Statistik II - Exercise session 7 21.1.2015

Info

• Classroom: SPA1 203

• Time: Wednesdays, 16:15 - 17:45

• in English

• Assignments on webpage (lvb>staff>PB)

Contact: Petra Burdejova

petra.burdejova@hu-berlin.de

Office: SPA1 R400 (upon agreement)

Schedule:

Date	Week	Exercises
15.10.14	E1	4-11, 4-18, 4-19
22.10.14	E1	4-11, 4-18, 4-19
29.10.14	E2	5-6, 5-10, 5-11, 5-14, 5-16
5.11.14	E2	5-6, 5-10, 5-11, 5-14 ,5-16
12.11.14	E3	5-16, 5-21, 5-23, 6-1
19.11.14	E3	5-16, 5-21, 5-23, 6-1
26.11.14	E4	6-3, 6-9, 6-13, 7-1
03.12.14	E4	6-3, 6-9, 6-13, 7-1
10.12.14	E5	7-3, 7-5, 7-26, 7-45
17.12.14	E5	7-3, 7-5, 7-26, 7-45
07.01.15	E6	(7-45), 8-1, 8-4, 8-7
14.01.15	E6	(7-45), 8-1, 8-4, 8-7
21.01.15	E7	8-11, 9-3,9-5,9-7
28.01.15	_	_
04.02.15	E8	Review for exam
11.02.15	E8	Review for exam

Review

- week 11 & week 12
- Slides:
 - Testing of Hypotheses (82-100/162)
 - Regression

 χ^2 -test X discrete, with unknown dist. F(x)

Observed frequencies h_i for values x_i

Hypot. distribution assumes $p_i = P(X = x_i | F_0(x))$

$$V = \sum_{i} \frac{(h_i - n.p_i)^2}{np_i} \sim \chi_{I-k-1}^2$$

k - number of unknown parameters, I - number of values

General regression

Simple linear regression function

$$Y_i = f(x_{1i}, x_{2i}, ..., x_{mi}) + U_i$$

= $E(Y_i) + U_i$ with $E(U_i) = 0$

 $E(Y_i) = \beta_0 + \beta_1 \cdot x_i$

Model $Y_i = E(Y_i) + U_i = \beta_0 + \beta_1 \cdot x_i + U_i$

Error term $U_i = Y_i - E(Y_i)$

with $E(U_i) = 0$, $Var(U_i) = \sigma_u^2$, $Cov(U_iU_j) = 0$ for $i \neq j$

and $U_i \sim N(0; \sigma_u^2)$

Fitted values $\hat{y_i} = b_0 + b_1 \cdot x_i$

 $y_i = \hat{y}_i + \hat{u}_i = b_0 + b_1 \cdot x_i + \hat{u}_i$

Residuals $\hat{u}_i = y_i - \hat{y}_i$

Least-Squares estimator for β_0, β_1 minimize $\sum \hat{u}_i$

$$b_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x}) \cdot (y_{i} - \overline{y})}{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}} = \frac{n \cdot \sum_{i=1}^{n} x_{i} \cdot y_{i} - \left(\sum_{i=1}^{n} x_{i}\right) \cdot \left(\sum_{i=1}^{n} y_{i}\right)}{n \cdot \sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{i=1}^{n} x_{i}\right)^{2}} = \frac{s_{xy}}{s_{x}^{2}} = r_{xy} \cdot \frac{s_{y}}{s_{x}}$$

$$b_{0} = \frac{\sum_{i=1}^{n} y_{i} \cdot \sum_{i=1}^{n} x_{i}^{2} - \sum_{i=1}^{n} x_{i} \cdot \sum_{i=1}^{n} x_{i} \cdot y_{i}}{n \cdot \sum_{i=1}^{n} x_{i}^{2} - \sum_{i=1}^{n} x_{i} \cdot \sum_{i=1}^{n} x_{i}} = \overline{y} - b_{1} \cdot \overline{x}$$

Coefficient of determination

$$R_{yx}^{2} = R_{xy}^{2} = \frac{s_{yx}^{2}}{s_{y}^{2} \cdot s_{x}^{2}} = r_{yx}^{2} = \frac{\sum_{i=1}^{n} (\hat{y}_{i} - \overline{y})^{2}}{\sum_{i=1}^{n} (y_{i} - \overline{y})^{2}} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \overline{y})^{2}}$$

Exercises

Exercise 8-11 - Coins

Three distinct coins are thrown 240 times and each time was the number of "head" is observed. The results are summarized as follows:

0x head: 24 1x head: 108 2x head: 85 3x head: 23

Test the hypothesis that three coins are ideal. ($\alpha = 0.05$)! (In an ideal coin heads and tails with are thrown with equal probability.)

Exercise 9-3 - Cross-sectional analysis of 11 companies

In a cross-sectional analysis of 11 companies in each sector we examine the dependence of Y - sales (in mil. EUR) from investments X1 (in 1 000 EUR), the expenses for research and development X2 (in 1 000 EUR) and advertising expenses X3 (in 1 000 EUR) for a given period of time. The values of explanatory variables X1, X2, X3 and Y are stated in the following table:

i	y_i	x_{i1}	x_{i2}	x_{i3}
1	12,6	117,0	84,5	3,1
2	13,1	126,3	89,7	3,6
3	15,1	134,4	96,2	2,3
4	15,1	137,5	99,1	2,3
5	14,9	141,7	103,2	0,9
6	16,1	149,4	107,5	2,1
7	17,9	158,4	114,1	1,5
8	21,0	166,5	120,4	3,8
9	22,3	177,1	126,8	3,6
10	21,9	179,8	127,2	4,1
11	21,0	183,8	128,7	1,9

- a) Determine the simple linear regression function of sales with respect to investments or expenditures for research and development and advertising expenses, as well as the associated coefficient of determination.
- b) Calculate all simple linear correlation coefficients between these characteristics.

Exercise 9-5 - Consumption expenditure

In March 1992 the total available income of 8 households was 30 880 EUR. In the same month actuated every 8 households consumption expenditure of 26 800 EUR. Per EUR of additional income of these households in average 0.813 EUR was spent on consumption.

- a) State the (economically viable) linear regression function.
- b) Which consumer spending are expected on average for level of disposable income of 2 800 EUR?

Exercise 9-7 - Consumption expenditure

The variables X and Y were observed in 9 statistical units, however, not the individual pairs of values (x_i, y_i) , but instead the sums

$$\sum_{i=1}^{9} x_i = 34, \sum_{i=1}^{9} y_i = 60, \sum_{i=1}^{9} x_i^2 = 144, \sum_{i=1}^{9} y_i^2 = 422, \sum_{i=1}^{9} x_i y_i = 244.$$

Subsequently it turns out that the pair of values $(x_{10}, y_{10}) = (6; 10)$ needs to be taken into account. Which of the following regression line $y = b_0 + b_1 x$ is correct by the method of least squares for the 10 pairs of values?

a)
$$y = 0, 2 + 1, 7x$$

b)
$$y = 0.6 + 1.6x$$

a)
$$y = 0, 2 + 1, 7x$$
 b) $y = 0, 6 + 1, 6x$ c) $y = 1, 2 + 1, 5x$ d) $y = 1, 4 + 1, 4x$ e) $y = 1, 8 + 1, 3x$ f) $y = 2, 0 + 1, 8x$ g) $y = 2, 2 + 1, 2x$ h) $y = 2, 8 + 1, 0x$

d)
$$y = 1.4 + 1.4x$$

e)
$$y = 1, 8 + 1, 3x$$

f)
$$y = 2.0 + 1.8x$$

g)
$$y = 2, 2 + 1, 2x$$

h)
$$y = 2.8 + 1.0x$$