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Motivation 1-1

Portfolio Risk

Portfolio Π =
∑n

i=1 Xi (Markowitz, 1952):

σ(Π) =

√√√√ n∑
i=1

σ(Xi )2 +
n∑

i 6=j

2Cov(Xi ,Xj)
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Motivation 1-2

Subject’s Answers
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Results: Survey 
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Choices: 

N=67 Figure 1: A proportion of risky choices selected by subjects for the single
investment/portfolio (128/128 trials) setup averaged over all subjects.
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Motivation 1-3

Subject’s Answers / Risk Perception

Risk = Uncertainty + Complexity
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Motivation 1-4

Investments and Brain Correlates

� How does individual perceive risk?
� Is risk perception reflected in brain activity?
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Motivation 1-5

ID Experiment

� Survey by Department of Education and Psychology, FU Berlin
� 19 healthy volunteers payoff

� Investment Decision (ID) task (×256)
safe vs. random (µ, σ) return

� fMRI images: 2 sec×1400 ≈ 48 min
� Can one identify brain reactions?
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Motivation 1-6

Investment Decision

Choose between:
A) Safe, fixed return 5%

B) Random, investment return (3 types)
I Single Investment

I Portfolio of 2 (perfectly) correlated investments

I Portfolio of 2 uncorrelated investments

� Each type of portfolio ×64, single ×128
� Display and decision time: 7 sec; Answers
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Motivation 1-7

ID Experiment

Figure 2: Decide between A) 5% return and displayed B) portfolio/invest-
ment.
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Motivation 1-8

fMRI
� functional Magnetic Resonance Imaging

� Measuring Blood Oxygenation Level Dependent (BOLD) effect
every 2 sec
High-dimensional, high frequency & large data set
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Motivation 1-9

fMRI
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Figure 3: fMRI image observed every 2 sec, 12 horizontal slices of the
brain’s scan, 91× 109× 91(x , y , z) data points of size 22 MB; voxel reso-
lution: 2× 2× 2mm3
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Motivation 1-10

fMRI Dynamics fMRI methods

Hemodynamic response (1 voxel) HRF

� Is there a significant reaction to specific stimuli?
� Is there any relation between perceived risk and complexity?
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fMRI Clustering 2-1

Clustering

� Find clusters (groups of voxels)

� A cluster has to be contiguous and homogeneous

� Data-driven (size,shape)

� Differences between clusters should be as large as possible

Proximity measure and group-building algorithm for fMRI?
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fMRI Clustering 2-2

Proximity between Voxels Correlation

� Yt,j - BOLD signal observed at voxel j with
3D coordinates Xj = (xj , yj , zj), j = 1, . . . , J

� Proximity measure w(j , k) between Yj and Yk

w(j , k) =

{
max {Corrt(Yj ,Yk), 0} , for ‖Xj − Xk‖ < d

0, otherwise

d - fixed distance, such that {ũ : ‖Xũ − Xk‖ < d} is a 3D

neighborhood (3
√
3mm); Corrt - Pearson correlation over 2× 1400
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fMRI Clustering 2-3

Cut Cost and Normalized Cut

� Cost of partitioning Y into P and Q groups, Y = P + Q

Cut(P,Q) =
∑

Yj∈P,Yk∈Q

w(j , k)

sum of all "neglected" similarities between voxels in P and Q
minimizing the cut cost: singletons

� Normalized cut:

Ncut(P,Q) =
cut(P,Q)∑

Yj∈P,Yk∈Y
w(j , k)

+
cut(P,Q)∑

Yj∈Q,Yk∈Y
w(j , k)
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fMRI Clustering 2-4

Normalized cut (NCUT) spectral clustering

Hierarchically divide Y into pre-specified number of clusters
K (top-down):

1. Find the division P∗ and Q∗,
(P∗,Q∗) = argmin

Y=P+Q
Ncut(P,Q)

2. Decide if the current partition should be
subdivided

3. Recursively partition the segmented parts, if
necessary
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PEC 3-1

Quantiles and Expectiles

For Y ∈ Rp-valued r.v.:
τ -quantile:

qτ (Y ) = argmin
q∈Rp

E ‖Y − q‖τ,1,

τ -expectile
eτ (Y ) = argmin

e∈Rp
E ‖Y − e‖τ,2.

where for α = 1, 2

‖y‖τ,α =

p∑
j=1

|yj |α ·
{
τ I{yj≥0}+(1− τ) I{yj<0}

}
.
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PEC 3-2

PEC as variance maximizers

Define the τ -variance for Y ∈ Rp

Varτ (Y ) = E ‖Y − eτ (Y )‖2τ,2
The principal expectile component(PEC)

φ∗τ = argmax
φ∈Rp ,φ>φ=1

Varτ (φ>Yi , i = 1, . . . , n)

= argmax
φ∈Rp ,φ>φ=1

1
n

n∑
i=1

(φ>Yi − µτ )2wi ,

where µτ ∈ R is the τ -expectile of φ>Y1, . . . , φ
>Yn, and

wi =

{
τ if

∑p
j=1 Yijφj > µτ ,

1− τ otherwise.
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PEC 3-3

PEC is weighted PC!

Given the true weights wi and

I+τ = {i ∈ {1, . . . , n} : wi = τ}, I−τ = {i ∈ {1, . . . , n} : wi = 1−τ},

n+ = |I+τ | and n− = |I−τ |, then the τ -expectile eτ = eτ (Y ) ∈ Rp

is:

eτ =
τ
∑

i∈I+τ Yi + (1− τ)
∑

i∈I−τ Yi

τn+ + (1− τ)n−
.

φ∗τ is the largest eigenvector of Cτ where

Cτ =
τ

n

 ∑
i∈I+τ

(Yi − eτ )(Yi − eτ )>

+
1− τ

n


∑

i∈I−τ

(Yi − eτ )(Yi − eτ )>

 .
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Subjective Complexity Measures 4-1

Subjective Complexity Measures

� Complexity attitude as a risk factor
� Portfolio -averse, -neutral, -seeking subjects

individual
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Figure 4: % of risky choices for single and portfolio inv. questions
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Subjective Complexity Measures 4-2

Subjective Complexity Measures

ratio =
% of risky choices for single investment questions

% of risky choices for portfolio question
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Empirical Results 5-1

Empirical Results: Clustering

� Number of clusters: 1000; cluster index s, s = 1, . . . , 1000
I 200: interpretability (anatomical atlases i.e. Talairach)
I 1000: more accurate functional connectivity patterns

NCut applied on brain initially divided into 8 subset
(computationally feasible)

min max mean median Total
1 353 207.4 208 1000

Table 1: Descriptive statistics of clustering results averaged over subjects.
Computational time: 19× 30 hours
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Empirical Results 5-2
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Figure 5: Parcellation results for the 1st subject’s brain into 1000 clusters
by NCut algorithm.
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Empirical Results 5-3

Cluster Activation: DMPFC
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Figure 6: Dorsolateral prefrontal cortex (DMPFC) activated during all type
of investment decisions in the group-level analysis. ( Z-scores )
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Empirical Results 5-4

Cluster Activation: aINS
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Figure 7: Anterior insula (aINS) activated during all type of investment
decisions in the group-level analysis. Z-scores , aINS(l) aINS(r)
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Empirical Results 5-5

PEC
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Figure 8: Estimated 1st 0.5-PEC of averaged cluster reaction for 4 time-
points after stimulus common for all 19 subjects.
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Empirical Results 5-6

Complexity / Stimulus Response

ratio = β0 + β1 · scoreτainsL + β2 · scoreτainsR + β3 · scoreτDMPFC
(1)

Estimate SE tStat pValue
C 1.138 0.049 23.0941 3.89 · 10−13

scoreτainsL 0.005 0.007 0.644 0.529
scoreτainsR −0.015 0.006 2.541 0.023
scoreτDMPFC −0.007 0.012 −0.539 0.598

Table 2: Complexity measure regressed on the average response
for τ = 0.5; R2 = 0.43, adj.R2 = 0.32.
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Empirical Results 5-7

Complexity / Stimulus Response

ratio = β0 + β1 · scoreτainsL + β2 · scoreτainsR + β3 · scoreτDMPFC
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Empirical Results 5-8

Complexity / Stimulus Response
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Figure 9: Added variable plot for model 1. Vertical axis denotes the best
linear combination of scores that fit ratio.
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Conclusion 6-1

Conclusion

� Local dynamic representation of the brain data

� Complexity as a factor in risk perception

�
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Appendix 8-1

fMRI Methods fMRI Dynamics

� Voxel-wise GLM Voxel-wise GLM

I linear model for each voxel separately
I strong a priori hypothesis

� Tensor probabilistic independent component analysis (T-PICA)

I factors in spatial, temporal and subject domain

� Dynamic Semiparametric Factor Model (DSFM)
I Use a “time & space” dynamic approach
I Low dim time series exploratory analysis
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Appendix 8-2

Voxel-wise GLM fMRI methods , Cluster Activation , Simulations

� FEAT - FMRI Expert Analysis Tool by Department of Clinical
Neurology, University of Oxford

� GLM framework
Y = Xb + η, (2)

Y - single voxel BOLD time series, X - design matrix
(predicted response to stimulus i.e. ID, visual, auditory),
b - effect size

� Significant, active areas (b >> 0) selected by
z-scores≡ bi−0√

Var(bi )
and grouping ( i.e. 20 neighbors) scheme
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Appendix 8-3

HRF fMRI methods fMRI dynamics

� Hemodynamic response function e.g. Double Gamma function

h(t) = (
t
5.4

)6 exp(− t − 5.4
0.9

)− 0.35(
t

10.8
)12 exp(− t − 10.8

0.9
), t ≥ 0-time [sec]

Figure 10: Predicted response as a convolution of a stimulus signal and a HRF.
Figure modified from FEAT - FMRI.
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Appendix 8-4

Design Matrix fMRI methods
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Figure 11: Predicted reaction to the stimulus (upper panel) and its deriva-
tive (lower panel) as an example of the elements of design matrix X 2).
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Appendix 8-5

Experiment ID Experiment

� Incentive to be rational
I Draw 1 ID task and multiply subject’s choice by 100 EUR

9%× 100 = 9 EUR

� Gaussian returns:
I µ = 5%, 7%, 9%, 11%
I σ = 2%, 4%, 6%, 8%
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Appendix 8-6

Single Investment fMRI Experiment

Figure 12: An example of return stream from single investment displayed
to the subject during the experiment for 7 sec.; returns ri ∼ N(µ, σ2), here
µ = 5%, σ = 2%
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Appendix 8-7

Correlated Portfolio fMRI Experiment

Figure 13: An example of return streams from correlated portfolio displayed
to the subject during the experiment for 7 sec.; returns ri ∼ N(µ, σ2), here
µ1 = 5%,µ2 = 9% and σ = 2%
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Appendix 8-8

Uncorrelated Portfolio fMRI Experiment

Figure 14: An example of return streams from uncorrelated portfolio dis-
played to the subject during the experiment for 7 sec.; returns ri ∼
N(µ, σ2), here µ = 7%, σ = 2%
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Appendix 8-9

Subject’s Answers fMRI Experiment

26 

Results: Survey 
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N=67 Figure 15: A proportion of risky choices selected by subjects for the single
investment/portfolio (128/128 trials) setup averaged over all subjects.
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Appendix 8-10

aINS(left) aINS

Figure 16: Derived aINS(l) regions for subject 1 (left) and 19 (right); axis
are scaled in millimeters.
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Appendix 8-11

aINS(right) aINS

Figure 17: Derived aINS(r) regions for subject 1 (left) and 19 (right); axis
are scaled in millimeters.
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Appendix 8-12

Cluster Activation: Results

DSFM Average GLM
aINS(l) 4.13 (−34, 18,−8) 4.08 (−36, 18,−8) 4.58 (−32, 22,−12)

3× 10−4 4× 10−4 3× 10−3

aINS(r) 4.39 (34, 24,−4) 4.21 (36, 18,−6) 5.24 (40, 22,−16)
6× 10−6 6× 10−7 3× 10−7

DMPFC 4.43 (6, 24, 42) 3.88 (4, 24, 42) 4.56 (4, 24, 24)
2× 10−9 1× 10−8 3× 10−7

Table 3: Z-scores and p-values of activated "risk" clusters during the ID
stimuli. The position of the cluster local maximum is denoted in the MNI
(Montreal Neurological Institute) standard at 2mm resolution. Average
stands for a mean value of each cluster (results of the Ncut parcellation
with K = 1000). Analysis done in the FSL (FEAT/FLAME) software.

aINS , DMPFC
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Appendix 8-13

ACF: DMPFC DMPFC Ẑ
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Figure 18: Sample autocorrelation function of DMPFC Ẑ for subjects 1
(top) and 19 (bottom), respectively.
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Appendix 8-14

ACF: aINS(l) aINS(left) Ẑ
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Figure 19: Sample autocorrelation function of aINS(left) Ẑ for subjects 1
(top) and 19 (bottom), respectively.
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Appendix 8-15

ACF: aINS(r) aINS(right) Ẑ
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Figure 20: Sample autocorrelation function of aINS(right) Ẑ for subjects
1 (top) and 19 (bottom), respectively.
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Appendix 8-16

Correlation Proximity Measure
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Figure 21: Time series of the correlation coefficient derived by the rolling
window (250 top, 500 bottom) for the center voxel and: horizontal, vertical
diagonal neighboring voxel for aINS(right) of subject 1.
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