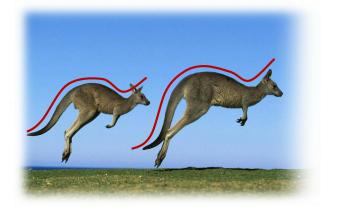
DYTEC - DYnamic Tail Event Curves and its applications

Petra Burdejová Wolfgang Karl Härdle

Ladislaus von Bortkiewicz Chair of Statistics C.A.S.E. – Center for Applied Statistics and Economics Humboldt–Universität zu Berlin http://lvb.wiwi.hu-berlin.de http://case.hu-berlin.de

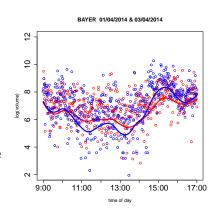
Dynamics of tail event curves



Motivation

Intra-day trading volume

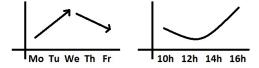
- BAYER AG PAPER
- 201404-201409
- 9:00 - 17:00
- □ cumulated 1-min volume



Intra-day trading volume

Jain and Joh (1988)

□ day of the week and the hour effect the trading volume



Darrat et al. (2003) and Spierdijk et al. (2003)

lagged values of volatility and trading volume simultaneously

Bialkowski et al. (2008) and Brownlees et al. (2011)

dynamic volume approach for VWAP

Intra-day trading volume

Figure: Expectiles for $\tau \in \{0.01, 0.02, 0.05, 0.1, 0.2, 0.5, ...\}$

DYTEC and its applications

Intra-day trading volume

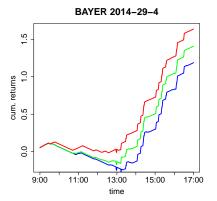


Figure: Cumulative VWAP-returns (trans. costs 0.2%) with weights based on τ -expectiles of volume, $\tau = 0.1$, 0.5, 0.9.

Hurricane predictions

Will U.S. Hurricane Forecasting Models Catch Up to Europe's?

A year after Hurricane Sandy, Europe's forecasting technology is still tops.

Forbes ___

INVESTING 4/03/2012 @ 3:50PM | 3,127 views

Damaging Hurricanes Could Impact Energy, Insurance Industries In 2012

Comment Now

by Alan Lammey, Joe Bastardi, Joe D'Aleo, Michael Barak

The 2012 Atlantic Hurricane Season is likely to see an overall decrease in tropical activity as compared to 2011, but with the focus of tropical development closer to the United States.

When evaluating the hurricane season as a whole, it is important to consider more data than just the number of storms that are named. Evaluating in multiple ways. The best way to determine total

seasonal activity is by collectively measuring the intensity and duration of named tropical cyclones (both tropical storms and hurricanes), also called the ACE index (Accumulated Cyclone Energy). While the National Hurricane

This image shows Hurricane Bob approaching New England on August 19 at 1226 UTC. This image was produced from data from NOAA-10, provided by NOAA (Photo profit: Wisingilla)

≡ Bloomberg

Nosh Bubayar - Nov 11, 2013

Typhoon Worse for Philippines Economy Than Sandy for U.S.

Trend analysis of tropical storms

- strength of wind
- different trend
- periodicity due to sun cycles

▶ Movie of curves

→ Sun-Hurricane connection

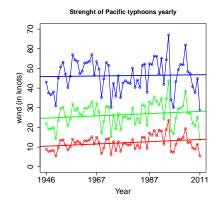
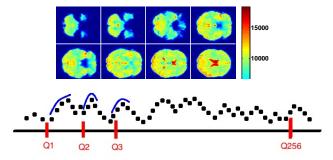


Figure: Annual expectiles for $\tau = 0.25$, 0.5, 0.75 and trend

Joint work with: P.Kokoszka & Q.Xiong (Colorado State University)

fMRI Tail Reaction vs. risk perception

4-point "curves" for each area (256 questions for 19 individuals)



Joint work with: P.Majer (HU)

Motivation _______1-9

Temperature data

- Daily average temperature
- Application: Pricing weather derivatives

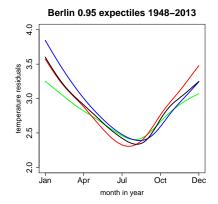
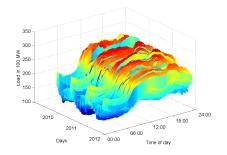


Figure: 0.95-expectile of Berlin temperature residuals in 1948-1969 1970-1991 1992-2013 1948-2013

Dynamic demand models

- Electricity demand
 - Quarter-hourly
 - ▶ Jan.2010 Dec.2012
 - Amprion company in west of Germany
- Water demand
- Gas demand
 □



Challenges

- Reduce dimension
- Dynamics and Dependence
- Forecasts for pricing and many other applications

Outline

- 1. Motivation ✓
- 2. Quantiles and Expectiles
- 3. Modeling Time-varying Curves
- 4. Outlook
- 5. Empirical Study
- 6. References

Quantiles and Expectiles

For r.v. Y obtain tail event measure:

$$q_{\tau} = \arg\min_{\theta} \mathbb{E}\left\{\rho_{\tau}\left(Y - \theta\right)\right\}$$

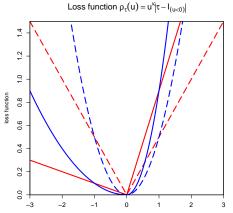
asymmetric loss function

$$\rho_{\tau}\left(u\right) = \left|u\right|^{\alpha} \left|\tau - \mathbf{I}_{\left\{u < 0\right\}}\right|$$

 $\alpha=1$ for quantiles, $\alpha=2$ for expectiles

▶ Expectile as quantile

Quantiles and Expectiles



Q LQRcheck

Figure: Loss function of expectiles and quantiles for $\tau=0.5$ (dashed) and $\tau=0.9$ (solid)

Expectile Curves

Generalized regression τ -expectile

$$e_{\tau}(x) = \underset{\theta}{\operatorname{arg \; min}} \operatorname{E} \left\{ \rho_{\tau} \left(Y - \theta \right) | \; X = x \right\}$$

Expectile $e_{\tau}(x)$ approximated by B-spline basis

▶ Definition of B-splines

Penalized splines:

$$\widehat{\alpha} = \arg\min_{\alpha} \sum_{i=1}^{n} \rho_{\tau} \left\{ y_{i} - \alpha^{\top} b(x_{i}) \right\} + \lambda \alpha^{\top} \Omega \alpha$$

with penalization matrix Ω and shrinkage λ

▶ Penalization matrix

Estimation of Expectile Curves

Schnabel and Eilers (2009): iterative LAWS algorithm
Schnabel (2011): expectile sheets for joint estimation of curves

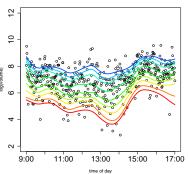


Figure: BAYER trading volume expectiles ($\lambda = 0.5$) on 2014-04-01

Dynamic Tail Event Curves

Fix τ :

$$e(t) = \sum_{k=1}^{K} \alpha_k \phi_k(t)$$

with basis $\Phi = (\phi_1, \dots, \phi_K)^{\top}$ and $t = 1, \dots, T$.

Variation in time, s = 1, ..., S:

$$e_s(t) = \sum_{k=1}^K \alpha_{sk} \phi_k(t)$$

Independent curves

Guo et al. (2013)

$$e_s(t) = \mu(t) + \sum_{k=1}^K \alpha_{sk} \phi_k(t) = \mu(t) + \alpha_s^{\top} \Phi(t)$$

- Penalized splines for approximated mean function and FPC
- Empirical loss function

$$\sum_{r=1}^{S} \sum_{t=1}^{T} \rho_{\tau} \left\{ Y_{st} - \theta_{\mu}^{\top} b(t) - \alpha_{s}^{\top} \Theta_{\Phi} b(t) \right\} + \mathsf{pen.mtx}$$

▶ Details

Temporal (weak) dependent curves

Sequence $\{X_n\}$ is *m*-dependent if for any k the σ -algebras $\mathcal{F}_k^- = \sigma(\ldots, X_{k-1}, X_k)$ and $\mathcal{F}_{k+m}^+ = \sigma(X_{k+m}, X_{k+m+1}, \ldots)$ are independent.

Hörmann and Kokoszka (2010)

- asymptotic properties of FPC estimates remain the same

- fail if curves are sufficiently regular but dependency is too strong

How to model stronger dependency?

Cramér-Karhunen-Loève representation

Panaretos and Tavakoli (2013)

spectral decomposition of stationary functional time series

$$e_s(t) pprox \sum_{j=1}^J \exp(\mathrm{i} \omega_j s) \sum_{k=1}^K lpha_{jk} \phi_{jk}(t)$$

$$-\pi = \omega_1 < \dots < \omega_{J+1} = \pi$$
$$\left\{\phi_{jk}\right\}_{k \geq 1} \text{ eigenfunctions}$$
$$\left\{\alpha_{jk}\right\}_{k > 1} \text{ corresponding coefficients}$$

▶ Theoretical details

Cramér-Karhunen-Loève representation

Simplify $\phi_{jk}(t) = \phi_k(t)$ for each j

$$e_s(t) pprox \sum_{j=1}^J \exp(\mathrm{i}\omega_j s) \sum_{k=1}^K lpha_{jk} \phi_k(t) \ pprox U(s)^ op A \Phi(t)$$

where

$$U(s) = (\exp(i\omega_1 s), \dots, \exp(i\omega_J s))^{\top}$$

 $A_{JxK} = (\alpha_{jk})$ matrix of coefficients
 $\Phi(t) = (\phi_1(t), \dots, \phi_K(t))^{\top}$

Empirical loss function

Represent $\phi_k(t) = \sum_{l=1}^L \beta_{kl} b_l(t)$

$$\Phi(t) = B_{K \times L} b(t)$$

Loss function

$$\sum_{s=1}^{S} \sum_{t=1}^{T} \rho_{\tau} \left\{ Y_{s,t} - U(s)^{\top} Cb(t) \right\} + \lambda \|C_{JxL}\|_{\mathcal{G}_{J}}$$

where $C_{JxL} = A_{JxK}B_{KxL}$ matrix of coefficients and $\|C_{JxL}\|_{\mathcal{G}_J}$ Group lasso penalization

$$\|C_{J \times L}\|_{\mathcal{G}_J} = \sum_{j=1}^J \|c_{\mathcal{G}_j}\|_2 = \sum_{j=1}^J \sqrt{\sum_{l=1}^L c_{jl}^2}$$

Empirical loss function

$$\underset{C}{\operatorname{argmin}} \underbrace{\sum_{s=1}^{S} \sum_{t=1}^{T} \rho_{\tau} \left\{ Y_{s,t} - \textit{U}(s)^{\top} \textit{Cb}(t) \right\}}_{\mathsf{I}(\mathsf{C})} + \lambda \sum_{j=1}^{J} \| \textit{c}_{\mathcal{G}_{j}} \|_{2}$$

I(C) continuously differentiable

K-K-T conditions for \widehat{C} to be a solution:

$$\nabla I(\widehat{C})_{\mathcal{G}_j} + \lambda \frac{C_{\mathcal{G}_j}}{\|C_{\mathcal{G}_j}\|_2} = 0 \quad \text{if } C_{\mathcal{G}_j} \neq 0$$

$$\|\nabla I(\widehat{C})_{\mathcal{G}_j}\|_2 \le \lambda \text{ if } C_{\mathcal{G}_j} = 0$$

If $\tau = 0.5$, closed form solution available

DYTEC and its applications

Block-Coordinate Gradient Descent Algorithm (BCGD)

Tseng & Yun (2009)

Solve nonconvex nonsmooth optimization problem

$$\min_{x} f(x) + \lambda P(x)$$

where $\lambda > 0$

 $P: \mathbb{R}^n \to (-\infty, \infty]$ block-separable convex function f smooth on an open subset containing dom P

- combination of quadratic approximation and coordinate descent algorithm
- global convergence

→ Theoretical details

BCGD Algorithm

Stepwise and blockwise minimize

$$S_{\lambda}(\widehat{C}^{(t)} + d) = I(\widehat{C}^{(t)}) + d^{\top} \nabla I(\widehat{C}^{(t)}) + \frac{1}{2} d^{\top} H^{(t)} d + \lambda \sum_{i=1}^{J} \|C_{\mathcal{G}_{i}}^{(t)} + d\|_{2}$$

▶ Details

Notation: $\min_{d_{\mathcal{G}_j}} S_{\lambda}(\widehat{C}^{(t)} + d)$ minimization, where $d = (d_{\mathcal{G}_1}, \dots, d_{\mathcal{G}_J})$ with $d_{\mathcal{G}_k} = 0$ for $k \neq j$

DYTEC and its applications —

BCGD Algorithm

```
repeat
     t=t+1
     for j = 1 to J do
          if \|\nabla I(\widehat{C}^{(t)})_{\mathcal{G}_j} - h_{\mathcal{G}_i}^{(t)}\widehat{C}_{\mathcal{G}_i}^{(t)}\|_2 \leq \lambda then
              d_{\mathcal{G}_i}^{(t)} = -\widehat{C}_{\mathcal{G}_i}^{(t)}
          else
              d_{\mathcal{G}_j}^{(t)} = \min_{d_{\mathcal{G}_i}} S_{\lambda}(\widehat{C}^{(t)} + d)
          end if
     end for
until convergence criterion met
update \widehat{C}^{(t+1)} - \widehat{C}^{(t)} - \alpha^{(t)} d^{(t)} = 0
```

▶ Details

DYTEC Algorithm

Start with initial weights $w_{s,t}$ (obtained separately for each $s=1,\ldots,S$) and iterate between following steps:

- oxdot compute \widehat{C} using BCGD algorithm
- update weights

$$w_{s,t} = \begin{cases} \tau & \text{if } Y_{s,t} > U(s)^{\top} \hat{C}b(t), \\ 1 - \tau & \text{otherwise.} \end{cases}$$

 \odot stop if there is no change in weights $w_{s,t}$.

Dynamic functional factor model

- □ generalization (capture nonstationarity)
- extend with the idea of two spaces of basis function

Model

$$e_s(t) = \sum_{k=1}^K Z_{sk} m_k(t) = Z_s^\top m(t)$$

with time-varying factor loadings Z_k and functional factors $m_k(t)$

Dynamic functional factor model

Space basis:

$$m_k(t) = \sum_{l=1}^L \beta_{kl} b_l(t)$$

$$m(t) = B_{K \times L} b(t)$$

Time basis:

$$Z_{sk} = \sum_{j=1}^{J} \alpha_{kj} u_j(s)$$

$$Z_s = A_{K \times J} \cdot U(s)$$

Dynamic functional factor model

$$e_s(t) = Z_s^{\top} m(t) = U(s)^{\top} Cb(t)$$

with $C_{JxL} = A_{JxK}^{\top} B_{KxL}$ matrix of coefficients, space basis vector $b(t) = \{b_1(t), \dots, b_L(t)\}^{\top}$ and time basis vector $U(s) = \{u_1(s), \dots, u_J(s)\}^{\top}$

Same loss function:

$$\sum_{s=1}^{S} \sum_{t=1}^{T} \rho_{\tau} \left\{ Y_{s,t} - U(s)^{\top} Cb(t) \right\} + \lambda \|C_{J \times L}\|_{\mathcal{G}_{J}}$$

Time basis

- capture periodic variation
- capture trend

- □ Proposal by Song et al. (2013):
 - Legendre polynomial basis
 - Fourier series

▶ See Appendix

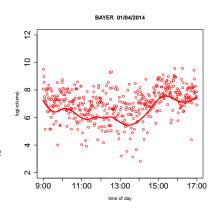
Space basis

- capture daily patterns
- □ capture specific structure

- □ Proposal by Song et al (2013):
 - Data driven
 - Based on combination of smoothing techniques and FPCA
- B-splines
 - ▶ Definition of B-splines

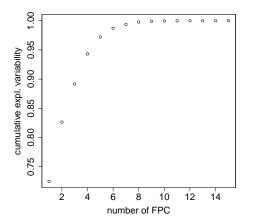
Empirical Study

- BAYER AG PAPER
- 201404-201409
- 9:00 - 17:00
- □ cumulated 1-min volume

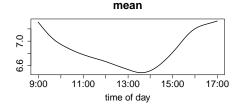


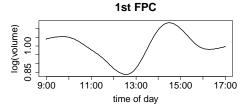
Trading volume - FPCA

Use 4 FPCs to explain 90% of variation

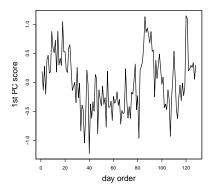


Trading volume - FPCA





Periodicity of 1st PC score



Periodogram for 1st PC scores

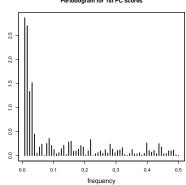


Figure: Scores of 1FPC and periodogram

Outlook — 5-1

Outlook

- Dynamic model for tail event curves
- □ Considering pattern and dependency
- Provide forecasts

TBD:

- Algorithm Code in R
- Simulation and Empirical studies

DYTEC - DYnamic Tail Event Curves and its applications

Petra Burdejová Wolfgang Karl Härdle

Ladislaus von Bortkiewicz Chair of Statistics C.A.S.E. – Center for Applied Statistics and Economics Humboldt–Universität zu Berlin http://lvb.wiwi.hu-berlin.de http://case.hu-berlin.de

References

Bialkowski, J., Darolles, S., Le Fol, G.

Improving VWAP strategies: A dynamic volume approach

Journal of Banking & Finance 32(9): 1709-1722, 2008,

DOI: 10.1016/j.jbankfin.2007.09.023

Brownlees, Ch. T., Cipolliniy, F., Gallo, G.M.
Intra-daily Volume Modeling and Prediction for Algorithmic
Trading

Journal of Financial Econometrics **9**(3): 489-518, 2011, DOI: 10.2139/ssrn.1393993

Darrat, A. F., Rahman, S., Zhong, M.
Intraday trading volume and return volatility of the DJIA stocks: A note

Journal of Banking & Finance **27**: 2035-2043, 2003, DOI: 10.2139/ssrn.348820

Engle, R. F., Granger, C.W.J., Rice, J., Weiss, A., Semiparametric Estimates of the Relation between Weather and Electricity Sales

Journal of the American Statistical Association **81**(394): 310-320, 1986, DOI: 10.2307/2289218

Guo, M., Härdle, W. K.

Simultaneous confidence bands for expectile functions
Advances in Statistical Analysis, 96: 517-541 published online,
2012, DOI: 10.1007/s10182-011-0182-1

Guo, M., Zhou, L., Huang, J. Z., Härdle, W. K. Functional data analysis of generalized regression quantiles Statistics and Computing, published online, 2013, DOI: 10.1007/s11222-013-9425-1

Härdle, W. K., Hautsch, N. and Mihoci, A. Local Adaptive Multiplicative Error Models for High-Frequency Forecasts

Journal of Applied Econometrics, accepted for publication, 2014, DOI: 10.1002/jae.2376

Hays, S., Shen ,H., Huang, J.Z, Functional dynamic factor models with application to yield curve forecasting

The Anals of Applied Statistics **6**(3): 870–894, 2012, DOI: 10.1214/12-AOAS551

Hörmann, S., Kokoszka ,P.

Weakly dependent functional data
The Anals of Statistics 38(3): 1845-1884, 2010,

DOI: 10.1214/09-AOS768

🔋 Kokoszka ,P., Miao, H., Zhang, X.

Functional Dynamic Factor Model for Intraday Price Curves Journal of Financial Econometrics $\mathbf{0}(0)$: 1-22, 2014,

DOI: 10.1093/jjfinec/nbu004

Panaretos, V. M., Tavakoli, S.

Cramér-Karhunen-Loève representation and harmonic principal component analysis of functional time series

Stochastic Processes and their Applications **123**(7): 2779-2807, 2013, DOI: 10.1016/j.spa.2013.03.015

Jain, P. C., Joh, G. H.

The Dependence between Hourly Prices and Trading Volume The Journal of Financial and Quantitative Analysis 23(3): 269-283, 1988, DOI: 10.2307/2331067

Schnabel, S.K., Eilers, P. H. C. *Optimal expectile smoothing*Computational Statistics and Data Analysis **53**(12): 4168-4177, 2009, DOI: 10.1016/j.csda.2009.05.002

Song, S., Härdle, W. K., Ritov, Y.

Generalized Dynamic Semiparametric Factor Models for High
Dimensional Nonstationary Time Series
The Econometrics Journal, online, 2014,

DOI: 10.1111/ectj.12024

References

Spierdijk, L., Nijman, T.E., van Soest, A.H.O.

Price Dynamics and Trading Volume: A Semiparametric Approach

Department of Applied Mathematics, University of Twente, 2004, DOI: 10.2139/ssrn.512342

Tseng, P., Yun, S.

A coordinate gradient descent method for nonsmooth separable minimization

Mathematical Programming 117(1-2): 387-423, 2009, DOI: 10.1007/s10107-007-0170-0

VWAP trading strategy

■ Buying/Selling fixed amount of shares at average price $p_d(t)$ that tracks the VWAP-benchmark of that day

$$VWAP_{d}^{ au} = rac{\sum_{t=1}^{T} v_{d-1}^{ au}(t) \cdot p_{d-1}(t)}{\sum_{t=1}^{T} v_{d-1}^{ au}(t)}$$

where $v_d^{\tau}(t)$ is τ -expectile of 1-min cumulated volume and $p_d(t)$ price at time t on day d

- □ Implementation requires model for intraday evolution of volume

▶ Back to Motivation - VWAP

Expectiles Curves for Typhoons

Figure: Every year with expectile curves for $\tau = 0.1, 0.5$ and 0.9.

Expectiles Curves for Hurricanes

Figure: Every year with expectile curves for $\tau = 0.1, 0.5$ and 0.9.

Number of Hurricanes

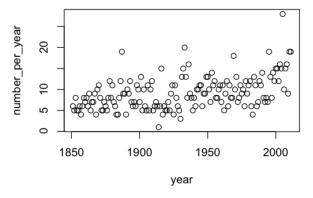


Figure: Yearly number of hurricanes

Test of trend

$$e_s^{\tau}(t) = \alpha_{\tau}(t) + s\beta_{\tau}(t) + \varepsilon_{\tau}(t)$$

Test for different au

$$H_0:\beta(t)=0$$

Result: do not reject for all τ (p-values in range 0.263-0.279)

Typhoon's curves differences

 $e_n^{\tau}(t) - \tau$ -expectile curve for year n

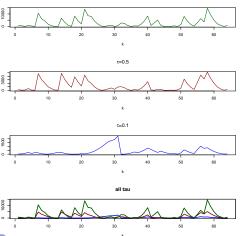
$$\hat{\mu}_k^{ au}(t) = rac{1}{k} \sum_{n=1}^k e_n^{ au}(t)$$
 $ilde{\mu}_k^{ au}(t) = rac{1}{N-k} \sum_{n=k+1}^N e_n^{ au}(t)$

Normalized differences:

$$P_{\tau,k}(t) = \frac{k(N-k)}{N} \left\{ \hat{\mu}_k^{\tau}(t) - \tilde{\mu}_k^{\tau}(t) \right\}$$

$$P_{\tau,k} = \int_0^T P_{\tau,k}^2(t) dt$$

Typhoon's curves differences



Sun-Typhoons connection

Elsner, Jagger (2008)

 United States and caribbean tropical cyclone activity related to the colar cycle

Hodges, Jagger, Elsner (2014)

 The sun-hurricane connection: Diagnosing the solar impacts on hurricane frequency over the North Atlantic basin using a spaceâtime model

Guy Carpenter & Company (Sep. 2014)

Model of Temperature data

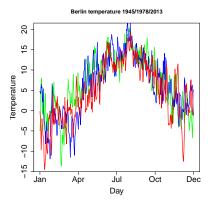


Figure: Daily average temperature in Berlin in 1948, 1980, 2013

→ Back to Motivation - Temperature Data

Model of Temperature data

For days t = 1, ..., 24090 (i.e. 66 years)

$$X_{t} = T_{t} - \Lambda_{t}$$

$$\Lambda_{t} = a + bt + \sum_{m=1}^{2} \left\{ c_{m} \cos \left(\frac{m \cdot \pi \cdot t}{365} \right) + d_{m} \sin \left(\frac{m \cdot \pi \cdot t}{365} \right) \right\}$$

$$X_{t} = \sum_{l=1}^{L} \beta_{l} X_{t-l} + \varepsilon_{t}$$

Back to Motivation - Temperature Data

Model of Temperature data

$$\hat{a} = 5.617 \qquad \hat{\beta}_1 = 0.786$$

$$\hat{b} = 2.3 * 10^{-5} \qquad \hat{\beta}_2 = -0.078$$

$$\hat{c}_1 = -4.15 * 10^{-2} \qquad \hat{\beta}_3 = 0.024$$

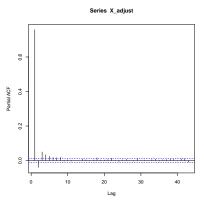
$$\hat{c}_2 = -7.14 * 10^{-2} \qquad \hat{\beta}_4 = 0.015$$

$$\hat{d}_1 = -7.932 \qquad \hat{\beta}_5 = 0.011$$

$$\hat{d}_2 = -3.109 \qquad \hat{\beta}_6 = 0.007$$

$$\hat{\beta}_7 = 0.001$$

$$\hat{\beta}_8 = 0.019$$



Back to Motivation - Temperature Data

Relating Expectiles and Expected Shortfall

Newey and Powell (1987):

$$\mathsf{e}_{\tau} = \arg\min_{\mathsf{e}} \mathsf{E} \left\{ |\tau - \mathsf{I}_{\left\{Y < \mathsf{e}\right\}} \left| (Y - \mathsf{e})^2 \right. \right\}$$

$$\frac{1-2\tau}{\tau}\operatorname{\mathsf{E}}\left\{\left(Y-e_{\tau}\right)\mathsf{I}_{\left\{Y< e_{\tau}\right\}}\right\} = e_{\tau}-\operatorname{\mathsf{E}}(Y)$$

Taylor (2008):

$$\mathsf{E}\left(Y|Y < e_{\tau}\right) = e_{\tau} + \frac{\tau\left\{e_{\tau} - \mathsf{E}(Y)\right\}}{(1 - 2\tau)F(e_{\tau})}$$

→ Back

Expectile as quantile

 $e_{\tau}(Y)$ is the τ -quantile of the cdf T, where

$$T(y) = \frac{G(y) - xF(y)}{2\{G(y) - yF(y)\} + \{y - \mu_Y\}},$$
 (1)

$$G(y) = \int_{-\infty}^{y} u \, dF(u) \tag{2}$$

► Back Quantiles and Expectiles

B-splines

Knot vector $t=(t_1,\ldots,t_M)$ as nondecreasing sequence in [0,1]

Control points P_0, \ldots, P_N

Define *i*-th B-spline basis function $N_{i,j}$ of order j as

$$N_{i,0}(t) = egin{cases} 1 & ext{if } t_i < t < t_{i+1} \ 0 & ext{otherwise} \end{cases}$$
 $N_{i,j}(t) = rac{t-t_i}{t_{i+j}-t_i} N_{i,j-1}(t) + rac{t_{i+j+1}-t}{t_{i+j+1}-t_{i+1}} N_{i+1,j-1}(t)$ $j=1,\ldots,N-M-1$

▶ Back to Estimation of Expectile Curves

▶ Back to Space Basis

Quantile Curves Penalty

$$\widehat{\alpha} = \arg\min_{\alpha} \sum_{i=1}^{n} \rho_{\tau} \left\{ y_i - \alpha^{\top} b(x_i) \right\} + \lambda \alpha^{\top} \Omega \alpha$$

where $b(x) = (b_1, \dots, b_K)^{\top}$ is vector of B-spline basis functions

Denote $\tilde{b}(x) = (\tilde{b}_1(x), \dots, \tilde{b}_K(x))^{\top}$ the vector of second derivatives of basis functions

and set

$$\Omega = \int \tilde{b}(x)\tilde{b}(x)^{\top} dx$$

→ Back to Estimation of Expectile Curves

LAWS estimation

Schnabel and Eilers (2009):

$$\min \sum_{i=1}^n w_i(\tau)(y_i - \mu_i)^2$$

where

$$w_i(\tau) = \begin{cases} \tau & \text{if } y_i > \mu_i \\ 1 - \tau & \text{if } y_i \leq \mu_i, \end{cases}$$

 μ_i expected value according to some model.

Iterations:

- ighted weights, closed form solution of weighted regression
- recalculate weights

until convergence criterion met.

▶ Back to Expectiles Curves

LAWS estimation

Example:

Classical linear regression model

$$Y = X\beta + \varepsilon$$

where $E(\varepsilon|X) = 0$ and $\mu = E(Y|X) = X\beta$.

$$\widehat{\beta} = \arg\min_{\beta} \sum_{i=1}^{n} w_i (y_i - \mu_i)^2$$

Then:

$$\widehat{\beta} = (X^{\top}WX)^{-1}XWY$$

with W diagonal matrix of fixed weights w_i .

▶ Back to Expectile Curves

Functional principal components

X(t) stochastic process on compound interval T with mean function $\mu(t) = \mathbb{E}\{X(t)\}$ and covariance function k(s,t) = cov(X(s),X(t))

There exist orthogonal sequence of eigenfunctions ϕ_j and eigenvalues λ_i such that $k(s,t) = \sum_{j=1}^{\infty} \lambda_j \phi_j(s) \phi_j(t)$ We can rewrite process as

$$X(t) = \mu(t) + \sum_{j=1}^{\infty} \sqrt{\lambda_j} \kappa_j \phi_j(t)$$

where $\kappa_j = \frac{1}{\sqrt{\lambda_j}} \int X(t) \phi_j(s) ds$, $\mathsf{E}(\kappa_j) = 0$ and $\mathsf{E}(\kappa_j \kappa_K) = \delta_{jk}$.

→ Back to Modelling of Time-varying Curves

7-18

Guo(2013) - Empirical loss function

$$S^* = S + M_{\mu} + M_{\Phi}$$

where

$$S = \sum_{d=1}^{D} \sum_{t=1}^{T} \rho_{\tau} \left\{ Y_{dt} - b(t)^{\top} \theta_{\mu} - b(t)^{\top} \Theta_{\Phi} \alpha_{d} \right\}$$
$$M_{\mu} = \theta_{\mu}^{\top} \int \tilde{b}(x) \tilde{b}(x)^{\top} dx \theta_{\mu} = \theta_{\mu}^{\top} \Omega \theta_{\mu}$$
$$M_{\Phi} = \sum_{k=1}^{K} \theta_{\phi,k} \int \tilde{b}(x) \tilde{b}(x)^{\top} dx \theta_{\phi,k}$$

and $\tilde{b}(x)$ vector of second derivatives

▶ Back to Guo(2013) - Estimation of Quantile Curves

Cramér-Karhunen-Loève representation

Conditions (Panaretos and Tavakoli (2013))

 X_t second order stationary time series in $L^2([0,1],\mathbb{R})$ with zero mean, $\mathbb{E}\|X_0\|_2^2<\infty$ and autocovariance kernel at lag t:

$$r_t(u,v) = \mathsf{E}\left\{X_t(u)X_0(v)\right\}$$

 $u, v \in [0, 1], \ t \in \mathbb{Z}$, inducing operator :

$$\mathcal{R}_t: L^2([0,1],\mathbb{R}) \to L^2([0,1],\mathbb{R})$$

Assume:

- i) $\sum_{t\in\mathbb{Z}}\|\mathcal{R}_t\|_1<\infty$
- ii) $(u,v) o r_t(u,v)$ continuous $t \in \mathbb{Z}$, and $\sum_{t \in \mathbb{Z}} \|r_t\|_{\infty} < \infty$

▶ Back to C-K-L representation

Cramér-Karhunen-Loève representation

Theorem (Panaretos and Tavakoli (2013))

 X_t admits representation

$$X_t = \int_{-\pi}^{\pi} \exp(\mathrm{i}\omega_j t) dZ_{\omega}$$
 a.s.

where for fixed ω , Z_{ω} is random element of $L^{2}([0,1],\mathbb{C})$ and process $\omega \to Z_{\omega}$ has orthogonal increments. Integral can be understood as a Riemann-Stieltjes limit in sense

$$\mathsf{E} \, \| X_t - \sum_{j=1}^J \exp(\mathrm{i} \omega_j t) (Z_{\omega_{j+1}} - Z_{\omega_j}) \|_2^2 o 0 \; ext{ as } J o 0$$

▶ Back to C-K-L representation

Cramér-Karhunen-Loève representation

Remark (Panaretos and Tavakoli (2013))

With spectral density operator $\mathcal{F}_{\omega} = \frac{1}{2\pi} \sum_{t \in \mathbb{Z}} \exp(-\mathrm{i}\omega t) \mathcal{R}_t$ having eigenfunctions $\{\phi_n^{\omega}\}_{t \geq 1}$

C-K-L representation can be interpreted as

$$X_{t} = \int_{-\pi}^{\pi} \exp(i) \sum_{n=1}^{\infty} \langle \phi_{n}^{\omega}, dZ_{\omega} \rangle \phi_{n}^{\omega}$$

▶ Back to C-K-L representation

Block-Coordinate Gradient Descent Algorithm

Tseng & Yun (2009)

$$\min_{x} f(x) + \lambda P(x)$$

Solve

$$\min_{d} \left\{ d^{\top} \nabla f(x) + \frac{1}{2} d^{\top} H d + \lambda P(x+d) \right\}$$

- □ P is block-separable then H is block-diagonal
- solve subproblems (for every j take $d=(d_{\mathcal{G}_1},\ldots,d_{\mathcal{G}_J})$ with $d_{\mathcal{G}_k}=0$ for $k\neq j$)

▶ Back to BCGD algorithm

Block-Coordinate Gradient Descent Algorithm

$$d_{\mathcal{G}_{j}}^{(t)} = -\frac{1}{h_{\mathcal{G}_{j}}^{(t)}} \left(\nabla I(\widehat{C}^{(t)})_{\mathcal{G}_{j}} - \lambda \frac{\nabla I(\widehat{C}^{(t)})_{\mathcal{G}_{j}} - h_{\mathcal{G}_{j}}^{(t)} \widehat{C}_{\mathcal{G}_{j}}^{(t)}}{\|\nabla I(\widehat{C}^{(t)})_{\mathcal{G}_{j}} - h_{\mathcal{G}_{j}}^{(t)} \widehat{C}_{\mathcal{G}_{j}}^{(t)}\|_{2}} \right)$$

 $H^{(t)}$ has submatrices $H^{(t)}_{\mathcal{G}_j} = h^{(t)}_{\mathcal{G}_j} I_{\mathcal{G}_j}$ for scalars $h^{(t)}_{\mathcal{G}_j}$

 $\alpha^{(t)}$ set by Amijo rule (See Details: Tseng & Yun (2009))

▶ Back to BCGD algorithm

Song et. al.(2013) - Time basis

Orthogonal Legendre polynomial basis to capture the global trend in time $u_1(d)=1/C_1,\ u_2(d)=d/C_2,\ u_3(d)=(3t^2-1)/C_3,\ldots$ with generic constant C_i such that $\sum_{d=1}^D \mathsf{u}_i(d)/C_i^2=1$

Fourier series to capture periodic variations $u_4 = \sin(2\pi d/p)/C_4$, $u_5 = \cos(2\pi d/p)/C_5$, $u_6 = \sin(2\pi d/(p/2))/C_6$, ... with given period p

▶ Back to Song(2013) -Time Basis

