 (0.01) 0.17 (0.01) 0.30 (0.01) 0.22 (0.01)
LPXBHR03.Index 0.34 (0.02) 0.54 (0.02) 0.14 (0.01) 0.16 (0.01) 0.34 (0.02) 0.25 (0.02)
LPXBHR04.Index 0.40 (0.02) 0.56 (0.02) 0.17 (0.01) 0.21 (0.01) 0.40 (0.02) 0.32 (0.01)
LPXBHR05.Index 0.43 (0.02) 0.62 (0.02) 0.24 (0.01) 0.26 (0.02) 0.43 (0.02) 0.34 (0.01)
LPXBHR06.Index 0.51 (0.02) 0.60 (0.03) 0.33 (0.01) 0.21 (0.01) 0.51 (0.02) 0.43 (0.02)
LPXBHR07.Index 0.42 (0.01) 0.38 (0.01) 0.29 (0.01) 0.11 (0.01) 0.42 (0.01) 0.38 (0.01)
LPXBHR08.Index 0.43 (0.01) 0.37 (0.01) 0.34 (0.01) 0.10 (0.01) 0.43 (0.01) 0.39 (0.01)
LPXBHR09.Index 0.61 (0.02) 0.49 (0.02) 0.34 (0.01) 0.14 (0.01) 0.61 (0.02) 0.58 (0.02)
LPXBHR10.Index 0.86 (0.02) 0.68 (0.02) 0.47 (0.01) 0.38 (0.01) 0.86 (0.02) 0.82 (0.02)
LPXBHR11.Index 0.85 (0.02) 0.66 (0.02) 0.44 (0.01) 0.45 (0.01) 0.85 (0.02) 0.83 (0.02)
LPXBHR12.Index 0.82 (0.02) 0.60 (0.02) 0.40 (0.01) 0.50 (0.01) 0.82 (0.02) 0.82 (0.02)
LPXBHR13.Index 0.78 (0.02) 0.53 (0.02) 0.34 (0.01) 0.51 (0.01) 0.78 (0.02) 0.82 (0.02)
LPXBHR14.Index 0.51 (0.01) 0.40 (0.01) 0.17 (0.01) 0.37 (0.01) 0.51 (0.01) 0.56 (0.02)
LPXBHR15.Index 0.46 (0.01) 0.38 (0.01) 0.16 (0.01) 0.30 (0.01) 0.46 (0.01) 0.50 (0.02)
LPXBHR16.Index 0.56 (0.02) 0.34 (0.01) 0.29 (0.01) 0.22 (0.01) 0.56 (0.02) 0.61 (0.02)
LPXBHR17.Index 0.71 (0.02) 0.44 (0.01) 0.28 (0.01) 0.29 (0.01) 0.71 (0.02) 0.81 (0.02)
LPXBHR18.Index 0.71 (0.02) 0.44 (0.01) 0.32 (0.01) 0.28 (0.01) 0.71 (0.02) 0.80 (0.02)
LPXBHR19.Index 0.70 (0.02) 0.43 (0.01) 0.45 (0.01) 0.34 (0.01) 0.70 (0.02) 0.73 (0.02)
LPXBHR20.Index 0.67 (0.02) 0.40 (0.01) 0.60 (0.02) 0.33 (0.01) 0.67 (0.02) 0.66 (0.02)
LPXBHR21.Index 0.58 (0.02) 0.33 (0.01) 0.78 (0.02) 0.29 (0.01) 0.58 (0.02) 0.53 (0.01)
LPXBHR22.Index 0.49 (0.01) 0.31 (0.01) 0.84 (0.02) 0.18 (0.01) 0.49 (0.01) 0.39 (0.01)
LPXBHR23.Index 0.43 (0.01) 0.22 (0.01) 0.84 (0.02) 0.33 (0.01) 0.43 (0.01) 0.36 (0.01)
LPXBHR24.Index 0.22 (0.01) 0.12 (0.01) 0.57 (0.02) 0.16 (0.01) 0.22 (0.01) 0.18 (0.01)
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Fig. 6.2. The averaged pairwise connectedness among the LPXBHR-type contracts over the rolling period. The numbered nodes correspond to the underlying trading hours for
each contract. The colors are the same as Fig. 5.3, the contracts with higher connectedness values are represented with darker purple color.

findings in Section 5.1. The HP-type, NE-type and PBA-type con-
tracts have relatively higher values of both “to”-connectedness and
“from”-connectedness, but their net impacts in the system are very
low. Moreover, the LPXBHxx-type contracts have significant net
impacts on the LPXBHR-type contracts, similar results are discussed
in Section 5.2.

According to different trading hours, we further discuss how
LPXBHxx-type contracts may affect the LPXBHR-type contracts
traded in the power derivative market. The mean and s.d. for
the time-varying connectedness CLPXBHRi←LPXBHxxj

are reported in
Table 6.2. The spot contracts based on bid hours from 09 to 13 are
closely related to the contracts of LPXBHB, LPXBHRB and LPXBHRP.
We also find that the LPXBHRP affects the spot contracts from hours
16 to 19 most. To control for a relatively stable Germany spot elec-
tricity price, the risk transmission channels among the contracts are
not negligible. Investments in LPXBHB, LPXBHRB and LPXBHRP con-
tracts help to limit the potential risk of loss when there are adverse
movements of spot prices. This result may provide a guide for policy
maker, energy companies and investors.

We also compute the averaged pairwise connectedness among
the spot contracts based on different trading hours, the interac-
tion between the LPXBHR-type contracts is depicted in Fig. 6.2. We
observe strong pairwise interconnection between the neighboring
contracts. For example, the LPXBHR12 has stronger connection with
its nearest two neighbors LPXBHR11 and LPXBHR13, but contract
LPXBHR13 does not have strong linkage with LPXBHR14. The most
influential contracts are identified as the contracts based on trad-
ing hours from 09–13 to 16–20. This is potentially interesting as it
provides pricing signals affecting the electricity trading.

7. Conclusion

This paper combines regularization approach with dynamic net-
work analysis in an ultra high-dimensional setting. We empirically
analyze the sparse interconnectedness of the full German power
derivative market, clearly identify the significant channels of rele-
vant potential risk spillovers and thus complement the full picture
of system risk. As we know, electricity is not storable and may
be affected by various factors on the supply and demand side of

the market, such as policy changes, weather conditions and exter-
nal economic uncertainties. Nowadays Germany is transforming its
power system towards renewable energy, analysis of German power
derivative market thus provides useful insights for power generation
companies and transmission organizations across the globe.

Our empirical findings suggest that the Phelix base year options
and peak year futures are the main contributors to the system risk.
However these two types of contracts are mutually closely inter-
connected, they also have high “from” impacts received from the
system and thus offsetting their risk contributions. In addition, the
connectedness between different contract types are more signif-
icant compared with the connectedness among contracts within
the same type. Therefore it is important for policy makers and
investors to take the interdependence between different contract-
Types into account. Other interesting conclusions arise from the
connectedness of spot and future contracts, when we examine each
contract according to different trading hours. For spot contracts,
we observe strong pairwise interconnections between the neigh-
boring contracts especially for the contracts trading in the peak
hours, this provides investors pricing signals affecting the electricity
trading. In addition, the monthly base future (BHB), monthly peak-
load(BHRP)/baseload(BHRB) are identified as main driving force for
the peak-hour spot contracts. This evidence has implications for regu-
lators to control for a relatively stable Germany spot electricity price.
For energy companies and investors, it is important to diversify their
existing portfolio rather than having large holdings of individual elec-
tricity contract, for example, investments in LPXBHB, LPXBHRB and
LPXBHRP contracts help to limit the potential risk of loss when there
are adverse movements of spot prices. Another important character-
istic of electricity is seasonality, this characteristic is reflected in our
dynamic network analysis. We observe the dynamic evolution of full-
sample system-wide connectedness in case of weather condition and
external uncertainty, for example the full-sample system-wide con-
nectedness increased gradually with increasing temperature from
April until September. In general, with the wide range of power
derivative contracts trading in the German electricity market, we are
able to identify, estimate the risk contribution of individual power
contract; this helps us to have a better understanding of the German
power market functioning and environment.
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Appendix A

Table 8.1
Phelix Futures data traded at EEX.

Symbol Types

GI GI1.Comdty GI2.Comdty GI3.Comdty GI4.Comdty
GI5.Comdty GI6.Comdty GI7.Comdty

GT GT1.Comdty GT2.Comdty GT3.Comdty GT4.Comdty
GT5.Comdty GT6.Comdty GT7.Comdty

HP HP1.Comdty HP2.Comdty HP3.Comdty HP4.Comdty
HP5.Comdty HP6.Comdty

GJ GJ1.Comdty GJ2.Comdty GJ3.Comdty GJ4.Comdty
GJ5.Comdty GJ6.Comdty GJ7.Comdty

HI HI1.Comdty HI2.Comdty HI3.Comdty HI4.Comdty
HI5.Comdty HI6.Comdty HI7.Comdty

NE NE1.Comdty NE2.Comdty NE3.Comdty NE4.Comdty
NE5.Comdty NE6.Comdty

POA POA1.Comdty POA2.Comdty POA3.Comdty POA4.Comdty
POA5.Comdty POA6.Comdty POA7.Comdty

PDA PDA1.Comdty PDA2.Comdty PDA3.Comdty PDA4.Comdty
PDA5.Comdty PDA6.Comdty PDA7.Comdty

PBA PBA1.Comdty PBA2.Comdty PBA3.Comdty PBA4.Comdty
PBA5.Comdty PBA6.Comdty

LPXBHR LPXBHR01.Index LPXBHR02.Index LPXBHR03.Index LPXBHR04.Index
LPXBHR05.Index LPXBHR06.Index LPXBHR07.Index LPXBHR08.Index
LPXBHR09.Index LPXBHR10.Index LPXBHR11.Index LPXBHR12.Index
LPXBHR13.Index LPXBHR14.Index LPXBHR15.Index LPXBHR16.Index
LPXBHR17.Index LPXBHR18.Index LPXBHR19.Index LPXBHR20.Index
LPXBHR21.Index LPXBHR22.Index LPXBHR23.Index LPXBHR24.Index

LPXBHxx LPXBHBMI.Index LPXBHOP1.Index LPXBHOP2.Index LPXBHPMI.Index
LPXBHRBS.Index LPXBHRPK.Index

Table 8.2
Selected contracts from the file “Products 2016” provided by European\ignorespacesEnergy\ignorespacesExchange\ignorespacesEEX\ignorespacesAG.

No. Symbol Description

1 GI1.Comdty - GI7.Comdty Phelix Base Month Option, and the respective next six delivery months
2 GT1.Comdty - GT7.Comdty Phelix Base Quarter Option, and the respective next six delivery quarters
3 HP1.Comdty - HP6.Comdty Phelix Base Year Option, and the respective next five delivery years
4 GJ1.Comdty - GJ7.Comdty Phelix Peak Month Future, and the respective next six delivery months
5 HI1.Comdty - HI7.Comdty Phelix Peak Quarter Future, and the respective next six delivery quarters
6 NE1.Comdty - NE6.Comdty Phelix Peak Year Future, and the respective next five delivery years
7 POA1.Comdty - POA7.Comdty Phelix Off-Peak Month Future, and the respective next six delivery months
8 PDA1.Comdty - PDA7.Comdty Phelix Off-Peak Quarter Future, and the respective next six delivery quarters
9 PBA1.Comdty - PBA6.Comdty Phelix Off-Peak Year Future, and the respective next five delivery years
10 LPXBHR01.Index - LPXBHR24.Index EEX Day-ahead Spot Market with Bid Type from 00-01 to 23-24h, e.g. LPXBHR14.Index is EEX Day-ahead Spot

price based on bid hours from 13 -14.
11 LPXBHRxx.Index EEX Day-ahead Spot Market with different Bid Types: LPXBHB.Index is Base Monthly 00-14h;

LPXBHOP1.Index is Off Peak1 01-08h; LPXBHOP2.Index is Off Peak2 21-24h; LPXBHP.Index is Peak Monthly
08 - 20h; LPXBHRB.Index is Baseload; LPXBHRP.Index is Peakload.

Table 8.3
Population connectedness table for LPXBHR contracts.

LPXBHR01 LPXBHR02 LPXBHR03 LPXBHR04 LPXBHR05 LPXBHR06 LPXBHR07 LPXBHR08

LPXBHR01 1.00 0.71 0.52 0.35 0.53 0.43 0.13 0.14
LPXBHR02 0.42 0.59 0.47 0.36 0.31 0.18 0.06 0.07
LPXBHR03 0.27 0.41 0.54 0.42 0.36 0.23 0.12 0.12
LPXBHR04 0.19 0.32 0.41 0.53 0.38 0.25 0.21 0.15
LPXBHR05 0.25 0.24 0.30 0.33 0.47 0.37 0.19 0.15
LPXBHR06 0.18 0.12 0.18 0.18 0.34 0.41 0.22 0.23
LPXBHR07 0.10 0.08 0.13 0.20 0.22 0.29 0.45 0.40
LPXBHR08 0.10 0.08 0.13 0.14 0.18 0.30 0.45 0.54
LPXBHR09 0.11 0.08 0.14 0.15 0.18 0.35 0.58 0.70
LPXBHR10 0.25 0.23 0.23 0.33 0.49 0.66 0.46 0.49
LPXBHR11 0.27 0.28 0.26 0.35 0.50 0.61 0.42 0.46
LPXBHR12 0.26 0.29 0.23 0.30 0.42 0.48 0.28 0.31
LPXBHR13 0.23 0.30 0.24 0.30 0.39 0.45 0.21 0.27
LPXBHR14 0.16 0.15 0.17 0.23 0.26 0.30 0.13 0.13
LPXBHR15 0.22 0.18 0.17 0.19 0.22 0.27 0.14 0.13
LPXBHR16 0.07 0.06 0.10 0.13 0.19 0.34 0.36 0.41

https://www.eex.com/en/
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Table 8.3 (continued)

LPXBHR01 LPXBHR02 LPXBHR03 LPXBHR04 LPXBHR05 LPXBHR06 LPXBHR07 LPXBHR08

LPXBHR17 0.13 0.13 0.18 0.22 0.35 0.51 0.29 0.36
LPXBHR18 0.13 0.11 0.15 0.20 0.32 0.47 0.24 0.27
LPXBHR19 0.15 0.11 0.12 0.24 0.32 0.45 0.33 0.30
LPXBHR20 0.10 0.07 0.08 0.17 0.24 0.38 0.32 0.28
LPXBHR21 0.06 0.07 0.05 0.12 0.17 0.28 0.27 0.25
LPXBHR22 0.11 0.13 0.11 0.12 0.19 0.31 0.23 0.26
LPXBHR23 0.10 0.12 0.06 0.07 0.11 0.18 0.12 0.14
LPXBHR24 0.00 0.00 0.01 0.01 0.01 0.00 0.00 0.00

LPXBHR09 LPXBHR10 LPXBHR11 LPXBHR12 LPXBHR13 LPXBHR14 LPXBHR15 LPXBHR16
LPXBHR01 0.16 0.25 0.27 0.26 0.23 0.13 0.08 0.03
LPXBHR02 0.07 0.15 0.19 0.20 0.21 0.07 0.04 0.03
LPXBHR03 0.10 0.13 0.14 0.13 0.14 0.07 0.05 0.05
LPXBHR04 0.12 0.21 0.23 0.20 0.20 0.11 0.10 0.15
LPXBHR05 0.12 0.24 0.25 0.22 0.21 0.11 0.08 0.11
LPXBHR06 0.20 0.29 0.27 0.23 0.22 0.13 0.12 0.15
LPXBHR07 0.38 0.27 0.26 0.20 0.16 0.09 0.09 0.16
LPXBHR08 0.53 0.28 0.27 0.19 0.17 0.08 0.08 0.09
LPXBHR09 0.73 0.33 0.31 0.22 0.19 0.10 0.11 0.09
LPXBHR10 0.45 0.98 0.94 0.82 0.70 0.43 0.37 0.43
LPXBHR11 0.43 0.94 0.98 0.92 0.81 0.44 0.37 0.43
LPXBHR12 0.31 0.84 0.94 1.00 0.90 0.46 0.36 0.44
LPXBHR13 0.27 0.71 0.83 0.90 1.00 0.62 0.51 0.43
LPXBHR14 0.13 0.39 0.41 0.41 0.54 0.83 0.77 0.27
LPXBHR15 0.14 0.31 0.32 0.30 0.40 0.67 0.71 0.27
LPXBHR16 0.41 0.39 0.38 0.34 0.32 0.22 0.26 0.59
LPXBHR17 0.33 0.68 0.72 0.72 0.78 0.50 0.51 0.65
LPXBHR18 0.24 0.66 0.66 0.65 0.70 0.48 0.50 0.71
LPXBHR19 0.27 0.63 0.63 0.60 0.63 0.48 0.47 0.62
LPXBHR20 0.26 0.64 0.61 0.58 0.52 0.34 0.32 0.49
LPXBHR21 0.24 0.56 0.54 0.53 0.44 0.25 0.22 0.35
LPXBHR22 0.24 0.51 0.47 0.42 0.35 0.17 0.14 0.32
LPXBHR23 0.14 0.40 0.41 0.44 0.39 0.22 0.17 0.27
LPXBHR24 0.00 0.03 0.04 0.07 0.07 0.02 0.01 0.03

LPXBHR17 LPXBHR18 LPXBHR19 LPXBHR20 LPXBHR21 LPXBHR22 LPXBHR23 LPXBHR24
LPXBHR01 0.13 0.13 0.15 0.10 0.06 0.11 0.10 0.00
LPXBHR02 0.08 0.07 0.08 0.07 0.14 0.17 0.22 0.38
LPXBHR03 0.09 0.08 0.07 0.06 0.11 0.12 0.15 0.42
LPXBHR04 0.16 0.16 0.18 0.15 0.17 0.16 0.18 0.36
LPXBHR05 0.17 0.15 0.16 0.14 0.19 0.18 0.22 0.50
LPXBHR06 0.22 0.20 0.21 0.19 0.25 0.24 0.27 0.55
LPXBHR07 0.20 0.19 0.23 0.22 0.20 0.18 0.16 0.17
LPXBHR08 0.20 0.16 0.18 0.18 0.21 0.20 0.17 0.20
LPXBHR09 0.24 0.17 0.20 0.19 0.17 0.18 0.10 0.00
LPXBHR10 0.67 0.65 0.61 0.63 0.55 0.50 0.39 0.04
LPXBHR11 0.71 0.65 0.62 0.60 0.53 0.46 0.40 0.05
LPXBHR12 0.72 0.65 0.61 0.58 0.53 0.42 0.43 0.08
LPXBHR13 0.78 0.70 0.63 0.52 0.44 0.35 0.39 0.08
LPXBHR14 0.42 0.41 0.41 0.30 0.22 0.16 0.21 0.07
LPXBHR15 0.38 0.37 0.36 0.25 0.18 0.13 0.15 0.05
LPXBHR16 0.46 0.46 0.42 0.36 0.28 0.26 0.20 0.02
LPXBHR17 1.00 0.93 0.74 0.62 0.46 0.36 0.27 0.02
LPXBHR18 0.93 1.00 0.83 0.68 0.46 0.38 0.30 0.02
LPXBHR19 0.74 0.83 1.00 0.81 0.59 0.45 0.46 0.05
LPXBHR20 0.62 0.68 0.81 1.00 0.82 0.64 0.56 0.08
LPXBHR21 0.46 0.46 0.59 0.82 1.00 0.82 0.71 0.27
LPXBHR22 0.36 0.38 0.45 0.64 0.82 1.00 0.81 0.23
LPXBHR23 0.27 0.30 0.46 0.56 0.71 0.81 1.00 0.38
LPXBHR24 0.03 0.03 0.06 0.08 0.22 0.19 0.31 0.82

Table 8.4
The “To” impacts from the six LPXBHxx-type power contracts to the 24 LPXBHR-type contracts. The numbers larger than 0.8 are marked
in bold font.

LPXBHB LPXBHOP1 LPXBHOP2 LPXBHP LPXBHRB LPXBHRP

LPXBHR01 0.29 0.49 0.10 0.10 0.29 0.18
LPXBHR02 0.30 0.48 0.12 0.14 0.30 0.18
LPXBHR03 0.28 0.50 0.07 0.04 0.28 0.18
LPXBHR04 0.38 0.54 0.10 0.12 0.38 0.27
LPXBHR05 0.53 0.78 0.15 0.14 0.53 0.40
LPXBHR06 0.66 0.75 0.24 0.08 0.66 0.55
LPXBHR07 0.43 0.43 0.20 0.01 0.43 0.36
LPXBHR08 0.44 0.40 0.20 0.01 0.44 0.39
LPXBHR09 0.42 0.36 0.20 0.01 0.42 0.37

(continued on next page)
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Table 8.4 (continued)

LPXBHB LPXBHOP1 LPXBHOP2 LPXBHP LPXBHRB LPXBHRP

LPXBHR10 0.91 0.67 0.49 0.29 0.91 0.87
LPXBHR11 0.93 0.68 0.48 0.37 0.93 0.90
LPXBHR12 0.88 0.59 0.48 0.49 0.88 0.88
LPXBHR13 0.84 0.54 0.42 0.48 0.84 0.88
LPXBHR14 0.49 0.29 0.22 0.33 0.49 0.56
LPXBHR15 0.43 0.23 0.17 0.21 0.43 0.51
LPXBHR16 0.52 0.29 0.31 0.14 0.52 0.59
LPXBHR17 0.79 0.48 0.35 0.24 0.79 0.89
LPXBHR18 0.77 0.44 0.37 0.24 0.77 0.87
LPXBHR19 0.75 0.43 0.50 0.30 0.75 0.81
LPXBHR20 0.72 0.37 0.65 0.31 0.72 0.73
LPXBHR21 0.65 0.33 0.87 0.28 0.65 0.61
LPXBHR22 0.61 0.36 0.91 0.16 0.61 0.50
LPXBHR23 0.51 0.26 0.93 0.34 0.51 0.44
LPXBHR24 0.07 0.11 0.41 0.10 0.07 0.06
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This paper contributes to model the industry interconnecting structure in a net-

work context. General predictive model (Rapach et al. 2016) is extended to quantile
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1 Introduction

Interdependency among different assets is always the key topic of portfolio management.

From the very beginning of portfolio theory (Markowitz 1952) , correlation between every

two assets is considered to be one of the most important factors in portfolio construction.

Ever since the recent financial crisis, studies in interdependencies in the context of risk

management have increased rapidly with most of them showing a great interest in the de-

pendency structure within financial sector, i.e. financial contagion (Rodriguez 2007, May

& Arinaminpathy 2010, Hasman 2013, Georg 2013, Acemoglu et al. 2015). However, as

broad asset allocation including industry assets becomes more and more popular, interde-

pendency among industries started to attract more attention as well. Some research takes

the perspective of the interdependency among financial sector and other real economy

sectors (Baur 2012, Chiu et al. 2015, Claessens et al. 2012). With no exception, work in

this direction concentrates on the effect of financial sector on other real economy sectors,

not the way around. Whilst if we consider an easy example containing three corporations,

being them oil (X), car manufactory (Y ) and autos dealer (Z) from the perspective of

supply chain, we have to say that interconnectivity across different industries (not limited

to financial to others) is pretty common, as the work done by Rapach et al. (2016). They

use the one-period predictive model to establish return predictability among different

industries as a depiction of industry interdependency among various sectors and claim

the interdependency is pretty widespread among each other. Nevetheless, the industry

interdependency in an extreme or stress situation hasn’t been addressed intensively. One

may imagine that the interdependency may not necessarily show a monotonic linearity

w.r.t the quantile level being considered. We therefore contribute to the extant literature

by aiming this extreme interdependency which can be referable in the industry portfolio

in a market downturn. Tail event based quantile regression with LASSO regularization

is implemented here, which is cast into a dynamic network context.

We study the industry interdependency from the network point of view for mainly three

2



important reasons: First, it has been proved in literature as an excellent tool to de-

pict interconnectivities. Real network analysis includes the work of Schweitzer et al.

(2009), by taking a socioeconomic perspective, they argue a network architecture built

upon trade, R&D alliances, ownership or credit-debt relationships can vividly study the

strategic behavior of the interacting agents. Gençay et al. (2015) use North American

supplier-customer network data of public companies to assess counterparty risk and de-

tect counterparty network effects as significant determinants of credit spreads. In the

empirical part of Zhu, Pan, Li, Liu & Wang (2016), they test the ’Chinese Twitter’ -

Xinlang Weibo social network and observe a significant network effect in Chinese social

activities. Zhu, Wang, Wang & Härdle (2016) extend Zhu, Pan, Li, Liu & Wang (2016)

into the quantile regression framework to consider tail risks. They then exert the quan-

tile network autoregressive model to describe Chinese stocks’ interconnecting behivors

on the basis of common shared ownership information. For artificial networks, statistical

methods need to be used to construct linkages. Based on vector autoregressive (VAR)

model, Diebold & Yilmaz (2014) propose a generalized variance decomposition to define

a weighted directed network. They apply their method to US financial institutions and

it turns out to be coordinated pretty well with the 2008 financial crisis. Similarly, Billio

et al. (2011) use linear as well as nonlinear Granger-Causality tests to construct pairwise

connections in the network and apply it to monthly returns of different sectors of finance

department stocks. Their empirical results show the advantage of network models in

measuring the systematic risk levels. Chan-Lau et al. (2016) adopt a default correlation

model to construct the forward-looking partial default correlations, which turn out to be

the network element. Depending on their network construction, they study the systemic

risk of over 1000 exchange-traded banks in the global network framework and argued

that connectivity hasn’t been paid enough emphasis in Financial Stability Board. Härdle

et al. (2016) propose a nonlinear semiparametric quantile regression method on CoVaR

to construct a tail-event driven network in order to study the systemic risk among differ-

ent financial sectors and conclude that the interconnectedness is growing during financial

crisis period with largest systemic risk receivers and emitters being the most systemically
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important.

The second reason for adopting network methodology due to industry characteristics

themselves. As it is not just limited to the dyadic relationship, industry interconnectivity

has more complicated dependency structure. It focuses on concentration. In a bunch of

various companies from different industries, some companies are more important in the

sense that they are connected to more of the others with others just being less important

locating in the periphery. An obvious example concerning concentration is the banking

industry acts actively in the group of companies which need funding. None of these

funding-needed companies can thrive without the financing from the banking sector. In

addition, Baxamusa et al. (2015) provided the empirical evidence that in the customer-

suplier network, the more central the firm, the lower its returns from the acquasition

activities. And this concentration can be easily established in the network framework.

Thirdly, it is not hard to properly specify the node set and edge set in our research

question, which are the basic elements of a network structure. Fama-French industry

portfolios are the nodes, while for edges establishment, we have to use appropriate statis-

tics methods. Former popular calibration methods on interdependency analysis include

correlation analysis (see Chiang et al. (2016), for instance), vector autoregressive models

(e.g. Diebold & Yilmaz (2014)) and copula based methedology (Poshakwale & Mandal

(2016)). However, to include the information of return predictability and further use the

network to do forecasts, we construct the edges as the one-month ahead return predictive

model parameters. As Rapach et al. (2016) argue, there is a significant relationship be-

tween their general predictive model and the US production network. We therefore claim

the setup of using predictive model parameters as edges is reasonable.

The motivation to incorporate tail risks are the consideration of the parallelity between

industry portfolios and financial stocks. Lots of research has investigated the importance

of downside risk in financial stocks and comparatively, beyond just financial sector, we
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conjecture that industry interdependencies are also affected by extreme situations. There-

fore, we refer to Tibshirani (1996) and Li & Zhu (2008) to introduce quantile LASSO

techniques upon the industry return general predictive model of Rapach et al. (2016). We

have the penalizing techniques come into play here to solve high dimensionality problem.

For different quantiles, we can model median level as well as tail level interconnectivities

to fulfill the purpose of comparison. In a nutshell: Tail event based quantile regression

with LASSO regularization is cast into a dynamic network context. Our main contri-

bution is to extend the general predictive regression framework into the tail case using

quantile LASSO regularization to construct networks under different quantile levels and

compare median and tail-centered return data of industry portfolios in order to show the

increase of the connection during extreme periods. Based on the differences between nor-

mal and extreme markets, we would also like to compare the prediction accuracy of the

one-month forward return. For utilizing the network information into financial markets,

we will construct network-based trading strategies of industry portfolios as well in order

to see whether the markets can be beaten. Lastly, by studying the dynamic structure of

industry portfolio network across time, we would like to discern some evolution pattern

of this industry network.

The remaining of our work is organized as follows: Section 2 describes the economet-

ric model that we are using to construct the industry network; Some basic concepts of

network structure and its key parameters are given in Section 3; Section 4 shows the em-

pirical network analysis of 49 industry portfolios obtained from Kenneth French’s data

library. Analysis in this part includes the construction of whole network as well as dy-

namic networks, predicition accuracy computation and performance of network-based

trading strategy; Section 5 concludes and summarizes. Tables and figures are organized

in Appendices at the end.
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2 Econometric Modelling of Industry Interdependency

Rapach et al. (2016) propose a general predictive model of industry returns to study the

interdependency among 30 industries. They compare their model to American production

network, concluding that their model could represent a good construction of industry

network. However, only the sector return is considered in their work, while we all agree

that in stress situations, tail events carry information on the network infrastructrue. This

motivates to extend the general predictive model to different tails, e.g. quantile levels, to

investigate the role tail risks playing in industry portfolios.

The general predictive model proposed by Rapach et al. (2016) is given as follows:

ri,t+1 = β0,i +
N∑
j=1

βi,jrj,t + εi,t+1, t = 1, . . . , T − 1 (1)

where ri,t is the monthly return of industry portfolio i at time t; N is the total number

of industries and εi,t is the white noise error term.

The generalized quantile regression is described as: {X, Y } = {xi, yi}ni=1, xi = (xi1, . . . , xip)
> ∈

Rp, τ ∈ (0, 1).

Y = Xβ + ε (2)

β̂ = arg min
β∈Rp

n∑
i=1

ρτ (yi − x>i β) (3)

where ρτ (·) is an asymmetric loss function:

ρτ (u) = |u|α| I(u ≤ 0)− τ |, α ≥ 1 (4)

with α = 1 and α = 2 corresponding to a quantile and expectile regression respectively,

see Breckling & Chambers (1988). The aforementioned general predictive model (1) is a

special case of the generalized quantile regression (2), if we set yi = ri,t+1, xi = (1, rt), α =

1, τ = 0.5, where rt = {rj,t}Nj=1.

For large dimension p one runs into singularity problems and a plethora of too many small
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coefficients. Prediction accuracy and model interpretability become so big problems with

large p that standard ordinary least squares (OLS) turns out to be valid no longer.

Standard techniques for improving the OLS estimates contain subset selection and ridge

regression while neither of which solves the two problem simultaneously. The way to go

here is the implementation of Least Absolute Shrinkage and Selection Operator (LASSO)

(Tibshirani 1996):

β̂(LASSO) = arg min
β

n∑
i=1

(yi − x>i β)2 + λ

p∑
i=1

|βi| (5)

where λ is a nonnegative regularization parameter, p is the total number of possible

covariates that explains Y and the second term
∑p

i=1 |βi| = ‖β‖1 is the l1 norm.

Combining the idea of tail event QR with LASSO leads us to

β̂(qLASSO) = arg min
β0,β

T−1∑
t=1

ρτ (ri,t+1 − β0 − r>t β) + λ‖β‖1 (6)

where rt denotes the return vector of all industries at time t; β the vector of coefficients

of the regression and β0 the intercept. The l1-norm quantile LASSO model can be refered

to Li & Zhu (2008).

As is known from Härdle & Simar (2015), the solution to (6) yields a finite subset of

nonzero elements of the β̂(qLASSO) vector. The coefficients in this ’active set’ may be

called ’prominent’ since all other coefficients are actually zero.

Later in Section 4 we will use quantile LASSO regression method to build the network

across different industry portfolios. Before going to that, we would like to give a brief

introduction of network structure, the main graphic tool in our analysis.

3 Network Structure

A binary set G = (V , E) represents the network structure of a system where V denotes

the collection of vertices (also called nodes) in the system and E stands for the collection
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of edges (or linkages, etc) between each pair of the vertices. In our application, vertices

V are the industries and the edges E are constructed as the prominent quantile LASSO

coefficients. A network is always corresponding to an adjacency matrix which specifies

the edges between each pair of the nodes. At the very beginning, adjacency matrix is

simply a symmetric binary matrix but it is later extended to weighted and asymmetrix

ones, which is exactly the case in our later empirical analysis.

Given a network G, two important and interesting questions are always asked: first, how

to measure the graph level connectivity of the network? Second, which parameter gives

us insight into the relative importance of each vertice?

3.1 Revisit Fagiolo (2007)

The answer to the first question is the concept of ’connectedness’. Connectedness is a

measure specified in network analysis depicting the degree of interdependency among all

nodes and the whole network connectedness is achieved by averaging all the node-specific

connectedness. In the context of graph theory, connectedness is usually refered to as

clustering coefficient, which measures the inherent tendency of nodes clustering together.

The global verison of clustering coefficient gives the measure of the connectedness of

the whole network. The most common definition is designed for undirected and binary

adjacency matrices, following Fagiolo (2007), we use four patterns (cycle, middleman, in

and out) to depict directed networks.

• cycle: there is a cyclical relation among i and any two of its neighbors (i → j →

h→ i or viceversa);

• middleman: when one of i’s neighbors reach a third neighbor directly with an

outward edge or indirectly with i as a medium;

• in: i has two inward edges;

• out : i has two outward edges.
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For an asymmetrix binary adjacency matrix, in-degree, out-degree total-degree and bilateral-

degree of node i are defined as:

dini =
∑
j 6=i

aji = (A>)i1

douti =
∑
j 6=i

aij = Ai1

dtoti = dini + douti = (A> + A)i1

d↔i =
∑
j 6=i

aijaji = A2
ii

where A> is the transpose of A, Ai the ith row of A, Aii the ith diagonal element of A, 1

is the N-dimensional column vector (1, 1, · · · , 1)>.

Based on above notations, the number of all possible triangles that node i could form

(TDi ):

TDi = dtoti (dtoti − 1)− 2d↔i

For weighted adjacency matrix W , the four patterns of clustering coefficient are defined

as:

Ccyc
i =

(W [1/3]3)ii
dini d

out
i − d↔i

Cmid
i =

(W [1/3]W [1/3]>W [1/3])ii
dini d

out
i − d↔i

Cin
i =

(W [1/3]>W [1/3]2)ii
dini (d

in
i − 1)

Cout
i =

(W [1/3]2W [1/3]>)ii
douti (douti − 1)

where W [1/3] denotes the matrix with each element generated as the cubic roots of W ’s

9



elements. To get overall connectedness, we just average these C∗i via:

C∗ = N−1
N∑
i=1

C∗i

where * stands for elements in cyc, mid, in, out .

3.2 Centrality Measures

For the second, the answer is centrality. Centrality basically answers the question ’what

characterizes the important vertices?’ There are various kinds of centrality definitions. In

the simplest cases, Degree centrality measures how many ties each node has and assigns

the biggest value of importance to the node which has the largest number of ties. A

more complex extension of degree centrality is to consider the directions of linkages in

directed networks. Therefore we have ’in’ as well as ’out’ degree centralities. Though

simple and easily to exert, degree centrality assigns equal values to all the edges. Baveias

(1950) defined the closeness centrality of a node as the average length of the shortest

path between the node and all other nodes. Freeman (1977) introduced the betweenness

centrality that measures the number of times that the node plays as a bridge along

the shortest path between any other two nodes. A more appropriate version of these

two centrality measures is to incorporate the concept of ’cost’ in which case we define

the shortest path in the sense of actual lenghth instead of number of nodes. Since the

version with ’cost’ pays attention to the actual distance between each pair of node, it

is more appliable to real world networks, for instance, transportation networks. As for

differentiating the relative importance of different nodes, these two measures contributes

little. A good measure to incorporate relative importance of different nodes is Eigenvector

centrality. For a network G = (V , E), eigenvector centrality of node v - CE(v) equals

CE(v) =
1

λ

∑
t∈M(v)

CE(t) =
1

λ

∑
t∈G

av,tCE(t) (7)
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where λ is the maximum eigenvalue of the adjacency matrix A; M(v) the set of neighbors

of v and av,t the element of A in row v and column t. According to this measure, a

node in a network is important if it is linked to other important nodes. Hence one does

not consider the edges between every pair of the nodes as equally important, one assigns

different importance value through the first eigenvector. Similar to degree centrality,

when in directed graphs, we can have ’in’ and ’out’ eigenvector centrality measures to

discriminate the ’receiving’ and ’emitting’ effects respectively. Since industries need to

be treated differently and receving and emitting effects have to be set apart, we are going

to adopt eigenvector centrality for the weighted, directed graphs in the empirical part.

4 Empirical Results

4.1 Data

Monthly return of the 49 industry portfolios constructed by Kenneth R. French is used

as our data sample. The data is available from Kenneth French’s webpage 1. As monthly

data is mostly often used in industry portfolio analysis, we select it from January 1970

to January 2017 with 565 observations in total.

As quantile-quantile (QQ) plots (Figure 1 to Figure 5) of the 49 industry portfolios show,

compared to normal distributions, tail behaviors exist in most industries, which justifies

our analysis of focusing on industry network structure at different tail levels.

4.2 Whole sample network

We now come to the network construction based on Equation (6). The edge between node

i and node j exists if and only if the lagged return of industry j (i) is selected by LASSO

as the significant predictor of the return of industry i (j). The edges are constructed as

directional: if i (j) helps predicting j (i) , then the edge goes from i to j (j to i); if i
1http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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helps predicting j and j helps predicting i as well, then the edge between i and j has

both arrows. Furthermore, the edges in our industry network are also weighted. And the

weight assigned to each edge depends on the absolute value of the beta coefficients. To

sum up, the adjacency matrix corresponding to our industry interdependency network is

the absolute value of beta coefficients.

To discern the probable varieties between median network and tail-event driven network,

we set τ = (0.05, 0.5, 0.95), denoting the crisis, stable and boom situations respectively.

Figure 6 depicts the whole sample (1970.01-2017.01) industry networks under these three

situations. In every subfigure, we locate the 49 industries in a circle and fix their positions

in favor of convenient comparison among different τ levels. The nodes in the network have

different sizes according to their ’in’ and ’out’ eigenvector centrality scores respectively,

as introduced aforementioned. We arrange the network plots with eigenvector centrality

from the ’in’ direction in the left panel and ’out’ the right panel of each subfigure in

Figure 6. Specifically, the leading industries possess larger sizes in our industry network.

The grey arrows with directions within the network circle suggest the intensity of the

interconnectivity of the industry network. Comparing the density of edges in these three

figures, we can clearly reach the conclusion that in extreme cases, the industry network

connection increases a lot when comparing to stable situation, which means the whole

economy becomes more connected in extreme cases, as is listed in Table 2. Meanwhile,

the leading industries change as well. To see this perspective more precisely, we list the

top leading industries which has eigenvector centrality score larger than 0.200 (both ’in’

and ’out’) under each situation in Table 3. Comparing the leading industries in different

cases, we have several interesting findings:

a. More central industries are identified under extreme cases with more even centrality

score distribution. It is a signal of intercorrelation rise among various industries in

extremes.

b. Financial-related industries (banking, insurance and trading) play important roles

as risk emitters under whatever market situations (banking has rank 6 as risk emit-
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ters when τ = 0.95 with centrality score 0.186). It is determined by the nature of

financial-related industries.

(a) Banking evolves as a leading risk emitter when extreme events happen. It

complies with our common knowledge that when markets go to extremes,

banking affects other industries more.

(b) Insurance arises as the NO.1 risk emitter when market goes down. It is a

reflection of the market sentiment.

(c) However, when market goes down, financial trading also becomes a crucial

risk receiver which to some degree, signifies the hard time that traders have

to endure during financial crisis.

c. Coal remains leading risk emitter in various markets. It may be accounted to the

relative position of coal industry in the supply chain. As an upperstream industry,

coal price can actually affect the return of many others which need it as raw material.

Furthermore, no matter what the market looks like, basic production still has to be

done.

d. Gold always stays as top risk receiver for which we may argue from the role gold

plays as a financial hedging instrument.

e. The leading industries detected has little to do with industry size according to our

empirical analysis.

4.3 Dynamic networks

In the last section we see the differences in whole sample networks under different τs.

However the information is limited since it is a static picture. One step further, we can

gain more insight by investigating the dynamics of networks. Through this, we expect

to discover some potential patterns in industry networks. As introduced in Sec 3.1, we

plot the 4 clustering coefficients under three τs in a moving window framework. We

compute the network structures using quantile LASSO for samples of every three years’
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data. The data sample starts from 1970.01, then we move the window forward every three

months to compute the next one, that is, the first sample is 1970.01-1972.12, the second

one 1970.04-1973.03, so on so forth. Finally, we get 177 data points of each clustering

coefficients and their plots are shown in Figure 7 (arranged by different τs) and Figure8

(arranged by different clustering patterns in a directed network).

The dynamic networks vary across time are shown in Fig 7 and Fig 8. Under each τ

levels, the ’cycle’ and ’out’ clustering are lower than ’middleman’ and ’in’ clustering in

our industry network. Besides, ’cycle’ and ’out’ also possess smaller volatilities. However,

the four have similar pattern under each τ across time. Around 1997-2002, 2007-2010

and 2012-2013 there are sharp ups and downs in all connectedness measures no matter

whether we take tail risks into account. These time slots also approximately match the

economic crisis in history. When comparing each of the four connectedness measures

under various τs, we once again validate that median level network is less connected

than those in tail cases, from the perspective of network dynamics. When zooming in

those special time periods, we have an interesting finding that lowertail connectedness

behave oppositely with uppertail and median ones in periods 2000-2002, 2011-2012, 2016

thereafter but move more simultaneously during the recent financial crisis during 2007-

2008. This, probably, can be explained by the relative important positions financial-

related industries possess in the industry network. When the financial-related industries

triggered the crisis in 2007 and 2008, lots of industries are affected which leads to the

comovement of the connectedness under different τs. This argument also complies with

centrality analysis in section 4.2.

4.4 Three additions based on specific network construction

4.4.1 Prediction Directions

As far as we discussed, we use the abslute value of the beta coefficients as the adjacency

matrix inasmuch as to comply with the cannonical definition of adjacency matrix. How-

ever, this setting has the drawback of ignoring the signs of coefficients, which is very useful
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in return prediction. As is contained in the quantile LASSO regression (6), not only do

we know the magnitude of industry return prediction network (the absolute values of the

betas), but also the information on directions of industry return predictability (the signs

of the beta coefficients). Therefore we add the information of whole sample interdepen-

dency in the image plots in Fig 9 and in Table 4 and of rolling window predictability in

Table 5, which, in our opinion, are valuable additions to the cananical network analysis.

In order for later return prediction, the rolling window in constructed as follows: we first

use the data from 1970.01-1995.12 to construct the first ’network’ composed of beta coef-

ficients(here with signs). After the first step, we enlarge our estimation window with one

more month every time, i.e. in the second step we compute the beta coefficients network

using data from 1970.01-1996.01, and so on so forth. Finally we get 253 beta networks

of the industry interdependency.

In all three image plots (Figure 9), the horizontal represents the predictive power one

industry getting from all others (receiving) and vertical stands for the predictive power

that industry to others (emitting). Comparing these three image plots in Table 4, we can

see that in common, the LASSO method selects quite a small set of significant predictors

out of the 2401 cells in total. Besides, the differences are quite obvious. The difference

between normal market and extreme markets is that when market changes from stable to

extremes, a larger quantity of significant connections are detected (either in crisis or in

booms). In network language, we say the entire industries become more interconnected

in stress situations. Furthermore, there are still some differences between these two

extremes. First of all, more negative connections are detected in boom than that in crisis

while more positive ones in crisis than in boom, indicating a higher and non-diversifed

tail risk and a difficulty w.r.t industry diversification in the market crisis. The benefit

of industry diversification is diminished in this situation, implying an inevitable tail risk.

Second of all, the average connectedness is positive when τ = 0.05 and negative when

τ = 0.95. It sends out the signal that bad market conditons tend to affect most industries

in the same direction while good ones is more favorable for portfolio management since

the average connectedness is negative. The averaged dynamic directions of the beta
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coefficients under rolling window framework dipict a similar pattern in Table 5 as that

in Table 4. Combining them together, we claim it’s hard to diversify industry portfolios

in crisis, indicating a higher and non-diversified tail risk, which, when translates into

risk-return relationship, tells us that we can expect higher returns with the tolerance of

higher risks, if we construct appropriate trading strategies. This point is going to be

shown in 4.4.3.

4.4.2 Prediction Performance

To make use of the industry network structure that we constructed before and the pre-

diction directions information, a dynamic network structure within a rolling window

framework is used to predict the one-month ahead industry returns. We here compare

the performance of the interdependencies under different τ levels in the use of predicting

future returns. Based on the predicted and actual monthly industry returns, we calculate

the root mean squared error (RMSE) of the three models, i.e. with different τs, as a mea-

sure of the prediction accuarcy. Specifically, we first use the data from 1970.01-1995.12 to

construct the first ’network’ composed of beta coefficients(here with signs). We multiply

this beta matrix with the industry monthly returns in 1995.12 as the prediction of the in-

dustry monthly returns in 1996.01. After the first step, we enlarge our estimation window

with one more month every time, i.e. in the second step we compute the beta coefficients

network using data from 1970.01-1996.01 and multiply the new beta matrix with the

returns in 1996.01 as a prediction of those in 1996.02, and so on so forth. Finally we get

253 predictions of the monthly returns for each industry. Lastly, we compute square of

the differences between the predicted returns and the real ones and average them over the

length of time series, i.e., 253. Figure 10 shows the average RMSEs of the 49 industries

in our data sample for the three τs.

As expected, beta ’network’ dynamics under extreme cases have better prediction per-

formance (smaller out-of-sample forecast error) than that in normality. In general, for

these three cases, we claim that lower tail predition achieves the highest accuracy (the

smallest out-of-sample forecast error). Therefore, incorporating tail risks contributes to
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industry return prediction which justifies the necessity of extending extant studies which

focus only on median level to different quantiles.

4.4.3 Network centrality-based trading strategies

As we can see from the aforementioned discussion, some vital characteristics about the

industry interdependency network have been investigated. However, we still lack the

tactic to make use of the network information to profit from financial markets. We are

going into this direction here. Network centrality-based trading strategies are considered

due to the importance of the concept of centrality as well as our specific construction

of industry network. As discussed earlier, centrality measures the relative importance of

different industries in the network structure, which, in our framework, is based on one-

month-ahead return predictability. Therefore the most central nodes demonstrate the

relatively important roles of influencing or being influenced by others more than the rest

in the sense of return predictability. That is, industries with higher ’out’ (’in’) eigenvector

centrality scores can also be called ’prediction emittors’ (’prediction receivers’) which

affect more of others (are affected more by others) in the sense of return prediction.

We conjecture that highly centralized industries are more likely to ourperform market

portfiolios due to the similar effect as ’too connected to fail’, we call it ’too central to

fail’. Centralized industries are more connected to other central industries and hence

possess more complicated risk structures, which in turn, lead to higher excess returns.

However, we would also like to conjecture that the centrality-based trading portfolios

have no abnormal return,i.e., no mispricing about the industry portfolios. To verify our

assumption, we do the same rolling window computation as described in Subsection 4.4.2

to generate a time series of 253 networks under each τ level and find the first and least

leading industries of each network. Then we construct the 4 centrality-based trading

strategies and balance them every month with the updated beta network. Finally, we

calculate the average of annualized cumulative log-returns of these strategies and of the

MKT and report their t-stat to decide whether the excess returns are significant. Also, we

regress the monthly excess returns of these strategies to Fama-French three risk factors
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so as to check the existence of abnormal returns. Details are reported in Table 6 and

Table 7. The 4 trading strategies we constructed are as follows:

• long the top 10 leading ’in’ centralized industries (HI strategy)

• long the top 10 leading ’out’ centralized industries (HO strategy)

• long the bottom 10 leading ’in’ centralized industries (TI strategy)

• long the bottom 10 leading ’out’ centralized industries (TO strategy)

The empirical results mostly authenticate the assumption under various market situa-

tions: except for HI in median case, all other more centralized industry portfolios outper-

forms less centralized ones and outperform market portfolios as well. Furthermore, they

have no significant abnormal return when regressing on Fama-French three risk factors.

Even in market with huge downside risk, the more centralized portfolios gain a sizeable

excess return. Therefore, our empirical analysis stands up for the assumption of ’too

central to fail’ of the industry networks, which rests on complicated risk structures of

more centralized industry portfolios.

5 Conclusion

This study extends the general predictive model of industry portfolios to different quantile

levels so as to incorporate tail risks in interdependency measurement and construct net-

work analysis under different market situations. By comparing median level (τ = 0.50)

with upper (τ = 0.95) and lower (τ = 0.05) tail networks, we find out that interde-

pendency across USA industries increases a lot during extreme market situations in the

whole period from 1970.01 to 2017.01. Similar results are achieved under dynamic network

framework - connectedness in stress situations is always higher than that in normality.

The time series of four connectedness measures corresponding to weighted directed net-

works show significant varieties of the interdependency structure dynamics. In addition,

leading industries vary as well when market switches from stable to highly volatile. An
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obvious finding is that financial-related industries evolve as leading ones under stress

situations which highlights their role in bad times. At last, three more additions to net-

work analysis are summarized in the last subsection. First, prediction directions differ

under different τs: lower-tail case involves more positive coefficients while upper-tail cir-

cumstance has more negative ones, which reflects the movement in the same direction

of different assets in crisis, i.e. asset returns are highly affected in the same direction

when market goes down. While in promising situations, they tend to be negatively re-

lated therefore it is more effective to do risk management during these periods since we

can easily find negative-related assets. Second, when quantifying the one-month-ahead

industry return prediction accuracy using dynamic coefficients networks under different

quantile levels, as expected, the lower tail case gives the best prediction performance in

the sense of RMSE. Third, four trading strategies based on network centrality dynamics

are constructed and compared with market portfolio. Empirical results report significant

sizeable excess returns for more centralized industry portfolios, which outperform less

centralized ones and market portfolio, even in bad market situations. With a risk adjust-

ment for Fama-French factors, these strategies do not possess significant risk-adjusted

abnormal returns. Therefore, the higher returns come from the more comlicated risk

structures central industries endow. To conclude, we argue for the possibility of the ef-

fect ’too central to fail’.
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6 Appendices

6.1 Tables

Code Full name Code Full name

Agric Agriculture Drugs Pharmaceutical Products
Food Food Products Chems Chemicals
Soda Candy & Soda Rubbr Rubber & Plastic Products
Beer Beer & Liquor Txtls Textiles
Smoke Tobacco Products BldMt Construction Materials
Toys Recreation Cnstr Construction
Fun Entertainment Steel Steel Works Etc
Books Printing and Publishing FabPr Fabricated Products
Hshld Consumer Goods Mach Machinery
Clths Apparel ElcEq Electrical Equipment
Hlth Healthcare Autos Automobiles and Trucks
MedEq Medical Equipment Aero Aircraft
Ships Shipbuilding, Railroad Equipment LabEq Measuring and Control Equipment
Guns Defense Paper Business Supplies
Gold Precious Metals Boxes Shipping Containers
Mines Non-Metallic & Industrial Metal Mining Trans Transportation
Coal Coal Whlsl Wholesale
Oil Petroleum and Natural Gas Meals Restaurants, Hotels, Motels
Util Utilities Banks Banking
Telcm Communication Insur Insurance
PerSv Personal Services RlEst Real Estate
BusSv Business Services Fin Trading
Hardw Computers Other Almost Nothing
Softw Computer Software Rtail Retail
Chips Electronic Equipment

Table 1: 49 industry portfolios from French’s data library
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τ cycle middleman in out

0.05 0.013 0.016 0.016 0.013
0.50 0.003 0.006 0.006 0.003
0.95 0.015 0.019 0.020 0.014

Table 2: Four connectedness measures of whole sample industry network
INET-connectedness

τ
Leading industries

receivers emitters

0.05
Gold(44)(0.293), Softw(3)(0.284),

Smoke(26)(0.279), Hardw(10)(0.262),
Fin(12)(0.248)

Insur(8)(0.378), Books(32)(0.355),
Autos(21)(0.287), Bank(1)(0.252),
Toys(42)(0.241), Coal(48)(0.228),
Agric(41)(0.209), Aero(24)(0.209),

Hlth(34)(0.203)

0.50 Gold(44)(0.612), Smoke(26)(0.238),
Meals(25)(0.234), Coal(48)(0.216)

Coal(48)(0.624), Fin(12)(0.342),
Ships(46)(0.289), Clths(31)(0.246),

Hlth(34)(0.246)

0.95
Softw(3)(0.356), Guns(39)(0.281),
Gold(44)(0.249), Steel(33)(0.224),
Agric(41)(0.222), Hlth(34)(0.219)

Ships(46)(0.506), Drugs(2)(0.229),
Other(11)(0.225), Coal(48)(0.214),

Boxes(40)(0.213)

Table 3: Top central industries under various stress situations (the number in the first
(second) parentheses is the rank of industry size (eigenvector centrality score) )

INET-eigcentr
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τ
No. of

Coefficients
No. of

Nonzeros
No. of

Negatives
No. of

Positives Max Min Average

0.05 2401 498 158 340 0.517 -0.477 0.007
0.50 2401 218 86 132 0.228 -0.108 0.001
0.95 2401 658 348 310 0.367 -0.729 -0.003

Table 4: Summary predictability magnitude and directions - whole sample
INET-totaldire

τ
No. of

Coefficients
No. of

Nonzeros
No. of

Negatives
No. of

Positives Max Min Average

0.05 2401 579 218 361 0.535 -0.618 0.007
0.50 2401 255 99 156 0.199 -0.150 0.001
0.95 2401 718 396 321 0.575 -0.590 -0.003

Table 5: Summary predictability magnitude and directions - rolling window
INET-rollingdire
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Strategies τ = 0.05 τ = 0.50
HI HO TI TO HI HO TI TO

Excess Returns 0.094** 0.088** 0.074* 0.079** 0.059 0.089*** 0.084* 0.065*
t-stat 2.157 2.050 1.678 2.068 0.929 2.761 1.855 1.756

Strategies τ = 0.95 MKTHI HO TI TO

Excess Returns 0.088* 0.095*** 0.065* 0.072 0.073
t-stat 1.911 2.742 1.853 1.577 1.328

Table 6: Excess returns of centrality-based trading strategy and market portfolio. *,**,
*** denoting the 10%, 5% and 1% significance level respectively.

INET-nettrading

Strategies intercept Mkt-Rf SMB HML R2 Adjusted R2

HI-lowertail 0.002 0.978*** 0.125*** 0.147*** 0.791 0.788
HO-lowertail -0.000 1.020*** 0.085** 0.467*** 0.835 0.833
TI-lowertail -0.002 1.045*** 0.228** 0.564*** 0.875 0.874
TO-lowertail 0.000 0.970*** 0.095*** 0.331*** 0.890 0.888
HI-median -0.002* 1.148*** 0.155*** 0.153*** 0.886 0.885
HO-median 0.000 1.048*** 0.173*** 0.359*** 0.810 0.808
TI-median 0.001 0.983*** 0.147*** 0.321*** 0.797 0.795
TO-median 0.000 0.968*** 0.126*** 0.279*** 0.885 0.883
HI-uppertail 0.001 0.968*** 0.251*** 0.285*** 0.768 0.766
HO-uppertail 0.001 1.001*** 0.169*** 0.339*** 0.853 0.851
TI-uppertail 0.001 0.870*** -0.042 0.334*** 0.842 0.840
TO-uppertail 0.000 0.979*** 0.070** 0.284*** 0.888 0.886

Table 7: Coefficients of excess portfolio returns regressing on Fama-French risk factors.
*,**, *** denoting the 10%, 5% and 1% significance level respectively.

INET-regression

6.2 Figures
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Figure 1: QQ plots of the industries
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Figure 2: QQ plots of the industries
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Figure 3: QQ plots of the industries
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Figure 4: QQ plots of the industries
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Figure 5: QQ plots of the industries
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Figure 6: Whole sample network of industry portfolios with larger size denoting the
eigenvector centrality(’in’-left, ’out’-right) - τ = 0.50 (top), τ = 0.05 (middle), τ = 0.95
(bottom)

INET-totalnet
29

https://github.com/QuantLet/INET/tree/master/INET-totalnet


Time

2000 2005 2010 2015

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Time

2000 2005 2010 2015

0.
05

0.
10

0.
15

0.
20

Time

2000 2005 2010 2015

0.
06

0.
08

0.
10

0.
12

0.
14

0.
16

0.
18

Figure 7: The cycle, middleman, in and out connectedness of industry networks:
upperleft(τ = 0.50), upperright(τ = 0.05), lower(τ = 0.95)
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Figure 8: The comparison of industry network connectedness under τ = 0.50, τ = 0.05
and τ = 0.95: upperleft(cycle), upperright(middleman), lowerleft(in), lowerright(out)
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Figure 9: Connectedness across 49 industries - τ = 0.50 (upperleft), τ = 0.05 (upper-
right), τ = 0.95 (lower)
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Figure 10: RMSE of industry return prediction over 253 months for τ = 0.05, τ = 0.50
and τ = 0.95
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Abstract
This paper provides a detailed framework for modeling portfolios, achieving the high-
est growth rate under risk constraints such as value at risk (VaR) and expected shortfall
(ES) in the presence of α-stable laws. Although the maximization of the expected log-
arithm of wealth induces outperforming any other significantly different strategy, the
Kelly criterion implies larger bets than a risk-averse investor would accept. Restricting
the Kelly optimization by spectral risk measures, the authors provide a generalized
mapping for different measures of growth and risk. Analyzing over 30 years of S&P
500 returns for different sampling frequencies, the authors find evidence for leptokurtic
behavior for all respective sampling frequencies. Given that lower sampling frequen-
cies imply a smaller number of data points, this paper argues in favor of α-stable laws
and its scaling behavior to model financial market returns for a given horizon in an
i.i.d. world. Instead of simulating from the class of elliptically α-stable distributions, a
semiparametric scaling approximation, based on hourly NASDAQ data, is proposed.
Our paper also uncovers that including long put options into the portfolio optimiza-
tion, improves portfolio growth for a given level of VaR or ES, leading to a new Kelly
portfolio providing the highest geometric mean.
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1 Introduction

Given a set of investment opportunities, how should the investment weights be chosen
in order to havemorewealth than any other investor at the end of the investment period?
The Kelly growth-optimum strategy is a betting scheme for an investor, who seeks
to asymptotically maximize his growth rate of capital. This strategy outperforms any
other significantly different strategy, given knowledge of the true underlying process
(Breiman 1961). But, the sole use of the Kelly criterion implies larger bets than a
representative, risk-averse investor would accept in terms of risk (Clark and Ziemba
1987; Hausch and Ziemba 1985). Thus, the Kelly optimization needs to be restricted
by a risk measure. We use α-stable laws and its scaling behavior in order to model
the underlying financial market returns. Upon the Generalized Central Limit Theorem
(GCLT), the horizon distribution is modelled in an discrete i.i.d. framework.

The aim is to maximize the geometric portfolio return, i.e. Kelly Criterion and
restrict the objective to a subjective risk constraint, formulated as spectral risk mea-
sure, including quantile (VaR) or expected shortfall as special cases. The formulated
trade-off introduces amapping over growth and risk in order to evaluate the investment
decision. The contribution of this paper is three-fold: The first contribution represents
the application of multidimensional α-stable laws, in the form of elliptically α-stable
distributions, to the constrained Kelly portfolio. Second, instead of simulating from
the class of elliptically α-stable distributions, a semiparametric scaling approxima-
tion, based on the data set itself, is proposed. Third, assets with non-linear payoff
structure, long put-options, are incorporated into the nonlinear optimization to allow
for asymmetric payoffs, which lead to a higher growth criterion, given a fixed risk
constraint.

The Kelly criterion originates from Kelly (1956), dealing with, from the point
of information theory, an optimal investment strategy in a binary channel. Breiman
(1961) formally proves the asymptotic outperformance of the Kelly strategy for arbi-
trary distributions in an i.i.d. world. For arbitrarily distributed, possibly non-stationary
processes, those results have been extended byAlgeot andCover (1988). Incorporating
risk measures into the Kelly optimization, MacLean et al. (1992) discuss the growth-
risk trade-off in terms of efficiency. Roll (1973) compares the Markowitz arithmetic
mean maximization with the Kelly geometric mean maximization. In contrast to Con-
stant Proportion Portfolio Insurance (CPPI), the investment strategy remains fixed
fraction, given stationarity. More recently, Busseti et al. (2016) introduce an alter-
native risk constraint, limiting the probability of a drawdown of wealth to a given
undesirable level.

The distribution of financial market returns for a chosen horizon is modelled as the
sum of hourly random variables. As the distribution in some horizon is presumed to be
non-Gaussian, the classical Central Limit Theorem (CLT) does not apply as second and
higher moments may not exist. Thus, the generalized central limit theorem (GCLT)
of Gnedenko and Kolmogorov (1954) is applied for the sum of random variables,
whose second and higher moments may not be bounded. For the financial application
this implies the use of α-stable laws (Fama 1965; Lévy 1925; Mandelbrot 1963). As
multidimensional α-stable random variables are difficult to evaluate for larger dimen-
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sions, elliptical α-stable distributions are employed, allowing for efficient portfolio
estimation for dimensions k ≤ 40 (Nolan 2013) in the presence of linear dependence.

Price data, both for assets with linear and non-linear payoff structure, were gath-
ered from Lobster and Bloomberg. For computation, Matlab 2016a was utilized. In
order to solve the formulated nonlinear optimization problem the sequential quadratic
algorithm in fmincon was employed.

The paper is organized as follows: In chapter one the portfolio allocation problem is
stated. Thefinancialmodel is formulated by using generalizedmeasures for growth and
risk. Chapter two, the estimation, starts with a case for non-Gaussianity of financial
log-returns of different sampling frequencies, reasoning the utilization of α-stable
laws. For the multidimensional case, elliptically α-stable distributions are introduced
in order to have an analytically tractable class of distributions. As the semiparametric
scaling approximation is introduced, the estimation of location and scale is illustrated.
An application is given in chapter three, the implementation. For a representative
investor with a planning horizon of one year, the optimally VaR/ES-constrained Kelly
portfolios are found, benefitting from the protective put strategy.

2 Model

2.1 Portfolio Allocation Problem

Given initial wealth of the investor W0 ∈ R
+, there are j = 1, . . . , k investment

opportunities with fractions ft = [
f1,t , . . . , fk,t

]� ∈ R
k in period t = 1, 2, . . . , T .

T ∈ N
+ represents the planning horizon.Assessing solely self-financing strategies, the

budget constraint is given by
∑k

j=1 f j,t ≤ 1. Given a statistical model for continuous

returns Xt ∈ R
k , discrete returns are calculated by X̃t = exp {Xt }−1. Given outcomes

in t − 1, . . . , T the wealth in T is given by

WT ( ft ) = W0

T∏

t=1

⎧
⎨

⎩
1 +

k∑

j=1

f j,t X̃ j,t

⎫
⎬

⎭

= W0

T∏

t=1

{
1 + f �

t X̃ t

}
.

(1)

Given the stochastic wealth process, measures for growth and risk are formulated
in order to choose investment fractions ft , which suit investor preferences.

For a cdf FWT (x) the spectral risk/growth measure with weight function φ(x) is

defined through the quantile function F−1
WT

(x)
def= {x : P (WT ( ft ) ≤ x) = α} , α ∈

(0, 1).

Mφ {WT ( ft )} =
∫ 1

0
φ(x)F−1

WT
(x)dx (2)

Within the context of spectral risk measures, the measure will be coherent iff the
weight function is positive φ(x) ≥ 0, increasing φ′(x) ≥ 0 and normalized

∫ 1
0 φ(x) =
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1 (Acerbi 2002). For the discrete framework (1) with n ∈ N
+ wealth trajectories, the

measure is defined as

Mφ {WT ( ft )} =
n∑

i=1

φiWT ,i ( ft ), (3)

where WT ,i denotes element i out of n wealth paths with weight φi .

Growth measures
Following Roll (1973), there are two main strands dealing with the accumulation
of wealth and thus, the allocation of wealth into a portfolio. On the one hand, the
Markowitz optimization aims to maximize the expected portfolio return (Lintner
1965; Markowitz 1952; Sharpe 1964; Tobin 1958). On the other hand, the Kelly
growth-optimum approach by Kelly (1956), Breiman (1961) and Thorp (1971), aims
to maximize the expected logarithm of wealth, which is equivalent to maximizing the
geometric portfolio return. Within the framework of spectral growth/risk measures,
the growth measures for the Markowitz and the Kelly optimization are evaluated:

– G1 : For the expected wealth, the growth criterion from the Markowitz optimiza-
tion, the weight function is

φE (x) = 1,

giving

GφE {WT ( ft )} =
∫ 1

0
F−1
WT

(x)dx = E {WT ( ft )} . (4)

– G2 : The expected logarithm of wealth, representing the optimization criterion for
the Kelly strategy, is obtained for the weight function

φElog(x) = log(x),

giving

GφElog {WT ( ft )} =
∫ 1

0
log F−1

WT
(x)dx = E {logWT ( ft )} . (5)

The growth measure will be denoted by Gφ {WT ( ft )} and the optimization for
horizon T without risk constraints is formulated as

max
ft∈Rk

⎡

⎣Gφ {WT ( ft )}
∣∣∣∣

k∑

j=1

f j,t ≤ 1

⎤

⎦ . (6)

This paper focusses on the Kelly growth criterion as it represents a betting scheme
for an investor, who seeks to asymptotically maximize his growth rate of capital.
The betting strategy outperforms any other significantly different strategy asymp-
totically and minimizes the expected time to reach a goal (Algeot and Cover 1988;
Breiman 1961). For a comprehensive treatment of the Kelly criterion, see MacLean
et al. (2011). Whereas the maximization of the expected wealth in theMarkowitz opti-
mization, given favorable investment possibilities, always implies betting the entire
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fortune, the maximization of the expected logarithm of wealth leads to one growth-
optimal portfolio, which is not necessarily optimal in terms of theMarkowitz portfolio
(Thorp 1971). Accordingly Markowitz (1976) considers the Kelly portfolio to be the
upper limit for a a conservative investor. Furthermore, the log-optimal strategy is fixed
fraction, independent of time (MacLean et al. 1992).

Risk measures
The sole use of the Kelly criterion implies larger bets than a representative, risk-averse
investor would accept in terms of risk (Clark and Ziemba 1987; Hausch and Ziemba
1985). In order to formulate individual riskmeasures for different investors, the spectral
risk measure from (2), denoted by Sφ {WT ( ft )}, will be used. Two specific risk mea-
sures to include the degree of risk-aversion into the portfolio optimization are quantile
(Value at Risk) and conditional tail expectation (expected shortfall) constraints:

– S1 : The quantile constraint (VaR) is a special case of the spectral risk measure
from (2)

φQα
(x) = δ(x = α), α ∈ (0, 1), (7)

where δ(x = α) is the Dirac delta function, well known to be a non-coherent
risk measure. Further drawbacks of the quantile constraint are treated in Basak
and Shapiro (2001). However, the quantile restriction allows to ask the investor
specifically to name a fraction of his wealth he can accept to lose with probability
1 − α.

– S2 : In contrast, Conditional Tail Expectation (ES) is a coherent risk measure
representing the average loss beyond a given quantile constraint. Being a special
case of the spectral measure, the weight function is given as

φCTEα (x) = α−11(x < α). (8)

Growth-risk frontier
Following MacLean et al. (1992), the possible combinations of growth and risk mea-
sures are given by the set

U = [
Gφ {WT ( ft )} , Sφ {WT ( ft )}

]
, ft feasible. (9)

The growth-risk frontier is accordingly formulated as

U∗
t = [

Gφ

{
WT ( f ∗

t )
}
, Sφ

{
WT ( f ∗

t )
}]

, f ∗
t feasible, (10)
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Fig. 1 Kelly-risk frontier with
unconstrained Kelly portfolio
exhibiting the highest
geometrical mean

S[W
T
(f)]

E
[lo

g 
W

T
(f

)]
where the f ∗

t ∈ R
k is the investment fraction maximizing the growth measure under

risk restriction.

f ∗
t = argmax

f ∗
t ∈Rk

Gφ {WT ( ft )}

s.t. Sφ {WT ( ft )} ≤ b, b ∈ R,

k∑

j=1

f j,t ≤ 1

(11)

For the Kelly criterion with a risk constraint as proposed, the frontier is illustra-
tively visualized in Fig. 1. In contrast to the Markowitz maximization, implying a
steady tradeoff between mean and risk, the geometric mean maximization implies
one specific portfolio—the Kelly portfolio—exhibiting the highest geometric mean
possible (horizontal dotted line). From this viewpoint, portfolios exhibiting a larger
risk constraint than the Kelly portfolio (to the right of the vertical dotted line) are not
efficient. If the investor prefers a smaller risk constraint than the full Kelly investor,
restricted Kelly portfolios (solid line) constitute the Kelly-risk frontier. These are
portfolio strategies with the highest growth criterion given risk constraint.

2.2 Tail Constraints and Non-linear Instruments

The introduction of assets as nonlinear functions of the underlyings, derivatives, allows
for controlling the asymmetry of the wealth distribution in such a way, that it will be
skewed to the left. Albeit the distribution of the risk measure, the loss of the portfolio
is limited by construction for high confidence levels. The instruments to achieve the
asymmetric payoff profile are long put options. By construction, corridor options, as
argued in the context of quantile constraints, are circumvented (Basak and Shapiro
2001). A simplified representation of the protective put strategy is given in Fig. 2,
consisting of one stock (blue) and one long put option (green) with chosen strike
(dotted black). The result is the protective put strategy (red). The difference in payoff
above the strike level is due to the put price, which the option holder has to pay. For
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Fig. 2 Protective put strategy
(red) consisting of long stock
(blue) and long put (green) with
chosen strike (dotted black).
(Color figure online)
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Table 1 Log-return descriptives for the different sampling frequencies, S&P 500 1985–2015 Frequency
weekly∗ omits one week in the financial crisis 2009

Descriptives S&P (daily) S&P (weekly) S&P (weekly∗) S&P (monthly) S&P (yearly)

Data points 7564 1513 1512 360 30

Mean (p.a. in %) 8.37 8.37 10.41 8.37 8.37

Std (p.a. in %) 18.35 20.93 17.96 16 16.61

Skewness −1.29 −6.7 −1.27 −1.98 −1.78

Kurtosis 31.26 131.09 13.67 12.48 7.13

k ∈ N
+ linear assets with multiple put options each, given a pre-specified horizon,

the choice of the fraction of linear and nonlinear assets is not obvious.

3 Estimation

3.1 A Case for Non-Gaussianity

Although Fama (1965) finds evidence for α-stable characteristics for all returns of the
Dow Jones Index, it can be observed that financial (log-)returns tend to the Gaussian
distribution as the sampling frequency decreases, see also McFarland et al. (1982),
Boothe and Glassman (1987), and Dacorogna et al. (2001). The subsequent textbook
example for the Standard and Poor’s 500 reads as Table 1. Due to the 2009 financial
crisis, an outlier week of −60% increases (decreases) the sample kurtosis (skewness)
for the weekly frequency significantly from 13.67 (− 1.27) to 131.09 (− 6.7). If the
outlier week is omitted, see column S&P (weekly∗) of Table 1, the general observation
of decreasing kurtosis and increasing negative skewness is supported for different
sample sizes. Still, including the outlier week of 2009, erratic behavior of sample
moments definitely appears for this reference data series.

The empirical observation of Gaussian convergence for lowering sampling frequen-
cies cannot be shown explicitly by existing data, as data-records capture only 7564
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Fig. 3 Whole sample (red) and block-bootstrapped standard deviations (p.a.), skewness and kurtosis for
105 draws of 30 subsequent daily returns (blue) from the S&P 500, 1985 to 2015. (Color figure online)

trading days, representing 30 years of data. The empirical verification would require
an appropriately large number of weeks, months and years.

In order to show that the annual return distribution, consisting of 30 data points,
is with large probability not Gaussian, we randomly sample 105 30 blocks of daily
returns from the S&P 500 and calculate second, third and fourth moments in order
to evaluate dispersion, skewness and leptokurtic behavior (Bootstrap). Hence, for the
three moments, the block-bootstrap estimators are plotted as histogram in Fig. 3. The
vertical red lines represent the moment estimators for the whole daily data series.
In essence, dispersion, skewness and especially leptokurtic behavior of the bootstrap
estimators are significantly biased, compared to the estimator of the whole series.
Fewer sampled data-points imply less probability of sampling data in the tails of the
return distribution. There was not one out of 105 30 day sub-samples, which resulted
in a comparable kurtosis of the complete data-series. The result holds for sampling
30 separate days randomly under the i.i.d. assumption. Moments of order larger than
one behave erratically over an increasing data sample, as first analyzed for commodity
prices in Mandelbrot (1963). Figure 4 plots standard deviation (in %), skewness and
kurtosis as function of the used data-points of the series. The red lines represents the
empirical moment behavior with increasing daily data points. The blue lines represent
100 trajectories of Gaussian moments with increasing data points. The observation of
erraticmoment behavior stands in contrast toGaussian behavior. The observation holds
over sampling frequencies daily, weekly, monthly and annually. This specific sample-
size problem is crucial in risk management, especially for estimating quantiles of
high confidence of the wealth distribution as in the constrained portfolio optimization
in (11). As the confidence level tends to one, having only a limited amount of data,
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Fig. 4 (Log-)Log plots of standard deviation (in %), skewness and kurtosis with increasing data points,
S&P 500 from 1985 to 2015 (red) and 100 Gaussian simulations with S&P 500 moments (blue). (Color
figure online)

the quantile estimate is systematically biased as the quantile is overestimated. The
portfolio analyst has to evaluate if the estimated quantile given the chosen confidence
level still has an acceptable distribution.

Consequently, for investors with longer investment horizons, such as a year, the sum
of daily random variables, constituting the yearly distribution, should not converge to
the Gaussian, but to a heavy-tailed distribution, which will turn out to be the class of
α-stable distributions. For financial markets, this assumption will imply infinite vari-
ance, skewness and kurtosis, leading to non-converging moments, i.e. the observed
erratic behavior. The model of Sect. 2 will be estimated within a stationary framework
for elliptically α-stable distributions, striving for scale invariance. Although daily and
higher frequency returns exhibit non-stationary characteristics, the horizon distribu-
tion, i.e. yearly, cannot be shown to exhibit significant volatility clustering.

3.2 Scale Invariance

Let Xt ∈ R
k be a multidimensional, i.i.d. random variable from distribution Pt , where

t indicates the scale e.g. days. Given the investment horizon of the investor, T days,
the wealth equation of (1)

WT ( ft ) = W0

T∏

t=1

{
1 + f �

t X̃ t

}
= W0

T∏

t=1

{
f �
t exp(Xt )

}
(12)

can be simplified, given ft = f ∀t = 0, . . . , T .
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WT ( f ) = W0

{

f � exp

(
T∑

t=1

Xt

)}

= W0

{
f � exp(X)

}
, X

def=
T∑

t=1

Xt (13)

As the horizon T grows, the sum of the random variables Xt tends to the Gaussian
as long as the first two moments of the underlying distribution are finite. Formally,
let random variable Xt have expectation vector μt = E(Xt ) and covariance matrix
σt = E

[{Xt − E(Xt )} {Xt − E(Xt )}�
]
. Then

T∑

t=1

Xt
L→ N

(
T∑

t=1

μt ,

T∑

t=1

σt

)

X
L→ N (μ, σ )

T− 1
2

T∑

t=1

(Xt − μt )
L→ N (0, σ ) .

(14)

If the distribution in horizon T is modelled as the sum of higher frequency distri-
butions, the multidimensional process of returns, which may not be Gaussian, but of
finite variance, converges to the Gaussian. In contrast, as argued in Sect. 3.1, returns
of horizons beyond the sampled frequency, are presumed to be heavy-tailed. Hence,
the standard Central Limit Theorem (CLT) does not apply.

Except for the Gaussian itself, finite variance distributions change their shape under
aggregation. In contrast, the class of α-stable distributions is scale invariant (Mandel-
brot 1963). Scale invariance of distribution P is defined via a continuous function g,
such that for all x

g(λ)P(x) = P(λx), (15)

with λx ≥ x0 and x0 > 0. Equivalently, distribution P has a power-law tail, implying
that for x ≥ x0 ≥ 0, c ≥ 0 and α > 0

P(x) = cx−α. (16)

In that respect, a one-dimensional random variable X ∼ S(α, β, γ, δ) will be α-
stable distributed with parameters 0 < α ≤ 2, −1 ≤ β ≤ 1, γ ≥ 0 and δ ∈ R (Cizek
et al. 2011; Nolan 2017), if

X
L=
{

γ Z + δ, α �= 1
γ Z + (δ + β 2

π
γ log γ ), α = 1.

(17)

S(Z | α, β, 1, 0) represents the standard α-stable form. Only special cases of α-
stable distribution are available as real-valued densities (e.g. Gaussian, Cauchy and
Lévy).
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Scale invariance under addition implies that for the sum of α-stable variables Xt ∼
S(α, β, γ, δt ), t = 1, . . . , T

X1 + X2 + . . . + XT =
T∑

t=1

Xt = X ∼ S

(
α, β, T

1
α γ, δ

)
, (18)

where δ = T δt .
According to Gnedenko and Kolmogorov (1954), the limiting distribution of T

i.i.d. α-stable random variables, 0 < α ≤ 2 is

aT

(
T∑

t=1

Xt

)

− bT
L−→ S(α, β, 1, 0), (19)

where aT > 0 and bT ∈ R. The special case of theGeneralized Central Limit Theorem
(GCLT) is the CLT of Eq. (14) for α = 2, β = 0, γ = σ√

2
and δt = μt , given

aT = 1
σ
√
T
and bT =

√
Tμ
σ

. In general, for 0 < α ≤ 2,

T− 1
α

T∑

t=1

(Xt − δt )
L−→ S(α, 0, γ, 0). (20)

3.3 Elliptically Contoured˛-Stable Distributions

For the multidimensional estimation, α-stable laws are not extensively accessible
as closed-form densities are only available for special cases. One computationally
tractable exception are elliptically contoured α-stable laws, which can be efficiently
estimated for dimensions k ≤ 40 (Nolan 2013). This class of distributions enables the
modeling of heavy tails while preserving its shape under aggregation in the presence
of linear dependence.

Random vector Y = [Y1, . . . ,Yk]� has a spherical distribution iff the characteristic
function ϕY (u) satisfies for all u ∈ R

k

ϕY (u) = E
{
exp

(
iu�Y

)}
= ψ(u�u) = ψ(u21 + . . . + u2k), (21)

where ψ is the characteristic generator of the spherical distribution.
Random vector X ∼ Sk(δ, Γ ,ψ) is elliptically distributed with positive definite

scaling matrix Γ = AA�, A ∈ R
k×k and location vector δ ∈ R

k when

X
L= δ + AY , (22)

where Y is spherical with characteristic generator ψ . The characteristic function is
given by

ϕX (u) = E
{
exp

(
iu�X

)}
= exp

(
iu�δ

)
ψ
(
u�Γ u

)
. (23)
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A subclass of elliptical distributions are normal variance mixtures X = [X1, . . . ,

Xk]� for

X
L= W 1/2AZ + δ, (24)

with Z ∼ N(0, Ik) andW ≥ 0 being a non-negative one-dimensional randomvariable,
independent of Z (Kring et al. 2009).

A further subclass of normal variance mixtures are α-stable sub-Gaussian X =
[X1, . . . , Xk]� for W ∼ S(α/2, (cosπα/4)2/α, 1, 0), 0 < α < 2, being one-
dimensionally α-stable distributed, parameterized following Nolan (2017). G ∼
N(0, Γ ) is multidimensional Gaussian with scaling matrix Γ = AA�. Then X ∼
Sk(α, β, Γ , δ, ψ), β = 0 is α-stable sub-Gaussian if

X
L= W 1/2G + δ

L= W 1/2AZ + δ, Z ∼ N(0, Ik)
def= AY + δ,

(25)

while Y ∼ Sk(α, 0, Ik, 0) is radially symmetric α-stable. The according characteristic
function of X is

ϕX (u) =
∫ ∞

−∞
fX (x) exp(iu�X)dx = E

(
iu�X

)

= exp

{

−
(
1

2
u�Γ u

)α/2

+ iu�δ

}

,

(26)

fX (x) as probability density function. Γ ∈ R
k×k is the positive definite scale matrix

and δ ∈ R
k the location vector. The characteristic generator is therefore given by

ψ(s, α) = exp

{

−
(
1

2
s

)2/α
}

. (27)

This implies that α-stable sub-Gaussian distributions are scale mixtures of multi-
variate normal distributions (Samorodnitsky and Taqqu 1994). Note, for α = 2, the
characteristic function collapses to the Gaussian. For G ∼ N(0, Ik), the characteristic
function of Y in Eq. (25) simplifies to

ϕY (u) = E
(
iu�Y

)
= exp

(−γ α|u|α) . (28)

For the horizon of the investor, T , the estimated higher sampling frequency log-
returns are summed to the chosen frequency:

X̃ = T X ∼ Sk(α, 0, TΓ , T δ, ψ) (29)
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For subsequent estimation, stability parameter 0 < α ≤ 2, scale Γ and location δ

need to be estimated, given that −1 ≤ β ≤ 1 can be assumed to be not significantly
different from zero.

3.4 Parameter Estimation

The utilization of α-stable laws implies that fractional moments of random variable X

E|X |p =
∫ +∞

−∞
|X |p f (X)dX (30)

are finite for 0 < p < α, p ∈ R and infinite for p ≥ α. This implies that for the
α-stable Paretian case, representing a slower decay than under the Gaussian, 0 <

α < 2, the second moment E|X |2 = ∞ and higher moments such as skewness and
kurtosis are infinite. For the empirical financial market returns 1 < α < 2 (see
Sect. 4), the first moment remains finite. For elliptically α-stable random variable
X ∼ Sk(α, 0, Γ , δ, ψ)) the expectation is

E X = δ < ∞. (31)

In general, for univariate α-stable laws the mean is undefined for α ≤ 1 and E X =
δ − βγ tan

(
πα
2

)
< ∞ for α > 1. From the perspective of a data scientist, analyzing

the sample, empirical moments are always finite. But under the assumptions of being
α-stable distributed, fractional moments with p ≥ α have no intrinsic meaning. As
shown in Sect. 3.1 higher moments behave erratic with increasing data points, contrary
to moment convergence under Gaussianity.

For portfolio allocation the estimation of location and scale are crucial. Founding
on the analysis of Chopra and Ziemba (1993), the mean represents the largest source
of error for estimating the portfolio fraction. Their final implication is straightforward:
”[. . .] the bulk of resources should be spent on obtaining the best estimates of expected
returns of the asset classes under consideration”.

Simulating from the class of elliptically α-stable distributions implies to estimate
the stability parameter α, scaling matrix Γ and location δ, given that the skewness
parameter β is zero. For the characteristic exponent α the method of Rachev and
Mittnik (2000) is used:

i. Simulate U1, . . . ,Un uniformly i.i.d. random variables on the unit hypersphere
Sk−1.

ii. Estimate the MLE for the index of stability α̂i (Nolan 2001) for each i from 1 to
n, U�

i X1, . . . ,U�
i Xn .

iii. Calculate the index of stability by α̂ = n−1∑n
i α̂i .

By utilizing the MLE for the characteristic exponent α, severe estimation biases
from e.g. the Hill estimator (Hill 1975) are circumvented, see also McCulloch (1997)
andKearns and Pagan (1997). For the proposed semiparametric scaling approximation
in Sect. 3.5, the estimation of stability α will not be necessary.
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Estimating the location vector δ ∈ R
k of multidimensional variable X ∼

Sk(α, 0, Γ , δ, ψ) is of crucial importance for portfolio allocation, representing the
driver for asset growth.

From the perspective of information theory, we aim to chose the parameter vector,
which maximizes the probability of coming from the empirical data-set. From the per-
spective of decision theory, this method coincides with the minimization of expected
loss under the 0–1 loss function:

L(δ, δ̂) = 1(δ �= δ̂). (32)

The according risk function is

R(δ, δ̂) = E
{
L(δ, δ̂)

}
= E

{
1(δ �= δ̂)

}
(33)

Consequently the optimization

δ∗ = argmin
δ∗∈Rk

[
E
{
1(δ �= δ̂)

}]
(34)

leads to the commonMaximum Likelihood Estimate (MLE). If the loss function is not
presumed to be 0–1 loss, e.g. quadratic, the usual ML estimator may not be suitable.
The inadmissability of the sample mean under the Gaussian for dimensions k > 2 has
been first shown by Stein (1955), leading to the class of shrinkage estimators, starting
with James and Stein (1961). An overview over the class of shrinkage estimators is
given in Hansen (2015). To our knowledge, those results have not been extended to
α-stable laws.

Following Nolan (2013), there are two methods to estimate the scale matrix Γ :

i. Given that X is elliptically α-stable,

∀u, u�X ∼ Sk
(
α, 0, (u�Γ u)

1
2 , u�δ, ψ

)
. (35)

The k(k + 1)/2 parameters of the scale matrix Γ are estimated by

Γ̂ j, j = γ̂ 2
j

Γ̂ j,i = 1
2

{
γ̂ 2(1, 1) − γ̂ 2

i − γ̂ 2
j

}
,

(36)

where γ̂ 2(1, 1) = (1, 1)�(X j , Xi ) = X j + Xi and γ̂ j is the univariate scale ML
estimate of asset j . Note that Γ̂ j,i depends solely on directions (1, 1),(1, 0) and
(0, 1).

ii. As E
{
exp(iu�X)

} = exp {−γ (u)α}

{
− log E exp(iu�X)

} 2
α = u�Γ u =

∑

i

u2i Γi,i + 2
∑

i< j

ui u jΓi, j , (37)
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so Γi, j can be estimated as linear function via regression, taking more directions
into account than the first method.

For the remainder of the paper, the first method is utilized due to its analytical tractabil-
ity.

3.5 Semiparametric scaling approximation

Instead of simulating from the estimated elliptically contoured α-stable distribution,
a semiparametric scaling approximation based on higher sampling frequency data is
proposed. Simulating from the elliptically α-stable distribution implies that

∀ j = 1, . . . , k α j = α, 0 < α < 2,

∀ j = 1, . . . , k β j = 0.
(38)

We deal with this drawback by using α-stable properties of the empirical data-set.
Assume that the higher sampling frequency data-set Xt ∼ Sk(α, 0, Γt , δt , ψ) is ellip-
tically α-stable distributed. Then,

i. estimate location δt and scale Γt = At A�
t of higher frequency returns Xt as

proposed in section 3.4.
ii. Normalize Xt to radially symmetric Y ∼ Sk(α, 0, Ik, 0, ψ)

Y = A−1
t Xt − δt . (39)

iii. Rescale radially symmetric Y to distribution X ∼ Sk(α, 0, Γ , δ, ψ), Γ = AA�
with investment horizon T ,

X = AY + δ (40)

with Γ = TΓt and δ = T δt .

The resulting distribution for horizon T , represented by convoluted higher frequency
distributions, is simply an affine transformation of its radially symmetric analogue,
given its scaling nature.Given thatβ = 0,we canuse the potentially different stabilities
α j of the marginals, having no effect on location δ and scale Γ .

As the horizon distribution represents a limited number of data points (see sec-
tion 3.1), empirical quantiles Qα, α < 0.02 are overestimated, implying that
risk measures for large confidence levels are underestimated. Vice versa, quantiles
Qα, α > 0.98 are consequently underestimated, see Fig. 5. By using empirical
higher sampling frequency data, we can scale high-frequency events to a manifold
of large scale events, which never happened in the original data history of the lower
sampling frequency, enriching the tails of the horizon distribution.
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Fig. 5 Semi-log densities for hourlyApple log-returns for Gaussian,α = 2 (blue), Stable, α = 1.33 (green),
Cauchy, α = 1 (red) and financial assets (gray). (Color figure online)

4 Implementation

4.1 Data

The hourly financial stock prices come from Lobster and cover the time span from
2007-06-27 to 2018-05-25, representing 17862 hourly prices per asset. The k = 14
assets with a linear payoff structure (stocks) are the stocks with the biggest market cap-
italization in theNASDAQ100, representing a technology driven portfolio. A risk-free
asset, which can be bought with annual rate r = 0.01 is included into the optimiza-
tion. Relevant asset statistics including Maximum Likelihood Estimates (MLE) under
α-stability (Nolan 2001) are given in Table 2.

The assets with a non-linear payoff structure are represented as long put options,
written on the stock market index NASDAQ 100. As will be assumed for the repre-
sentative investor in section 4.4, the maturity, and hence the investment horizon T , is
chosen to be one year. The prices coming from the ask implied volatilities of the long
put options determine the price of the hedge and accordingly the reduction in wealth
if the stocks close above the chosen strike levels. For the distribution of wealth in T ,
the put option price OT at maturity is given by the inner value

OT = max {0; K − ST } . (41)

Solely for evaluating the price of the non-linear assets between t = 1 and horizon T ,
a pricing model is needed.
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4.2 Stable tests

In order to verify if the class of elliptically α-stable distributions is suitable for the
financial assets, the following prerequisites have to be met:

– heavy tails beyond the Gaussian (Leptokurtic behavior),
– linear dependence structure between the margins,
– comparable range of α j (for simulation),
– skewness parameter β not coherently different from zero.

As examined descriptively in Table 2, empirical financial market returns are signifi-
cantly non-Gaussian. In Fig. 5, the densities of the normalized log-returns on log-scale
are plotted forGaussian (α = 2), Stable (α = 1.33), Cauchy (α = 1) and the individual
assets using Kernel Density Estimates. Within the α-stable framework all examined
assets lie between Gaussian and Cauchy, 1 < α < 2. The α-stable fit for α = 1.33
captures the tails adequately, although events are captured, which never took place
in the data history. The range of characteristic exponents stands in line with results
of Westerfield (1977), McCulloch (1997) or Nolan (2013). The elliptical behavior is
assessed by using two dimensional scatter matrices of the empirical log-returns. The
significance of the skewness parameters β j is verified by the utilization of the Fisher
information from the MLE. The respective confidence intervals for the individual
parameters show that β j are not consistently different from zero, given a confidence
level of 99%. For larger dimensions, Nolan (2013) reaches the same conclusion for
the Dow Jones constituents.

Making use of the semiparametric scaling approximation implies that there is no
need to estimate one specificα for the ellipticalα-stable distribution.As∀ j 1 < α j < 2
we can deny the null of Gaussianity coherently for the 99% confidence level, speaking
in favour of the α-stable hypothesis. As we are interested in the horizon distribution,
constituted by the sum of hourly random variables, the generalized CLT is utilized.

4.3 Stable estimation

Following section 3.4, the parameter estimates for the hourly distribution Xt ∼
Ek(α, β, Γt , δt , ψ), β = 0 are scaled to the chosen horizon of one year. Exem-
plary. the semi-log densities for yearly Apple log-returns under Gaussian, Cauchy,
Stable and the semiparametric scaling are plotted in Fig. 6. Additionally, Gaussian
scaling, representing the scaling of the hourly distribution utilizing the square root of
time rule under Gaussianity whilst neglecting the CLT, is displayed. In comparison,
the semiparametric scaling distribution exhibits heavier tails than under Gaussianity,
implying stock market events, which never occurred in the history of the original
sampling frequency. The utilized scaling approximation provides the horizon distri-
bution XT ∼ Ek(α, 0, ΓT , δT , ψ) with location vector δT = T δt and scaling matrix
ΓT = TΓt , given that β = 0.
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Fig. 6 Semi-log densities for yearly Apple log-returns for Gaussian, α = 2 (blue), Stable, α = 1.33 (green),
Cauchy, α = 1 (red), Gaussian scaling (orange) and semiparametric scaling (violet). (Color figure online)

4.4 Portfolio implementation

Exemplary, the representative investor has an investment horizon of one year. Accord-
ing to his client, no more than 20% (b = 0.20) of his wealth should be lost given
probability 1 − α = 99.5% (Value at Risk). This implies that only α = 0.5% of the
wealth return paths should end below −20%. The investor is able to buy risk-free
bonds with risk free rate r f = 1% per year, representing the 15th asset. The maxi-
mization problems, without (k = 15) and with options (k = 101), as a special case of
optimization in (11), are formulated within the framework of spectral measures. Sub-
ject to the VaR(1− α), α = 0.5% constraint, the Kelly criterion GφElog is maximized
to achieve the portfolio with the highest growth rate:

f ∗ = argmax
f ∗∈Rk

GφElog {WT ( f )}

s.t. SφQ0.5%

{
1 − WT ( f )

W0

}
≤ 0.2,

k∑

j=1

f j ≤ 1.

(42)

Additionally the client aims to replace the VaR(99.5%) constraint with the expected
shortfall restriction ES(1 − α) in order to account for events beyond the VaR level.
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Discrete wealth return
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Fig. 7 Wealth return densities for VaR restricted Kelly optimization without (blue) and with (green) put-
options, VaR constraint (red). (Color figure online)

f ∗ = argmax
f ∗∈Rk

GφElog {WT ( f )}

s.t. SφCTE0.5%

{
1 − WT ( f )

W0

}
≤ 0.2,

k∑

j=1

f j ≤ 1

(43)

The resulting discrete wealth return distributions for the VaR restricted portfolios
are given in Fig. 7. Including non-linear instruments into the restricted optimization
proves to be beneficial for the Kelly criterion (Geometric mean), whilst preserving the
VaR restriction (see Table 3). The protective put strategy allows to reduce probability
mass for negative discrete wealth returns. The investment fractions of Table 4 show
that the decrease in risk free bond for the portfolio with options is equivalent to the
option investment.

Replacing the VaR constraint by the ES constraint, indicates that the stock invest-
ment is reduced for both cases with and without options, although not substantially.
Enriching the ES restricted Kelly portfolios with put options has the same effect in
terms of portfolio fractions as in theVaR restricted case (see Table 4) implying a higher
geometric mean for the same ES constraint.

Extending the VaR constraint to the interval 0 ≤ b ≤ 1, leads to a series of
optimizations for all relevant quantile levels. b = 0 represents the risk free portfolio,
whereas b = 1 implies that the investor can loose all of his fortune, given chosen
confidence level.
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Fig. 8 Kelly-VaR (99.5%) frontier without (blue) andwith (green) options, VaR constraint (red), benchmark
portfolios for Uniform, Merton, Sharpe and Kelly (black). (Color figure online)

f ∗ = argmax
f ∗∈Rk

GφElog {WT ( f )}

s.t. SφQ0.5%

{
1 − WT ( f )

W0

}
≤ b, 0 ≤ b ≤ 1,

k∑

j=1

f j ≤ 1.

(44)

This series of restricted optimizations constitutes the Kelly-VaR frontier (Fig. 8),
in which each point represents a growth-optimal portfolio given quantile (VaR) con-
straint. The portfolio with (without) options, which can lose at most 20% with 99.5%
probability is the portfolio where the green (blue) frontier crosses the quantile con-
straint (red). Except for the risk-free portfolio, 0 < b ≤ 1, every restricted portfolio
with put options outperforms the portfolio without options in terms of the geometric
mean. The unrestricted Kelly portfolio exhibits the highest geometric mean possible
(18.25%), for a given VaR of 84.72%. Including put options into the unrestricted Kelly
optimization increases the geometric mean (20.92%) and reduces the VaR to 78.64%
at the same time. Relevant benchmark portfolios such as equally distributed (uniform),

fUniform = 1
1

k
(45)

the closed-form Merton solution under log-utility and Gaussianity (Merton 1992),

fMerton = Σ−1(μ − 1r f ) (46)

and the Sharpe portfolio (Merton 1972),
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fSharpe = Σ−1(μ − 1r f )

1�Σ−1(μ − 1r f )
(47)

are not close to the Kelly-VaR frontier. Specifically the Sharpe investor, who allows
for a larger risk constraint b than the unrestricted Kelly solution, should still invest
into the growth-optimal portfolio, as the geometric mean of the unrestricted Kelly
portfolio cannot be surpassed. Although the one period Sharpe maximizer obtains a
larger arithmetic return, theKelly (geometricmean) optimization rests on amultiperiod
investment process. The multiperiod investor cannot sustain substantial draw-downs
in one period as for the Sharpe portfolio. Given the α-stable process, see Table 4, the
Sharpe investor goes bankrupt every one-hundred years.

5 Conclusion

Whereas the unrestrictedKelly portfolio ensures the asymptotic outperformance of the
investor’swealth towards significantly different strategies, the presentedmodel ensures
growth-optimal investment subject to personal risk. The constrained optimization is
formulated within the framework of spectral measures, inducing quantile (VaR) and
Conditional tail expectation (expected shortfall) as special cases. In order to allow for
an asymmetric wealth distribution, long put options are included into the optimization.

Financial market returns are with large probability non-Gaussian. Founding on
the work of Mandelbrot (1963), it can be observed that the stability parameter α is
significantly smaller than two, speaking in favor of the class of α-stable distributions.
Given a chosen investment horizon, the distribution of financial market returns is
modelled as the sum of hourly random variables. For α-stable laws with α < 2,
the variance of those random variables is infinite. Hence, the standard CLT does not
apply and the generalized CLT of Gnedenko and Kolmogorov (1954) is applied. For
the multidimensional estimation elliptical α-stable distributions, implying a linear
dependence structure, are used. Instead of simulating from this class of distributions,
a semiparametric scaling approximation is proposed. The resulting annual distribution,
represented by convoluted hourly distributions, is simply an affine transformation of
its normalized hourly analogue, given its scaling nature.

Heavy tails beyond the Gaussian, linear dependence between the marginals and
nonsignificant skewness are empirically supported. Correspondingly, the joint distri-
bution of financial market returns for a specified horizon is estimated by elliptical
α-stable distributions utilizing a semiparametric scaling approximation. The portfolio
model is implemented for a representative investor with quantile (VaR) constraint.
The resulting growth-optimum strategy maximizes the geometric mean, given his risk
constraint. Including put options into the optimization levers the portfolio by a suitable
protective put strategy, leading to an increased geometric mean for the same risk. For
the Kelly-quantile frontier, except for the risk-free portfolio, every restricted portfolio
with options outperforms the portfolio without options in terms of the geometricmean.
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Abstract
Appropriate risk management is crucial to ensure the competitiveness of financial
institutions and the stability of the economy. One widely used financial risk mea-
sure is value-at-risk (VaR). VaR estimates based on linear and parametric models can
lead to biased results or even underestimation of risk due to time varying volatility,
skewness and leptokurtosis of financial return series. The paper proposes a nonlinear
and nonparametric framework to forecast VaR that is motivated by overcoming the
disadvantages of parametric models with a purely data driven approach. Mean and
volatility are modeled via support vector regression (SVR) where the volatility model
is motivated by the standard generalized autoregressive conditional heteroscedastic-
ity (GARCH) formulation. Based on this, VaR is derived by applying kernel density
estimation (KDE). This approach allows for flexible tail shapes of the profit and loss
distribution, adapts for a wide class of tail events and is able to capture complex
structures regarding mean and volatility. The SVR-GARCH-KDE hybrid is compared
to standard, exponential and threshold GARCH models coupled with different error
distributions. To examine the performance in different markets, 1-day-ahead and 10-
days-ahead forecasts are produced for different financial indices. Model evaluation
using a likelihood ratio based test framework for interval forecasts and a test for
superior predictive ability indicates that the SVR-GARCH-KDEhybrid performs com-
petitive to benchmarkmodels and reduces potential losses especially for 10-days-ahead
forecasts significantly. Especially models that are coupled with a normal distribution
are systematically outperformed.
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1 Introduction

Events like the 2008 financial crisis or the outcome of the 2016 referendum in the UK
came unexpected for many people. Yet, as these examples illustrate, unlikely events
occur at times and they might have far reaching consequences. Risk management is
the practice to analyze the macro-environment of an organization, identify possible
adverse developments, and design suitable countermeasures.

For financial institutions and systemically important institutions in particular, a
key risk management responsibility is to sustain solvency under adverse economic
conditions (e.g., Silva et al. 2017; Kraus and Czado 2017). One of the most popular
measures of uncertainty in financial markets is VaR (e.g., Alexander (2008)). VaR is
based on the quantiles of a portfolio’s profit and loss (P&L) distribution and can be
interpreted as an upper bound on the potential loss that will not be exceeded with a
given level of confidence. Its use is appealing because it summarizes the downside risk
of an institution in one easily interpretable figure (e.g., Chen et al. 2012). Regulatory
frameworks for the banking and insurance industry such asBasel III or Solvency II also
rely on VaR for determining capital requirements. Compared to expected shortfall, an
alternative risk measure with some superior mathematical properties (e.g., Kim and
Lee 2016), an advantage of VaR may be seen in the fact that its estimation is more
robust due to putting less weight on tail events and large losses, which may deteriorate
the quality of statistical estimation routines (Sarykalin et al. 2008).

Several approaches have been proposed to estimate VaR including parametric sta-
tistical models and data-driven machine learning algorithms such as neural networks
(NN) and SVR. In a seminal study, Kuester et al. (2006) review several statistical
methods and compare these in a forecasting benchmark. Using more than 30 years of
historical returns data, they find standard GARCH models to forecast VaR with the
highest accuracy on average.

GARCH models are also employed by Chen et al. (2012) to estimate VaR for four
daily series of stock market indices. More specifically, Chen et al. (2012) rely on an
asymmetric Laplace distribution and model volatility using a GJR-GARCH model
to introduce leverage effects. They then develop a time-varying model to allow for
dynamic higher moments. These extensions allow for wider application of the model
beyond forecasting.

Unlike the parametric approach of Chen et al. (2012), Franke and Diagne (2006)
estimate VaR for the German stock index through fitting the mean and volatility of
the return series using NNs. More specifically, they model the mean and volatility as
an autoregressive (AR) and autoregressive conditionally heteroscedastic (ARCH) pro-
cess, respectively. To derive VaR and expected shortfall, Franke andDiagne (2006) use
the predicted mean and variance with the normal distribution. This model outperforms
a standard GARCHmodel in terms of VaR exceedances and proofs capable of quickly
adjusting volatility in case of shocks with only short impact. Dunis et al. (2010) also
propose a NN-based approach towards forecasting VaR and expected shortfall.

Khan (2011) develops a VaR-model that forecasts realized volatilities using a com-
bination of a heterogeneous AR model and SVR. VaR is then computed based on
the normal, t- and skewed t-distribution. Applying this model to 5- and 15-minutes
return data, Khan (2011) is able to confirm the suitability of the SVR component. O.
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Radović et al. (2015) provide further evidence that SVR is a useful method for VaR
forecasting. Likewise, Xu et al. (2016) introduce amulti-period VaRmodel using SVR
in a quantile regression framework and show this approach to outperform GARCH
models.

The findings of Xu et al. (2016) seem to disagree with prior results of Kuester
et al. (2006) where GARCH models predict VaR with highest average accuracy and
more accurately than quantile regression approaches in particular. Implementations
of the quantile regression using a data-driven SVR model might explain the results
of Xu et al. (2016). More specifically, the linear and parametric structure of standard
GARCHmodels might be a limiting factor in VaR forecasting. Moreover, the parame-
ters of GARCH-typemodels are usually estimated viamaximum likelihood estimation
(Bollerslev 1986). This necessitates distributional assumptions, which might be prob-
lematic since the distribution of financial returns is skewed and exhibits fat tails (Bali
et al. 2008; Harvey and Siddique 2000).

Noting the possible limitation of the parametric framework, Schaumburg (2012)
combines extreme value theory with nonparametric VaR estimation to forecast return
distributions of four financial stock indices. A parametric conditional autoregressive
value at risk (CAViaR) model serves as benchmark. The benchmark and the proposed
model both circumvent the estimation of the mean and variance of the P&L distribu-
tion through predicting a quantile directly. In this regard, the approach of Schaumburg
(2012) can be characterized as a nonparametric CAViaR model.

VaR forecasts based on CAViaR frameworks have also been considered in the
benchmarking study of Kuester et al. (2006). In fact, the authors also introduce a novel
CAViaR model in the paper and test it alongside various other VaR models. However,
GARCHmodels and models relying on the t-distribution in particular emerge as most
suitable for VaR modeling.

In summary, parametric GARCHmodels are superior to parametric quantile regres-
sion approaches for modeling VaR. To achieve better results with quantile regression
approaches, it is necessary to include nonparametric parts into themodel. Additionally,
data driven GARCH models where the mean and variance components are modeled
nonlinearly and nonparametrically lead to better results than parametricGARCHmod-
els. However, one shortcoming of the so far proposed data driven GARCH models is
the use of parametric residual distributions. Particularly with regard to skewness and
kurtosis, this can lead to misspecified residual distributions, resulting in wrong VaR
estimates. Therefore, a novel purely nonparametric VaR model that grounds on the
GARCH framework is proposed here.We apply data driven approaches to all GARCH
components, i.e. mean, variance and residual distribution. Using this approach, we can
overcome the possible misspecification of the residual distribution as well as the mis-
specifications of mean and variance. More specifically, we estimate the mean and
variance of the P&L distribution using SVR and employ KDE to model the density
of the standardized residuals (e.g., Härdle et al. 2004). We then integrate these com-
ponents to derive a VaR forecast. In other words, we propose to start from the most
effective parametric modeling approach of Kuester et al. (2006) and develop models
that estimate its components in a purely data-driven manner. In contrast to other so
far proposed GARCH based approaches to forecast VaR (e.g., Youssef et al. 2015;
Khosravi et al. 2013; Aloui and Mabrouk 2010; Huang et al. 2009; Fan et al. 2008;
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HangChan et al. 2007) no assumptions about process dependence structures or the dis-
tribution of residuals are made by combining SVR andKDE in a GARCH like fashion.
Training the SVR-GARCH-KDE hybrid is, therefore, mainly computationally driven.

The use of SVR is motivated by the existence of a large body of research showing
the effectiveness of SVR in forecasting financial time series (e.g., Chang et al. 2016;
Devi et al. 2015; Tay and Cao 2001). Additionally, Sheta et al. (2015) compare the
forecasting performance of SVR, ANN and traditional linear regression for the S&P
500. They find that SVR solves the task most successfully. Kazem et al. (2013) also
provide evidence that SVR based models outperform ANNs in the context of financial
forecasting. Moreover, Chen et al. (2010) use a SVR approach for predicting stock
market volatility and use a recurrent ANN as benchmark which is outperformed. The
use of nonparametric density estimation is motivated by the fact that the existence
of fat tails and skewness in the distribution of financial returns can be considered
as an empirically proven fact (e.g., Bali et al. 2008; Harvey and Siddique 2000).
Although KDE is not a new approach in VaR forecasting (e.g., Chen et al. 2016;
Schaumburg 2012; Malec and Schienle 2014), the particular combination of data-
driven VaR estimation using SVR and nonparametric density estimation, which we
propose in this paper, has, to the best of our knowledge, not been considered in prior
work.

We assess the performance of the proposed model in comparison to GARCH-
type models with different error distributions also including skewed and fat-tailed
distributions. Empirical experiments using data from three major financial indices,
namely the Euro STOXX 50, Nikkei 225 and Standard & Poor’s 500 (S&P 500),
suggest that the SVR-GARCH-KDE hybrid typically outperforms models that are
coupled with a normal distribution and performs competitive to other benchmark
models.

The remainder of the paper is organized as follows. In Sect. 2 VaR is defined and
the methods underlying the proposed VaRmodeling framework are presented. Specif-
ically, the standard GARCH approach, nonparametric density estimation via KDE
and SVR are introduced. The proposed SVR-GARCH-KDE hybrid is then developed
based on these building blocks. After outlining the theoretical background, the SVR-
GARCH-KDE hybrid is compared to other models on different datasets in Sect. 3.
Concluding remarks and suggestions for future research are provided in the last sec-
tion.

2 Methodology

2.1 Defining value-at-risk

In general, VaR can be derived from the portfolio’s P&L distribution. However, since
today’s portfolio value is usually known, it suffices tomodel the return distribution. For
a formal description of VaR, let the portfolio returns rt in period t have the cumulative
distribution function (CDF) Ft . Then, the VaR in d trading days for a confidence level
1 − α is defined as

123



Data driven value-at-risk forecasting using…

VaRα
t+d = −F−1

t+d(α) = − inf{x ∈ R : Ft+d(x) ≥ α} with α ∈ (0, 1). (1)

In the rest of the paper, VaR refers to the negative α-quantile of the next period’s
portfolio return distribution.

2.2 EstimatingVaR using location-scale models

The proposedVaRmodeling framework is based on the location-scale approach.Mod-
els of this class estimate the entire distribution of asset returns and derive VaR as a
quantile of that distribution (e.g., Kuester et al. 2006). Such approaches assume the
return process is described as

rt = μt + ut = μt + σt zt , zt ∼ (0, 1) i.i.d. (2)

In (2), μt is the location and σt > 0 the scale parameter. Given rt belongs to the
location-scale family and Fz is the CDF of z, we can compute VaR as

VaRα
t = −

{
μt + σt F

−1
z (α)

}
. (3)

Autoregressive moving average (ARMA) processes and GARCH-type models are
commonly used to estimate μt and σt in (2).

2.3 Modeling volatility using GARCHmodels

Bollerslev (1986) introduces GARCH models by generalizing the volatility modeling
approach of Engle (1982). In deriving theGARCH regressionmodel Bollerslev (1986)
starts by assuming conditional normality of the return process rt :

rt |Ft−1 ∼ N (β�xt , σ 2
t ). (4)

where xt is a vector of lagged endogenous as well as exogenous variables, β an
unknown parameter vector and Ft−1 the information set available at t − 1. Rewrit-
ing (4) as linear model with conditionally heteroscedastic and normally distributed
disturbances gives:

rt = β�xt + ut , ut |Ft−1 ∼ N (0, σ 2
t ). (5)

Then, the GARCH(p,q) representation of the variance σ 2
t is

σ 2
t = ω +

q∑
i=1

δi u
2
t−i +

p∑
j=1

θ jσ
2
t− j . (6)
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Bollerslev (1986) notes that (6) has an ARMA representation. To see this let νt =
u2t − σ 2

t and substitute σ 2
t in (6) with u2t − νt to obtain

u2t − νt = ω +
q∑

i=1

δi u
2
t−i +

p∑
j=1

θ j (u
2
t− j − νt− j ). (7)

Rearranging (7) yields an ARMA representation for u2t :

u2t = ω +
q∑

i=1

δi u
2
t−i +

p∑
j=1

θ j (u
2
t− j − νt− j ) + νt (8)

= ω +
max(p,q)∑

i=1

(δi + θi )u
2
t−i −

p∑
j=1

θ jνt− j + νt . (9)

Basedon (9) nonlinear andnonparametric volatilitymodels can be introduced.This can
be seen by noting that the conditional expectation of u2t is equal to σ 2. Consequently,
the variance process can be modeled solely based on the observed values without
making assumptions about the distributional form of the residuals or the structure of
the variance process. Hence, the volatility model in the SVR-GARCH-KDE hybrid is
motivated by the ARMA representation of σ 2.

2.4 Nonparametric density estimation

The volatility of stock returns varies over time and a similar behavior has been observed
for the third and fourth moment of the return distribution. For example, Bali et al.
(2008) show that VaR forecasts can be improved by using past estimates of skewness
and kurtosis. Given the evidence for the leptokurtic nature of stock returns (Franke
et al. 2015), parametric distributional models might lack the flexibility to capture such
distributional characteristics, which motivates the use of nonparametric methods such
as KDE (e.g., Härdle et al. 2004).

Let X be a random variable with an absolutely continuous distribution function
F . Further, denote the corresponding density function as f and let {x1, . . . , xn} be a
sample of i.i.d. realizations of X . Then, the kernel density estimator f̂h(x) of f (x) is
defined as

f̂h(x) = 1

hn

n∑
i=1

K

(
xi − x

h

)
(10)

where h is a bandwidth parameter with h > 0 and K is a so-called kernel function.
Usually, a kernel function is assumed to be a symmetric density function, i.e.

∫ ∞

−∞
K (u)du = 1 with K (u) ≥ 0 (11)
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and

∫ ∞

−∞
uK (u)du = 0. (12)

Conveniently, (11) implies that f̂h(x) is also a density. Note that f̂h(x) inherits all
properties of K regarding continuity and differentiability.

The KDE based quantile estimator to forecast VaR can be derived as follows. First,
the estimator for F(x) that is based on KDE needs to be derived. Denote F̂h(x) as the
KDE based estimate of F(x). Then, F̂h(x) can be derived as follows:

F̂h(x) =
∫ x

−∞
f̂h(z)dz (13)

=
∫ x

−∞
1

nh

n∑
i=1

K

(
z − xi
h

)
dz (14)

= 1

nh

n∑
i=1

∫ x

−∞
K

(
z − xi
h

)
dz. (15)

Since the given kernel function K is a density, let Γ denote the corresponding CDF.
Moreover, using the substitution u = (z − xi )/h one obtains

F̂h(x) = 1

n

n∑
i=1

∫ x−xi
h

−∞
K (u) du (16)

= 1

n

n∑
i=1

Γ

(
x − xi

h

)
. (17)

Thus, F̂h(x) is the mean of the CDF corresponding to K evaluated at (x − xi )/h for
i = 1, . . . , n. Then, for α ∈ (0, 1) the KDE based quantile function Q̂h is obtained
as

Q̂h(α) = F̂−1
h (x). (18)

2.5 Support vector regression

SVR can be understood as a learning method to solve nonlinear regression tasks
(e.g.,Smola and Schölkopf 2004). It shares some similarities with a three-layer feed-
forwardNNand is able to approximate arbitrarily complex functions (Chen et al. 2010).
However, NNs are based on minimizing the so-called empirical risk and tend to find
only locally optimal solutions. In contrast, SVRminimizes the so-called structural risk
to achieve better generalization and solves a convex optimization problem leading to a
globally optimal solution. To describe the SVR model, let {(yi , xi )|i = 1, . . . , n; n ∈
N}with xi ∈ R

p and yi ∈ R denote the training data set. Suppose f is a linear function
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Fig. 1 The ε-insensitive loss function of the SVR algorithm. Slack variable ζ captures the loss above the
ε-tube. Points within the grey shaded area have no impact on the loss. In contrast, all other observations
contribute linearly to the loss.. Source: Smola and Schölkopf (2004)

such that

f (x) = ω�x + b (19)

whereω ∈ R
p and b ∈ R. Then, SVR aims to find an approximation of f that deviates

at most by ε from the observed target y while being as flat as possible (i.e., in the sense
that weights in ω are small). This translates into the following convex optimization
problem:

minimize
1

2
‖ω‖2

subject to

{
yi − ω�xi − b ≤ ε

ω�xi + b − yi ≤ ε.

(20)

In view that (20) might lack a feasible solution, Vapnik (1995) introduces an ε-
insensitive loss function:

Lε {y − f (x)} =
{
0 if |y − f (x)| ≤ ε

|y − f (x)| − ε otherwise.
(21)

To measure empirical loss (and thus model fit) using (21) Vapnik (1995) refor-
mulates (20) using slack variables ζ and ζ ∗ that capture losses above and below the
ε-tube around f (x), respectively. Figure 1 depicts this approach. Only points outside
the gray shaded ε-tube contribute linearly to the loss function.

Integrating the slack variables ζ and ζ ∗ into (20), the task to estimate a SVRmodel
is equivalent to solving:
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minimize
1

2
‖ω‖2 + C

n∑
i=1

(ζi + ζ ∗
i )

subject to

⎧⎪⎨
⎪⎩

yi − ω�xi − b ≤ ε + ζi

ω�xi + b − yi ≤ ε + ζ ∗
i

ζi , ζ
∗
i ≥ 0,

(22)

whereC > 0 is a regularization parameter to balance betweenmodel fit and complexity
(e.g., Hastie et al. 2009). Larger (smaller) values of C put more (less) weight on
maximizing model fit during SVR learning.

To capture nonlinear relationships between covariates and the response variable,
SVR maps the input data into a higher dimensional feature space. The linear regres-
sion is then constructed in the transformed space, which corresponds to a nonlinear
regression in the input space. The transformation is feasible from a computational
point of view because SVR calculates the mapping by implicitly using a kernel func-
tion k(x�

i x) = φ�(xi )φ(x). To implement this approach, it is common practice to
estimate a SVR model through solving the dual of (22), which is given as (e.g., Smola
and Schölkopf 2004):

maximize − 1

2

n∑
i, j=1

(ρi − ρ∗
i )(ρ j − ρ∗

j )x
�
i x j − ε

n∑
i=1

(ρi + ρ∗
i ) +

n∑
i=1

yi (ρi − ρ∗
i )

subject to

{∑n
i=1(ρi − ρ∗

i ) = 0

ρi , ρ
∗
i ∈ [0,C].

(23)

The dual program (23) includes the input data only in the form of scalar products x�
i x j .

Replacing the scalar product by means of a kernel function is thus straightforward and
does not affect the solver. In this work, we employ the Gaussian radial basis function
(RBF) kernel (24) which is defined as

k(x�
i x) = exp

(
−‖x − xi‖2

2γ 2

)
(24)

where the meta-parameter γ > 0 governs the width of the Gaussian function and
needs to be set by the modeler. The RBF kernel is used because it includes other
kernels as special cases, possesses numerical advantages compared to alternatives, and
often performs well in practical applications. Moreover, the RBF kernel can capture
nonlinear relations. Other kernels that are usually presented as potential choices are
e.g. the linear, polynomial or sigmoid kernel (e.g., Smola and Schölkopf 2004; Hastie
et al. 2009). Keerthi and Lin (2003) show that the linear kernel is a special case of
the RBF kernel. Moreover, the polynomial kernel has more parameters than the RBF
kernel that make the tuning process more costly. Another advantage of the RBF over
the polynomial kernel is that the polynomial kernel can converge to infinity which
can cause numerical instability. In contrast, the domain of the RBF kernel is always
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between 0 and 1. Moreover, Lin and Lin (2003) show that the sigmoid kernel behaves
similar to the RBF kernel for certain parameters.

In order to construct the regression function (19), the weight vectorω is represented
as a linear combination of observations in the training set:

ω =
n∑

i=1

(ρi − ρ∗
i )xi . (25)

More specifically, for observations xi where f (xi ) is within the ε-tube holds that
ρi = ρ∗

i = 0. Consequently, f (x) depends only on the observations outside the
ε-tube. These xi are called support vectors. Accordingly, (25) is also called the support
vector expansion ofω. Rewriting the regression function in terms of the support vector
expansion gives the SVR forecasting model:

f (x) =
n∑

i=1

(ρi − ρ∗
i )x�

i x + b. (26)

In the nonlinear case, the scalar product in (26) is once again replaced by a kernel
function.

2.6 SVR-GARCH-KDE hybrid

In the following section, we introduce a nonlinear GARCH hybrid to forecast VaR
based on a combination of SVR and KDE. Subsequently, we elaborate on the estima-
tion of the corresponding forecasting model.

We assume the distribution of the return series rt to belong to the location-scale
class, such that:

rt = μt + ut = μt + σt zt , zt ∼ (0, 1) i.i.d. (27)

Consider an ARMA structure for the mean model where the only assumption about
the error distribution is a zero mean and a finite variance. In addition, recall equation
(9), which shows that GARCH processes can also be given an ARMA representation.
This leads to the following mean and variance model:

rt = c +
s∑

i=1

αi rt−i +
d∑
j=1

κ j ut− j + ut , ut ∼ (0, σ 2
t ) (28)

u2t = ω +
max(p,q)∑

i=1

(δi + βi )u
2
t−i −

p∑
j=1

β jνt− j + νt . (29)

Let e = max(p, q), rt,s = (rt−1, rt−2, . . . , rt−s), ut,k = (ut−1, ut−2, . . . , ut−k) and
νt,p = (νt−1, νt−2, . . . , νt−p). Then, following Chen et al. (2010), we introduce the
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nonlinear and nonparametric functions h and g such that the conditional mean and
variance models of rt are

rt = h(rt,s,ut,d) + ut ut ∼ (0, σ 2
t ) (30)

u2t = g(ut,e, νt, p) + νt νt ∼ WN (0, a2t ) (31)

where WN (0, a2t ) denotes white noise with expectation zero and variance a2t . We
propose to estimate h(·) and g(·) using SVR. The estimates for μt and σt in (27) are
then obtained as:

μ̂t = h(rt,s,ut,d) (32)

σ̂t =
√
g(ut,e, νt, p). (33)

By defining the estimated residuals as ût = rt − μ̂t , estimates of zt are obtained as

ẑt = ût
σ̂t

. (34)

Then, for Q̂ẑ(α) being the estimated quantile function of z, the VaR estimate for rt is:

V̂ aR
α

t = −
{
h(rt,s,ut,d) +

√
g(ut,e, νt, p)Q̂ẑ(α)

}
. (35)

whereby we estimate Q̂ẑ(α) using KDE.
We now present a procedure to estimate VaR as in (35) and describe it in the

context of producing 1-day-ahead VaR forecasts. A step-by-step overview is given
in Algorithm 1. Let {rt }Tt=1 be the training set consisting of the daily returns from
a portfolio where rT is the most recent observation. In the first step, we model the
mean process (30). To do this, we estimate an AR(s) model using SVR to obtain
the estimated returns {̂rt }Tt=1+s . The set of estimated residuals {̂ut }Tt=1+s is derived as
ût = rt − r̂t . Then, a moving average (MA) part can be introduced to the model such
that rt can be modeled as an ARMA(s,d) process by running SVR and including ût .
The sets of estimated returns and residuals from the ARMA(s,d) model are denoted
as {̂r∗

t }Tt=1+s+d and {̂u∗
t }Tt=1+s+d , respectively.

We also estimate the variance process in a two step approach and start by fitting the
squaredmeanmodel residuals {̂u∗2

t }Tt=1+s+d in theway of anAR(e) process with SVR.
Based on this, fitted variances {̂σ 2

t }Tt=1+s+d+e are obtained. Then, an ARMA model
for (31) is obtained in the same way as for the mean process by using the estimated
model residuals {̂νt }Tt=1+s+d+e where ν̂t = û∗2

t − σ̂ 2
t . Consequently, the final set of

fitted variances is denoted as {̂σ ∗2
t }Tt=1+s+d+e+p. No assumptions are made about

the starting values of the residuals. Hence, the final estimation of (31) is done using
data for T − s − d − e − p time points. Since SVR is applied without introducing
further restrictions, it is not ensured that σ̂ 2

t and σ̂ ∗2
t are positive. Therefore, if the SVR

estimate is σ̂
(∗)2
t ≤ 0, it will be replaced by the last positive estimated variance. In
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case the first fitted variance is negative, it will be replaced by the first squared residual
from the final mean model.

The set of estimated standardized residuals {̂zt }Tt=1+s+d+e+p can be computed by
applying (34). However, ẑt does not necessarily have zero mean and unit variance.
Hence, we perform the quantile estimation using scaled standardized residuals ẑ∗t :

ẑ∗t = ẑt − ẑt√
1

T−1

∑T
i=1(̂zt − ẑt )2

(36)

where ẑt denotes the empirical mean of ẑt . The forecasted mean μ̂T+1 and standard
deviation σ̂T+1 are obtained from the mean and variance model. Finally, we use KDE
to estimate the α-quantile of {̂z∗t }Tt=1+s+d+e+p. Then, the 1-day-ahead VaR forecast
is:

V̂ aR
α

T+1 = −[μ̂T+1 + σ̂T+1 Q̂ẑ∗(α)]. (37)

An important aspect to note is that SVR and KDE depend on hyperparameters
which cannot be derived analytically but must be found computationally. Therefore,
the above described estimation procedure describes the estimation process only for
one fixed set of hyperparameters. The hyperparameters for SVR given a RBF kernel
is used are ε, γ and C . Additionally, if the SVR kernel is not set beforehand, it can be
seen as hyperparameter itself. In the context of KDE the bandwidth h and the KDE
specific kernel function K are hyperparameters. Since the goal is to train an efficient
model on a purely data driven basis it is advisable to derive the hyperparameters
computationally. However, for some hyperparameters exist theoretical results that
support fixing them beforehand. As stated in Sect. 2.5 the RBF kernel is a reasonable
choice in SVR.Moreover, for KDE the kernel choice has only a low practical relevance
and there exist rule-of-thumb estimators for h when a Gaussian kernel is used which
are computationally inexpensive (Härdle et al. 2004; Silverman 1986). Hence, the
most relevant aspect in hyperparameter tuning of the SVR-GARCH-KDE hybrid are
ε, γ and C for the SVR with a RBF kernel. It is important to note that the overall
goal is to forecast VaR. Hence, the hyperparameters should be set with respect to the
measure that is used to evaluate quantile forecasts. There exist different approaches as
grid search, random search or more advanced optimization strategies that can be used
to automate the process of hyperparameter optimization.

After defining the SVR-GARCH-KDE hybrid the question arises how model com-
plexity, predictive power and the computational time for making VaR forecasts are
related. Regarding the time to compute predictions the KDE part is fixed beforehand.
This is can be seen in Equation 10 and Algorithm 1. In order to compute an estimate
the sum needs to be evaluated making the computational complexity O(n) where n is
number of observations. Regarding the SVR-GARCH-KDE hybrid the computational
complexity of the KDE part is reduced depending on the order of the autoregressive
and moving-average part of the mean and variance process to O(n − s − d − e − p).
With respect to SVR the complexity of making a prediction is O(nSV d), where d
is the dimension of the feature space and nSV the number of SVs. For the proposed
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Algorithm 1 SVR-GRACH-KDE Estimation Algorithm for Forecasting VaR

1: AR(s) model for {rt }Tt=1 using SVR

2: Get errors from Step 1 {̂u}Tt=1+s

3: ARMA(s,d) model for {rt }Tt=1+s with results from Step 2 using SVR

4: Get errors from Step 3 {̂u∗}Tt=1+s+d

5: AR(e) model for {̂u∗2
t }Tt=1+s+d using SVR

6: Get errors from Step 5 {̂νt }Tt=1+s+d+e

7: ARMA(e,p) model for {̂u∗2
t }Tt=1+s+d+e with results from Step 6 using SVR

8: Obtain volatility estimates {̂σ∗}Tt=1+s+d+e+p from Step 7

9: Get standardized residuals ẑt = û∗
t /σ̂t for t = 1 + s + d + e + p, . . . , T

10: Scale {ẑt }Tt=1+s+d+e+p to zero mean and unit variance and obtain {̂z∗t }Tt=1+s+d+e+p

11: Estimate the α-quantile Q̂ẑ∗ (α) with KDE

12: Obtain r̂T+1 and σ̂T+1 by using the models from Step 3 and 7

13: VaR forecast: V̂ aR
α

T+1 = −[μ̂T+1 + σ̂T+1 Q̂ẑ∗ (α)]

application of forecasting the mean and variance of a financial time series the number
of features is usually low. Therefore, the computational time for generating predictions
is mainly driven by the sample size and negligible in this application.

Regarding the predictive performance, the regression function of the mean and
variance process is determined by the SVs which implies that the higher the number
of SVs, the higher the complexity. Using a SVR decision function with a high number
of SVs can, therefore, lead to a mediocre out-of-sample performance. However, it
is not possible to make an ex ante exact statement since the Vapnik-Chervonenkis
dimension of the RBF kernel is infinite (Burges 1998). Moreover, the goal of the SVR-
GARCH-KDEhybrid is to forecast quantiles. Evaluating the performance ex ante does,
therefore, depend on the measure that is used to evaluate forecasted quantiles rather
than the statistical properties of KDE and potential error bounds of SVR. In Sect. 3 the
framework of Christoffersen (1998) will be applied. For achieving a good performance
it is necessary to tune the parameters of the SVR and KDE part appropriately with
respect to the target measure. Consequently, in this study the focus is put on the out-
of-sample performance to optimize the quality of predictions and the hyperparameter
tuning is done with a separate training set.

3 Empirical study

3.1 General setting

The SVR-GARCH-KDE hybrid is tested using stock indices to evaluate the perfor-
mance for different regions. We consider three indices, namely the Euro STOXX 50,
S&P 500 and Nikkei 225 which represent the Euro zone, the USA and Japan, respec-
tively. The analysis is based on the log-returns of the adjusted index closing prices Pt :
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Table 1 Descriptive statistics for the log-returns of the analyzed indices in the period from July 1, 2006 to
June 30, 2016

Index 1st quartile Mean Median 3rd quartile Variance Skewness Kurtosis

EuroStoxx50 −0.74 −0.01 0.01 0.78 2.39 −0.06 5.15

S&P500 −0.46 0.02 0.07 0.59 1.74 −0.33 9.94

Nikkei225 −0.76 0.00 0.05 0.88 2.68 −0.51 7.49

Note that the log-returns were multiplied by 100 before computing the descriptive statistics

rt = log(Pt ) − log(Pt−1). (38)

The descriptive statistics of the analyzed indices are given in Table 1.
We forecast VaR for the quantiles α ∈ {0.01, 0.025, 0.05}, considering forecast

horizons of one and ten trading days. Estimating VaR for a horizon of ten trading days
is especially important regarding the applicability of a VaRmodel. Besides forecasting
VaR for a confidence level of 99%, which is equivalent to α = 0.01 in our setting,
a 10days forecast horizon is required in the regulations of the Basel Committee on
Banking Supervision.

In empirical applications, the quality of SVR depends on the kernel and parameter
values which need to be set manually. The prevailing approach to determine parameter
settings is grid search (e.g., Lessmann and Voß 2017), which we also apply in this
study. For the density estimation viaKDE, theGaussian kernel function in combination
with Silverman’s rule of thumb are used to reduce computational cost. The Gaussian
kernel function in KDE is equivalent to the standard normal distribution:

K (u) = 1

2π
e− u2

2 . (39)

Silverman (1986) showed that when (39) is used, robust density estimates can be
obtained with the following estimator for the bandwidth h:

hrot = 0.9min{̂σe, σ̂iqr }n−1/5. (40)

In 40 σ̂e denotes the empirical standard deviation and σ̂iqr is an estimate of the
standard deviation that is based on the interquartile range R:

σ̂iqr = R

1.34
. (41)

The rule-of-thumb estimator hrot is computationally inexpensive whereas other
proposed approaches to bandwidth estimation are more expensive since they are usu-
ally based on cross validation (Härdle et al. 2004). Moreover, the importance of the
kernel choice regarding the performance of KDE is limited. For instance, Härdle et al.
(2004) conclude that the kernel choice has almost no practical relevance after deriving
the asymptotic mean integrated squared error for different kernel choices.
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Table 2 Hypotheses for evaluating the appropriateness of VaR forecasts with the testing framework intro-
duced by Christoffersen (1998)

Test H0 H1

Unconditional coverage E[Vt ] = α E[Vt ] 
= α

Independence of violations π01 = π11 π01 
= π11

Conditional coverage E[Vt |Ft−1] = α E[Vt |Ft−1] 
= α

The evaluation of the models is based on Christoffersen (1998) who proposes a
likelihood ratio (LR) test framework, which assesses the unconditional and conditional
coverage as well as the independence of VaR exceedances. Moreover, Christoffersen
(1998) shows that the test statistic for conditional coverage can be derived as the
sum of the test statistics of the test for unconditional coverage and independence of
VaR exceedances. Hence, it is possible to test whether the performance of a VaR
model in terms of conditional coverage is determined by its ability to achieve correct
unconditional coverage or adjust for changing volatility. This is useful in situations
where the model has relatively bad conditional coverage but only one of the test
statistics for unconditional coverage or independence is small. The hypotheses for the
three tests are shown in Table 2 where α is the target quantile andFt−1 the information
set available at t−1. Vt is a series of VaR violations with Vt = I(rt < −VaRα

t )where
I(x < c) denotes the indicator function:

I(x < c) =
{
1 if x < c

0 if x ≥ c.
(42)

For the test of independence of violations Vt is assumed to be a binary first-order
Markov chain. The corresponding transition probability matrix of Vt is

Π1 =
[
1 − π01 π01
1 − π11 π11

]
(43)

where

πi j = P(Vt = j |Vt−1 = i). (44)

As criterion for selecting a model from grid search and evaluate the performance of
the SVR-GARCH-KDE hybrid with respect to benchmark models, the p value of the
test for conditional coverage is used. Since the null hypothesis corresponds to correct
conditional coverage which is the desired property, the one with the highest p value
is considered to be the best.

By using the framework of Christoffersen (1998) to evaluate and select models, the
main focus is put on the statistical properties and VaR violations of the considered
models. In order to measure the performance from the perspective of a loss function
that also takes into account the magnitude of violations, the quadratic and asymmetric
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loss function that was introduced in one of the seminal papers for evaluating VaR
models by Lopez (1998) will be used:

L(rt , VaRα
t ) =

{
1 + (rt − VaRα

t )2 if rt < VaRα
t

0 if rt ≥ VaRα
t .

(45)

The model losses will be evaluated by employing the superior predictive ability test
(SPA) framework proposed by Hansen (2005). Following the notation of Hansen
(2005), for a finite set of decision rules [δk,t−h, k = 0, 1, . . . ,m] made h periods
in advance with respect to a random variable ξt , the relative performance correspond-
ing to the benchmark δ0,t−h is measured as

dk,t = L(ξt , δ0,t−h) − L(ξt , δk,t−h). (46)

Based on the assumption that the alternatives are superior if and only if E[dk,t ] > 0,
Hansen (2005) formulates the hypothesis of interest for dt = (d1,t , . . . , dm,t )

� as

H0 : E[dt ] ≤ 0. (47)

A high p value indicates that none of the alternatives is superior to the benchmark. For
further information regarding the SPA test we refer to Hansen (2005). As for the LR
test of Christoffersen (1998), the SPA test will be performed for every model. This is
done by using every considered model once as benchmark in terms of Hansen (2005)
and comparing it to all other models. Note that due to performing multiple statistical
tests the p values should be interpreted rather as an indication of model performance
than in the context of a fixed significance level.

We perform all analyses using the statistical software R. The data has been down-
loaded fromYahooFinance using the quantmod package. For SVR,we use the package
e1071,which is theR implementation of the LIBSVM library ofChang andLin (2011).
To reduce computational time, we employ the doParallel package for parallelization of
computations. The benchmark methods introduced below are implemented by using
the rugarch package. All codes are available on www.quantlet.de. For details we refer
to Borke and Härdle (2018) and Borke and Härdle (2017).

3.2 Benchmarkmethods

To test the SVR-GARCH-KDE hybrid, we compare its performance to the standard
GARCH model and two of its variations. In particular, Franke et al. (2015) state that
the most important variations are the EGARCH and TGARCH model. Hence, they
serve as benchmarks in the empirical comparison. The EGARCH and TGARCHmod-
els are introduced by Nelson (1991) and Zakoian (1994), respectively. In contrast to
standard GARCH models, both can account for asymmetric behavior with respect to
past positive or negative returns. The two main differences between EGARCH and
TGARCH models are that the former has a multiplicative and the latter an additive
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model structure. Moreover, TGARCHmodels allow for different coefficients depend-
ing on the lags whereas EGARCHmodels capture the asymmetric behavior for all lags
with one coefficient. The GARCH-type models that Kuester et al. (2006) analyze are
coupled with different error distributions, i.e. the normal distribution, t-distribution
and skewed t-distribution. We adopt this approach, which implies that we compare
the SVR-GARCH-KDE hybrid to nine benchmarks.

3.3 Results

3.3.1 Model setting and tuning

We assume the mean process of rt in (32) is zero. Moreover, we assume the variance
process to have one AR and one MA part. These assumptions are imposed on both
the SVR-GARCH-KDE hybrid and the benchmark models. We then forecast VaR for
every index trading day from 2011-07-01 until 2016-06-30. The data is scaled to zero
mean and unit variance in the SVR step; as suggested in the documentation of the
e1071 package.

The tuning of the hyperparameters is done in a moving window approach using
251 return observations, which corresponds to approximately one trading year. The
hyperparameters are tuned for every combination of index and quantile separately. For
a given set of hyperparameters the model is trained based on the returns of the last
trading year to predict the next day’s VaR. Then, the window is shifted by one trading
day. The tuning period reaches from 2006-07-01 until 2011-06-30, where 2006-07-01
marks the date of the first VaR prediction. The considered parameter values in the grid
for SVR are

– C ∈ {10−4, 10−3, . . . , 104}
– ψ ∈ {0, 0.1, . . . , 0.9} where ε = Qu2scale

(ψ)

– γ ∈ {10−4, 10−3, . . . , 104}.
Note that the second point indicates that tuning is not done over fixed values of ε.

Instead, in every step of the estimation, ε is determined based on the ψ-quantile of
the squared scaled disturbances of the mean model. This corresponds to the squared
scaled returns because we assume zero mean of rt . The motivation behind this is
the tendency of returns to form volatility clusters. Hence, a fixed ε can lead to good
results in one volatility regime but might have a poor performance after a regime
change. For instance, in the case of a financial crisis, the right tail of the distribution of
past volatilities gets thicker. Hence, an ε that depends on the quantile of the distribution
will increase such that large volatilities have automatically a higher influence on the
estimated parameters from the SVRoptimization. By using squared values it is ensured
that only positive values are obtained for ε. However, notice that the distribution of
the scaled squared disturbances, which are used in the SVR training, is shifted to the
left of the distribution of the squared scaled disturbances. Hence, it is possible that for
high values of ψ no observations are outside the ε-tube such that the model cannot be
estimated.

The parameter settings that resulted in the best models for the SVR-GARCH-KDE
hybrid during the tuning period are shown in Table 3. It can be seen that especially for
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Table 3 The best models in the tuning period according to the p value of the test for conditional coverage

C ψ γ Index Quantile Violations UC ID CC

10 0.7 0.1 S&P500 1.0 0.95 86.62 63.08 87.84

10 0.7 0.01 S&P500 2.5 2.46 93.15 96.55 96.20

10 0.6 0.001 S&P500 5.0 5.00 99.48 99.57 99.57

100 0.8 0.01 Nikkei225 1.0 0.82 50.63 68.48 73.85

100 0.7 0.01 Nikkei225 2.5 2.70 66.43 57.80 52.61

100 0.7 0.10 Nikkei225 5.0 4.49 40.84 94.38 67.06

100 0.7 0.01 EuroStoxx50 1.0 1.02 93.28 60.41 87.11

0.1 0.6 0.001 EuroStoxx50 2.5 2.52 96.42 97.76 97.66

10000 0.6 10 EuroStoxx50 5.0 4.96 94.86 99.71 99.50

UC, ID and CC indicate the p value of the corresponding LR test. All values in the columns Quantile,
Violations, UC, ID and CC are given in percent

Table 4 The models are presented with their mean rank. The mean rank was computed per index and
quantile using the ties method max in the frankv function of the R package data.table

Model Overall CC 1day SPA 1day CC 10days SPA 10days

TGARCH-SSTD 2.3 2.2 1.4 2.3 3.2

GARCH-SSTD 2.6 2.3 2.6 2.7 2.7

SVR-GARCH-KDE 3.2 4.9 2.2 4.8 1.0

GARCH-STD 5.9 6.1 6.4 4.9 6.3

TGARCH-NORM 6.0 6.0 7.7 5.1 5.1

GARCH-NORM 6.6 6.1 6.8 6.3 7.3

TGARCH-STD 6.7 5.3 9.0 5.1 7.4

EGARCH-SSTD 6.9 5.0 5.3 9.4 7.9

EGARCH-NORM 8.6 8.7 7.3 9.3 9.0

EGARCH-STD 8.6 8.8 7.2 9.6 8.8

The lower the mean rank, the better the model

ψ only a certain range appears among the best models. Moreover, the optimalψ tends
to be higher for lower quantiles. Based on the obtained parameters, VaR forecasts are
produced from 2011-07-01 until 2016-06-30. A summary of model results in terms of
average ranks is available in Table 4. Subsequent sections elaborate on these results
in detail.

3.3.2 Model comparison

The results are presented for each quantile separately at the end of the section. In
the Tables 5, 6 and 7 are the results for the 1-day-ahead forecast. The results for the
10-days-ahead forecasts can be found in the Tables 8, 9 and 10. To clearly identify
the best performing models, every table is sorted in descending order for every index
according to the p value of the conditional coverage test. The p value of the conditional
coverage test is used for sorting to focus rather on statistical properties than pure
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Table 5 Results for 1-day-ahead VaR forecasts from July 1, 2011 to June 30, 2016 for α = 0.01

Model Index Violations SPA UC ID CC

EGARCH-SSTD S&P500 1.11 4.99 69.27 57.46 79.01

TGARCH-SSTD S&P500 0.72 92.22 28.52 71.87 52.94

GARCH-SSTD S&P500 1.27 20.76 35.24 43.34 28.13

TGARCH-STD S&P500 1.43 0.20 14.91 46.97 27.20

SVR-GARCH-KDE S&P500 0.79 29.34 44.83 18.28 13.71

GARCH-STD S&P500 1.67 16.17 2.95 65.77 6.15

EGARCH-STD S&P500 1.75 5.79 1.58 37.62 3.67

TGARCH-NORM S&P500 2.15 3.39 0.04 27.64 0.10

EGARCH-NORM S&P500 2.23 2.40 0.02 25.88 0.04

GARCH-NORM S&P500 2.38 0.20 0.00 94.85 0.01

TGARCH-SSTD Nikkei225 1.21 4.99 47.61 54.48 64.58

GARCH-SSTD Nikkei225 1.21 2.79 47.61 54.48 64.58

EGARCH-SSTD Nikkei225 1.37 4.19 21.61 49.21 36.76

GARCH-STD Nikkei225 1.69 1.80 2.60 66.33 5.56

TGARCH-STD Nikkei225 1.77 1.00 1.37 37.30 3.23

SVR-GARCH-KDE Nikkei225 0.24 59.48 0.13 90.41 0.55

EGARCH-STD Nikkei225 2.09 0.80 0.07 29.17 0.19

GARCH-NORM Nikkei225 2.17 0.40 0.03 88.16 0.14

TGARCH-NORM Nikkei225 2.33 0.20 0.01 93.19 0.03

EGARCH-NORM Nikkei225 2.42 0.20 0.00 95.21 0.01

SVR-GARCH-KDE EuroStoxx50 1.53 76.25 8.17 44.23 16.36

GARCH-SSTD EuroStoxx50 1.69 72.85 2.60 39.54 5.84

TGARCH-SSTD EuroStoxx50 1.69 43.51 2.60 66.33 5.56

TGARCH-STD EuroStoxx50 1.77 1.60 1.37 70.53 3.39

GARCH-STD EuroStoxx50 1.85 1.80 0.70 35.15 1.70

TGARCH-NORM EuroStoxx50 2.09 0.20 0.07 85.17 0.28

GARCH-NORM EuroStoxx50 2.17 6.19 0.03 27.33 0.08

EGARCH-STD EuroStoxx50 2.33 9.38 0.01 93.19 0.03

EGARCH-SSTD EuroStoxx50 2.42 4.79 0.00 95.21 0.01

EGARCH-NORM EuroStoxx50 2.50 3.19 0.00 96.87 0.00

UC, ID, CC and SPA indicate the p value of the corresponding test. The results are in descending order
with respect to CC for each index. All values in the columns Quantile, Violations, UC, ID, CC and SPA are
given in percent

losses. The abbreviations NORM, STD and SSTD indicate the normal, t- and skewed
t-distribution, respectively. Additionally, the column headers UC, ID, CC and SPA
refer to the corresponding p value of the test for unconditional coverage, independence
of violations, conditional coverage and superior predictive ability.

One-Step-Ahead Forecast Model Evaluation for α = 0.01 The SVR-GARCH-KDE
hybrid is the best model for the Euro STOXX 50 for α = 0.01. A visualization of
its performance is given in Fig. 2. Here, the SVR-GARCH-KDE hybrid estimates in
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Table 6 Results for 1-day-ahead VaR forecasts from July 1, 2011 to June 30, 2016 for α = 0.025

Model Index Violations SPA UC ID CC

GARCH-SSTD S&P500 2.62 34.33 78.12 98.97 95.22

EGARCH-SSTD S&P500 3.02 1.40 25.18 98.94 51.31

TGARCH-SSTD S&P500 2.38 80.44 79.19 22.60 46.40

GARCH-STD S&P500 3.50 0.80 3.24 93.45 9.47

GARCH-NORM S&P500 3.82 1.20 0.55 99.20 2.10

SVR-GARCH-KDE S&P500 1.43 34.53 0.83 52.45 1.62

TGARCH-STD S&P500 3.90 0.00 0.33 75.52 1.02

TGARCH-NORM S&P500 4.05 1.60 0.12 69.37 0.36

EGARCH-STD S&P500 4.37 0.00 0.01 96.11 0.06

EGARCH-NORM S&P500 4.53 0.20 0.00 92.48 0.02

GARCH-SSTD Nikkei225 2.90 43.91 38.01 99.90 67.96

TGARCH-SSTD Nikkei225 2.42 71.66 84.78 22.29 46.72

TGARCH-STD Nikkei225 3.14 0.40 16.44 97.67 37.15

TGARCH-NORM Nikkei225 3.22 1.60 11.91 96.33 28.60

EGARCH-NORM Nikkei225 3.22 0.40 11.91 96.33 28.60

GARCH-NORM Nikkei225 3.38 0.00 5.87 92.85 15.55

GARCH-STD Nikkei225 3.38 0.00 5.87 89.33 14.96

EGARCH-SSTD Nikkei225 3.06 13.97 22.21 12.14 14.30

SVR-GARCH-KDE Nikkei225 1.69 73.65 5.26 14.27 2.18

EGARCH-STD Nikkei225 3.86 0.20 0.43 99.42 1.68

TGARCH-SSTD EuroStoxx50 2.98 79.84 29.36 72.90 42.00

TGARCH-NORM EuroStoxx50 3.22 0.00 11.91 83.46 24.78

TGARCH-STD EuroStoxx50 3.38 0.00 5.87 89.33 14.96

GARCH-SSTD EuroStoxx50 3.46 68.86 3.99 91.84 11.13

SVR-GARCH-KDE EuroStoxx50 3.14 29.74 16.44 11.43 4.35

GARCH-STD EuroStoxx50 3.70 5.19 1.11 97.42 3.88

GARCH-NORM EuroStoxx50 3.95 5.59 0.26 75.92 0.81

EGARCH-STD EuroStoxx50 4.27 1.20 0.03 88.73 0.12

EGARCH-SSTD EuroStoxx50 4.51 1.40 0.00 95.50 0.02

EGARCH-NORM EuroStoxx50 4.59 1.60 0.00 97.11 0.01

UC, ID, CC and SPA indicate the p value of the corresponding test. The results are in descending order
with respect to CC for each index. All values in the columns Quantile, Violations, UC, ID, CC and SPA are
given in percent

general higher values for VaR than the other models and exhibits more variability. For
the S&P 500 and Nikkei 225 the SVR-GARCH-KDE hybrid outperforms all models
that are coupled with a normal distribution. However, all models using a skewed t-
distribution perform better. Especially for the Nikkei 225 this is caused by having low
unconditional coverage due to risk overestimation. However, since risk overestimation
causes less losses the SPA test p value is highest. In general, the models coupled with
a normal distribution perform poorly for all indices. This comes as no surprise since
the distribution of asset returns is usually leptokurtic.
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Table 7 Results for 1-day-ahead VaR forecasts from July 1, 2011 to June 30, 2016 for α = 0.05

Model Index Violations SPA UC ID CC

GARCH-SSTD S&P500 5.01 57.49 98.97 89.07 89.06

GARCH-NORM S&P500 5.72 0.00 24.94 99.79 51.40

TGARCH-SSTD S&P500 5.41 87.82 51.47 60.38 48.83

GARCH-STD S&P500 5.80 2.20 20.21 99.23 43.99

SVR-GARCH-KDE S&P500 4.37 24.95 29.68 30.25 17.55

EGARCH-SSTD S&P500 6.44 1.20 2.47 83.92 6.73

TGARCH-NORM S&P500 6.60 0.40 1.30 77.88 3.56

EGARCH-NORM S&P500 6.76 1.00 0.65 94.35 2.33

TGARCH-STD S&P500 6.76 0.00 0.65 71.36 1.77

EGARCH-STD S&P500 7.00 0.80 0.21 87.46 0.78

EGARCH-SSTD Nikkei225 5.23 15.17 70.78 97.26 90.66

SVR-GARCH-KDE Nikkei225 4.59 27.74 50.10 97.11 77.43

TGARCH-SSTD Nikkei225 4.67 94.81 58.95 89.41 77.30

GARCH-SSTD Nikkei225 5.07 34.93 90.69 75.29 74.78

TGARCH-NORM Nikkei225 5.23 0.20 70.78 68.85 64.18

TGARCH-STD Nikkei225 5.56 0.20 37.71 89.62 60.67

GARCH-NORM Nikkei225 5.88 4.99 16.68 78.41 30.16

EGARCH-NORM Nikkei225 5.72 0.60 25.68 49.18 25.85

GARCH-STD Nikkei225 6.04 0.00 10.34 71.98 19.11

EGARCH-STD Nikkei225 6.04 0.60 10.34 71.98 19.11

TGARCH-SSTD EuroStoxx50 5.15 89.62 80.55 65.27 63.32

GARCH-SSTD EuroStoxx50 5.96 57.29 13.21 95.83 30.84

GARCH-NORM EuroStoxx50 5.96 48.90 13.21 95.83 30.84

TGARCH-NORM EuroStoxx50 6.04 2.59 10.34 78.10 20.73

SVR-GARCH-KDE EuroStoxx50 5.48 33.53 44.90 26.86 20.17

EGARCH-SSTD EuroStoxx50 6.12 1.40 7.99 68.65 14.82

TGARCH-STD EuroStoxx50 6.20 0.00 6.11 59.29 10.26

EGARCH-NORM EuroStoxx50 6.52 1.80 1.85 99.10 6.18

GARCH-STD EuroStoxx50 6.60 3.99 1.33 96.58 4.52

EGARCH-STD EuroStoxx50 6.84 0.80 0.46 69.51 1.27

UC, ID, CC and SPA indicate the p value of the corresponding test. The results are in descending order
with respect to CC for each index. All values in the columns Quantile, Violations, UC, ID, CC and SPA are
given in percent

One-Step-Ahead Forecast Model Evaluation for α = 0.025 The performance of the
SVR-GARCH-KDEhybrid at the 2.5% level is not as good as forα = 0.01 for theEuro
STOXX 50. We observe the lowest p value in the test for independence of violations
but the third best regarding the test for unconditional coverage. Interestingly, although
the TGARCH and EGARCH model account for asymmetries in volatility, the former
is the best and the latter the worst variancemodel. A relatively high risk overestimation
for the S&P 500 and Nikkei 225 causes the SVR-GARCH-KDE hybrid to be on the
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Table 8 Results for 10-days-ahead VaR forecasts from July 1, 2011 to June 30, 2016 for α = 0.01

Model Index Violations SPA UC ID CC

TGARCH-SSTD S&P500 1.03 11.78 90.58 30.09 29.88

SVR-GARCH-KDE S&P500 0.95 94.01 86.85 25.94 25.59

GARCH-SSTD S&P500 1.19 10.38 50.57 3.91 3.14

TGARCH-STD S&P500 1.99 1.80 0.19 25.26 0.21

GARCH-STD S&P500 1.99 2.99 0.19 25.26 0.21

TGARCH-NORM S&P500 2.31 3.59 0.01 39.72 0.01

GARCH-NORM S&P500 2.54 3.39 0.00 51.83 0.00

EGARCH-STD S&P500 2.78 0.00 0.00 64.14 0.00

EGARCH-SSTD S&P500 2.70 0.80 0.00 4.50 0.00

EGARCH-NORM S&P500 3.26 0.60 0.00 14.87 0.00

TGARCH-SSTD Nikkei225 1.45 3.19 13.59 52.97 17.42

GARCH-SSTD Nikkei225 1.45 2.40 13.59 52.97 17.42

SVR-GARCH-KDE Nikkei225 0.32 57.29 0.51 87.23 1.97

GARCH-STD Nikkei225 1.85 0.80 0.70 19.57 0.51

TGARCH-STD Nikkei225 1.93 1.80 0.34 22.56 0.31

GARCH-NORM Nikkei225 2.01 1.80 0.16 25.77 0.18

TGARCH-NORM Nikkei225 2.09 2.20 0.07 5.45 0.02

EGARCH-STD Nikkei225 3.95 0.20 0.00 75.92 0.00

EGARCH-SSTD Nikkei225 2.50 1.20 0.00 48.53 0.00

EGARCH-NORM Nikkei225 2.58 0.80 0.00 15.65 0.00

SVR-GARCH-KDE EuroStoxx50 0.97 64.07 90.41 62.85 88.31

GARCH-SSTD EuroStoxx50 2.01 8.78 0.16 25.77 0.18

TGARCH-SSTD EuroStoxx50 2.33 5.99 0.01 40.43 0.01

TGARCH-STD EuroStoxx50 2.58 4.99 0.00 15.65 0.00

TGARCH-NORM EuroStoxx50 2.66 4.79 0.00 18.07 0.00

GARCH-STD EuroStoxx50 2.33 5.79 0.01 9.64 0.00

GARCH-NORM EuroStoxx50 2.58 0.80 0.00 15.65 0.00

EGARCH-STD EuroStoxx50 4.03 1.40 0.00 17.32 0.00

EGARCH-SSTD EuroStoxx50 3.70 1.80 0.00 2.49 0.00

EGARCH-NORM EuroStoxx50 3.30 0.20 0.00 44.47 0.00

UC, ID, CC and SPA indicate the p value of the corresponding test. The results are in descending order
with respect to CC for each index. All values in the columns Quantile, Violations, UC, ID, CC and SPA are
given in percent

sixth and ninth rank, respectively. As seen for α = 0.01 this leads, however, to high p
values in the SPA test due to lower losses. The performance for the S&P 500 can be
seen in Fig. 3.

One-Step-Ahead Forecast Model Evaluation for α = 0.05 The best performance of
the SVR-GARCH-KDE hybrid for α = 0.05 is rank two for the Nikkei 225. Here, it
is only beaten by the EGARCH-SSTD model. A visualization is given in Fig. 4. For
the other indices the SVR-GARCH-KDE hybrid ranks on place five. This is caused by
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Table 9 Results for 10-days-ahead VaR forecasts from July 1, 2011 to June 30, 2016 for α = 0.025

Model Index Violations SPA UC ID CC

TGARCH-SSTD S&P500 2.62 13.57 78.12 55.96 53.84

GARCH-SSTD S&P500 2.78 6.99 52.88 22.94 18.81

GARCH-STD S&P500 3.18 3.39 13.82 39.68 13.22

TGARCH-STD S&P500 3.42 0.20 4.80 51.32 7.27

GARCH-NORM S&P500 3.58 2.79 2.14 59.33 4.20

SVR-GARCH-KDE S&P500 1.75 95.21 7.15 16.45 3.24

TGARCH-NORM S&P500 3.58 0.40 2.14 25.03 1.77

EGARCH-STD S&P500 4.37 0.00 0.01 30.25 0.02

EGARCH-SSTD S&P500 4.77 0.20 0.00 22.74 0.00

EGARCH-NORM S&P500 4.61 0.20 0.00 17.75 0.00

GARCH-STD Nikkei225 2.74 0.20 59.74 60.95 53.02

GARCH-SSTD Nikkei225 2.25 8.58 57.31 36.53 31.17

GARCH-NORM Nikkei225 3.30 0.00 8.45 86.53 19.54

TGARCH-SSTD Nikkei225 2.74 0.00 59.74 20.72 18.02

TGARCH-STD Nikkei225 3.06 0.00 22.21 33.30 15.80

TGARCH-NORM Nikkei225 3.46 0.00 3.99 52.40 6.35

EGARCH-SSTD Nikkei225 4.03 0.40 0.15 43.03 0.28

EGARCH-NORM Nikkei225 4.11 0.00 0.09 46.87 0.19

SVR-GARCH-KDE Nikkei225 1.29 48.10 0.26 5.17 0.06

EGARCH-STD Nikkei225 5.31 0.20 0.00 96.40 0.00

TGARCH-SSTD EuroStoxx50 3.22 50.30 11.91 40.62 12.06

GARCH-SSTD EuroStoxx50 3.30 50.10 8.45 44.47 10.04

TGARCH-NORM EuroStoxx50 3.38 9.38 5.87 48.40 8.11

GARCH-STD EuroStoxx50 3.46 8.78 3.99 52.40 6.35

SVR-GARCH-KDE EuroStoxx50 3.06 85.03 22.21 9.73 4.61

TGARCH-STD EuroStoxx50 3.46 13.77 3.99 20.23 2.45

GARCH-NORM EuroStoxx50 3.78 0.20 0.70 68.40 1.80

EGARCH-STD EuroStoxx50 5.88 0.40 0.00 43.78 0.00

EGARCH-SSTD EuroStoxx50 4.91 0.20 0.00 3.67 0.00

EGARCH-NORM EuroStoxx50 4.83 0.00 0.00 23.77 0.00

UC, ID, CC and SPA indicate the p value of the corresponding test. The results are in descending order
with respect to CC for each index. All values in the columns Quantile, Violations, UC, ID, CC and SPA are
given in percent

having relatively low p values for the ID test. In terms of UC, the SVR-GARCH-KDE
hybrid is the second and third bestmodel for the S&P 500 andNikkei 225, respectively.
In comparison to the results for α = 0.01, the models with a normal distribution show
a better performance for α ∈ {0.025, 0.05}. However, using the skewed t-distribution
leads also for α ∈ {0.025, 0.05} to the best rankings.
Ten-Steps-Ahead Forecast Model Evaluation for α = 0.01 As for the one-step-ahead
forecasts, the SVR-GARCH-KDE hybrid is also the best model for the Euro STOXX
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Table 10 Results for 10-days-ahead VaR forecasts from July 1, 2011 to June 30, 2016 for α = 0.05

Model Index Violations SPA UC ID CC

TGARCH-NORM S&P500 5.09 1.20 88.72 34.98 34.63

TGARCH-STD S&P500 5.01 0.00 98.97 31.66 31.66

GARCH-SSTD S&P500 4.29 2.20 23.85 57.38 28.64

GARCH-STD S&P500 5.17 0.00 78.70 17.88 17.24

TGARCH-SSTD S&P500 4.21 4.39 18.86 24.22 10.20

GARCH-NORM S&P500 5.48 0.00 43.69 4.89 3.62

EGARCH-NORM S&P500 6.52 0.00 1.80 29.69 1.81

EGARCH-STD S&P500 6.60 0.00 1.30 32.87 1.50

SVR-GARCH-KDE S&P500 3.34 56.89 0.41 17.11 0.28

EGARCH-SSTD S&P500 7.23 0.00 0.06 62.62 0.18

TGARCH-SSTD Nikkei225 5.23 10.18 70.78 94.63 88.21

GARCH-SSTD Nikkei225 4.99 21.16 98.96 87.41 87.40

TGARCH-STD Nikkei225 5.31 8.18 61.51 72.91 64.25

TGARCH-NORM Nikkei225 5.31 12.18 61.51 72.91 64.25

GARCH-NORM Nikkei225 5.72 5.99 25.68 99.95 52.55

GARCH-STD Nikkei225 5.72 8.18 25.68 89.19 46.89

SVR-GARCH-KDE Nikkei225 3.95 88.82 7.70 75.92 15.90

EGARCH-SSTD Nikkei225 6.36 0.60 3.44 90.35 9.65

EGARCH-NORM Nikkei225 6.12 3.59 7.99 31.60 6.82

EGARCH-STD Nikkei225 7.97 0.00 0.00 91.62 0.00

SVR-GARCH-KDE EuroStoxx50 5.07 50.10 90.69 61.34 60.92

TGARCH-NORM EuroStoxx50 6.12 2.59 7.99 6.55 1.41

TGARCH-SSTD EuroStoxx50 6.12 4.99 7.99 2.43 0.53

TGARCH-STD EuroStoxx50 6.36 0.00 3.44 4.28 0.46

GARCH-NORM EuroStoxx50 6.36 2.20 3.44 4.28 0.46

GARCH-SSTD EuroStoxx50 6.52 2.99 1.85 6.06 0.38

GARCH-STD EuroStoxx50 6.76 0.40 0.67 9.76 0.25

EGARCH-STD EuroStoxx50 9.10 0.20 0.00 1.03 0.00

EGARCH-SSTD EuroStoxx50 7.41 0.20 0.03 0.13 0.00

EGARCH-NORM EuroStoxx50 7.17 0.60 0.10 0.18 0.00

UC, ID, CC and SPA indicate the p value of the corresponding test. The results are in descending order
with respect to CC for each index. All values in the columns Quantile, Violations, UC, ID, CC and SPA are
given in percent

50. For the S&P 500 and Nikkei 225 the SVR-GARCH-KDE hybrid is the second and
third best model, respectively. For all indices, it is the only model not underestimating
the risk. Especially the EGARCH models perform poorly. A visualization is given
in Fig. 5. In contrast to the one-step-ahead forecasts, the models using a normal
distribution are not shown but the EGARCH models due to their bad performance
for 10-days-ahead forecasts. With respect to the SPA test, the SVR-GARCH-KDE
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Fig. 2 VaR 1-day-ahead forecast model comparison for the Euro Stoxx 50 at α = 0.01 in the period from
July 1, 2011 to June 30, 2016. The SVR-GARCH-KDE hybrid is compared to models that are overall on
average better and to the models using a normal distribution

hybrid causes less severe losses than any other model for all levels of the ten-steps-
ahead forecast horizon.

Ten-Steps-Ahead Forecast Model Evaluation for α = 0.025 Overall, the SVR-
GARCH-KDE hybrid performs worse at the 2.5% than for the 1% level. In case of the
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Fig. 3 VaR 1-day-ahead forecast model comparison for the S&P 500 at α = 0.025 in the period from July
1, 2011 to June 30, 2016. The SVR-GARCH-KDE hybrid is compared to models that are overall on average
better and to the models using a normal distribution

the S&P 500 and Nikkei 225 this is mainly driven by overestimating the risk leading to
low p values in the UC test. In contrast, even though the SVR-GARCH-KDE hybrid
has the highest p value in the UC test for the EURO STOXX 50, it is relatively low for
the ID test. An exemplary visualization is given for the EURO STOXX 50 in Fig. 6.
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Fig. 4 VaR 1-day-ahead forecast model comparison for the Nikkei 225 at α = 0.05 in the period from July
1, 2011 to June 30, 2016. The SVR-GARCH-KDE hybrid is compared to models that are overall on average
better and to the models using a normal distribution

Ten-Steps-Ahead Forecast Model Evaluation for α = 0.05 The performance of the
SVR-GARCH-KDE hybrid for α = 0.05 is mixed. While it is by far the best model
for the EURO STOXX 50, it achieves only rank seven and nine for the Nikkei 225 and
S&P 500, respectively. As for α = 0.025 this is mainly driven by risk overestimation
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Fig. 5 VaR 10-days-ahead forecast model comparison for the Nikkei 225 at α = 0.01 in the period from
July 1, 2011 to June 30, 2016. The SVR-GARCH-KDE hybrid is compared to models that are overall on
average better and to the EGARCH models

and low p values for the UC test. Similar to the 1-day-ahead forecasts, the models
using a normal distribution perform better for α = 0.05 than for the other quantiles.
The TGARCH-NORM model is even the best for the S&P 500. A visualization is
shown in Fig. 7.
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Fig. 6 VaR 10-days-ahead forecast model comparison for the Euro Stoxx 50 at α = 0.025 in the period
from July 1, 2011 to June 30, 2016. The SVR-GARCH-KDE hybrid is compared to models that are overall
on average better and to the EGARCH models

Evaluation Summary Summarizing the results observed across all indices, quantiles
and the two forecast horizons, we conclude that the SVR-GARCH-KDE hybrid dis-
plays a competitive performance. This can be seen in Table 4 where the mean ranks
per index and quantile are presented for each model with respect to the CC and SPA
test as well as the two forecast horizons. The SVR-GARCH-KDE hybrid is over-
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Fig. 7 VaR 10-days-ahead forecast model comparison for the S&P 500 at α = 0.05 in the period from
July 1, 2011 to June 30, 2016. The SVR-GARCH-KDE hybrid is compared to models that are overall on
average better and to the EGARCH models

all and for the CC test p values the third best model for both forecast horizons.
Regarding the SPA test it has rank two for the 1-day-ahead forecast horizon and
is the best model for the 10-days-ahead forecast horizon. Benchmark models cou-
pled with a normal distribution are usually outperformed by the SVR-GARCH-KDE
hybrid. Consequently, the SVR-GARCH-KDE hybrid has a relatively high accuracy
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especially compared to models with a normal distribution. The importance of this
result stems from the fact that GARCH models with a normal distribution can be
seen as a popular standard approach for modeling VaR or volatility and are, there-
fore, a natural benchmark. Additionally, excepting the case of the 10-days-ahead
S&P 500 forecast for α = 0.05 there is no setting where the models using a nor-
mal distribution perform best. This provides further evidence that using the normal
distribution to measure market risk is inappropriate. However, models with a skewed
t-distribution show in many cases the best performance. For instance, the TGARCH
model coupledwith the skewed t-distribution is with two exceptions always among the
top three in terms of the CC test. This confirms the results of previous research showing
usually skewed return distributions. Unlike the benchmarks, the SVR-GARCH-KDE
hybrid tends to overestimate market risk. This might come from the choice of time
interval for SVR parameter tuning. In particular, the tuning period covers the financial
crisis of 2008 where market risk was extremely high. However, in the context of risk
management, risk underestimation is more critical than risk overestimation because it
can lead to bankruptcy in the short term. For instance, assume a hypothetical situation
with the goal to forecast the 5% VaR, where the SVR-GARCH-KDE hybrid and a
benchmark model have the same p value regarding the independence test. Addition-
ally, assume the p value of the benchmark in the test of conditional coverage is higher
because it has an unconditional coverage of 5.5% whereas that of the SVR-GARCH-
KDE hybrid is 4%. The 1% overestimation of the SVR-GARCH-KDE hybrid works
like a buffer for model risk since all estimation techniques exhibit statistical uncer-
tainty. Hence, the use of the SVR-GARCH-KDE hybrid may be still more appealing
than the use of benchmark models that tend to underestimate risk.

4 Conclusion

In a large-scale empirical comparison Kuester et al. (2006) find VaRmodels belonging
to the location-scale class superior to alternative approaches. However, the location-
scale models considered in their study are parametric and based on distributional
assumptions. Motivated by the potential shortcomings of a parametric approach, the
paper introduces a nonparametric and nonlinear VaR forecasting framework based
on the location-scale class. The mean and volatility model are modeled with SVR
in an ARMA and GARCH like fashion, respectively. In addition, the VaR forecast is
obtained by estimating the distribution function of the standardized residuals via KDE.

To evaluate the performance of the SVR-GARCH-KDE hybrid, VaR is forecasted
for three indices: Euro STOXX 50, Nikkei 225 and S&P 500, considering the different
quantiles of α ∈ {0.01, 0.025, 0.05} for forecast horizons of 1 and 10days. GARCH,
EGARCHandTGARCHmodels coupledwith the normal, t- and skewed t-distribution
serve as benchmarks and are compared to the proposed model using a LR testing
framework for interval forecasts (Christoffersen 1998) and the SPA test of Hansen
(2005). Grid searchwith the goal tomaximize the p value of the LR test for conditional
coverage is used to set the SVR parameters. The SVR-GARCH-KDE hybrid delivers
competitive results. For instance, in case of the 1-day-ahead forecast horizon it is the
best model for the Euro STOXX 50 for α = 0.01 and the third best model overall. The
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TGARCH andGARCHmodel in combination with the skewed t-distribution show the
best results. In contrast to the benchmark models, which usually underestimate risk,
the SVR-GARCH-KDE hybrid tends to overestimate risk. This can lead to situations
where the SVR-GARCH-KDE hybrid has an average performance regarding the p
value of the test for conditional coverage. However, with respect to risk management,
the use of the SVR-GARCH-KDE might be still favorable over using the benchmarks
since all approaches exhibit statistical uncertainty. The tendency to overestimate risk
can, therefore, serve as a model risk buffer. This is supported by the results of the SPA
test that evaluates the loss function which penalizes especially large VaR violations.
For instance, the proposed model has the best performance for the 10-days-ahead
forecast horizon.

In general, the competitive results indicate that the proposed SVR-GARCH-KDE
hybrid is a promising alternative. Despite fixing and not retuning the hyperparameters
for five years, it is among the top three models with respect to conditional coverage
and loss minimizationmeasured by the SPA test for a forecast horizon of one as well as
10days. Additionally, it is the best model in minimizing the loss function for 10-days-
ahead forecasts. This indicates the proposed SVR-GARCH-KDE hybrid is a robust
VaRmodeling approach that is capable of capturing complex nonlinear structures in the
volatility process and has the flexibility to model a wide class of tail events. Moreover,
further improvements can be expected by refining the tuning routine. However, there
exist several ways that can lead to an improved performance. First, tuning could be
done for more parameters. For instance, in the KDE part of the estimation procedure,
the kernel function and bandwidth estimator are setwithout tuning.Hence, considering
different kernel functions and more flexible bandwidth estimators are potential ways
to improve the performance further. Moreover, the kernel in the SVR part is also fixed
and could be varied. Second, more recent information could be used in the parameter
selection by re-tuning the model. Here, tuning is done for a block of five years of
data. Then, based on the optimal parameters found for this data block, forecasts for
five years are made and the parameters are held fixed. Thus, annual or even shorter
re-tuning periods could result in parameters that are more appropriate for the existing
market risk. Additionally, refining the grid can also result in better parameter choices.

In addition to modifying the tuning routine, the SVR-GARCH-KDE hybrid could
be improved by changing the model specification. Overall, the TGARCH model with
the skewed t-distribution achieves very good results. Hence, the SVR-GARCH-KDE
hybrid could be modified such that it also accounts for asymmetric reactions of the
volatility to past returns in a TGARCH likemanner.Moreover, the proposed procedure
does not ensure that the estimated variances are positive. Here, this problem is handled
by replacing non-positive estimates with the last positive. However, positive variance
estimates could be ensured by modeling the logarithm of the squared mean model
residuals instead.

All above mentioned adjustments are potential starting points for future research
to further improve the proposed framework. However, although the suggested mod-
ifications of the tuning procedure are reasonable approaches to improve the model
performance, they also increase the computational complexity. After all, this is a
slight drawback of the SVR-GARCH-KDE hybrid in comparison to standard models.
It is, however offset by potential performance gains.
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	14_Wesselhöfft-Härdle2020_Article_Risk-ConstrainedKellyPortfolio
	Risk-Constrained Kelly Portfolios Under Alpha-Stable Laws
	Abstract
	1 Introduction
	2 Model
	2.1 Portfolio Allocation Problem
	2.2 Tail Constraints and Non-linear Instruments

	3 Estimation
	3.1 A Case for Non-Gaussianity
	3.2 Scale Invariance
	3.3 Elliptically Contoured α-Stable Distributions
	3.4 Parameter Estimation
	3.5 Semiparametric scaling approximation

	4 Implementation
	4.1 Data
	4.2 Stable tests
	4.3 Stable estimation
	4.4 Portfolio implementation

	5 Conclusion
	References


	15_Lux2019_Article_DataDrivenValue-at-riskForecas
	Data driven value-at-risk forecasting using a SVR-GARCH-KDE hybrid
	Abstract
	1 Introduction
	2 Methodology
	2.1 Defining value-at-risk
	2.2 Estimating VaR using location-scale models
	2.3 Modeling volatility using GARCH models
	2.4 Nonparametric density estimation
	2.5 Support vector regression
	2.6 SVR-GARCH-KDE hybrid

	3 Empirical study
	3.1 General setting
	3.2 Benchmark methods
	3.3 Results
	3.3.1 Model setting and tuning
	3.3.2 Model comparison


	4 Conclusion
	Acknowledgements
	References





