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Statement of the problem 1-1

Example

] we pay 200 EUR for the chance to win 1000 EUR, if DAX
returns decrease by 2%

PDAx(rDAX S —0.02) = FDA)((—0.0Q) =0.2




Statement of the problem 1-2

Example

] we pay 200 EUR for the chance to win 1000 EUR, if DAX
returns decrease by 2%

Ppax(rpax < —0.02) = (-0.02) =0.2

[] we pay 200 EUR for the chance to win 1000 EUR, if DJ
returns decrease by 1%

PDJ(rDJ < —0.01) = (—0.01) =0.2




Statement of the problem 1-3

Example

[] we get 1000 EUR if DAX and DJ indices decrease
simultaneously by 2% and 1% respectively.
how much are we ready to pay in this case?

P{(rDAX < —0.02) N (rDJ < —0.01)}
= FDAX7DJ(—O.O2, —0.01)

= { (—0.02), F,(—0.01)}
= ((0.2,0.2).




Univariate Distributions 2-1

Univariate Case

Let x1,..., X, be realizations of the random variable X
X ~ F, where F is unknown

Example 1

[J x; are returns of the asset for one firm at the day t;
[J x; are numbers of sold albums The Man Who Sold the World
by David Bowie at day t;

What is a good approximation of F ?

traditional or modern approach




Univariate Distributions 2-2
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Univariate Distributions 2-3

Histogram of DAX

Density
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Univariate Distributions 2-4

DAX returns (r; = log P’:fl)
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Histogram of DAX returns
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Univariate Distributions

Traditional approach:

Fog — known distribution
[] parameters of Fy are estimated from the sample x, ..., x,
» Fo=N(u,0%) = (u,0), here i =%, 6% =35°
» Fo=St(a,B,p1,02) = (a,B,1,0) are estimated by Hull
Estimator, Tail Exponent Estimation, etc.

[ check the appropriateness of Fy by a test (KS type)
HoZF:FO VS HliF#Fo

[] if test confirm Fo, use Fo

2-6



Univariate Distributions

Fit of the Normal distribution to DAX returns
(i1 = 0.0002113130, 52 = 0.0002001865)
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Univariate Distributions 2-8
Modern approach: calculate the edf

n

Fo == 31X <,

i=1
X,-)

or the nonparametric kernel smoother

A 1 & X
X):nh;K<

name K(u)
Uniform %I{\u\ <1}
Epanechnikov %( u?)I{|ul < 1}
Gaussian \ﬁexp{ — 12




Univariate Distributions

Kernel smoothing with UNI kernel

x = (—0.475, —1.553, —0.434, —1.019, 0.395)
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Univariate Distributions 2-10

Kernel smoothing with EPA kernel
x = (—0.475,—1.553, —0.434, —1.019, 0.395)




Univariate Distributions 2-11

Kernel smoothing with GAU kernel
x = (—0.475,—1.553, —0.434, —1.019, 0.395)

S|
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Histogram of DAX returns
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Univariate Distributions 2-13

Traditional approach:

Fo — known distribution
[] parameters of Fy are estimated from the sample xq, ..., x,
» Fo=N(u,0%) = (u,0), here i =%, 6% =35°
» Fo=St(a,B,p1,02) = (a,B,1,0) are estimated by Hull
Estimator, Tail Exponent Estimation, etc.

[ check the appropriateness of Fy by a test (KS type)
HoZF:FO VS HliF#Fo

[] if test confirm Fo, use Fo




Univariate Distributions

Fit of the Normal distribution to DAX returns
(i1 = 0.0002113130, 52 = 0.0002001865)
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Univariate Distributions 2-15
Modern approach: calculate the edf

n

Fo == 31X <,

i=1
X,-)

or the nonparametric kernel smoother

A 1 & X
X):nh;K<

name K(u)
Uniform %I{\u\ <1}
Epanechnikov %( u?)I{|ul < 1}
Gaussian \ﬁexp{ — 12




Univariate Distributions

Kernel smoothing with UNI kernel

x = (—0.475, —1.553, —0.434, —1.019, 0.395)
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Kernel smoothing with EPA kernel
x = (—0.475,—1.553, —0.434, —1.019, 0.395)




Univariate Distributions 2-18

Kernel smoothing with GAU kernel
x = (—0.475,—1.553, —0.434, —1.019, 0.395)

S|




Univariate Distributions 2-19

The estimated density of DAX returns
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Univariate Distributions 2-20
Multivariate Case

{x1i,...,Xdi}i=1,..n is the realization of the vector
(X1,...,X4) ~ F, where F is unknown.

Example 2

[1 {x1i,...,Xdi}i=1,..n are returns of the d assets in the portfolio
at day t;

] (x17, %) " are numbers of sold albums The Man Who Sold
The World by David Bowie and singles | Saved The World
Today by Eurythmics at day t;
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Multivariate Case

What is a good approximation of F ?

traditional or modern approach

Very flexible approximation to F is challenging in high dimension
due to curse of dimensionality.
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Traditional approach: Mainly restricted to the class of elliptical
distributions: Normal or t distributions

1 1 Ts-1
fN(Xl,...,Xd)—|Z|(27r)dexp{—2(x—u) pu (X—u)}

Drawbacks of the elliptical distributions:
1. does not often describe financial data properly

2. huge number of parameters to be estimated
d(d—1)
— + 2d

N——— in margins
in dependency

f.e. for Normal distribution:

3. ellipticity




Univariate Distributions 2-23

Simulate X ~ N(u, X) with the sample size n = 1000 and estimate

A

the parameters (/i,Y)

15 07 02 1.461 0.726  0.181
> = 0.7 13 —-04 | =Xx=| 0726 1335 —-0.408
02 —-04 03 0.181 —-0.408 0.301

pw = (0,0, 0)= 4 =(0.0175, —0.0022, 0.0055)

3 and ¥ are not close to each other for only 3 dimensions and
quiet big sample
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Correlation

Gaussian
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Abbildung 1: Scatterplots for two distribution with p = 0.4

[J same marginal distributions
[-] same linear correlation coefficient




Univariate Distributions 2-25

“Extreme, synchronized rises and falls in financial markets occur
infrequently but they do occur. The problem with the models is
that they did not assign a high enough chance of occurrence to the
scenario in which many things go wrong at the same time
- the “perfect storm” scenario”

(Business Week, September 1998)
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Correlation
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Copulae 3-1
Copula

For a distribution function F with marginals Fx,, ..., Fx,, there
exists a copula C : [0,1]¢ — [0, 1], such that

F(X]_, e ,Xd) = C{Fxl(Xl), ceey FXd(Xd)}-




Copulae 3-2

A little bit of history

[ 1940s: Wassilij Hoeffding studies properties of multivariate
distributions

1914-91, b. Mustamdki, Finland; d. Chapel Hill, NC
gained his PhD from U Berlin in 1940
1924-45 work in U Berlin

Wassilij Hoeffding on BBI l&




Copulae 3-3

A little bit of history

(] 1940s: Wassilij Hoeffding studies properties of multivariate
distributions

[] 1959: The word copula appears for the first time (Abe Sklar)

[] 1999: Introduced to financial applications (Paul Embrechts,
Alexander McNeil, Daniel Straumann in RISK Magazine)

[-] 2000: Paper by David Liin Journal of Derivatives on
application of copulae to CDO

(] 2006: Several insurance companies, banks and other financial
institutions apply copulae as a risk management tool




Copulae 3-4
Applications

Practical Use:
1. medicine (Vandenhende (2003))
2. hydrology (Genest and Favre (2006))

3. biometrics (Wang and Wells (2000, JASA), Chen and Fan
(2006, CanJoS))
4. economics
» portfolio selection (Patton (2004, JoFE), Xu (2004, PhD
thesis), Hennessy and Lapan (2002, MathFin))
» time series (Chen and Fan (2006a, 2006b, JoE), Fermanian
and Scaillet (2003, JoR), Lee and Long (2005, JoE))

» risk management (Junker and May (2002, EJ), Breyman et. al.
(2003, QF))




Copulae 35

Applications
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Bourdeau-Brien (2007) covers 871 publications




Copulae 3-6

Special Copulas

Theorem
Let C be a copula. Then for every (u1, u2) € [0,1]2

max (u1 + up — 1,0) < C(u1, up) < min(ug, w2),

where bounds are called lower and upper Fréchet-Hdéffdings
bounds. When they are copulas they represent perfect negative
and positive dependence respectively.

The simplest copula is product copula
M(u1, u2) = Uyt

characterize the case of independence.




Copulae 3-7

Copula Classes

1. elliptical
» implied by well-known multivariate df's (Normal, t), derived
through Sklar's theorem
» do not have closed form expressions and are restricted to have
radial symmetry

2. Archimedean

C(Ul, U2) = ¢_1{¢(U1) + ¢(U2)}

allow for a great variety of dependence structures
closed form expressions

several useful methods for multivariate extension
not derived from mv df’s using Sklar's theorem

vVvyvyy




Copulae 3-8
Copula Examples 1

Gaussian copula

C (v, ) = "’6{"’71(”1) “’71(“2)}

e —(s? — 20st + t2)
/ / o 1f52 Xp{ 2(1-9?) }det’

Gaussian copula contains the dependence structure

E

(] normal marginal distribution + Gaussian copula = multivariate
normal distributions

(] non-normal marginal distribution + Gaussian copula =
meta-Gaussian distributions

[1 allows to generate joint symmetric dependence, but no tail
dependence




Copulae 3-9

Copula Examples 2

Gumbel copula

C(m,m) = eXp{—[(—Iogul)w+(—Ioguz)1/9r}.

[] for # > 1 allows to generate dependence in the upper tail
[J for 8 = 1 reduces to the product copula
[J for & — oo obtain Fréchet-Hoeffding upper bound

Colur, un) *25° min(ur, up)




Copulae 3-10

Copula Examples 3

Clayton copula

B

R

CMu, ) = [max (ul_e +uyf — 1,0)]

dependence becomes maximal when 6 — oo
independence is achieved when 6 = 0

the distribution tends to the lower Fréchet-Hoeffding bound
when § — 1

allows to generate asymmetric dependence and lower tail
dependence, but no upper tail dependence




Copulae

Normal Copula Gumbel Copula




Copulae 3-12

Dependencies, Linear Correlation

. COV(Xl, X2)
o, %) = J/Var(Xo) Var(Xa)

[] Sensitive to outliers
[] Measures the "average dependence’ between X1 and X
[J Invariant under strictly increasing linear transformations

[] May be misleading in situations where multivariate df is not
elliptical




Copulae 3-13

Dependencies, Kendall's tau

Definition

If F is continuous bivariate cdf and let (X1, X2), (X{, X3) be
independent random pairs with distribution F. Then Kendall’s tau
is

7= P{(X1 = X{)(X2 = X3) > 0} = P{(X1 = X)Xz — X;) < 0}

[J Less sensitive to outliers

[] Measures the "average dependence’ between X and Y
(] Invariant under strictly increasing transformations

[ Depends only on the copula of (X1, X2)

[ For elliptical copulae: §(X1, X2) = sin (37)




Copulae 3-14

Dependencies, Spearmans’s rho

Definition

If F is a continuous bivariate cumulative distribution function with
marginal F1; and F, and let (X1, X2) ~ F. Then Spearmans’s rho
is a correlation between F1(X1) and F(X2)

be Cov{Fi(X1), F2(X2)}
Var{F(X1) HVar{ (X2)}

[J Less sensitive to outliers

[] Measures the "average dependence’ between X1 and X
(1 Invariant under strictly increasing transformations

[ Depends only on the copula of (X1, X2)

[ For elliptical copulae: §(X1, X2) = 2sin (%p)




Copulae

J

0.892,
0.956,
0.996

0.659,
0.888,
0.982




Copulae 3-16
Dependencies, Examples

Gaussian copula

p = —arcsin —,
s 2

T = —arcsind,
T
where § is a linear correlation coefficient.
Gumbel copula

p — no closed form,
1

T = 1—-.

0




Copulae 3-17

Multivariate Copula Definition

Definition

The copula is a multivariate distribution with all univariate margins
being U(0,1).

Theorem (Sklar, 1959)

Let Xi,...,Xx be random variables with marginal distribution functions
Fi,..., Fx and joint distribution function F. Then there exists a
k-dimensional copula C : [0,1]% — [0, 1] such that
Vx1,. .., Xk € R =[—00, 9]

F(Xl,...,Xk): C{Fl(X1)7...,Fk(Xk)} (1)
If the margins Fi, ..., Fi are continuous, then C is unique. Otherwise C
is uniquely determined on F1(R) X --- x Fi(R) Conversely, if C is a
copula and Fy, ..., Fi are distribution functions, then the function F
defined in (1) is a joint distribution function with margins Fy, ..., Fy. ..

| é}‘a



Copulae 3-18

Copula Density

Several theorems provides existence of derivatives of copulas,
having them copula density is defined as

. 8”C(U1,. . .,uk)

C(UL.“’Uk) 8u1...8uk

Joint density function based on copula
f(xaseeyxi) = c{F(xa), s Fr(xi) b - () - (),

where fi(+), ..., fx(-) are marginal density functions.




Copulae 3-19

Special Copulas

Theorem
Let C be a copula. Then for every (uy,...,ux) € [0,1]¥

K
max (Zu;—l—l—k,O) < Cugy ..oy uk) < min(ug, ..., uk),

i=1

where bounds are called lower and upper Fréchet-Hdéffdings bounds.
When they are copulas they represent perfect negative and positive
dependence respectively.

The simplest copula is product copula

k
I_I(U]_,...,Uk) :Hui
i=1

characterize the case of independence.




Simulation 4-1
Simulation

Frees and Valdez, (1998, NAAJ), Whelan, (2004, QF), Marshal and

Olkin, (1988, JASA)

Conditional inversion method:

Let C = C(u,...,uk), GG=C(u,...,u;,1,...,1) and

Cx = C(u1, - .., ux). Conditional distribution of U; is given by

CGi(ujlur, ... ui—1) = P{Ui<uUi=u1...Ui—1 =uj_1}

6i_1Ci(U1, RN u,-) Of—lC;_l(ul, RN u,-_1)
ouy ...0uj_1 / ouy ...0uj_1

[J Generate i.r.v. vi,..., v, ~ U(0,1)
] Setug =w»g
L oy = C;l(v,-]ul, ce u,-,l) Vi=2k




Simulation 4-2

Estimations: Empirical Copula

Let (x("l)7 e ,x("T)) be the order statistics if i-th stock and
(ri,...,r) corresponding rank statistics such that X(riy = xi for
all i =1,...,d. Any function

~ (T ty 1 r e ;
C(?,,?):?ZHI{’}SE}

t=1 =1

is an empirical copula




Simulation 4-3

Estimation: bivariate case

[J based on Kendall's 7 estimator

4
n(n—1)
where P, is the number of concordant pairs.
For Gumbel copula 5,, = ﬁ
[-] based on Spearman’s p estimator

_ YR —RP(Si - S5)°
VI (R~ RS (Si — 5)
where (R;, S;) Vi = 1, n are pairs of ranks.

For Gaussian Copula 6, = 2sin 7&=

Tn =

'Dn_]-)

P




Simulation 4-4

Copula Estimation

The distribution of X = (Xy,..., Xq4)" with marginals Fx;(x;, d;)
j=1,...,d is given by

Fx(Xl, . ,Xd) = C{FX1(X1761)7 ey FXd(Xdaéd); 9}

and its density is given by

d
f(xl,...,xd,él,...,éd,e) = C{Fxl(X1,51),... de Xd,($d ,9}1_[ XJ7
j=1




Simulation 4-5

Copula Estimation

For a sample of observations {x;},_; and
9 = (01,...,04;0) € RI*1 the likelihood function is

T
LY x1,...,xT) = H f(Xi,ts- 3 Xd ;015 -.,04;0)
t=1

and the corresponding log-likelihood function

T
f(ﬁ;xl,-'wXT) = ZlogC{Fxl(Xl,tv(sl))'"7FXd(Xd,t76d);9}
t=1
T d

+ D> log (e )

t=1 j=1




Simulation 4-6

Full Maximum Likelihood (FML)

(] FML estimates vector of parameters 1J in one step through

JpmL = arg max/(1})
9

[] the estimates U = (51, . ,Sd,é)’ solve
(00/061,...,00/]054,00/00) =0

[] Drawback:with an increasing dimension the algorithm becomes
too burdensome computationally




Simulation 4-7

Inference for Margins (IFM)

1. estimate parameters §; from the marginal distributions:

-
d; = arg max {Z log £ (x;j +; 5j)}
0 t=1
2. estimate the dependence parameter 6 by minimizing the
pseudo log-likelihood function
T
E(@, 31, ey Sd) = Z |og C{FXl(Xl,t; 31), ey de(XdJ; (/S\d); 9}

t=1
3. the estimates ;e = (31, e 04, 9A)’ solve
(00/061,...,00/]084,00/00) =0

4. Advantage: numerically stable




Simulation 4-8

Canonical Maximum Likelihood (CML)

[ CML maximizes the pseuso log-likelihood function with
empirical marginal distributions

-
0e) = Z|0gc{/:_x1(X1,t)7---,’A‘_Xd(xd,t);e}

Deme = argmaxt(6)
0

P (x) = Tilzl{ < x)

[] Advantage: no assumptions about the parametric form of the
marginal distributions




Simulation

(X1, X2) ~ CSY, with § = 1.5 and
Fi1 = Fy = N(u1,0%) = N(u2,03) = N(0,1)

estimate std. error
u1  0.00365  0.00998
o? 1.00553  0.00690
u2  -0.00106  0.00991
o3 0.99779  0.00684
0 1.49632  0.01327

4-9



Simulation 4-10

Attractive Features

(1 A copula describes how the marginals are tied together in the
joint distribution

[] The joint df is decomposed into the marginal dfs and a copula

[] The marginal dfs and the copula can be modelled and
estimated separately, independent of each other

(] Given a copula, we can obtain many multivariate distributions
by selecting different marginal dfs

(] The copula is invariant under increasing and continuous
transformations
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