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Motivation

Recipe for Disaster: The Formula That Killed Wall
Street

By Pelix SBalmon @ 02.23.09

Statistics of joint events

In the mid-"80s, Wall
Street turned to the
quants — brainy finan-
cial engineers — to in-
vent new ways to boost
profits.

Their methods for mint-
ing money worked bril-
liantly...

until one of the them
devastated the global
economy.




Motivation 1-2

Here’'s what killed your 401(k). David X. Li’s Gaussian
copula function as first published in 2000. Investors exploited
it as a quick and fatally flawed way to assess risk.

PrT<1,T<1] = §,("(E(L), §*(E,1),Y)

Probability - Specifically, this is a joint default probability—the likeli-
hood that any two members of the pool (A and B) will both default.
It's what investors are looking for, and the rest of the formula pro-
vides the answer.
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Motivation 1-3

Here’'s what killed your 401(k). David X. Li’s Gaussian
copula function as first published in 2000. Investors exploited
it as a quick and fatally flawed way to assess risk.

PrT<1,T<1] = §,("(E(L), *(E,1),Y)

Survival times - The amount of time between now and when A
and B can be expected to default. Li took the idea from a con-
cept in actuarial science that charts what happens to someone’s life
expectancy when their spouse dies.
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Motivation 1-4

Here’'s what killed your 401(k). David X. Li’s Gaussian
copula function as first published in 2000. Investors exploited
it as a quick and fatally flawed way to assess risk.

Pr[T<1,T<1] = §,(p"(E(L), " (E,1),Y)

Distribution functions - The probabilities of how long A and B
are likely to survive. Since these are not certainties, they can be
dangerous: Small miscalculations may leave you facing much more
risk than the formula indicates.
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Motivation 1-5

Here’'s what killed your 401(k). David X. Li’s Gaussian
copula function as first published in 2000. Investors exploited
it as a quick and fatally flawed way to assess risk.

Pr[T<1,T<1] = §,("(E(L), §*(E,1),Y)

Copula - This couples (hence the Latinate term copula) the individ-

ual probabilities associated with A and B to come up with a single
number. Errors here massively increase the risk of the whole equation

blowing up.
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Motivation 1-6

Here’'s what killed your 401(k). David X. Li’s Gaussian
copula function as first published in 2000. Investors exploited
it as a quick and fatally flawed way to assess risk.

Pr(T<1,T<1] = §,("(E(L), " (E,M),Y) |

Gamma - The all-powerful correlation parameter, which reduces cor-
relation to a single constant-something that should be highly improb-
able, if not impossible. This is the magic number that made Li's
copula function irresistible.
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Motivation 1-7

Example

] we pay 200 EUR for the chance to win 1000 EUR, if DAX
returns decrease by 2%

Ppax(rpax < —0.02) = (—0.02) =0.2
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Motivation 1-8

Example
] we pay 200 EUR for the chance to win 1000 EUR, if DAX

returns decrease by 2%

Ppax(rpax < —0.02) = (—0.02) =0.2

[] we pay 200 EUR for the chance to win 1000 EUR, if DJ
returns decrease by 1%

PDJ(I‘DJ < —0.01) = (—0.01) =0.2
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Motivation

Example

[] we get 1000 EUR if DAX and DJ indices decrease
simultaneously by 2% and 1% respectively.
how much are we ready to pay in this case?

P{(rDAX < —0.02) A (rD_] < —0.01)}
= FDAX’DJ(—O.OQ, —0.01)

= { (—0.02), Fp,(—0.01)}
= ((0.2,0.2).
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Motivation 1-10

Motivation

[] How these colors influence the Pricing?
(] How to model Dependency?

(1 Are there any improvements of Li's model?
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Motivation 1-11

Outline

Motivation v/

Univariate Distributions and their Estimation
Multivariate Distributions and their Estimation
Copulae

Classical Approach

ok wh =

Our Findings
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Univariate Distributions 2-1
Univariate Case

Let xq1,...,x, be realizations of the random variable X
X ~ F, where F is unknown

Example 1

[ x; are returns of the asset for one firm at the day t;
(] x; are numbers of sold albums The Man Who Sold the World
by David Bowie at day t;

What is a good approximation of F 7

traditional or modern approach
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Univariate Distributions

DAX (P;)
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Univariate Distributions 2-3

Histogram of DAX

Density

0e+00 1e-04 2e-04 3e-04 4e-04 5e-04 6e-04

I T T 1
2000 4000 6000 8000

Statistics of joint events




Univariate Distributions 2-4

DAX returns (r: = log P’::I)
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-10
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stics of ioi
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Univariate Distributions 2-5

Histogram of DAX returns
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Density
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Univariate Distributions

Traditional approach:

Fo — known distribution
[] parameters of Fy are estimated from the sample xi, ..., x,
» Fo=N(u,0%) = (u,0), here i =%, 52 =32
» Fo=St(a,B,p,0%) = («a,f3,u,0) are estimated by Hull
Estimator, Tail Exponent Estimation, etc.

[ check the appropriateness of Fy by a test (KS type)
H()ZF:FO VS HliF#Fo

C1 if test confirm Fg, use ?0

Statistics of joint events
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2-7

Univariate Distributions

Fit of the Normal distribution to DAX returns
(= 0.0002113130, 62 = 0.0002001865)
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Univariate Distributions 2-8
Modern approach: calculate the edf

n

F = -3 (X < 1),

i=1
X,-)

or the nonparametric kernel smoother

1 & X
:nh;K<

name K(u)
Uniform %I{\u\ <1}
Epanechnikov %( u?)I{|u| < 1}
Gaussian ﬁexp{ — 12
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Univariate Distributions

2-9
Kernel smoothing with UNI kernel
x = (—0.475,—1.553, —0.434, —1.019, 0.395)
\
Statistics of joint events
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Univariate Distributions 2-10

Kernel smoothing with EPA kernel
x = (—0.475,—1.553, —0.434, —1.019, 0.395)
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Univariate Distributions 2-11

Kernel smoothing with GAU kernel
x = (—0.475,—1.553, —0.434, —1.019, 0.395)

-25 -2.0 -15 -1.0 -05 0.0 05 1.0
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Univariate Distributions 2-12

The estimated density of DAX returns
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Univariate Distributions 2-13
Multivariate Case

{x1i,...,xdi}i=1,...n is the realization of the vector
(X1,...,Xg) ~ F, where F is unknown.

Example 2

[1 {x1i,...,Xdi}i=1,..n are returns of the d assets in the portfolio
at day t;

[ (x17,x2;) " are numbers of sold albums The Man Who Sold
The World by David Bowie and singles | Saved The World
Today by Eurythmics at day t;
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Univariate Distributions 2-14

Multivariate Case

What is a good approximation of F ?

traditional or modern approach

Very flexible approximation to F is challenging in high dimension
due to curse of dimensionality.
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Univariate Distributions 2-15

Traditional approach: Mainly restricted to the class of elliptical
distributions: Normal or t distributions

1 1 Ts-1
fN(Xl,...,xd)—|Z|(27r)dexp{—2(x—/,t) pu (x—u)}

Drawbacks of the elliptical distributions:
1. does not often describe financial data properly
2. huge number of parameters to be estimated
d(d—-1)
5 + 2d

S—— in margins
in dependency

f.e. for Normal distribution:

3. ellipticity
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Univariate Distributions 2-16

Simulate X ~ N(p, X) with the sample size n = 1000 and estimate
the parameters (71, X)

15 07 02 R 1.461 0.726  0.181
> = 07 13 —-04 |=Xx=| 0726 1.335 —0.408
02 —-04 03 0.181 —-0.408 0.301

p = (0,0, 0)= u=(0.0175, —0.0022, 0.0055)

% and ¥ are not close to each other for only 3 dimensions and
quiet big sample

Statistics of joint events CALE



Univariate Distributions 2-17

Correlation

Gaussian Gumbel

T T T T T T T T T T
-4 2 0 2 4 4 2 o 2 4

Figure 1: Scatterplots for two distribution with p = 0.4

[] same marginal distributions
[] same linear correlation coefficient
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Univariate Distributions 2-18

“Extreme, synchronized rises and falls in financial markets occur
infrequently but they do occur. The problem with the models is
that they did not assign a high enough chance of occurrence to the
scenario in which many things go wrong at the same time
- the “perfect storm” scenario”

(Business Week, September 1998)
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Univariate Distributions 2-19

Correlation

. 1. 19.10.1987
2 4 S Black Monday
i ) 2. 16.10.1989
Berlin Wall
3. 19.08.1991
Kremlin
4. 17.03.2008, 19.09.2008,
10.10.2008, 13.10.2008,
15.10.2008, 29.10.2008
4 4 Krise
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Copulae 3-1

Copula

For a distribution function F with marginals Fx,, ..., Fx,, there
exists a copula C : [0,1]9 — [0, 1], such that

F(x1,...,xq) = C{Fx,(x1), ..., Fx,(xq)}-

Statistics of joint events
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Copulae 3-2

A little bit of history

(] 1940s: Wassilij Hoeffding studies properties of multivariate
distributions

1914-91, b. Mustamiki, Finland; d. Chapel Hill, NC
gained his PhD from U Berlin in 1940
192445 work in U Berlin

Wassilij Hoeffding on BBI l&
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Copulae 3-3

A little bit of history

[] 1940s: Wassilij Hoeflfding studies properties of multivariate
distributions
[} 1959: The word copula appears for the first time (Abe Sklar)

[] 1999: Introduced to financial applications (Paul Embrechts,
Alexander McNeil, Daniel Straumann in RISK Magazine)

[-] 2000: Paper by David Liin Journal of Derivatives on
application of copulae to CDO

(] 2006: Several insurance companies, banks and other financial
institutions apply copulae as a risk management tool
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Copulae 3-4
Applications

Practical Use:
1. medicine (Vandenhende (2003))
2. hydrology (Genest and Favre (2006))

3. biometrics (Wang and Wells (2000, JASA), Chen and Fan
(2006, CanJoS))
4. economics
» portfolio selection (Patton (2004, JoFE), Xu (2004, PhD
thesis), Hennessy and Lapan (2002, MathFin))
» time series (Chen and Fan (2006a, 2006b, JoE), Fermanian
and Scaillet (2003, JoR), Lee and Long (2005, JoE))
» risk management (Junker and May (2002, EJ), Breyman et.
al. (2003, QF))
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Copulae 3-5

Applications
s |
(2] N . ) .
g i Biostatistic: Mathematics
o
5 g Actuarial Science
g - Statistics drolo
5§ 3 Research
b4 (']
o -

T T T T T T
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v Finance
ear

Bourdeau-Brien (2007) covers 871 publications
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Copulae 3-6

Copula Classes

1. elliptical
» implied by well-known multivariate df's (Normal, t), derived
through Sklar's theorem
» do not have closed form expressions and are restricted to have
radial symmetry

2. Archimedean

C(Ul, U2) = ¢_1{¢(U1) + ¢(u2)}

allow for a great variety of dependence structures
closed form expressions

several useful methods for multivariate extension
not derived from mv df’s using Sklar's theorem

vVvyvyy
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Copulae

Normal Copula

Gumbel Copula

Clayton Copula
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Copulae 3-8

Attractive Features

[J It describes how the margins are tied together in the joint df

[] the joint df is decomposed into the marginal dfs and a copula

[] The marginal dfs and the copula can be modelled and
estimated separately, independent of each other

] Given a copula, we can obtain many multivariate distributions
by selecting different marginal dfs

[] The copula is invariant under increasing and continuous
transformations
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CbhO 4-1

CDO

[ A static portfolio of 125 equally weighted CDS on European
entities

[] New series of iTraxx Europe issued every 6 months (March and
September) and the underlying reference entities are
reconstituted

[] Sectors: Consumer (30), Financial (25), TMT (20), Industrials
(20), Energy (20), Auto (10)

[J Maturities: 5Y, 7Y, 10Y
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CDO

Construction

R

Reference
Portfolio, e.g.,

-loans
-bonds
-ABS
-CDS

etc.

Statistics of joint events

Interest and
Principal

Cash

Figure 2: CDO Transaction, Tranches
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)

Senior Tranche

Mezzanine Tranche

\ Equity Tranche /
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CDO

Construction

Attachment points (%)

Tranche Number Tranche Name Lower | Upper u
1 Equity 0 3
2 Mezzanine Junior 3 6
3 Mezzanine 6 9
4 Senior 9 12
5 Super Senior 12 22
6 Super Super Senior 22 100

Table 1: Attachment points, iTraxx, CDO tranche structure
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CDO 4.4

CDO

==

0 . . . . . . .
2007092020071108 20071227 20080218 20080410 20080603 2008072520081016

Figure 3: Time series of iTraxx spreads, Series 8,
Maturity: 5 years, 21.03.2007 — 22.01.2008
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CDO 4-5
Pricing
Standardized asset log-returns:

Xi,t:\/thYt+v1*PtZi,t

Vi=1,...,d, where Y; (systematic risk factor), {Z;.}¢_, (idiosyncratic
risk factors) are i.i.d. N(0,1). Hence:

(Xl,ta oo ,Xd7t)T ~ N(O’ Zt)v

with
1 Pt -+ Pt
pe 1 ... p
Zt: .t . .t
pe pe oo 1

Gaussian ONE FACTOR model, constant p, iTraxx d =125 I!

Statistics of joint events _CASE. .



CDO

Pricing

[J Loss variable of ith firm until t € [0, T]
\ r,'7t == /(\/thYt+ \/1 _ptZi,t < Ct)
(] Portfolio loss process
__1-R d

where R is the recovery rate equal for all credits in the
portfolio.

Statistics of joint events
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CDO 4-7

Loss of the Tranche

The loss of the tranche j at time t
Ljr = min{max(0, L; — };); uj — [;}
0, L <1,
=Ll <L <uy,
ui— I, Ly > uj.

Example Let j be the mezzanine tranche with the lower
attachment point 6% and the upper attachment point 9%. Then

Loss of the portfolio | 2 7 10
Loss of the tranche |0 1 3
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CDO 4.8

CDO Premium

The premium s; of tranche j is chosen in such a way that

1. fixed (premium) leg PL; - the payments that tranche holders
receive,

2. floating (protection) lef DL; - the payments that tranche
holders pay

are equal:

PLj(p,sj) = DLj(p).

The premiums are constantly observed in the market!
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CDO

Pricing

04

03

Correlation

02

01r

iTraxx 85 5Y, 27.10.2007

Mezzaqme Juniar

Mezzanine

Super Senior

2

3
Tranches

4.9

Figure 4: Gaussian one factor model with constant correlation
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CDO
Gaussian Multi-Factor Model

Three factor model:

| . R p.l
] 1 /;1 :
P 1 L
p2 - 1
Y=
1 P3
p3 1 oL pll
p1 1 P3
p.1 ------------ p1 | P3 1

L fioi
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CDO 4-11

Qua de causa copula me placent:
Statistics of joint events

Wolfgang K. Hardle
Ostap Okhrin

Institute for Statistics and Econometrics
Humboldt-Universitat zu Berlin CASE
http://ise.wiwi.hu-berlin.de

Statistics of joint events _CASE.


http://ise.wiwi.hu-berlin.de

CDO 4-12

References

B. Choros, W. Hardle, O. Okhrin (2009): CDO Pricing with
Copulae, 1SI Conference Proceedings, Durban

W. Hérdle, O. Okhrin, Y. Okhrin (2009): Homogeneity of the Time
Varying Hierarchical Archimedean Copulae using Local Change
Point Detection, DP Series CRC 649

W. Hérdle, O. Okhrin, Y. Okhrin (2009): Copulae for Dependency
Modelling, in Applied Quantitative Finance, Hardle, Hautsch,
Springer Verlag

Statistics of joint events cAle



CDO 4-13

References

C. Bluhm, L. Overbeck (2006): Structured Credit Portfolio
Analysis, Baskets and CDOs, Chapman & Hall/Crc Financial
Mathematics Series

P. Embrechts, F. Lindskog, A. McNeil (2001): Modelling
Dependece with Copulas and Application to Risk Management,
working paper

N. Lehnert, F. Altrock, S. Rachev et al. (2005): Implied Correlation
in CDO Tranches, working paper

L. McGinty, R. Ahluwalia (2004): A Model for Base Correlation
Calculation, Credit Derivatives Strategy JP Morgan

Statistics of joint events cAle



	Motivation
	Univariate Distributions
	Copulae
	CDO



