Hierarchical Archimedean Copulae

Ostap Okhrin
ostap.okhrin@wiwi.hu-berlin.de

Ladislaus von Bortkiewicz
Chair of Statistics
Humboldt-Universität zu Berlin

Recipe for Disaster: The Formula That Killed Wall Street
By Felix Salmon 02.23.09
In the mid-'80s, Wall Street turned to the quants - brainy financial engineers - to invent new ways to boost profits.
Their methods for minting money worked brilliantly...
until one of the them devastated the global economy.

Here's what killed your 401(k). David X. Li's Gaussian copula function as first published in 2000. Investors exploited it as a quick and fatally flawed way to assess risk.

Gamma - The all-powerful correlation parameter, which reduces correlation to a single constant-something that should be highly improbable, if not impossible. This is the magic number that made Li's copula function irresistible.

Example

\square we pay 200 EUR for the chance to win 1000 EUR, if DAX returns decrease by 2%

$$
P_{D A X}\left(r_{D A X} \leq-0.02\right)=F_{D A X}(-0.02)=0.2
$$

\square we pay 200 EUR for the chance to win 1000 EUR, if DJ returns decrease by 1%

$$
P_{D J}\left(r_{D J} \leq-0.01\right)=F_{D J}(-0.01)=0.2
$$

Example

\square we get 1000 EUR if DAX and DJ indices decrease simultaneously by 2% and 1% respectively. how much are we ready to pay in this case?

$$
\begin{aligned}
P & \left\{\left(r_{D A X} \leq-0.02\right) \wedge\left(r_{D J} \leq-0.01\right)\right\} \\
& =F_{D A X, D J}(-0.02,-0.01) \\
& =C\left\{F_{D A X}(-0.02), F_{D J}(-0.01)\right\} \\
& =C(0.2,0.2) .
\end{aligned}
$$

Outline

1. Motivation \checkmark
2. Univariate Distributions and their Estimation
3. Multivariate Distributions and their Estimation
4. Copula
5. Hierarchical Archimedean copulae
6. Recovering the Structure
7. Estimation
8. GoF
9. Properties
10. Time Varying HAC
11. Bibliography

Univariate Case

Let x_{1}, \ldots, x_{n} be realizations of the random variable X $X \sim F$, where F is unknown

Example

$\square x_{i}$ are returns of the asset for one firm at the day t_{i}
$\square x_{i}$ are numbers of sold albums The Man Who Sold the World by David Bowie at day t_{i}

What is a good approximation of F ?
traditional or modern approach

$\operatorname{DAX}\left(P_{t}\right)$

HAC
嘉

Histogram of DAX

DAX returns $\left(r_{t}=\log \frac{P_{t}}{P_{t-1}}\right)$

$\mathrm{HAC} \longrightarrow$

Histogram of DAX returns

HAC
r
为

Traditional approach:

F_{0} - known distribution
\square parameters of F_{0} are estimated from the sample x_{1}, \ldots, x_{n}

- $F_{0}=\boldsymbol{N}\left(\mu, \sigma^{2}\right) \Rightarrow(\mu, \sigma)$, here $\widehat{\mu}=\bar{x}, \widehat{\sigma}^{2}=\widehat{s}^{2}$
- $F_{0}=\operatorname{St}\left(\alpha, \beta, \mu, \sigma^{2}\right) \Rightarrow(\alpha, \beta, \mu, \sigma)$ are estimated by Hull Estimator, Tail Exponent Estimation, etc.
\square check the appropriateness of F_{0} by a test (KS type)

$$
H_{0}: F=F_{0} \quad \text { vs } \quad H_{1}: F \neq F_{0}
$$

\bullet if test confirm F_{0}, use \widehat{F}_{0}

Fit of the Normal distribution to DAX returns $\left(\widehat{\mu}=0.0002113130, \widehat{\sigma}^{2}=0.0002001865\right)$

Modern approach: calculate the edf

$$
\widehat{F}(x)=\frac{1}{n} \sum_{i=1}^{n} \mathbf{I}\left\{X_{i} \leq x\right\}
$$

or the nonparametric kernel smoother

$$
\widehat{f}_{h}(x)=\frac{1}{n h} \sum_{i=1}^{n} K\left(\frac{x-X_{i}}{h}\right)
$$

name	$K(u)$
Uniform	$\left.\frac{1}{2} \right\rvert\,\{\|u\| \leq 1\}$
Epanechnikov	$\frac{3}{4}\left(1-u^{2}\right) \mathbf{I}\{\|u\| \leq 1\}$
Gaussian	$\frac{1}{\sqrt{2 \pi}} \exp \left\{-\frac{1}{2} u^{2}\right\}$

Kernel smoothing with EPA kernel $x=(-0.475,-1.553,-0.434,-1.019,0.395)$

Kernel smoothing with GAU kernel $x=(-0.475,-1.553,-0.434,-1.019,0.395)$

The estimated density of DAX returns

HAC
嘉

Multivariate Case

$\left\{x_{1 i}, \ldots, x_{d i}\right\}_{i=1, \ldots, n}$ is the realization of the vector $\left(X_{1}, \ldots, X_{d}\right) \sim \mathbf{F}$, where \mathbf{F} is unknown.

Example
$\bullet\left\{x_{1 i}, \ldots, x_{d i}\right\}_{i=1, \ldots, n}$ are returns of the d assets in the portfolio at day t_{i}
$\square\left(x_{1 i}, x_{2 i}\right)^{\top}$ are numbers of sold albums The Man Who Sold The World by David Bowie and singles I Saved The World Today by Eurythmics at day t_{i}

Multivariate Case

What is a good approximation of F ?

traditional or modern approach
Very flexible approximation to \mathbf{F} is challenging in high dimension due to curse of dimensionality.

Traditional approach: Mainly restricted to the class of elliptical distributions: Normal or t distributions

$$
f_{N}\left(x_{1}, \ldots, x_{d}\right)=\frac{1}{\sqrt{|\Sigma|(2 \pi)^{d}}} \exp \left\{-\frac{1}{2}(x-\mu)^{\top} \Sigma^{-1}(x-\mu)\right\}
$$

Drawbacks of the elliptical distributions:

1. does not often describe financial data properly
2. huge number of parameters to be estimated

$$
\text { f.e. for Normal distribution: } \underbrace{\frac{d(d-1)}{2}}_{\text {in dependency }}+\underbrace{2 d}_{\text {in margins }}
$$

3. ellipticity

Simulate $X \sim \boldsymbol{N}(\mu, \Sigma)$ with the sample size $n=1000$ and estimate the parameters $(\widehat{\mu}, \widehat{\Sigma})$
$\Sigma=\left(\begin{array}{rrr}1.5 & 0.7 & 0.2 \\ 0.7 & 1.3 & -0.4 \\ 0.2 & -0.4 & 0.3\end{array}\right) \Rightarrow \widehat{\Sigma}=\left(\begin{array}{rrr}1.461 & 0.726 & 0.181 \\ 0.726 & 1.335 & -0.408 \\ 0.181 & -0.408 & 0.301\end{array}\right)$
$\mu=(0,0,0) \Rightarrow \widehat{\mu}=(0.0175,-0.0022,0.0055)$
$\widehat{\Sigma}$ and Σ are not close to each other for only 3 dimensions and quiet big sample

"Extreme, synchronized rises and falls in financial markets occur infrequently but they do occur. The problem with the models is that they did not assign a high enough chance of occurrence to the scenario in which many things go wrong at the same time

- the "perfect storm" scenario"
(Business Week, September 1998)

Correlation

1. 19.10 .1987

Black Monday
2. 16.10.1989

Berlin Wall
3. 19.08 .1991

Kremlin
4. 17.03.2008, 19.09.2008, 10.10.2008, 13.10.2008, 15.10.2008, 29.10.2008

Crisis

HAC
器

Correlation

t

Gumbel

Figure 1: Scatterplots for two distributions with $\rho=0.4$
\square same linear correlation coefficient ($\rho=0.4$)
\square same marginal distributions
\square rather big difference

Copula

For a distribution function F with marginals $F_{X_{1}}, \ldots, F_{X_{d}}$, there exists a copula $C:[0,1]^{d} \rightarrow[0,1]$, such that

$$
F\left(x_{1}, \ldots, x_{d}\right)=\mathrm{C}\left\{F_{X_{1}}\left(x_{1}\right), \ldots, F_{X_{d}}\left(x_{d}\right)\right\}
$$

HAC
喻

A little bit of history

\square 1940s: Wassilij Hoeffding studies properties of multivariate distributions
\square 1959: The word copula appears for the first time (Abe Sklar)
\square 1999: Introduced to financial applications (Paul Embrechts, Alexander McNeil, Daniel Straumann in RISK Magazine)
\checkmark 2000: Paper by David Li in Journal of Derivatives on application of copulae to CDO
\square 2006: Several insurance companies, banks and other financial institutions apply copulae as a risk management tool

Applications

Practical Use:

1. medicine (Vandenhende (2003))
2. hydrology (Genest and Favre (2006))
3. biometrics (Wang and Wells (2000, JASA), Chen and Fan (2006, CanJoS))
4. economics

- portfolio selection (Patton (2004, JoFE), Xu (2004, PhD thesis), Hennessy and Lapan (2002, MathFin))
- time series (Chen and Fan (2006a, 2006b, JoE), Fermanian and Scaillet (2003, JoR), Lee and Long (2005, JoE))
- risk management (Junker and May (2002, EJ), Breyman et. al. (2003, QF))

Special Copulas

Theorem
Let C be a copula. Then for every $\left(u_{1}, u_{2}\right) \in[0,1]^{2}$

$$
\max \left(u_{1}+u_{2}-1,0\right) \leq C\left(u_{1}, u_{2}\right) \leq \min \left(u_{1}, u_{2}\right)
$$

where bounds are called lower and upper Fréchet-Höffdings bounds. When they are copulas they represent perfect negative and positive dependence respectively.
The simplest copula is product copula

$$
\Pi\left(u_{1}, u_{2}\right)=u_{1} u_{2}
$$

characterize the case of independence.

Copula Classes

1. elliptical

- implied by well-known multivariate df's (Normal, t), derived through Sklar's theorem
- do not have closed form expressions and are restricted to have radial symmetry

2. Archimedean

$$
C\left(u_{1}, u_{2}\right)=\phi^{-1}\left\{\phi\left(u_{1}\right)+\phi\left(u_{2}\right)\right\}
$$

- allow for a great variety of dependence structures
- closed form expressions
- several useful methods for multivariate extension
- not derived from mv df's using Sklar's theorem

Copula Examples 1

Gaussian copula

$$
\begin{aligned}
C_{\delta}^{G}\left(u_{1}, u_{2}\right) & =\boldsymbol{\Phi}_{\delta}\left\{\boldsymbol{\Phi}^{-1}\left(u_{1}\right), \boldsymbol{\Phi}^{-1}\left(u_{2}\right)\right\} \\
& =\boldsymbol{\Phi}^{-\mathbf{1}\left(u_{1}\right) \boldsymbol{\Phi}^{-\mathbf{1}}\left(u_{2}\right)} \\
& \int_{-\infty}^{2 \pi \sqrt{1-\delta^{2}}} \exp \left\{\frac{1}{2\left(1-s^{2}\right)} \frac{1}{\left.2 \delta s t+t^{2}\right)}\right\} d s d t
\end{aligned}
$$

\square Gaussian copula contains the dependence structure
\square normal marginal distribution + Gaussian copula $=$ multivariate normal distributions
\square non-normal marginal distribution + Gaussian copula $=$ meta-Gaussian distributions
\square allows to generate joint symmetric dependence, but no tail dependence

Copula Examples 2

Gumbel copula

$$
C_{\theta}^{G u}\left(u_{1}, u_{2}\right)=\exp \left\{-\left[\left(-\log u_{1}\right)^{1 / \theta}+\left(-\log u_{2}\right)^{1 / \theta}\right]^{\theta}\right\}
$$

\square for $\theta>1$ allows to generate dependence in the upper tail
\square for $\theta=1$ reduces to the product copula
\square for $\theta \rightarrow \infty$ obtain Frèchet-Hoeffding upper bound

$$
C_{\theta}\left(u_{1}, u_{2}\right) \xrightarrow{\theta \rightarrow \infty} \min \left(u_{1}, u_{2}\right)
$$

\square the only extreme value Archimedean copula

Copula Examples 3

Clayton copula

$$
C_{\theta}^{C l}\left(u_{1}, u_{2}\right)=\left[\max \left(u_{1}^{-\theta}+u_{2}^{-\theta}-1,0\right)\right]^{-\frac{1}{\theta}}
$$

\square dependence becomes maximal when $\theta \rightarrow \infty$
\square independence is achieved when $\theta=0$
\square the distribution tends to the lower Frèchet-Hoeffding bound when $\theta \rightarrow 1$
\square allows to generate asymmetric dependence and lower tail dependence, but no upper tail dependence
\square the only Archimedean copula with truncated property

Copulae

Dependencies, Linear Correlation

$$
\delta\left(X_{1}, X_{2}\right)=\frac{\operatorname{Cov}\left(X_{1}, X_{2}\right)}{\sqrt{\operatorname{Var}\left(X_{1}\right) \operatorname{Var}\left(X_{2}\right)}} .
$$

\square Sensitive to outliers
\square Measures the 'average dependence' between X_{1} and X_{2}
\square Invariant under strictly increasing linear transformations
\square May be misleading in situations where multivariate df is not elliptical

Dependencies, Kendall's tau

Definition

If F is continuous bivariate cdf and let $\left(X_{1}, X_{2}\right),\left(X_{1}^{\prime}, X_{2}^{\prime}\right)$ be independent random pairs with distribution F. Then Kendall's tau is

$$
\tau=P\left\{\left(X_{1}-X_{1}^{\prime}\right)\left(X_{2}-X_{2}^{\prime}\right)>0\right\}-P\left\{\left(X_{1}-X_{1}^{\prime}\right)\left(X_{2}-X_{2}^{\prime}\right)<0\right\}
$$

\square Less sensitive to outliers
\square Measures the 'average dependence' between X and Y
\square Invariant under strictly increasing transformations
\square Depends only on the copula of $\left(X_{1}, X_{2}\right)$
\square For elliptical copulae: $\delta\left(X_{1}, X_{2}\right)=\sin \left(\frac{\pi}{2} \tau\right)$

Dependencies, Spearmans's rho

Definition

If F is a continuous bivariate cumulative distribution function with marginal F_{1} and F_{2} and let $\left(X_{1}, X_{2}\right) \sim F$. Then Spearmans's rho is a correlation between $F_{1}\left(X_{1}\right)$ and $F_{2}\left(X_{2}\right)$

$$
\rho=\frac{\operatorname{Cov}\left\{F_{1}\left(X_{1}\right), F_{2}\left(X_{2}\right)\right\}}{\sqrt{\operatorname{Var}\left\{F_{1}\left(X_{1}\right)\right\} \operatorname{Var}\left\{F_{2}\left(X_{2}\right)\right\}}} .
$$

\square Less sensitive to outliers
\square Measures the 'average dependence' between X_{1} and X_{2}
\square Invariant under strictly increasing transformations
\square Depends only on the copula of $\left(X_{1}, X_{2}\right)$
$\stackrel{\square}{\mathrm{HAC}} \stackrel{\text { For elliptical copulae: }}{ } \delta\left(X_{1}, X_{2}\right)=2 \sin \left(\frac{\pi}{6} \rho\right)$

$$
\begin{aligned}
\delta & =0.892 \\
\tau & =0.956 \\
\rho & =0.996
\end{aligned}
$$

$\delta=0.659$,
$\tau=0.888$,
$\rho=0.982$

HAC
無 ${ }^{\circ}$

Dependencies, Examples

Gaussian copula

$$
\begin{aligned}
\rho & =\frac{6}{\pi} \arcsin \frac{\delta}{2} \\
\tau & =\frac{2}{\pi} \arcsin \delta,
\end{aligned}
$$

where δ is a linear correlation coefficient.
Gumbel copula
$\rho-$ no closed form,
$\tau=1-\frac{1}{\theta}$.

HAC
僉 ${ }^{\circ}$

Multivariate Copula Definition

Definition
The copula is a multivariate distribution with all univariate margins being $U(0,1)$.

Theorem (Sklar, 1959)

Let X_{1}, \ldots, X_{k} be random variables with marginal distribution functions F_{1}, \ldots, F_{k} and joint distribution function F. Then there exists a k-dimensional copula $C:[0,1]^{k} \rightarrow[0,1]$ such that $\forall x_{1}, \ldots, x_{k} \in \overline{\mathbb{R}}=[-\infty, \infty]$

$$
\begin{equation*}
F\left(x_{1}, \ldots, x_{k}\right)=C\left\{F_{1}\left(x_{1}\right), \ldots, F_{k}\left(x_{k}\right)\right\} \tag{1}
\end{equation*}
$$

If the margins F_{1}, \ldots, F_{k} are continuous, then C is unique. Otherwise C is uniquely determined on $F_{1}(\overline{\mathbb{R}}) \times \cdots \times F_{k}(\overline{\mathbb{R}})$ Conversely, if C is a copula and F_{1}, \ldots, F_{k} are distribution functions, then the function F defined in (1) is a joint distribution function with margins F_{1}, \ldots, F_{k}. HAC

Copula Density

Several theorems provides existence of derivatives of copulas, having them copula density is defined as

$$
c\left(u_{1}, \ldots, u_{k}\right)=\frac{\partial^{n} C\left(u_{1}, \ldots, u_{k}\right)}{\partial u_{1} \ldots \partial u_{k}}
$$

Joint density function based on copula

$$
{ }_{c} f\left(x_{1}, \ldots, x_{k}\right)=c\left\{F_{1}\left(x_{1}\right), \ldots, F_{k}\left(x_{k}\right)\right\} \cdot f_{1}\left(x_{1}\right) \ldots f_{k}\left(x_{k}\right),
$$

where $f_{1}(\cdot), \ldots, f_{k}(\cdot)$ are marginal density functions.

Special Copulas

Theorem

Let C be a copula. Then for every $\left(u_{1}, \ldots, u_{k}\right) \in[0,1]^{k}$

$$
\max \left(\sum_{i=1}^{k} u_{i}+1-k, 0\right) \leq C\left(u_{1}, \ldots, u_{k}\right) \leq \min \left(u_{1}, \ldots, u_{k}\right)
$$

where bounds are called lower and upper Fréchet-Höffdings bounds. When they are copulas they represent perfect negative and positive dependence respectively.
The simplest copula is product copula

$$
\Pi\left(u_{1}, \ldots, u_{k}\right)=\prod_{i=1}^{k} u_{i}
$$

characterize the case of independence.

Simulation

Frees and Valdez, (1998, NAAJ), Whelan, (2004, QF), Marshal and Olkin, (1988, JASA)
Conditional inversion method:
Let $C=C\left(u_{1}, \ldots, u_{k}\right), C_{i}=C\left(u_{1}, \ldots, u_{i}, 1, \ldots, 1\right)$ and
$C_{k}=C\left(u_{1}, \ldots, u_{k}\right)$. Conditional distribution of U_{i} is given by
$C_{i}\left(u_{i} \mid u_{1}, \ldots, u_{i-1}\right)=P\left\{U_{i} \leq u_{i} \mid U_{1}=u_{1} \ldots U_{i-1}=u_{i-1}\right\}$

$$
=\frac{\partial^{i-1} C_{i}\left(u_{1}, \ldots, u_{i}\right)}{\partial u_{1} \ldots \partial u_{i-1}} / \frac{\partial^{i-1} C_{i-1}\left(u_{1}, \ldots, u_{i-1}\right)}{\partial u_{1} \ldots \partial u_{i-1}}
$$

\square Generate i.r.v. $v_{1}, \ldots, v_{k} \sim U(0,1)$
\square Set $u_{1}=v_{1}$
$\square u_{i}=C_{k}^{-1}\left(v_{i} \mid u_{1}, \ldots, u_{i-1}\right) \forall i=\overline{2, k}$
HAC

Main Idea

\square combine interpretability with flexibility without loosing statistical precision
\square determine the optimal structure of HAC
\square convenient and useful probabilistic properties of the HAC

Recall Archimedean Copula

Multivariate Archimedean copula $C:[0,1]^{d} \rightarrow[0,1]$ defined as

$$
\begin{equation*}
C\left(u_{1}, \ldots, u_{d}\right)=\phi\left\{\phi^{-1}\left(u_{1}\right)+\cdots+\phi^{-1}\left(u_{d}\right)\right\} \tag{2}
\end{equation*}
$$

where $\phi:[0, \infty) \rightarrow[0,1]$ is continuous and strictly decreasing with $\phi(0)=1, \phi(\infty)=0$ and ϕ^{-1} its pseudo-inverse.
Example

$$
\begin{aligned}
\phi_{\text {Gumbel }}(u, \theta) & =\exp \left\{-u^{1 / \theta}\right\}, \text { where } 1 \leq \theta<\infty \\
\phi_{\text {Clayton }}(u, \theta) & =(\theta u+1)^{-1 / \theta}, \text { where } \theta \in[-1, \infty) \backslash\{0\}
\end{aligned}
$$

Disadvantages: too restrictive: single parameter, exchangeable

Hierarchical Archimedean Copulas

$$
\begin{gathered}
\mathrm{AC} \text { with } \mathrm{s}=((123) 4) \\
C\left(u_{1}, u_{2}, u_{3}, u_{4}\right)=C_{1}\left\{C_{2}\left(u_{1}, u_{2}, u_{3}\right), u_{4}\right\}
\end{gathered}
$$

Fully nested AC with $s=(((12) 3) 4)$
$C\left(u_{1}, u_{2}, u_{3}, u_{4}\right)=C_{1}\left[C_{2}\left\{C_{3}\left(u_{1}, u_{2}\right), u_{3}\right\}, u_{4}\right]$

Partially Nested AC with $s=((12)(34))$

$$
C\left(u_{1}, u_{2}, u_{3}, u_{4}\right)=C_{1}\left\{C_{2}\left(u_{1}, u_{2}\right), C_{3}\left(u_{3}, u_{4}\right)\right\}
$$

HAC

Hierarchical Archimedean Copula

Figure 2: Scatterplot of the $C_{\text {Gumbel }}\left[C_{\text {Gumbel }}\left\{\Phi\left(x_{1}\right), t_{2}\left(x_{2}\right) ; \theta_{1}=\right.\right.$ $\left.2\}, \Phi\left(x_{3}\right) ; \theta_{2}=10\right], s=((12) 3)$

Hierarchical Archimedean Copula

Figure 3: Scatterplot of the $C_{\text {Gumbel }}\left[\Phi\left(x_{2}\right), C_{\text {Gumbel }}\left\{t_{2}\left(x_{1}\right), \Phi\left(x_{3}\right) ; \theta_{1}=\right.\right.$ $\left.2\} ; \theta_{2}=10\right], s=(2(13))$

Hierarchical Archimedean Copula

Advantages of HAC:

\square flexibility and wide range of dependencies:
for $d=10$ more than $2.8 \cdot 10^{8}$ structures
\square dimension reduction:
$d-1$ parameters to be estimated
\checkmark subcopulas are also HAC

Theoretical motivation

Let M be the cdf of a positive random variable and ϕ denotes its Laplace transform, i.e. $\phi(t)=\int_{0}^{\infty} e^{-t w} d M(w)$. For an arbitrary pdf F there exists a unique $\operatorname{cdf} G$, such that

$$
F(x)=\int_{0}^{\infty} G^{\alpha}(x) d M(\alpha)=\phi\{-\ln G(x)\}
$$

Now consider a k-variate cumulative distribution function F with margins F_{1}, \ldots, F_{d}. Then it holds for $G_{j}=\exp \left\{-\phi^{-1}\left(F_{j}\right)\right\}$ that

$$
\begin{aligned}
& \quad \int_{0}^{\infty} G_{1}^{\alpha}\left(x_{1}\right) \cdots G_{d}^{\alpha}\left(x_{d}\right) d M(\alpha)=\phi\left\{-\sum_{i=1}^{d} \ln G_{i}\left(x_{i}\right)\right\}=\phi\left[\sum_{i=1}^{d} \phi^{-1}\left\{F_{i}\left(x_{i}\right)\right\}\right] . \\
& C\left(u_{1}, \ldots, u_{d}\right)= \\
& \int_{0}^{\infty} \ldots \int_{0}^{\infty} G_{1}^{\alpha_{1}}\left(u_{1}\right) G_{2}^{\alpha_{1}}\left(u_{2}\right) d M_{1}\left(\alpha_{1}, \alpha_{2}\right) G_{3}^{\alpha_{2}}\left(u_{3}\right) d M_{2}\left(\alpha_{2}, \alpha_{3}\right) \ldots G_{d}^{\alpha_{d-1}}\left(u_{d}\right) d M_{d-1}\left(\alpha_{d-1}\right) \\
& \text { WAC }
\end{aligned}
$$

Recovering the structure (theory)

To guarantee that C is a HAC we assume that $\phi_{d-i}^{-1} \circ \phi_{d-j} \in \mathcal{L}^{*}$, $i<j$ with
$\mathcal{L}^{*}=\left\{\omega:[0, \infty) \rightarrow[0, \infty) \mid \omega(0)=0, \omega(\infty)=\infty,(-1)^{j-1} \omega^{(j)} \geq 0, j \geq 1\right\}$.

* for most of the generator functions the parameters should decrease from the lowest level to the highest

Theorem
Let F be an arbitrary multivariate distribution function based on HAC. Then F can be uniquely recovered from the marginal distribution functions and all bivariate copula functions.

$$
C\left(u_{1}, \ldots, u_{6}\right)=C_{1}\left[C_{2}\left(u_{1}, u_{2}\right), C_{3}\left\{u_{3}, C_{4}\left(u_{4}, u_{5}\right), u_{6}\right\}\right] .
$$

The bivariate marginal distributions are then given by
$\left(U_{1}, U_{2}\right) \sim C_{2}(\cdot, \cdot)$,
$\left(U_{2}, U_{3}\right) \sim C_{1}(\cdot, \cdot)$,
$\left(U_{3}, U_{5}\right) \sim C_{3}(\cdot, \cdot)$,
$\left(U_{1}, U_{3}\right) \sim C_{1}(\cdot, \cdot)$,
$\left(U_{2}, U_{4}\right) \sim C_{1}(\cdot, \cdot)$,
$\left(U_{3}, U_{6}\right) \sim C_{3}(\cdot, \cdot)$,
$\left(U_{1}, U_{4}\right) \sim C_{1}(\cdot, \cdot)$,
$\left(U_{2}, U_{5}\right) \sim C_{1}(\cdot, \cdot)$,
$\left(U_{4}, U_{5}\right) \sim C_{4}(\cdot, \cdot)$,
$\left(U_{1}, U_{5}\right) \sim C_{1}(\cdot, \cdot)$,
$\left(U_{2}, U_{6}\right) \sim C_{1}(\cdot, \cdot)$,
$\left(U_{4}, U_{6}\right) \sim C_{3}(\cdot, \cdot)$,
$\left(U_{1}, U_{6}\right) \sim C_{1}(\cdot, \cdot)$,
$\left(U_{3}, U_{4}\right) \sim C_{3}(\cdot, \cdot)$,
$\left(U_{5}, U_{6}\right) \sim C_{3}(\cdot, \cdot)$.

$$
\mathcal{C}_{2}\{\mathbb{N}(C)\}=\left\{C_{1}(\cdot, \cdot), C_{2}(\cdot, \cdot), C_{3}(\cdot, \cdot), C_{4}(\cdot, \cdot)\right\}
$$

\square each variable belongs to at least one bivariate margin C_{1} \rightsquigarrow the distribution of u_{1}, \ldots, u_{6} has C_{1} at the top level.
$\square C_{3}$ covers the largest set of variables $u_{3}, u_{4}, u_{5}, u_{6} \rightsquigarrow C_{3}$ is at the top level of the subcopula containing $u_{3}, u_{4}, u_{5}, u_{6}$.

$$
U_{1}, \ldots, U_{6} \sim C_{1}\left\{u_{1}, u_{2}, C_{3}\left(u_{3}, u_{4}, u_{5}, u_{6}\right)\right\}
$$

$\square C_{2}$ and C_{4} and they join u_{1}, u_{2} and u_{4}, u_{5} respectively.

$$
\left(U_{1}, \ldots, U_{6}\right) \sim C_{1}\left[C_{2}\left(u_{1}, u_{2}\right), C_{3}\left\{u_{3}, C_{4}\left(u_{4}, u_{5}\right), u_{6}\right\}\right]
$$

Let for each bivariate copula $C^{*} \in \mathcal{C}_{2}\{N(C)\}, I(C)$ be the set of indices $i \in\{1, \ldots, k\}$ such that $\left(U_{i}, U_{j}\right) \sim C^{*}$ for at least one $j \in\{1, \ldots, k\} \backslash\{i\}$.

$$
I\left(C_{1}\right)=\{1, \ldots, 6\}, I\left(C_{2}\right)=\{1,2\}, I\left(C_{3}\right)=\{3,4,5,6\}, I\left(C_{4}\right)=\{4,5\}
$$

The family of sets $I\left(C^{*}\right)$, as C^{*} ranges over $\mathcal{C}_{2}\{N(C)\}$, is partially ordered by inclusion

$$
I\left(C_{1}\right) \supset\left\{\begin{array}{l}
I\left(C_{2}\right) \\
I\left(C_{3}\right) \supset I\left(C_{4}\right) .
\end{array}\right.
$$

Recovering the structure (practice)

Estimation: multistage MLE with nonparametric and parametric margins Criteria for grouping: goodness-of-fit tests, parameter-based method, etc.

Estimation Issues - Margins

$$
\begin{aligned}
F_{j}\left(x ; \widehat{\alpha}_{j}\right) & =F_{j}\left\{x ; \arg \max _{\alpha} \sum_{i=1}^{n} \log f_{j}\left(X_{j i}, \alpha\right)\right\}, \\
\widehat{F}_{j}(x) & =\frac{1}{n+1} \sum_{i=1}^{n} \mathbf{l}\left(X_{j i} \leq x\right), \\
\widetilde{F}_{j}(x) & =\frac{1}{n+1} \sum_{i=1}^{n} K\left(\frac{x-X_{j i}}{h}\right)
\end{aligned}
$$

for $j=1, \ldots, k$, where $\varkappa: \mathbb{R} \rightarrow \mathbb{R}, \int \varkappa=1, K(x)=\int_{-\infty}^{x} \varkappa(t) d t$ and $h>0$ is the bandwidth.

$$
\check{F}_{j}(x) \in\left\{\widehat{F}_{j}(x), \widetilde{F}_{j}(x), F_{j}\left(x ; \widehat{\alpha}_{j}\right)\right\}
$$

Estimation Issues - Multistage Estimation

$$
\begin{aligned}
& \left(\frac{\partial \mathcal{L}_{1}}{\partial \boldsymbol{\theta}_{1}^{\top}}, \ldots, \frac{\partial \mathcal{L}_{p}}{\partial \boldsymbol{\theta}_{p}^{\top}}\right)^{\top}=\mathbf{0} \\
\text { where } \quad \mathcal{L}_{j}= & \sum_{i=1}^{n} l_{j}\left(\mathbf{X}_{i}\right) \\
l_{j}\left(\mathbf{X}_{i}\right)= & \log \left(c\left(\left\{\phi_{\ell}, \boldsymbol{\theta}_{\ell}\right\}_{\ell=1, \ldots, j} ; s_{j}\right)\left[\left\{\check{F}_{m}\left(x_{m i}\right)\right\}_{m \in s_{j}}\right]\right) \\
& \text { for } j=1, \ldots, p
\end{aligned}
$$

Theorem
Under regularity conditions, estimator $\widehat{\boldsymbol{\theta}}$ is consistent and

$$
n^{\frac{1}{2}}(\widehat{\boldsymbol{\theta}}-\boldsymbol{\theta}) \stackrel{a}{\sim} \boldsymbol{N}\left(\mathbf{0}, \mathbf{B}^{-1} \Sigma \mathbf{B}^{-1}\right)
$$

HAC

Criteria for grouping

Alternatives:

\square goodness-of-fit tests \rightsquigarrow to be discussed

- dimension dependent
- KS type tests are difficult to implement
- possible choice \rightsquigarrow Chen et al. (2004, WP of LSE), Fermanian (2005, JMA)
\square distance measures
- dimension dependent
\square parameter-based methods
Note that, if the true structure is (123) then

$$
\theta_{(12)}=\theta_{(13)}=\theta_{(23)}=\theta_{(123)} .
$$

- heurithtic methods
- test-based methods
\square tests on exchangeability

Criteria for grouping using GOF

$$
H_{0}: \quad C=C_{0}, \quad \text { against } \quad H_{1}: \quad C \neq C_{0} .
$$

probability integral transform, Rosenblatt (1952, AMS)

$$
Y_{1 i}=\check{F}_{1}\left(x_{1 i}\right), \quad Y_{j i}=C(\phi, \widehat{\boldsymbol{\theta}}, s)\left\{\check{F}_{j}\left(x_{j i}\right) \mid \check{F}_{1}\left(x_{1 i}\right), \ldots, \check{F}_{j-1}\left(x_{j-1, i}\right)\right\}
$$

$\widehat{W}_{i}=\sum_{j=1}^{d}\left\{\Phi^{-1}\left(Y_{j i}\right)\right\}^{2}, \quad \widehat{g}_{W}(w)=\frac{1}{n h} \sum_{i=1}^{n} K_{h}\left\{w, F_{\chi_{d}^{2}}\left(\widehat{W}_{i}\right)\right\}$,
$\widehat{J}_{n}=\int_{0}^{1}\left\{\widehat{g}_{w}(w)-1\right\}^{2} d w$
test statistic (Chen et al. 2004)

$$
T_{n}=\frac{\left(n \sqrt{h} \widehat{J}_{n}-c_{n}\right)}{\sigma} \rightarrow N(0,1)
$$

HAC

Criteria for grouping based on θ 's

I. For all subsets perform tests of the kind

$$
\begin{aligned}
& H_{0}: \quad \theta_{(12)}=\theta_{(13)}=\theta_{(23)}=\theta_{(123)} \\
& H_{1}: \quad \text { at least one equality is not fulfilled }
\end{aligned}
$$

II.

$$
\Delta=\min _{I_{k i},\left|I_{k i}\right| \geq 3} \max _{I_{I_{k i} \mid, j} \subset I_{k i}}\left|\theta\left(I_{k i}\right)-\theta\left(I_{I_{k i} \mid, j}\right)\right|,
$$

where $j=1, \ldots, 2^{\left|I_{k i}\right|}-\left|I_{k i}\right|-1$ and $\left\{I_{k i}\right\}_{i=1, \ldots 2^{k}-k-1}$ denote the subsets of the initial set of size k, excluding empty set and single element sets.

$$
I^{*}= \begin{cases}I_{\Delta}, & \Delta \leq \delta \\ \max _{I_{k i},}, I_{k i} \mid=2 & \theta\left(I_{k i}\right), \\ \Delta>\delta\end{cases}
$$

HAC

Recovering the structure (easy practice)

$$
\max \left\{\widehat{\theta}_{(13) 2}, \widehat{\theta}_{(13) 4}, \widehat{\theta}_{24}\right\}=\widehat{\theta}_{(13) 4} \quad \Rightarrow
$$

Simulation, I

Method	Copula structure(s)	\%	KL	Kendall τ	λ_{U}	λ_{L}	time (in sec)
Gauss			0.282 (0.040)	0.078(0.029)	3.026 (0.000)	0.000 (0.000)	17.682 (9.924)
t			0.197 (0.029)	$0.069(0.027)$	1.346 (0.160)	1.773 (0.141)	40.030 (24.234)
sAC	$(12345)_{2.32}$	100.0	$0.803(0.071)$	0.525 (0.010)	$0.471(0.008)$	$0.000(0.000)$	1.251 (1.035)
$\tau_{\triangle \tau>0}$	$\begin{aligned} & \left((45)_{3.01}(123)_{4.13}\right)_{2.23} \\ & \left((45)_{3.04}\left(1(23)_{4.45}\right)_{4.35}\right)_{2.21} \\ & \left((45)_{2.97}\left(2(13)_{4.2}\right)_{4.09}\right)_{2.09} \end{aligned}$	$\begin{array}{r} 99.5 \\ 0.3 \\ 0.2 \\ \hline \end{array}$	0.017 (0.012)	0.181 (0.072)	0.172 (0.069)	0.000 (0.000)	0.591 (0.315)
$\tau_{\boldsymbol{b}}$	$\begin{aligned} & \left((45)_{3}\left(1(23)_{4.11}\right)_{4.1}\right)_{2.23} \\ & \left((45)_{3}\left(3(12)_{4.13}\right)_{4.13}\right)_{2.23} \\ & \left((45)_{3.02}\left(2(13)_{4.13}\right)_{4.13}\right)_{2.23} \end{aligned}$	$\begin{aligned} & 35.5 \\ & 32.5 \\ & 32.0 \\ & \hline \end{aligned}$	0.017 (0.012)	0.181 (0.072)	0.172 (0.069)	0.000 (0.000)	0.590 (0.349)
Chen	$\begin{aligned} & \left(23(145)_{2.18}\right)_{2.02} \\ & \left(45(123)_{4}\right)_{2.01} \\ & \left(13(245)_{2.18}\right)_{2.01} \end{aligned}$	$\begin{aligned} & 16.6 \\ & 16.5 \\ & 15.0 \\ & \hline \end{aligned}$	$0.739(0.276)$	0.555 (0.146)	0.501 (0.129)	$0.000(0.000)$	9 (122.406)
θ	$\begin{aligned} & \left(2(1345)_{2.24}\right)_{1.78} \\ & \left(3(1245)_{2.24}\right)_{1.78} \\ & \left(1(2345)_{2.24}\right)_{1.78} \end{aligned}$	$\begin{aligned} & 29.5 \\ & 28.7 \\ & 26.0 \end{aligned}$	0.813 (0.348)	0.650 (0.190)	0.598 (0.172)	$0.000(0.000)$	7.433 (3.859)
$\theta_{\boldsymbol{b}}$	$\begin{aligned} & \left((45)_{3.01}\left(1(23)_{4.12}\right)_{3.91}\right)_{2.28} \\ & \left((45)_{3}\left(3(12)_{4.11}\right)_{3.91}\right)_{2.28} \\ & \left((45)_{3.01}\left(2(13)_{4.11}\right)_{3.9}\right)_{2.28} \end{aligned}$	$\begin{aligned} & 35.7 \\ & 33.0 \\ & 31.3 \end{aligned}$	0.021 (0.007)	0.211 (0.056)	$0.202(0.053)$	0.000 (0.000)	0.880 (0.493)
${ }^{\boldsymbol{b}} \boldsymbol{a}$	$\begin{aligned} & \left((45)_{3.01}\left(1(23)_{4.13}\right)_{3.89}\right)_{2.27} \\ & \left((45)_{3}\left(3(12)_{4.12}\right)_{3.89}\right)_{2.28} \\ & \left((45)_{3.01}\left(2(13)_{4.12}\right)_{3.89}\right)_{2.28} \end{aligned}$	$\begin{aligned} & 32.2 \\ & 28.0 \\ & 27.4 \end{aligned}$	0.021 (0.007)	0.211 (0.056)	0.202 (0.053)	$0.000(0.000)$	0.847 (0.461)
$\theta_{\text {PML }}$	$\begin{aligned} & \left(\left(1(23)_{4.14}\right)_{3.98}(45)_{3}\right)_{1.99} \\ & \left(\left(2(13)_{4.14}\right)_{3.99}(45)_{3}\right)_{1.99} \\ & \left(\left(3(12)_{4.14}\right)_{3.98}(45)_{3}\right) 1.98 \end{aligned}$	$\begin{aligned} & 26.3 \\ & 25.6 \\ & 23.5 \end{aligned}$	-0.003(0.002)	0.051 (0.028)	0.048 (0.028)	0.000 (0.000)	0.537 (0.082)

Table 1: Model fit for the true structure $\left((123)_{4}(45)_{3}\right)_{2}$.

Simulation, I

	Structure $\left((123)_{4}(45)_{3}\right)_{2}$			
	θ_{3}	θ_{2}	θ_{1}	Time (in s)
true	4.00000	3.00000	2.00000	
MultiStage (mean)	4.01483	3.01093	2.27715	0.24230
MultiStage (sd)	0.11083	0.11285	0.08478	0.01265
MultiStageRec (mean)	4.02814	3.01090	1.96754	0.49618
MultiStageRec (sd)	0.10342	0.11283	0.05717	0.03259
Full (mean)	4.00234	3.01029	2.00294	0.94994
Full (sd)	0.10028	0.11159	0.05841	0.06004

Table 2: The average parameters, the empirical standard deviation and computational times for multistage ML, multistage ML with reestimation and full ML estimation based on 1000 simulated samples of size 1000 .

Simulation, II

Method	Copula structure(s)	\%	KL	Kendall τ	λ_{U}	λ_{L}	time (in sec)
Gauss			$0.288(0.039)$	0.641 (0.029)	3.088 (0.000)	0.000 (0.000)	15.059 (8.442)
t			0.197 (0.027)	0.644 (0.028)	1.455 (0.144)	1.850 (0.147)	37.261 (22.079)
sAC	$(12345)_{2.37}$	100.0	0.494 (0.067)	$0.434(0.015)$	$0.394(0.013)$	$0.000(0.000)$	1.113 (0.865)
$\tau_{\triangle \tau>0}$	$\begin{aligned} & \left(5\left(12(34)_{4.02}\right)_{3.34}\right)_{2.17} \\ & \left(5\left(1\left(2(34)_{3.99}\right)_{3.52}\right)_{3.42}\right)_{2.22} \\ & \left(5\left(2\left(1(34)_{4.03}\right)_{3.57}\right)_{3.44}\right)_{2.18} \end{aligned}$	$\begin{array}{r} 96.2 \\ 2.1 \\ 1.7 \\ \hline \end{array}$	0.032 (0.020)	0.165 (0.057)	$0.150(0.052)$	0.000 (0.000)	0.536 (0.419)
$\tau_{\boldsymbol{b}}$	$\begin{aligned} & \left(5\left(2\left(1(34)_{4.02}\right)_{3.35}\right)_{3.34}\right)_{2.17} \\ & \left(5\left(1\left(2(34)_{4.01}\right)_{3.36}\right)_{3.36}\right)_{2.18} \\ & \left(5\left((34)_{4}(12)_{3.28}\right)_{3.28}\right)_{2.16} \end{aligned}$	$\begin{array}{r} 51.2 \\ 47.9 \\ 0.9 \end{array}$	0.032 (0.020)	0.164 (0.057)	0.150 (0.052)	0.000 (0.000)	0.523 (0.361)
Chen	$\begin{aligned} & \left(24(135)_{2.19}\right)_{2.1} \\ & \left(25(134)_{3.2}\right)_{2.1} \\ & \left(15(234)_{3.2}\right)_{2.11} \end{aligned}$	$\begin{aligned} & 11.2 \\ & 10.7 \\ & 10.7 \end{aligned}$	$0.450(0.135)$	0.494 (0.087)	$0.450(0.080)$	$0.000(0.000)$	82.225 (116.211)
θ	$\begin{aligned} & \left(5\left(4(123)_{3}\right)_{2.63}\right)_{1.73} \\ & \left(5\left(3(124)_{3}\right)_{2.63}\right)_{1.73} \\ & \left(5(1234)_{3.08}\right)_{1.76} \end{aligned}$	$\begin{aligned} & 44.9 \\ & 44.7 \\ & 10.2 \\ & \hline \end{aligned}$	0.145 (0.031)	0.299 (0.054)	0.284 (0.054)	$0.000(0.000)$	6.071 (3.026)
$\theta_{\boldsymbol{b}}$	$\begin{aligned} & \left(5\left((34)_{3.99}(12)_{3.08}\right)_{3.08}\right)_{1.78} \\ & \left(5\left(2\left(1(34)_{4.02}\right)_{3.08}\right)_{2.6}\right)_{1.75} \\ & \left(5\left(1\left(2(34)_{4.01}\right)_{3.07}\right)_{2.59}\right)_{1.75} \end{aligned}$	$\begin{aligned} & 38.0 \\ & 31.8 \\ & 30.2 \end{aligned}$	0.031 (0.016)	0.221 (0.058)	0.216 (0.058)	0.000 (0.000)	0.706 (0.382)
${ }^{\boldsymbol{b} \boldsymbol{a}}$	$\begin{aligned} & \left(5\left(12(34)_{3.99}\right)_{3.08}\right)_{1.78} \\ & \left(5\left(2\left(1(34)_{4.02}\right)_{3.08}\right)_{2.6}\right)_{1.75} \\ & \left(5\left(1\left(2(34)_{4.01}\right)_{3.07}\right)_{2.59}\right)_{1.75} \end{aligned}$	$\begin{aligned} & 38.0 \\ & 31.8 \\ & 30.2 \\ & \hline \end{aligned}$	0.031 (0.016)	0.221 (0.058)	0.216 (0.058)	0.000 (0.000)	0.665 (0.340)
$\theta_{\text {PML }}$	$\begin{aligned} & \left(5\left((12)_{3.09}(34)_{3.98}\right)_{2.89}\right)_{1.99} \\ & \left(5\left(2\left(1(34)_{4.04}\right)_{3.1}\right)_{2.99}\right)_{2} \\ & \left(5\left(1\left(2(34)_{4.02}\right)_{3.09}\right)_{2.98}\right)_{2} \end{aligned}$	$\begin{aligned} & 32.8 \\ & 21.0 \\ & 19.7 \end{aligned}$	-0.002 (0.003)	0.054 (0.023)	0.049 (0.022)	$0.000(0.000)$	3.288 (2.100)

Table 3: Model fit for the true structure $\left(\left(12(34)_{4}\right)_{3} 5\right)_{2}$.

Simulation, II

	Structure $\left(\left(12(34)_{4}\right)_{3} 5\right)_{2}$			
	θ_{3}	θ_{2}	θ_{1}	Time (in s)
true	4.00000	3.00000	2.00000	
MultiStage (mean)	3.98305	3.03973	1.77748	0.25594
MultiStage (sd)	0.14800	0.08496	0.05846	0.02065
MultiStageRec (mean)	3.98301	2.99587	2.00394	1.99505
MultiStageRec (sd)	0.14801	0.07880	0.06110	0.37285
Full (mean)	3.98041	3.00407	2.00520	2.74066
Full (sd)	0.14158	0.07045	0.06109	0.32671

Table 4: The average parameters, the empirical standard deviation and computational times for multistage ML, multistage ML with reestimation and full ML estimation based on 1000 simulated samples of size 1000 .

Missspesification

Let $H\left(x_{1}, \ldots, x_{k}\right)$ - true df with density h. Since H is unknown we specify $F\left(x_{1}, \ldots, x_{k}, \boldsymbol{\eta}\right)$ with density f.
$\square F$ is correctly specified:
$\exists \boldsymbol{\eta}_{0}: F\left(x_{1}, \ldots, x_{k}, \boldsymbol{\eta}_{0}\right)=H\left(x_{1}, \ldots, x_{k}\right), \forall\left(x_{1}, \ldots, x_{k}\right)$ then $\widehat{\boldsymbol{\eta}}$ is consistent for η_{0}.
$\square F$ is not correctly specified:
$\nexists \boldsymbol{\eta}_{0}: F\left(x_{1}, \ldots, x_{k}, \boldsymbol{\eta}_{0}\right)=H\left(x_{1}, \ldots, x_{k}\right), \forall\left(x_{1}, \ldots, x_{k}\right)$, then $\widehat{\boldsymbol{\eta}}$ is an estimator for $\boldsymbol{\eta}_{*}$ which minimizes the Kullback-Leibler divergence between f and h as

$$
\mathcal{K}(h, f, \boldsymbol{\eta})=\boldsymbol{E}_{h}\left\{\log \left[h\left(x_{1}, \ldots, x_{k}\right) / f\left(x_{1}, \ldots, x_{k}, \boldsymbol{\eta}\right)\right]\right\}
$$

HAC
喻

Missspesification

Missspesification, I

Figure 4: Kullback-Leibler divergences for the simulated samples, HAC, $\theta_{1}=2.0, \theta_{2}=1.5, N=200, n=1000$

Missspesification

Missspesification, II

Figure 5: Kullback-Leibler divergences for the simulated samples, HAC, $\Sigma=(0.1,0.3,0.5)^{\top}, N=200, n=1000$ HAC

Data and Copula

\square daily returns of Apple (APL), Hewlett Packard (HP) and Microsoft (MSFT)
\square timespan $=[04.01 .2006-04.11 .2009](n=1000)$
\square Gumbel and Clayton generators
\checkmark AR (1)-GARCH $(1,1)$-residuals are conditionally distributed with estimated copula

$$
\varepsilon \sim C\left\{F_{1}\left(x_{1}\right), \ldots, F_{d}\left(x_{d}\right) ; \theta_{t}\right\}
$$

where F_{1}, \ldots, F_{d} are marginal distributions taking to be nonparametrically and θ_{t} are the copula parameters.

HAC
嘸

Data and Copula

Figure 6: Prices

Data and Copula

Figure 7: Returns

AR(1)-GARCH(1,1)

	μ	ω_{1}	γ_{0}	γ_{1}	δ_{1}	BL	KS
APL	$2.481 e-3$	$3.941 e-4$	$1.659 e-5$	0.0764	$9.008 e-1$	0.516	$3.867 e-3$
	$7.337 e-4$	$3.362 e-2$	$7.338 e-6$	0.0165	$2.292 e-2$		
HP	$1.304 e-4$	$-8.267 e-2$	$4.125 e-6$	0.0657	$9.241 e-1$	0.650	$2.274 e-3$
	$4.965 e-4$	$3.315 e-2$	$1.694 e-6$	0.0124	$1.359 e-2$		
MSFT	$3.962 e-4$	$-7.555 e-2$	$1.349 e-5$	0.0783	$8.894 e-1$	0.263	$2.970 e-5$
	$5.262 e-4$	$3.563 e-2$	$4.249 e-6$	0.0206	$2.800 e-2$		

Table 5: Estimation results of fitting univariate $\operatorname{AR}(1)-\operatorname{GARCH}(1,1)$ processes to the data with the volatility equation $\sigma_{t}^{2}=\gamma_{0}+\gamma_{1}\left(r_{t-1}-\mu-\right.$ $\left.\omega_{1} r_{t-2}\right)^{2}+\delta_{1} \sigma_{t-1}^{2}$. Second lines contain the standard deviations of the parameters.

Data and Copula

 from moving window estimation with window length of 100 observati氟。 HAC

VaR

The P\&L function is $L_{t+1}=\sum_{i=1}^{3} w_{i} P_{i t}\left(e^{R_{i, t+1}}-1\right)$,
The VaR of at level α is $\operatorname{VaR}(\alpha)=F_{L}^{-1}(\alpha)$

$$
\widehat{\alpha}_{\mathbf{w}}=\frac{1}{T} \sum_{t=1}^{T} \mathbf{I}\left\{L_{t}<\widehat{\operatorname{VaR}}_{t}(\alpha)\right\}
$$

The distance between $\widehat{\alpha}$ and α

$$
e_{\mathbf{w}}=\left(\widehat{\alpha}_{\mathbf{w}}-\alpha\right) / \alpha
$$

The performance of models is measured through

$$
A_{W}=\frac{1}{|W|} \sum_{\mathbf{w} \in W} e_{\mathbf{w}}, \quad D_{W}=\left\{\frac{1}{|W|} \sum_{\mathbf{w} \in W}\left(e_{\mathbf{w}}-A_{W}\right)^{2}\right\}^{1 / 2}
$$

HAC
亵

VaR

	Gauss			AC			HAC		
α	0.100	0.050	0.010	0.100	0.050	0.010	0.100	0.050	0.010
$\widehat{\alpha}_{w^{*}}$	0.104	0.052	0.011	0.107	0.058	0.014	0.102	0.057	0.012
$\widehat{\alpha}_{w_{1}}$	0.094	0.056	0.011	0.096	0.056	0.013	0.095	0.054	0.012
$\widehat{\alpha}_{w_{2}}$	0.103	0.054	0.011	0.103	0.057	0.013	0.099	0.053	0.012
$\widehat{\alpha}_{w_{3}}$	0.104	0.053	0.011	0.103	0.055	0.012	0.101	0.052	0.012
$\widehat{\alpha}_{w_{4}}$	0.103	0.054	0.011	0.105	0.057	0.013	0.099	0.053	0.012
$\widehat{\alpha}_{w_{5}}$	0.104	0.055	0.011	0.108	0.062	0.014	0.103	0.054	0.012
A_{W}	0.011	0.019	0.120	0.027	0.092	0.285	-0.005	0.031	0.208
D_{W}	0.054	0.057	0.045	0.064	0.068	0.088	0.042	0.043	0.069

Table 6: Exceedance ratios for portfolios $w^{*}, w_{i}, i=1, \ldots, 5$, the average exceedance A_{W} over all portfolios and its standard deviation.

Distribution of HAC

Let $V=C\left\{F_{1}\left(X_{1}\right), \ldots, F_{d}\left(X_{d}\right)\right\}$ and let $K(t)$ denote the distribution function (K-distribution) of the random variable V.

We consider a HAC of the form $C_{1}\left\{u_{1}, C_{2}\left(u_{2}, \ldots, u_{d}\right)\right\}$.
Theorem
Let $U_{1} \sim U[0,1], V_{2} \sim K_{2}$ and let $P\left(U_{1} \leq x, V_{2} \leq y\right)=C_{1}\left\{x, K_{2}(y)\right\}$ with $C_{1}(a, b)=\phi\left\{\phi^{-1}(a)+\phi^{-1}(b)\right\}$ for $a, b \in[0,1]$. Under certain regularity conditions the distribution function K_{1} of the random variable $V_{1}=C_{1}\left(U_{1}, V_{2}\right)$ is given by

$$
\begin{aligned}
K_{1}(t)= & t-\int_{0}^{\phi^{-1}(t)} \phi^{\prime}\left\{\phi^{-1}(t)+\phi^{-1} \circ K_{2} \circ \phi(u)-u\right\} d u \\
& \text { for } t \in[0,1]
\end{aligned}
$$

里

Gumbel copula

$$
\begin{aligned}
\phi_{\theta}(t) & =\exp \left(-t^{1 / \theta}\right) \\
\phi_{\theta}^{-1}(t) & =\{-\log (t)\}^{\theta} \\
\phi_{\theta}^{\prime}(t) & =-\frac{1}{\theta} \exp \left(-t^{1 / \theta}\right) t^{-1+1 / \theta}
\end{aligned}
$$

Following Genest and Rivest (1993), K for the simple 2-dim Archimedean copula with generator ϕ is given by $K(t)=t-\phi^{-1}(t) \phi^{\prime}\left\{\phi^{-1}(t)\right\}$. Thus

$$
K_{2}(t, \theta)=t-\frac{t}{\theta} \log (t)
$$

Figure 10: K distribution for three-dimensional HAC with Gumbel generators

Distribution of HAC
Next consider $V_{3}=C_{3}\left(V_{4}, V_{5}\right)$ with $V_{4}=C_{4}\left(U_{1}, \ldots, U_{\ell}\right)$ and $V_{5}=C_{5}\left(U_{\ell+1}, \ldots, U_{d}\right)$.
Theorem
Let $V_{4} \sim K_{4}$ and $V_{5} \sim K_{5}$ and $P\left(V_{4} \leq x, V_{5} \leq y\right)=C_{3}\left\{K_{4}(x), K_{5}(y)\right\}$ with
$C_{3}(a, b)=\phi\left\{\phi^{-1}(a)+\phi^{-1}(b)\right\}$ for $a, b \in[0,1]$. Under certain regularity conditions the distribution function K_{3} of the random variable $V_{3}=C_{3}\left(V_{4}, V_{5}\right)$ is given by

$$
\begin{aligned}
K_{3}(t)= & K_{4}(t)- \\
- & \int_{0}^{\phi^{-1}(t)} \phi^{\prime}\left[\phi^{-1} \circ K_{5} \circ \phi(u)\right. \\
& \left.+\phi^{-1} \circ K_{4} \circ \phi\left\{\phi^{-1}(t)-u\right\}\right] d \phi^{-1} \circ K_{4} \circ \phi(u)
\end{aligned}
$$

for $t \in[0,1]$.
HAC

$$
\overbrace{06}^{\circ}
$$

Estimation Issues

Nonparametric Estimation

$$
\begin{aligned}
& \widehat{C}\left(u_{1}, \ldots, u_{d}\right)=\frac{1}{n} \sum_{i=1}^{n} \prod_{j=1}^{d} \mathbf{I}\left\{\breve{F}_{j}\left(X_{j i}\right) \leq u_{j}\right\} \\
& \widetilde{C}\left(u_{1}, \ldots, u_{d}\right)=\frac{1}{n} \sum_{i=1}^{n} \prod_{j=1}^{d} K_{j}\left\{\frac{u_{j}-\breve{F}_{j}\left(X_{j i}\right)}{h_{j}}\right\}
\end{aligned}
$$

where $\breve{F}_{j}(x)=\left\{\widehat{F}_{j}(x), \widetilde{F}_{j}(x), F_{j}(x, \widehat{\alpha}), F_{j}(x)\right\}$

Goodness-of-Fit Tests

$H_{0}: \quad C \in \mathcal{C}_{0}, \quad$ against $H_{1}: \quad C \notin \mathcal{C}_{0}$,
where $\mathcal{C}_{0}=\left\{C_{\theta}: \theta \in \Theta\right\}$ is a known parametric family of copulas.

$$
\begin{aligned}
& S=n \int_{[0,1]^{d}}\left\{\widehat{C}\left(u_{1}, \ldots, u_{d}\right)-C\left(u_{1}, \ldots, u_{d}, \widehat{\theta}\right)\right\}^{2} d \widehat{C}\left(u_{1}, \ldots, u_{d}\right), \\
& T=\sup _{u_{1}, \ldots, u_{d} \in[0,1]} \sqrt{n}\left|\widehat{C}\left(u_{1}, \ldots, u_{d}\right)-C\left(u_{1}, \ldots, u_{d}, \widehat{\theta}\right)\right| \\
& S_{K}=n \int_{0}^{1}\{\widehat{K}(v)-K(v, \theta)\}^{2} d v, \\
& T_{K}=\sup _{v \in[0,1]}|\widehat{K}(v)-K(v, \theta)| . \\
& \text { where } \widehat{K}(v)=\frac{1}{n} \sum_{i=1}^{n} I\left\{V_{i} \leq v\right\} . \\
& \text { WAC }
\end{aligned}
$$

Simulation Study

1. F: two methods of estimation of margins (parametric and nonparametric);
2. C_{0} : hypothesised copula models under H_{0} (three models);
3. C : copula model from which the data were generated (three models with 3,3 and 15 levels of dependence respectively);
4. n : size of each sample drawn from C (two possibilities, $n=50$ and $n=150$).
$\rightsquigarrow 2 \times 3 \times(3+3+15) \times 2=252$ models with 100 repetitions

Figure 11: Levels of goodness-of-fit tests for different sample size, for parametric margins.

AC									
θ		$n=50$				$n=150$			
		T		S		T		S	
		emp.	par.	emp.	par.	emp.	par.	emp.	par.
$\theta(0.25)$	HAC	0.88	0.51	0.83	0.38	0.93	0.36	0.90	0.35
	AC	0.88	0.51	0.89	0.50	0.95	0.32	0.90	0.34
	Gauss	0.71	0.29	0.56	0.22	0.69	0.11	0.43	0.08
$\theta(0.5)$	HAC	0.90	0.38	0.94	0.30	0.87	0.35	0.88	0.27
	AC	0.96	0.55	0.95	0.45	0.90	0.45	0.92	0.35
	Gauss	0.76	0.30	0.65	0.19	0.47	0.13	0.31	0.02
$\theta(0.75)$	HAC	0.93	0.29	0.93	0.15	0.89	0.27	0.89	0.10
	AC	0.93	0.29	0.93	0.22	0.90	0.25	0.91	0.13
	Gauss	0.77	0.19	0.65	0.10	0.57	0.11	0.24	0.05

Table 7: Non-rejection rate of the different models, where the sample is drawn from the simple AC

HAC									
θ		$n=50$				$n=150$			
		T		S		T		S	
		emp.	par.	emp.	par.	emp.	par.	emp.	par.
$\theta(0.25,0.5)$	HAC	0.88	0.29	0.90	0.24	0.96	0.31	0.92	0.26
	AC	0.91	0.26	0.93	0.36	0.54	0.13	0.53	0.07
	Gauss	0.82	0.20	0.69	0.19	0.57	0.14	0.37	0.04
$\theta(0.25,0.75)$	HAC	0.93	0.21	0.92	0.13	0.88	0.18	0.88	0.09
	AC	0.46	0.14	0.54	0.07	0.00	0.00	0.00	0.00
	Gauss	0.84	0.19	0.71	0.13	0.52	0.10	0.42	0.01
$\theta(0.5,0.75)$	HAC	0.86	0.31	0.87	0.18	0.91	0.20	0.94	0.08
	AC	0.89	0.36	0.92	0.28	0.44	0.04	0.47	0.02
	Gauss	0.70	0.19	0.55	0.12	0.50	0.11	0.30	0.05

Table 8: Non-rejection rate of the different models, where the sample is drawn from the HAC

Gauss									
Σ		$n=50$				$n=150$			
		T		S		T		S	
		emp.	par.	emp.	par.	emp.	par.	emp.	par.
$\Sigma(0.25,0.25,0.75)$	HAC	0.89	0.20	0.93	0.11	0.78	0.08	0.81	0.02
	AC	0.43	0.13	0.47	0.09	0.00	0.00	0.00	0.00
	Gauss	0.88	0.22	0.89	0.12	0.87	0.11	0.86	0.03
$\Sigma(0.25,0.75,0.25)$	HAC	0.92	0.20	0.91	0.14	0.76	0.07	0.69	0.04
	AC	0.39	0.12	0.39	0.04	0.00	0.00	0.00	0.00
	Gauss	0.90	0.18	0.87	0.13	0.92	0.12	0.94	0.10
$\Sigma(0.75,0.25,0.25)$	HAC	0.89	0.30	0.93	0.16	0.78	0.10	0.75	0.04
	AC	0.51	0.16	0.46	0.07	0.00	0.00	0.00	0.00
	Gauss	0.91	0.28	0.90	0.17	0.88	0.13	0.86	0.06

Table 9: Non-rejection rate of the different models, where the sample is drawn from the Gaussian copula

Data and Copula

\square daily returns of Bank of America, Citigroup, Santander
\square timespan $=[29.09 .2000-16.02 .2001](n=100)$
\square ARMA (1,1)-GARCH(1,1)-residuals are conditionally distributed with estimated copula

$$
\begin{aligned}
R_{t j} & =\mu_{j}+\gamma_{j} R_{t-1, j}+\zeta_{j} \sigma_{t-1, j} \varepsilon_{t-1, j}+\sigma_{t j} \varepsilon_{t j} \\
\sigma_{t j}^{2} & =\omega_{j}+\alpha_{j} \sigma_{t-1, j}^{2}+\beta_{j} \sigma_{t-1, j}^{2} \varepsilon_{t-1, j}^{2} \\
\varepsilon & \sim C\left\{F_{1}\left(x_{1}\right), \ldots, F_{d}\left(x_{d}\right) ; \theta_{t}\right\}
\end{aligned}
$$

where F_{1}, \ldots, F_{d} are marginal distributions and θ_{t} are the copula parameters and $\omega>0, \alpha_{j} \geq 0, \beta_{j} \geq 0, \alpha_{j}+\beta_{j}<1$, $|\zeta|<1$.

Figure 12: Stock prices for Bank of America, Citigroup and Santander (from top to bottom).

HAC
嘉

	$\widehat{\mu}_{j}$	$\widehat{\gamma}_{j}$	$\widehat{\zeta}_{j}$	$\widehat{\omega}_{j}$	$\widehat{\alpha}_{j}$	$\widehat{\beta}_{j}$
Bank of America	$1.87 \mathrm{e}-3$	0.22	-0.23	$3.46 \mathrm{e}-4$	0.55	0.17
(0.57, 0.83)	$(2.59 \mathrm{e}-3)$	(0.64)	(0.65)	$(1.37 \mathrm{e}-04)$	(0.28)	(0.16)
Citigroup	$0.11 \mathrm{e}-3$	0.31	-0.46	$2.67 \mathrm{e}-4$	0.09	0.47
(0.57, 0.79)	$(1.48 \mathrm{e}-3)$	(0.29)	(0.29)	$(5.53 \mathrm{e}-04)$	(0.17)	(1.01)
Santander	$1.35 \mathrm{e}-3$	0.43	-0.56	$4.51 \mathrm{e}-10$	0.01	0.98
$(0.91,0.78)$	$(0.91 \mathrm{e}-3)$	(0.15)	(0.17)	$(1.38 \mathrm{e}-05)$	(0.02)	(0.05)

Table 10: Fitting of univariate $\operatorname{ARMA}(1,1)-G A R C H(1,1)$ to asset returns. The standard deviation of the parameters, which are quiet big because of the small sample size, are given in parentheses. Each second row provides the p-values of the Box-Ljung test (BL) for autocorrelations and Kolmogorov-Smirnov test (KS) for testing of normality of the residuals.

Figure 13: Scatterplots from ARMA-GARCH residuals (upper triangular) and from residuals mapped on unit square by the cdf (lower triangular).
HAC

	T_{100}	S_{100}	estimates
HAC	0.3191	0.1237	$C\left\{C\left(u_{1}, u_{2} ; 1.996\right), u_{3} ; 1.256\right\}$
AC	0.0012	0.0002	$C\left(u_{1}, u_{2}, u_{3} ; 1.276\right)$
Gauss	0.0160	0.0078	$C_{N}\left\{u_{1}, u_{2}, u_{3} ; \Sigma(0.697,0.215,0.312)\right\}$

Table 11: p-values of both GoFs and estimates of the models under different H_{0} hypotheses.

Figure 14: Profit and loss function and VaR based on different models.

α	$\widehat{\alpha}_{H A C}$	$\widehat{\alpha}_{A C}$	$\widehat{\alpha}_{\text {Gauss }}$
0.10	0.091	0.122	0.081
0.05	0.040	0.061	0.031
0.01	0.000	0.010	0.000

Table 12: Backtesting for the estimation of VaR under different alternatives.

Dependence orderings

C^{\prime} is more concordant than C if
$(\bar{C}(u, v)=u+v-1+C(1-u, 1-v))$

$$
C \prec_{c} C^{\prime} \Leftrightarrow C(\mathrm{x}) \leq C^{\prime}(\mathrm{x}) \text { and } \bar{C}(\mathrm{x}) \leq \overline{C^{\prime}}(\mathrm{x}) \forall \mathrm{x} \in[0 ; 1]^{d} .
$$

Theorem
If two feasible hierarchical Archimedean copulas C^{1} and C^{2} differ only by the generator functions on the top level satisfying the condition $\phi_{1}^{-1} \circ \phi_{2} \in \mathcal{L}^{*}$, then $C^{1} \prec_{c} C^{2}$.
Theorem
If two hierarchical Archimedean copulas $C^{1}=C_{\phi_{1}}^{1}\left(u_{1}, \ldots, u_{d}\right)$ and
$C^{2}=C_{\phi_{2}}^{2}\left(u_{1}, \ldots, u_{d}\right)$ differ only by the generator functions on the level
r as $\phi_{1}=\left(\phi_{1}, \ldots, \phi_{r-1}, \phi, \phi_{r+1}, \ldots, \phi_{p}\right)$ and
$\phi_{2}=\left(\phi_{1}, \ldots, \phi_{r-1}, \phi^{*}, \phi_{r+1}, \ldots, \phi_{p}\right)$ with $\phi^{-1} \circ \phi^{*} \in \mathcal{L}^{*}$, then
$C^{1} \prec_{c} C^{2}$.

Theorem

(Deheuvels (1978)) Let $\left\{X_{1 i}, \ldots, X_{d i}\right\}_{i=1, \ldots, n}$ be a sequence of the random vectors with the distribution function F, marginal distributions F_{1}, \ldots, F_{d} and copula C. Let also $M_{j}^{(n)}=\max _{1 \leq i \leq n} X_{j i}, j=1, \ldots, d$ be the componentwise maxima. Then

$$
\begin{aligned}
\lim _{n \rightarrow \infty} P\left\{\frac{M_{1}^{(n)}-a_{1 n}}{b_{1 n}} \leq x_{1}, \ldots, \frac{M_{d}^{(n)}-a_{d n}}{b_{d n}} \leq x_{d}\right\}= & F^{*}\left(x_{1}, \ldots, x_{d}\right) \\
& \forall\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{d}
\end{aligned}
$$

with $b_{j n}>0, j=1, \ldots, d, n \geq 1$ if and only if

1. for all $j=1, \ldots, d$ there exist some constants $a_{j n}$ and $b_{j n}$ and a non-degenerating limit distribution F_{j}^{*} such that

$$
\lim _{n \rightarrow \infty} P\left\{\frac{M_{j}^{(n)}-a_{j n}}{b_{j n}} \leq x_{j}\right\}=F_{j}^{*}\left(x_{j}\right), \quad \forall x_{j} \in \mathbb{R}
$$

2. there exists a copula C^{*} such that

$$
C^{*}\left(u_{1}, \ldots, u_{d}\right)=\lim _{n \rightarrow \infty} C^{n}\left(u_{1}^{1 / n}, \ldots, u_{d}^{1 / n}\right)
$$

HAC

Let $F_{d s}$ be the class of d dimensional hierarchical Archimedean copulas with structure s.

Theorem
If $C \in F_{d s_{1}}, C^{*} \in F_{d s_{2}}, \forall \varphi_{\theta} \in \mathcal{N}(C), \partial\left[\varphi_{\ell}^{-1}(t) /\left(\varphi_{\ell}^{-1}\right)^{\prime}(t)\right] /\left.\partial t\right|_{t=1}$ exists and is equal to $1 / \theta$ and $C \in \operatorname{MDA}\left(C^{*}\right)$ and $C \in \operatorname{MDA}\left(C^{*}\right)$ then $s_{1}=s_{2}, \forall \phi_{\theta} \in N\left(C^{*}\right), \phi_{\theta}(x)=\exp \left\{-x^{1 / \theta}\right\}$.

If the multivariate HAC C (under some minor condition) belongs to the domain of attraction of the HAC C*. The extreme value HAC C^{*} has the same structure as the given copula C, with generators on all levels of the hierarchy being Gumbel generators, but with probably other parameters.

Tail dependency

The upper and lower tail indices of two random variables $X_{1} \sim F_{1}$ and $X_{2} \sim F_{2}$ are given by

$$
\begin{aligned}
& \lambda_{U}=\lim _{u \rightarrow 1^{-}} P\left\{X_{2}>F_{2}^{-1}(u) \mid X_{1}>F_{1}^{-1}(u)\right\}=\lim _{u \rightarrow 1^{-}} \frac{\bar{C}(u, u)}{1-u} \\
& \lambda_{L}=\lim _{u \rightarrow 0^{+}} P\left\{X_{2} \leq F_{2}^{-1}(u) \mid X_{1} \leq F_{1}^{-1}(u)\right\}=\lim _{u \rightarrow 0^{+}} \frac{C(u, u)}{u} .
\end{aligned}
$$

Theorem (Nelsen (1997))
For a bivariate Archimedean copula with the generator ϕ it holds

$$
\begin{aligned}
& \lambda_{U}=2-\lim _{u \rightarrow 1^{-}} \frac{1-\phi\left\{2 \phi^{-1}(u)\right\}}{1-u}=2-\lim _{w \rightarrow 0^{+}} \frac{1-\phi(2 w)}{1-\phi(w)}, \\
& \lambda_{L}=\lim _{u \rightarrow 0^{+}} \frac{\phi\left\{2 \phi^{-1}(u)\right\}}{u}=\lim _{w \rightarrow \infty} \frac{\phi(2 w)}{\phi(w)} .
\end{aligned}
$$

A function $\phi:(0, \infty) \rightarrow(0, \infty)$ is regularly varying at infinity with tail index $\lambda \in \boldsymbol{R}\left(\right.$ written $\left.R V_{\lambda}(\infty)\right)$ if $\lim _{w \rightarrow \infty} \frac{\phi(t w)}{\phi(w)}=t^{\lambda}$ for all $t>0 . \phi \in R V_{-\infty}(\infty)$ if

$$
\lim _{w \rightarrow \infty} \frac{\phi(t w)}{\phi(w)}=\left\{\begin{array}{ccc}
\infty & \text { if } & t<1 \\
1 & \text { if } & t=1 \\
0 & \text { if } & t>1
\end{array} .\right.
$$

It holds for $\lambda \geq 0$ that if $\phi \in R V_{-\lambda}(\infty)$ then $\phi^{-1} \in R V_{-1 / \lambda}(0)$. The function ϕ^{-1} is regularly varying at zero with the tail index γ, if $\lim _{w \rightarrow 0^{+}} \frac{\phi^{-1}(1-t w)}{\phi^{-1}(1-w)}=t^{\gamma}$. For the direct function $\lim _{w \rightarrow 0^{+}} \frac{1-\phi(t w)}{1-\phi(w)}=t^{1 / \gamma}$.

$$
\begin{aligned}
& \lim _{u \rightarrow 0^{+}} P\left\{X_{i} \leq F_{i}^{-1}\left(u_{i} u\right) \text { for } i \notin \mathcal{S} \subset \mathcal{K}=\{1, \ldots, k\}\right. \\
&\left.\mid X_{j} \leq F_{j}^{-1}\left(u_{j} u\right) \text { for } j \in \mathcal{S}\right\} \\
& \lim _{u \rightarrow 0^{+}} P\left\{X_{i}>F_{i}^{-1}\left(1-u_{i} u\right) \text { for } i \notin \mathcal{S} \subset \mathcal{K}=\{1, \ldots, k\}\right. \\
&\left.\mid X_{j}>F_{j}^{-1}\left(1-u_{j} u\right) \text { for } j \in \mathcal{S}\right\}
\end{aligned}
$$

The above limits can be established via the limits

$$
\lambda_{L}\left(u_{1}, \ldots, u_{k}\right)=\lim _{u \rightarrow 0^{+}} \frac{1}{u} C\left(u_{1} u, \ldots, u_{k} u\right) \quad \text { and }
$$

$$
\lambda_{u}\left(u_{1}, \ldots, u_{k}\right)=\lim _{u \rightarrow 0^{+}} \frac{1}{u} \bar{C}\left(1-u_{1} u, \ldots, 1-u_{k} u\right)
$$

$$
=\lim _{u \rightarrow 0^{+}} \sum_{s_{1} \in \mathcal{K}}(-1)^{\left|s_{1}\right|+1}\left\{1-C_{s_{1}}\left(1-u_{j} u, j \in s_{1}\right)\right\} .
$$

Theorem (Lower Tail Dependency)

Assume that the limits
$\lim _{u \rightarrow 0^{+}} u^{-1} C_{i}\left(u u_{k_{i-1}+1}, \ldots, u u_{k_{i}}\right)=\lambda_{L, i}\left(u_{k_{i-1}+1}, . ., u_{k_{i}}\right)$ exist for all $0<u_{k_{i-1}+1}, . ., u_{k_{i}}<1, i=1, \ldots, m$. Suppose that $m+k-k_{m} \geq 2$. If ϕ_{0}^{-1} is regularly varying at infinity with index $-\lambda_{0} \in[-\infty, 0]$, then it holds for all $0<u_{i}<1, i=1, . ., m$ that

$$
\begin{aligned}
& \lim _{u \rightarrow 0^{+}} \frac{C\left(u u_{1}, \ldots, u u_{k}\right)}{u} \\
& =\left\{\begin{array}{l}
\min \left\{\lambda_{L, 1}\left(u_{1}, . ., u_{k_{1}}\right), \ldots, \lambda_{L, m}\left(u_{k_{m-1}+1}, . ., u_{k_{m}}\right), u_{k_{m}+1}, \ldots\right. \\
\text { if } \lambda_{0}=\infty, \\
\left(\sum_{i=1}^{m} \lambda_{L, i}\left(u_{k_{i-1}+1}, . ., u_{k_{i}}\right)^{-\lambda_{0}}+\sum_{j=k_{m}+1}^{k} u_{j}^{-\lambda_{0}}\right)^{-1 / \lambda_{0}} \\
\text { if } 0<\lambda_{0}<\infty, \\
0 \text { if } \lambda_{0}=0 .
\end{array}\right. \\
& \text { HAC }
\end{aligned}
$$

In the following let

$$
\begin{aligned}
C_{j}^{*}(u) & =\left.C_{j}\left(u_{k_{j}-1+1} u, . ., u_{k_{j}} u\right)\right|_{u_{k_{j-1}+1}=. .}=u_{k_{j}}=1 \\
C^{*}(u) & =\left.C\left(u_{1} u, . ., u_{k} u\right)\right|_{u_{1}=. .=u_{k}=1} \\
\lambda_{L, j}^{*}\left(u, u_{k_{j-1}+1}, . ., u_{k_{j}}\right) & =C_{j}\left(u_{k_{j-1}+1} u, \ldots, u_{k_{j}} u\right) / C_{j}^{*}(u)
\end{aligned}
$$

Note that $0 \leq \lambda_{L, j}^{*}\left(u, u_{k_{j-1}+1}, . ., u_{k_{j}}\right) \leq 1$. Moreover, if $\lim _{u \rightarrow 0^{+}} u^{-1} C_{j}\left(u u_{k_{j-1}+1}, \ldots, u u_{k_{j}}\right)=\lambda_{L, j}\left(u_{k_{j-1}+1}, . ., u_{k_{j}}\right)>0$ for all $0<u_{k_{j-1}+1}, . ., u_{k_{j}} \leq 1$ then

$$
\begin{aligned}
\lambda_{L, j}^{*}\left(u_{k_{j-1}+1}, . ., u_{k_{j}}\right) & =\lim _{u \rightarrow 0+} \frac{C_{j}\left(u_{k_{j}-1+1} u, . ., u_{k_{j}} u\right) / u}{C_{j}^{*}(u) / u} \\
& =\frac{\lambda_{L, j}\left(u_{k_{j-1}+1}, . ., u_{k_{j}}\right)}{\lambda_{L, j}(1, . ., 1)}
\end{aligned}
$$

Theorem (Lower Tail Dependency 2)

Assume that the limits

$$
\lim _{u \rightarrow 0^{+}} \frac{C_{i}\left(u u_{k_{i-1}+1}, \ldots, u u_{k_{i}}\right)}{C_{i}^{*}(u)}=\lambda_{L, i}^{*}\left(u_{k_{i-1}+1}, . ., u_{k_{i}}\right)
$$

exist for all $0<u_{k_{i-1}+1}, . ., u_{k_{i}} \leq 1, i=1, \ldots, m$. Let
$\phi_{0}^{-1} \in R V_{0}(0)$ and let $\psi(v)=-\phi_{0}(v) / \phi_{0}^{\prime}(v)$ be regularly varying at infinity with finite tail index \varkappa then $\varkappa \leq 1$ and it holds for all $0<u_{i}<1, i=1, . ., m$ that

$$
\begin{aligned}
\lim _{u \rightarrow 0^{+}} & \frac{C\left(u u_{1}, \ldots, u u_{k}\right)}{C^{*}(u)}= \\
& \prod_{j=1}^{m}\left[\lambda_{L, j}^{*}\left(u_{k_{j-1}+1}, \ldots, u_{k_{j}}\right)\right]^{\left(m+k-k_{m}\right)^{-\varkappa}} \cdot \prod_{j=k_{m}+1}^{k} u_{j}^{\left(m+k-k_{m}\right)^{-\varkappa}}
\end{aligned}
$$

Theorem (Upper Tail Dependency)

Assume that the limits $\lim _{u \rightarrow 0^{+}} u^{-1}\left[1-C_{i}\left(1-u u_{k_{i-1}+1}, \ldots, 1-u u_{k_{i}}\right)\right]=$
$\lambda_{U, i}\left(u_{k_{i-1}+1}, . ., u_{k_{i}}\right)$ exist for all $0<u_{k_{i-1}+1}, . ., u_{k_{i}}<1$, $i=1, \ldots$, m. Suppose that $m+k-k_{m} \geq 2$. If $\phi_{0}^{-1}(1-w)$ is regularly varying at zero with index $-\gamma_{0} \in[-\infty,-1]$, then it holds for all $0<u_{i}<1, i=1, .$. , m that

$$
\begin{aligned}
& \lim _{u \rightarrow 0^{+}} \frac{1-C\left(1-u u_{1}, \ldots, 1-u u_{k}\right)}{u} \\
& =\left\{\begin{array}{c}
\min \left\{\lambda_{U, 1}\left(u_{1}, . ., u_{k_{1}}\right), \ldots, \lambda_{U, m}\left(u_{k_{m-1}+1}, . ., u_{k_{m}}\right), u_{k_{m}+1}, \ldots, u_{k}\right\} \\
\text { if } \gamma_{0}=\infty, \\
\left(\sum_{i=1}^{m}\left[\lambda_{U, i}\left(u_{k_{i-1}+1}, . ., u_{k_{i}}\right)\right]^{\gamma_{0}}+\sum_{j=k_{m}+1}^{k} u_{j}^{\gamma_{0}}\right)^{1 / \gamma_{0}} \\
\text { if } 1 \leq \gamma_{0}<\infty,
\end{array}\right. \\
& \text { HAS }
\end{aligned}
$$

HAC meets R


```
Q CRAN - Package HAC
HAC: Estimation, simulation and visualization of Hierarchical
Archimedean Copulae (HAC)
```

Package provides the estimation of the structure and the parameters, simulation methods and structural plots of high-dimensional Hierarchical Archimedean Copulae (HAC).

Version: $\quad 0.2-0$
Depends: $\quad R(\geq 2.14 .0)$, copula
Imports: graphics, stabledist
Published: 2012-04-20
Author: Ostap Okhrin and Alexander Ristig

Figure 15: Website for downloading

Portfolio Management

\square HAC can be applied to VaR estimation or assessing diversification effects.
\square Four stocks: CVX, FP, RDSA and XOM.
$\square 20110202$ to 20120319

```
> price = read.table("stocks")
> ret = diff(log(price), 1)
```

\square Residuals of ARMA-GARCH models res
\square Non-ellipticity? Joint extreme events?

```
> pairs(ret, pch = 20)
```


Figure 16: Dependencies of CVX, FP, RDSA and XOM
\square Copula estimation based on uniformly distributed margins ures

```
1 > result = estimate.copula(ures)
2 > plot(result)
```


Figure 17: Estimated HAC of the portfolio

Estimation

$\square 3$ computational blocks:

1. Specification of the margins
2. Estimation of the parameters and the structure
3. Optional aggregation of the binary HAC
\square Two estimation procedures: QML and Kendall's τ.
\square estimate. copula returns a hac object.
```
    > result1 = estimate.copula(res, margins = 'edf')
    > plot(result1)
```


Figure 18: Estimation result
\square Note, $C_{\theta_{1(23)}}\left(C_{\theta_{23}}\left(u_{2}, u_{3}\right), u_{1}\right)=C_{\theta_{123}}\left(u_{1}, u_{2}, u_{3}\right)$, if $\left|\theta_{1(23)}-\theta_{23}\right|<\varepsilon, \varepsilon>0$

\square epsilon $=0.3$ leads to a non-binary structure

```
1 > result2 = estimate.copula(X = res,
+ type = HAC_GUMBEL, method = ML,
    epsilon = 0.3, agg.method = "mean"
    margins = "edf")
    plot(result2)
```


Figure 19: Results of the modified estimation

Objects of the class hac

\square hac and hac.full create objects of the class hac.
\square hac.full cannot construct partially nested AC.
\square Consider a 5-dimensional fully nested Gumbel HAC:

```
> G1 = hac.full(type = HAC_GUMBEL,
        y = c("X1", "X2", "X3", "X4", "X5"),
        theta = c(1, 1.01, 2, 2.01))
> G1
Class: hac
Generator: Gumbel
((((X5.X4)_{2.01}.X3)_{2}.X2)_{1.01}.X1)_{1}
```

\square It is smarter to aggregate the variables X1 and X2 in a first node and the variables X3, X4 and X5 in a second node.

```
> G2 = hac(type = HAC_GUMBEL,
+ tree = list(list("X3", "X4", "X5", 2.005),
+ "X2", "X1", 1.005))
```

\square Substituting of variables for lists leads to arbitrary objects

```
1 > G3 = hac(tree = list(list("Y1", "Y2",
+ list("Z3", "Z4", 3), 2.5),
+ list("Z1", "Z2", 2),
+ list("X1", "X2", 2.4),
+ "X3", "X4", 1.5))
```


Graphics

$1>\mathrm{plot}(\mathrm{G} 3)$

Figure 20: Structure of object G3

```
1 > plot(G3, digits = 2, theta = TRUE,
+ col = "blue3", fg = "red3",
+ bg = "white", col.t = "blue3")
```


Figure 21: Colored structure of object G3

```
> tree2str(hac=G2, theta = TRUE
+ digits = 3)
[1] '6((X3.X4.X5)_{2.005}.X2.X1)_{1.005}',
> plot(G2, digits = 3, index = TRUE,
    theta = FALSE)
```


Figure 22: Structure of object G2

Simulation

\square Simulation of HAC requires 2 arguments: the number of generated random vectors and a hac object.
$1>$ sample $=\operatorname{rHAC}(\mathrm{n}=1500$, hac $=\mathrm{G} 2)$

Figure 23: Scatterplot of sample

Distribution Functions

\checkmark pHAC computes the values of copulae.

```
1 > cf.values = pHAC(X = sample, hac = G2)
```

\square emp.copula.self computes the empirical copula, i.e. $\widehat{C}\left(u_{1}, \ldots, u_{d}\right)=n^{-1} \sum_{i=1}^{n} \prod_{j=1}^{d} \mathbf{I}\left\{\widehat{F}_{j}\left(X_{i j}\right) \leq u_{j}\right\}$.
1 > ecf.values = emp.copula.self(x = sample,

```
+ proc = "M", sort = "none", na.rm = FALSE)
```


Figure 24: Values of cf.values on the x-axis against the values of the ecf.values
HAC

Figure 25: Runtimes of emp.copula.self for an increasing sample-size but fixed dimension $d=5$ plotted on a log-log-scale

Density Functions

$\square d$-dimensional copula density

$$
c\left(u_{1}, \ldots, u_{d}\right)=\frac{\partial^{d} C\left(u_{1}, \ldots, u_{d}\right)}{\partial u_{1} \cdots \partial u_{d}}
$$

\square dHAC returns the values of the analytical density.

- Requires a data matrix and a hac object as arguments.
\square Construction of Likelihood functions by to. logLik.
\square Random sampling using conditional inverse method.

Local Change Point Detection

Figure 26: Dependence over time for DaimlerChrysler, Volkswagen, Bayer, BASF, Allianz and Münchener Rückversicherung, 20000101-20041231. Giacomini et. al (2009)

HAC

Adaptive Copula Estimation

\square adaptively estimate largest interval where homogeneity hypothesis is accepted
\square Local Change Point detection (LCP): sequentially test θ_{t}, s_{t} are constants (i.e. $\theta_{t}=\theta, s_{t}=s$) within some interval / (local parametric assumption).

\square "Oracle" choice: largest interval $I=\left[t_{0}-m_{k^{*}}, t_{0}\right]$ where small modelling bias condition (SMB)

$$
\triangle_{I}(s, \boldsymbol{\theta})=\sum_{t \in I} \mathcal{K}\left\{C\left(\cdot ; s_{t}, \boldsymbol{\theta}_{t}\right), C(\cdot ; s, \boldsymbol{\theta})\right\} \leq \triangle
$$

holds for some $\triangle \geq 0$. $m_{k^{*}}$ is the ideal scale, $(s, \theta)^{\top}$ is ideally estimated from $I=\left[t_{0}-m_{k^{*}}, t_{0}\right]$ and $\mathcal{K}(\cdot, \cdot)$ is the Kullback-Leibler divergence

$$
\mathcal{K}\left\{C\left(\cdot ; s_{t}, \boldsymbol{\theta}_{t}\right), C(\cdot ; s, \boldsymbol{\theta})\right\}=\boldsymbol{E}_{s_{t}, \boldsymbol{\theta}_{t}} \log \frac{c\left(\cdot ; s_{t}, \boldsymbol{\theta}_{t}\right)}{c(\cdot ; s, \boldsymbol{\theta})}
$$

Under the SMB condition on $I_{k^{*}}$ and assuming that $\max _{k \leq k^{*}} \boldsymbol{E}_{s, \boldsymbol{\theta}}\left|\mathcal{L}\left(\widetilde{s}_{k}, \widetilde{\boldsymbol{\theta}}_{k}\right)-\mathcal{L}(s, \boldsymbol{\theta})\right|^{r} \leq \mathcal{R}_{r}(s, \boldsymbol{\theta})$, we obtain

$$
\begin{aligned}
& \boldsymbol{E}_{s_{t}, \boldsymbol{\theta}_{t}} \log \left\{1+\frac{\left|\mathcal{L}\left(\widetilde{s}_{\widehat{k}}, \widetilde{\boldsymbol{\theta}}_{\widehat{k}}\right)-\mathcal{L}(s, \boldsymbol{\theta})\right|^{r}}{\mathcal{R}_{r}(s, \boldsymbol{\theta})}\right\} \leq 1+\Delta, \\
& \boldsymbol{E}_{s_{t}, \boldsymbol{\theta}_{t}} \log \left\{1+\frac{\left|\mathcal{L}\left(\widetilde{s}_{\widehat{k}}, \widetilde{\boldsymbol{\theta}}_{\widehat{k}}\right)-\mathcal{L}\left(\widehat{s}_{\widehat{k}}, \widehat{\boldsymbol{\theta}}_{\widehat{k}}\right)\right|^{r}}{\mathcal{R}_{r}(s, \boldsymbol{\theta})}\right\} \leq \rho+\Delta,
\end{aligned}
$$

where \widehat{a}_{l} is an adaptive estimator on I and \widetilde{a}_{l} is any other parametric estimator on I.

Local Change Point Detection

1. define family of nested intervals

$$
\begin{aligned}
& I_{0} \subset I_{1} \subset I_{2} \subset \ldots \subset I_{K}=I_{K+1} \text { with length } m_{k} \text { as } \\
& I_{k}=\left[t_{0}-m_{k}, t_{0}\right]
\end{aligned}
$$

2. define $\mathfrak{T}_{k}=\left[t_{0}-m_{k}, t_{0}-m_{k-1}\right]$

$$
I_{k+1}
$$

Local Change Point Detection

1. test homogeneity $H_{0, k}$ against the change point alternative in \mathfrak{T}_{k} using I_{k+1}
2. if no change points in \mathfrak{T}_{k}, accept I_{k}. Take \mathfrak{T}_{k+1} and repeat previous step until $H_{0, k}$ is rejected or largest possible interval I_{K} is accepted
3. if $H_{0, k}$ is rejected in \mathfrak{T}_{k}, homogeneity interval is the last accepted $\widehat{I}=I_{k-1}$
4. if largest possible interval I_{K} is accepted $\hat{I}=I_{K}$

Test of homogeneity

Interval $I=\left[t_{0}-m, t_{0}\right], \mathfrak{T} \subset I$

$$
\begin{aligned}
H_{0}: & \forall \tau \in \mathfrak{T}, \theta_{t}=\theta, s_{t}=s \\
& \forall t \in J=\left[\tau, t_{0}\right], \forall t \in J^{c}=I \backslash J \\
H_{1}: & \exists \tau \in \mathfrak{T}, \theta_{t}=\theta_{1}, s_{t}=s_{1} ; \forall t \in J \\
& \theta_{t}=\theta_{2} \neq \theta_{1} ; s_{t}=s_{2} \neq s_{1}, \forall t \in J^{c}
\end{aligned}
$$

Test of homogeneity

Likelihood ratio test statistic for fixed change point location:

$$
\begin{aligned}
T_{l, \tau} & =\max _{\theta_{1}, \theta_{2}}\left\{L_{J}\left(\theta_{1}\right)+L_{J c}\left(\theta_{2}\right)\right\}-\max _{\theta} L_{l}(\theta) \\
& =M L_{J}+M L_{J c}-M L_{l}
\end{aligned}
$$

Test statistic for unknown change point location:

$$
T_{l}=\max _{\tau \in \mathfrak{T}_{1}} T_{l, \tau}
$$

Reject H_{0} if for a critical value ζ_{1}

$$
T_{I}>\zeta_{I}
$$

Selection of I_{k} and ζ_{k}

\square set of numbers m_{k} defining the length of I_{k} and \mathfrak{T}_{k} are in the form of a geometric grid
$\square m_{k}=\left[m_{0} c^{k}\right]$ for $k=1,2, \ldots, K, m_{0} \in\{20,40\}, c=1.25$ and $K=10$, where $[x]$ means the integer part of x
$\square I_{k}=\left[t_{0}-m_{k}, t_{0}\right]$ and $\mathfrak{T}_{k}=\left[t_{0}-m_{k}, t_{0}-m_{k-1}\right]$ for $k=1,2, \ldots, K$
(Mystery Parameters)

Sequential choice of ζ_{k}

\square after k steps are two cases: change point at some step $\ell \leq k$ and no change points.
\square let \mathcal{B}_{ℓ} be the event meaning the rejection at step ℓ

$$
\mathcal{B}_{\ell}=\left\{T_{1} \leq \zeta_{1}, \ldots, T_{\ell-1} \leq \zeta_{\ell-1}, T_{\ell}>\zeta_{\ell}\right\}
$$

and $\left(\hat{s}_{k}, \widehat{\boldsymbol{\theta}}_{k}\right)=\left(\widetilde{s}_{\ell-1}, \widetilde{\boldsymbol{\theta}}_{\ell-1}\right)$ on \mathcal{B}_{ℓ} for $\ell=1, \ldots, k$.
\square we find sequentially such a minimal value of ζ_{ℓ} that ensures following inequality

$$
\max _{k=l, \ldots, K} E_{s^{*}, \theta^{*}}\left|\mathcal{L}\left(\widetilde{s}_{k}, \widetilde{\boldsymbol{\theta}}_{k}\right)-\mathcal{L}\left(\widetilde{s}_{\ell-1}, \widetilde{\boldsymbol{\theta}}_{\ell-1}\right)\right|^{r} \mathbf{I}\left(\mathcal{B}_{\ell}\right) \leq \rho \mathcal{R}_{r}\left(s^{*}, \boldsymbol{\theta}^{*}\right) \frac{k}{K-1}
$$

Simulation, III
Illustration

HAC
言。

Sequential choice of ζ_{k}

1. pairs of Kendall's $\tau: \forall\left\{\tau_{1}, \tau_{2}\right\} \in\{0.1,0.3,0.5,0.7,0.9\}^{2}, \tau_{1} \geq \tau_{2}$
2. simul. from $C_{\theta_{\mathbf{i}}, \theta_{\mathbf{j}}}\left(u_{1}, u_{2}, u_{3}\right)=C\left\{C\left(u_{1}, u_{2} ; \theta_{1}\right), u_{3} ; \theta_{2}\right\}, \theta=\theta(\tau)$
3. run sequential algorithm for each sample

Figure 27: ζ_{k} of the 3-dimensional HACk as a function of k with the fixed $m_{0}=40, \rho=0.5, r=0.5, \tau_{1}=0.1$ and for different $\tau_{2} . \tau_{2}=0.1$ (solid), $\tau_{2}=0.3$ (solid), $\tau_{2}=0.5$ (solid), $\tau_{2}=0.7$ (dashed), $\tau_{2}=0.9$ (dashed) HAC

Simulation: Change in θ_{1}, I

$C_{t}\left(u_{1}, u_{2}, u_{3} ; s, \boldsymbol{\theta}\right)= \begin{cases}C\left\{u_{1}, C\left(u_{2}, u_{3} ; \theta_{1}=3.33\right) ; \theta_{2}=1.43\right\} & \text { for } 1 \leq t \leq 200 \\ C\left\{u_{1}, C\left(u_{2}, u_{3} ; \theta_{1}=2.00\right) ; \theta_{2}=1.43\right\} & \text { for } 200<t \leq 400\end{cases}$

1. $N=400$ and 100 runs
2. LCP based on the same critical values

Figure 28: θ_{1} and θ_{2} on the intervals of homogeneity (median - dashed line mean - solid line).

Simulation: Change in θ_{1}, II

Figure 29: Intervals of homogeneity and ML on these intervals (median dashed line, mean - solid line) HAC

Simulation: Change in θ_{2}, I

$C_{t}\left(u_{1}, u_{2}, u_{3} ; s, \boldsymbol{\theta}\right)= \begin{cases}C\left\{u_{1}, C\left(u_{2}, u_{3} ; \theta_{1}=3.33\right) ; \theta_{2}=1.43\right\} & \text { for } 1 \leq t \leq 200 \\ C\left\{u_{1}, C\left(u_{2}, u_{3} ; \theta_{1}=3.33\right) ; \theta_{2}=2.00\right\} & \text { for } 200<t \leq 400\end{cases}$

1. $N=400$ and 100 runs
2. LCP based on the same critical values

Figure 30: θ_{1} and θ_{2} on the intervals of homogeneity (median - dashed line, mean - solid line).
HAC
$\xrightarrow[\sigma 6]{\infty}$

Simulation: Change in θ_{2}, II

Figure 31: Intervals of homogeneity and ML on these intervals (median dashed line, mean - solid line) HAC

Simulation: Change in the Structure, I

$C_{t}\left(u_{1}, u_{2}, u_{3} ; s, \boldsymbol{\theta}\right)= \begin{cases}C\left\{u_{1}, C\left(u_{2}, u_{3} ; \theta_{1}=3.33\right) ; \theta_{2}=1.43\right\} & \text { for } 1 \leq t \leq 200 \\ C\left\{C\left(u_{1}, u_{2} ; \theta_{1}=3.33\right), u_{3} ; \theta_{2}=1.43\right\} & \text { for } 200<t \leq 400\end{cases}$

1. $N=400$ and 100 runs
2. LCP based on the same critical values

Figure 32: The structure of the est. HAC on the intervals of homogeneity (median - dashed line, mean - solid line)

Simulation: Change in the Structure, II

Figure 33: Intervals of homogeneity and ML on these intervals (median dashed line, mean - solid line) HAC

Data and Copula

\square daily values for the exchange rates JPN/USD, GBP/USD and EUR/USD
\square timespan $=$ [4.1.1999; 14.8.2009] $(n=2771)$
\square Gumbel and Clayton generators generators

Data and Copula

\square a univariate $\operatorname{GARCH}(1,1)$ process on log-returns

$$
\begin{aligned}
X_{j, t} & =\mu_{j, t}+\sigma_{j, t} \varepsilon_{j, t} \text { with } \sigma_{j, t}^{2}=\omega_{j}+\alpha_{j} \sigma_{j, t-1}^{2}+\beta_{j}\left(X_{j, t-1}-\mu_{j, t-1}\right)^{2} \\
\varepsilon_{t} & \sim C\left\{F_{1}\left(x_{1}\right), \ldots, F_{d}\left(x_{d}\right) ; \theta_{t}\right\}
\end{aligned}
$$

	$\widehat{\mu}_{j}$	$\widehat{\omega}_{j}$	$\widehat{\alpha}_{j}$	$\widehat{\beta}_{j}$	BL	KS
JPY	$4.85 \mathrm{e}-05$	$2.99 \mathrm{e}-07$	0.06	0.94	0.73	$1.70 \mathrm{e}-05$
	$(1.15 \mathrm{e}-04)$	$(1.02 \mathrm{e}-07)$	$(7.49 \mathrm{e}-03)$	$(7.64 \mathrm{e}-03)$		
GBP	$6.34 \mathrm{e}-05$	$1.44 \mathrm{e}-07$	0.06	0.93	0.01	$2.10 \mathrm{e}-04$
	$(7.39 \mathrm{e}-05)$	$(5.11 \mathrm{e}-08)$	$(8.75 \mathrm{e}-03)$	$(9.12 \mathrm{e}-03)$		
USD	$1.76 \mathrm{e}-04$	$1.19 \mathrm{e}-07$	0.03	0.97	0.87	$1.65 \mathrm{e}-03$
	$(1.10 \mathrm{e}-04)$	$(5.92 \mathrm{e}-08)$	$(4.14 \mathrm{e}-03)$	$(4.28 \mathrm{e}-03)$		

Table 13: Estimation results univariate time series modelling.

HAC for whole sample

Generator	Structure	ML
Clayton	$\left((J P Y . U S D)_{0.808(0.042)} \cdot G B P\right)_{0.401(0.025)}$	617.268
Gumbel	$\left((J P Y . U S D)_{1.521(0.025)} \cdot G B P\right)_{1.303(0.016)}$	736.341

Table 14: Estimation results for HAC with Clayton and Gumbel generators for indices and exchange rates using full samples. The standard deviations of the parameters are given in the parenthesis.

LCP for HAC to real Data

Figure 34: Structure, τ_{1} and τ_{2} of the HAC on the intervals of homogeneity $\mathrm{HAC} \longrightarrow$

LCP for HAC to real Data

Figure 35: Intervals of homogeneity and ML on these intervals HAC

Application, III

VaR

Figure 36: Profit and Loss function
\square

VaR

	Clayton			Gumbel			DCC		
α	0.0100	0.0500	0.1000	0.0100	0.0500	0.1000	0.0100	0.0500	0.1000
$\widehat{\alpha}_{w^{*}}$	0.0100	0.0487	0.0951	0.0091	0.0474	0.0977	0.0156	0.0413	0.0817
$\widehat{\alpha}_{w_{1}}$	0.0083	0.0460	0.0912	0.0087	0.0447	0.0925	0.0152	0.0408	0.0812
$\widehat{\alpha}_{w_{2}}$	0.0100	0.0487	0.0951	0.0096	0.0487	0.0977	0.0156	0.0413	0.0812
$\widehat{\alpha}_{w_{3}}$	0.0100	0.0487	0.0951	0.0091	0.0482	0.0973	0.0156	0.0413	0.0812
$\widehat{\alpha}_{w_{4}}$	0.0100	0.0487	0.0951	0.0091	0.0469	0.0973	0.0156	0.0417	0.0817
$\widehat{\alpha}_{w_{5}}$	0.0100	0.0487	0.0947	0.0091	0.0478	0.0973	0.0156	0.0417	0.0817
A_{W}	-0.0217	-0.0328	-0.0557	-0.0895	-0.0526	-0.0341	0.5482	-0.1652	-0.1852
D_{W}	0.0649	0.0186	0.0125	0.0632	0.0406	0.0272	0.0335	0.0091	0.0042

Table 15: Exceedance ratios for portfolios of exchange rates with w^{*}, $w_{i}, i=1, \ldots, 5$, the average exceedance A_{W} over all portfolios and its standard deviation D_{W}.

Data and Copula

\square daily returns values for Dow Jones (DJ), DAX and NIKKEI
\square timespan $=$ [01.01.1985; 23.12.2010] $(n=6778)$
\square Gumbel and Clayton generators
$\operatorname{APARCH}(1,1)$ model with the residuals following the skewed- t distribution
$X_{j, t}=\mu_{j}+\sigma_{j, t} \varepsilon_{j, t}$
with $\quad \sigma_{j, t}^{\delta_{j}}=\omega_{j}+\alpha_{j}\left(\left|X_{j, t-1}-\mu_{j}\right|-\gamma\left(X_{j, t-1}-\mu_{j}\right)\right)^{\delta_{j}}+\beta_{j} \sigma_{j, t-1}^{\delta_{j}}$,
where $\varepsilon_{j, t} \sim t_{\text {skewed }}(\varkappa ; \nu), j=1, \ldots, 3$. The parameters \varkappa and ν stand for the skew and shape (degrees of freedom) of the distribution.

	$\widehat{\mu}_{\boldsymbol{j}}$	$\widehat{\omega}_{\boldsymbol{j}}$	$\widehat{\alpha}_{\boldsymbol{j}}$	$\widehat{\gamma}_{\boldsymbol{j}}$	$\widehat{\beta}_{\boldsymbol{j}}$	$\widehat{\delta}_{\boldsymbol{j}}$	$\widehat{\chi}_{\boldsymbol{j}}$	$\widehat{\nu}_{\boldsymbol{j}}$
BL								
DJX	$4.828 \mathrm{e}-04$	$5.797 \mathrm{e}-05$	$8.495 \mathrm{e}-02$	0.428	$9.120 \mathrm{e}-01$	1.305	$9.244 \mathrm{e}-01$	8.104
	$(1.261 \mathrm{e}-04)$	$(9.094 \mathrm{e}-06)$	$(7.290 \mathrm{e}-03)$	(0.058)	$(7.191 \mathrm{e}-03)$	(0.110)	$(1.587 \mathrm{e}-02)$	(0.700)
	$4.015 \mathrm{e}-04$	$8.077 \mathrm{e}-05$	$6.141 \mathrm{e}-02$	0.659	$9.382 \mathrm{e}-01$	1.118	$9.573 \mathrm{e}-01$	5.587
NIKKEI	$(9.772 \mathrm{e}-05)$	$(1.367 \mathrm{e}-05)$	$(5.961 \mathrm{e}-03)$	(0.088)	$(5.467 \mathrm{e}-03)$	(0.113)	$(1.502 \mathrm{e}-02)$	(0.392)
	$1.614 \mathrm{e}-04$	$4.940 \mathrm{e}-05$	$8.389 \mathrm{e}-02$	0.509	$9.180 \mathrm{e}-01$	1.299	$9.556 \mathrm{e}-01$	6.253
	$(1.249 \mathrm{e}-04)$	$(8.148 \mathrm{e}-06)$	$(6.961 \mathrm{e}-03)$	(0.063)	$(6.238 \mathrm{e}-03)$	(0.113)	$(1.507 \mathrm{e}-02)$	(0.477)

Table 16: Estimation results univariate time series modelling.

HAC for whole sample

Generator	Structure	ML
Clayton	$\left((\mathrm{DAX.DJ})_{0.459(0.021)} \cdot \text { NIKKEI }\right)_{0.155(0.012)}$	545.399
Gumbel	$\left((\mathrm{DAX.DJ})_{1.272(0.012)} \cdot \text { NIKKEI }\right)_{1.103(0.007)}$	542.736

Table 17: Estimation results for HAC with Clayton and Gumbel generators for indices and exchange rates using full samples. The standard deviations of the parameters are given in the parenthesis.

Copulae over time

Figure 37: Time-varying HAC: BIC for the AC, Gaussian copula and HAC. Difference Matrix and points of the changes of the structure. $\mathrm{HAC} \longrightarrow$

LCP for HAC to real Data

Figure 38: Structure, τ_{1} and τ_{2} of the HAC on the intervals of homogeneity $\mathrm{HAC} \longrightarrow$

LCP for HAC to real Data

Figure 39: Intervals of homogeneity and ML on these intervals $\mathrm{HAC} \longrightarrow$

VaR

Figure 40: Profit and Loss function
\square

VaR

	Clayton			Gumbel			DCC		
α	0.0100	0.0500	0.1000	0.0100	0.0500	0.1000	0.0100	0.0500	0.1000
$\widehat{\alpha}_{w^{*}}$	0.0054	0.0390	0.0935	0.0033	0.0249	0.0683	0.0155	0.0460	0.0830
$\widehat{\alpha}_{w_{1}}$	0.0055	0.0372	0.0916	0.0040	0.0239	0.0705	0.0162	0.0453	0.0864
$\widehat{\alpha}_{w_{2}}$	0.0073	0.0458	0.0994	0.0044	0.0303	0.0788	0.0152	0.0471	0.0830
$\widehat{\alpha}_{w_{3}}$	0.0055	0.0412	0.0940	0.0030	0.0254	0.0718	0.0160	0.0480	0.0808
$\widehat{\alpha}_{w_{4}}$	0.0052	0.0399	0.0943	0.0035	0.0225	0.0681	0.0157	0.0431	0.0818
$\widehat{\alpha}_{w_{\mathbf{5}}}$	0.0062	0.0422	0.0976	0.0043	0.0290	0.0765	0.0160	0.0507	0.0887
A_{W}	-0.3902	-0.1781	-0.0497	-0.6187	-0.4496	-0.2686	0.5979	-0.0687	-0.1739
D_{W}	0.0930	0.0508	0.0286	0.0953	0.0932	0.0638	0.0959	0.0829	0.0609

Table 18: Exceedance ratios for portfolios of indices with $w^{*}, w_{i}, i=$ $1, \ldots, 5$, the average exceedance A_{W} over all portfolios and its standard deviation D_{W}.
HAC
(R. A. Charpentier, J. Segers, Tails of multivariate Archimedean copulas, Journal of Multivariate Analysis 100 (2009) 1521-1537.
O
C. Genest, L.-P. Rivest, A Characterisation of Gumbel Family of Extreme Value Distributions, Statistics and Probability Letters 8 (1989) 207-211.
P. P. Barbe, C. Genest, K. Ghoudi, B. Rémillard, On Kendall's Process, Jurnal of Multivariate Analysis 58 (1996) 197-229.
A. Sklar,

Fonctions dé Repartition á n Dimension et Leurs Marges,
Publ. Inst. Stat. Univ. Paris 8 (1959) 299-231
H. Joe,

Multivariate Models and Concept Dependence
Chapman \& Hall, 1997

