Brain and Risk Perception. Uncertainty and Complexity in Portfolio Decisions

Petra Burdejova Wolfgang K. Härdle Piotr Majer

Ladislaus von Bortkiewicz Chair of Statistics C.A.S.E. Center for Applied Statistics and Economics Humboldt-Universität zu Berlin <http://lvb.wiwi.hu-berlin.de> <http://www.case.hu-berlin.de>

Portfolio Risk

 $i \neq j$

Portfolio $\Pi = \sum_{i=1}^{n} X_i$ (Markowitz, 1952): $\sigma(\Pi) = \sqrt{\sum_{n=1}^{n}$ $\sigma(X_i)^2 + \sum_{i=1}^n$ 2 Cov (X_i,X_j)

 $i=1$

Figure 1: A proportion of risky choices selected by subjects for the single investment/portfolio (128/128 trials) setup averaged over all subjects.

Subject's Answers / Risk Perception

$Risk = Uncertainty + Complexity$

Investments and Brain Correlates

- \Box How does individual perceive risk?
- \Box Is risk perception reflected in brain activity?

ID Experiment

- \boxdot Survey by Department of Education and Psychology, FU Berlin
- \boxdot 19 healthy volunteers \bullet [payoff](#page-38-0)

- \Box Investment Decision (ID) task (\times 256)
	- safe vs. random (μ, σ) [return](#page-38-0)
- \Box fMRI images: 2 sec × 1400 \approx 48 min
- \Box Can one identify brain reactions?

Investment Decision

Choose between:

- A) Safe, fixed return 5%
- B) Random, investment return (3 types)
	- \rightarrow [Single Investment](#page-39-0)
	- Portfolio of 2 (perfectly) \rightarrow [correlated investments](#page-40-0)
	- Portfolio of $2 \rightarrow$ [uncorrelated investments](#page-41-0)
- \Box Each type of portfolio \times 64, single \times 128
- \Box Display and decision time: 7 sec; \triangle [Answers](#page-2-1)

ID Experiment

Figure 2: Decide between A) 5% return and displayed B) portfolio/investment. [Uncertainty and Complexity in Portfolio Decisions](#page-0-0)

fMRI

 \Box functional Magnetic Resonance Imaging

 Measuring Blood Oxygenation Level Dependent (BOLD) effect every 2 sec High-dimensional, high frequency & large data set

fMRI

Figure 3: fMRI image observed every 2 sec, 12 horizontal slices of the brain's scan, $91 \times 109 \times 91(x, y, z)$ data points of size 22 MB; voxel resolution: $2 \times 2 \times 2$ mm³

 \Box Is there a significant reaction to specific stimuli? \Box Is there any relation between perceived risk and complexity?

Outline

- 1. Motivation \checkmark
- 2. fMRI Clustering
- 3. PEC
- 4. Subjective Complexity Measure
- 5. Empirical results
- 6. Appendix

Clustering

 \Box Find clusters (groups of voxels)

 \Box A cluster has to be contiguous and homogeneous

- \Box Data-driven (size, shape)
- \Box Differences between clusters should be as large as possible

Proximity measure and group-building algorithm for fMRI?

Proximity between Voxels [Correlation](#page-49-1)

 \Box Y_{t,j} - BOLD signal observed at voxel *j* with $3D$ coordinates $\mathit{X_j}=(x_j,y_j,z_j),\,j=1,\ldots,J$

 \Box Proximity measure $w(j, k)$ between Y_j and Y_k

$$
w(j,k) = \left\{ \begin{array}{cl} \max{\{ \text{Corr}_t(Y_j, Y_k), 0 \}}, & \text{for } \|X_j - X_k\| < \mathbf{d} \\ 0, & \text{otherwise} \end{array} \right.
$$

d - fixed distance, such that $\{\tilde{u}: ||X_{\tilde{u}} - X_k|| < d\}$ is a 3D

neighborhood (3 √ 3mm); Corr $_t$ - Pearson correlation over 2 \times 1400

Cut Cost and Normalized Cut

 \Box Cost of partitioning $\mathcal Y$ into P and Q groups, $\mathcal Y = P + Q$

$$
Cut(P,Q) = \sum_{Y_j \in P, Y_k \in Q} w(j,k)
$$

sum of all "neglected" similarities between voxels in P and Q minimizing the cut cost: singletons

Normalized cut:

$$
N_{cut}(P,Q) = \frac{cut(P,Q)}{\sum_{Y_j \in P, Y_k \in \mathcal{Y}} w(j,k)} + \frac{cut(P,Q)}{\sum_{Y_j \in Q, Y_k \in \mathcal{Y}} w(j,k)}
$$

Normalized cut (NCUT) spectral clustering

Hierarchically divide Y into pre-specified number of clusters K (top-down):

- 1. Find the division P^* and Q^* , (P^*, Q^*) = argmin $N_{cut}(P, Q)$ $Y - P + Q$
- 2. Decide if the current partition should be subdivided

3. Recursively partition the segmented parts, if necessary

Quantiles and Expectiles

For
$$
Y \in \mathbb{R}^p
$$
-valued r.v.:
 τ -quantile:

$$
q_{\tau}(Y) = \underset{q \in \mathbb{R}^p}{\operatorname{argmin}} \, \mathsf{E} \, \|Y - q\|_{\tau,1},
$$

 τ -expectile

$$
e_{\tau}(Y) = \underset{e \in \mathbb{R}^p}{\operatorname{argmin}} \, \mathsf{E} \, \|Y - e\|_{\tau,2}.
$$

where for $\alpha = 1, 2$

$$
||y||_{\tau,\alpha} = \sum_{j=1}^p |y_j|^{\alpha} \cdot \left\{ \tau \, \mathbf{1}_{\{y_j \geq 0\}} + (1 - \tau) \, \mathbf{1}_{\{y_j < 0\}} \right\}.
$$

PEC as variance maximizers

Define the τ -variance for $Y \in \mathbb{R}^p$

$$
\text{Var}_{\tau}(Y) = \mathsf{E} \left\| Y - e_{\tau}(Y) \right\|_{\tau,2}^2
$$

The principal expectile component(PEC)

$$
\phi_{\tau}^* = \underset{\phi \in \mathbb{R}^p, \phi^{\top} \phi = 1}{\text{argmax}} \text{Var}_{\tau}(\phi^{\top} Y_i, i = 1, \dots, n)
$$

$$
= \underset{\phi \in \mathbb{R}^p, \phi^\top \phi = 1}{\operatorname{argmax}} \frac{1}{n} \sum_{i=1}^n (\phi^\top Y_i - \mu_\tau)^2 w_i,
$$

where $\mu_\tau \in \mathbb{R}$ is the τ -expectile of $\phi^\top\mathsf{Y}_1,\ldots,\phi^\top\mathsf{Y}_n$, and

$$
w_i = \left\{ \begin{array}{cc} \tau & \text{if } \sum_{j=1}^p Y_{ij} \phi_j > \mu_\tau, \\ 1 - \tau & \text{otherwise.} \end{array} \right.
$$

PEC is weighted PC!

Given the true weights w_i and

$$
\mathcal{I}_{\tau}^{+} = \{i \in \{1, \ldots, n\} : w_i = \tau\}, \mathcal{I}_{\tau}^{-} = \{i \in \{1, \ldots, n\} : w_i = 1 - \tau\},
$$
\n
$$
n^{+} = |\mathcal{I}_{\tau}^{+}| \text{ and } n^{-} = |\mathcal{I}_{\tau}^{-}|, \text{ then the } \tau\text{-expectile } e_{\tau} = e_{\tau}(Y) \in \mathbb{R}^{p}
$$
\nis:

\n
$$
e_{\tau} = \frac{\tau \sum_{i \in \mathcal{I}_{\tau}^{+}} Y_{i} + (1 - \tau) \sum_{i \in \mathcal{I}_{\tau}^{-}} Y_{i}}{\tau n_{+} + (1 - \tau) n_{-}}.
$$

 ϕ_τ^* is the largest eigenvector of \mathcal{C}_τ where

$$
C_{\tau} = \frac{\tau}{n} \left\{ \sum_{i \in \mathcal{I}_{\tau}^{+}} (Y_{i} - e_{\tau})(Y_{i} - e_{\tau})^{\top} \right\} + \frac{1 - \tau}{n} \left\{ \sum_{i \in \mathcal{I}_{\tau}^{-}} (Y_{i} - e_{\tau})(Y_{i} - e_{\tau})^{\top} \right\}.
$$

Subjective Complexity Measures

 \Box Complexity attitude as a risk factor

 \Box Portfolio -averse, -neutral, -seeking subjects

Figure 4: % of risky choices for single and portfolio inv. questions [Uncertainty and Complexity in Portfolio Decisions](#page-49-0)

Subjective Complexity Measures

 $ratio = \frac{\% \text{ of risky choices for single investment questions}}{(\% \text{ of the three frequencies)}\)}$ % of risky choices for portfolio question

Empirical Results: Clustering

 \Box Number of clusters: 1000; cluster index $s, s = 1, \ldots, 1000$

- 200: interpretability (anatomical atlases i.e. Talairach)
- 1000: more accurate functional connectivity patterns

NCut applied on brain initially divided into 8 subset (computationally feasible)

Table 1: Descriptive statistics of clustering results averaged over subjects. Computational time: 19×30 hours

[Empirical Results](#page-3-0) 5-2

Figure 5: Parcellation results for the 1st subject's brain into 1000 clusters by NCut algorithm. [Uncertainty and Complexity in Portfolio Decisions](#page-0-0)

Cluster Activation: DMPFC

Figure 6: Dorsolateral prefrontal cortex (DMPFC) activated during all type of investment decisions in the group-level analysis. $(2\pi)^2$ [Uncertainty and Complexity in Portfolio Decisions](#page-0-0)

Cluster Activation: aINS

Figure 7: Anterior insula (aINS) activated during all type of investment decisions in the group-level analysis. **Example analysis** \bullet aINS(I) \bullet [aINS\(r\)](#page-44-0) [Uncertainty and Complexity in Portfolio Decisions](#page-0-0) ·

[Empirical Results](#page-3-0) 6-65-5-5 to 2011 and 2012 and 2013 and 2

PEC

Figure 8: Estimated 1st 0.5-PEC of averaged cluster reaction for 4 timepoints after stimulus common for all 19 subjects.

Complexity / Stimulus Response

 $\textit{ratio} = \beta_0 + \beta_1 \cdot \overline{\textit{score}}_{\textit{ainsL}}^{\tau} + \beta_2 \cdot \overline{\textit{score}}_{\textit{ainsR}}^{\tau} + \beta_3 \cdot \overline{\textit{score}}_{\textit{DMPFC}}^{\tau}$ (1)

Table 2: Complexity measure regressed on the average response for $\tau=$ 0.5; $R^2=$ 0.43, adj. $R^2=$ 0.32.

Complexity / Stimulus Response

 $\textit{ratio} = \beta_0 + \beta_1 \cdot \overline{\textit{score}}_{\textit{ainsL}}^{\tau} + \beta_2 \cdot \overline{\textit{score}}_{\textit{ainsR}}^{\tau} + \beta_3 \cdot \overline{\textit{score}}_{\textit{DMPFC}}^{\tau}$

R² of lin. comb. PC scores for different τ

Complexity / Stimulus Response

Regression results

Figure 9: Added variable plot for model [1.](#page-26-0) Vertical axis denotes the best linear combination of scores that fit ratio. [Uncertainty and Complexity in Portfolio Decisions](#page-0-0)

 $\lceil \cdot \rceil$

Conclusion

 \Box Local dynamic representation of the brain data

 \Box Complexity as a factor in risk perception

Brain and Risk Perception. Uncertainty and Complexity in Portfolio Decisions

Petra Burdejova Wolfgang K. Härdle Piotr Majer

Ladislaus von Bortkiewicz Chair of Statistics C.A.S.E. Center for Applied Statistics and **Economics** Humboldt-Universität zu Berlin <http://lvb.wiwi.hu-berlin.de> <http://www.case.hu-berlin.de>

References

van Bömmel, A., Song, S., Majer, P., Mohr, P.,Heekeren, H., 靠 Härdle, W.

Risk Patterns and Correlated Brain Activities. Multidimensional Statistical Analysis of fMRI Data in Economic Decision Making **Study**

Psychometrika, doi:10.1007/s11336-013-9352-2, 2013.

- 6 Heller, R., Stanley D., Yekutieli, D., Rubin, N., Benjamini, Y. Cluster-based analysis of FMRI data NeuroImage, 33: 599-608, 2006.
- E. Mohr, P., Biele G., Krugel, L., Li S., Heekeren, H. Neural foundations of risk-return trade-off in investment decisions

NeuroImage, 49: 2556-2563, 2010. [Uncertainty and Complexity in Portfolio Decisions](#page-49-0)

References

- **Fi** Park, B., Mammen, E., Härdle, W. and Borak, S. Time Series Modelling with Semiparametric Factor Dynamics J. Amer. Stat. Assoc., 104(485): 284-298, 2009.
- Ramsay, J. O. and Silverman, B. W. Functional Data Analysis New York: Springer, 1997.
- Shi, J. and Malik, J.

Normalized cuts and image segmentation.

IEEE Trans. on P. Anal. and Mach. Int., 22: 888–905, 2000.

References

Woolrich, M., Ripley, B., Brady, M., Smith, S. Temporal Autocorrelation in Univariate Linear Modelling of FMRI Data NeuroImage, 21: 2245-2278, 2010

Example 7 Talairach, J. and Tournoux, P. Co-Planar Stereotaxic Atlas of the Human Brain Thieme, 2008.

fMRI Methods **FEMRI Dynamics**

- **F** [Voxel-wise GLM](#page-35-0) • Voxel-wise GLM
	- \blacktriangleright linear model for each voxel separately
	- strong a priori hypothesis
- \Box Tensor probabilistic independent component analysis (T-PICA)
	- \blacktriangleright factors in spatial, temporal and subject domain
- **□** Dynamic Semiparametric Factor Model (DSFM)
	- \triangleright Use a "time $\&$ space" dynamic approach
	- Low dim time series exploratory analysis

Voxel-wise GLM of MRI methods , [Cluster Activation](#page-0-1) , [Simulations](#page-0-1)

 \Box FEAT - FMRI Expert Analysis Tool by Department of Clinical Neurology, University of Oxford

GLM framework

$$
Y = X\mathfrak{b} + \eta,\tag{2}
$$

 Y - single voxel BOLD time series, X - design matrix (predicted response to stimulus i.e. ID, visual, auditory), h - effect size

□ Significant, active areas (
$$
b \gt\gt 0
$$
) selected by
z-scores≡ $\frac{b_i - 0}{\sqrt{\text{Var}(b_i)}}$ and grouping (i.e. 20 neighbors) scheme

 \mathbf{R} \rightarrow [fMRI methods](#page-34-0) \rightarrow [fMRI dynamics](#page-10-0)

 \boxdot Hemodynamic response function e.g. Double Gamma function $h(t) = (\frac{t}{5.4})^6 \exp(-\frac{t-5.4}{0.9})$ $\frac{(-5.4)}{0.9}$) $- 0.35(\frac{t}{10})$ $\frac{t}{10.8}$)¹² exp($-\frac{t-10.8}{0.9}$ $\frac{1000}{0.9}$), $t \ge 0$ -time [sec] **Haemodynamic Response Function Predicted neural activity** time **Predicted Response**

Figure 10: Predicted response as a convolution of a stimulus signal and a HRF. Figure modified from FEAT - FMRI. [Uncertainty and Complexity in Portfolio Decisions](#page-0-0)

Design Matrix *HMRI* methods

Figure 11: Predicted reaction to the stimulus (upper panel) and its derivative (lower panel) as an example of the elements of design matrix X [2\)](#page-35-1). [Uncertainty and Complexity in Portfolio Decisions](#page-0-0)

 \Box Incentive to be rational

 \triangleright Draw 1 ID task and multiply subject's choice by 100 EUR $9\% \times 100 = 9$ FUR

Gaussian returns:

- $\mu = 5\%, 7\%, 9\%, 11\%$
- $\sigma = 2\%, 4\%, 6\%, 8\%$

Figure 12: An example of return stream from single investment displayed to the subject during the experiment for 7 sec.; returns $r_i \sim {\sf N}(\mu,\sigma^2)$, here $\mu = 5\%, \sigma = 2\%$ complexity in Portfolio Decisions

Figure 13: An example of return streams from correlated portfolio displayed to the subject during the experiment for 7 sec.; returns $r_i \sim {\sf N}(\mu,\sigma^2)$, here $\mu_1 = 5\%, \mu_2 = 9\%$ and $\sigma = 2\%$ [Uncertainty and Complexity in Portfolio Decisions](#page-0-0) -

Uncorrelated Portfolio [fMRI Experiment](#page-6-0)

Figure 14: An example of return streams from uncorrelated portfolio displayed to the subject during the experiment for 7 sec.; returns $r_i \sim$ N (μ,σ^2) , here $\mu=7\%, \sigma=2\%$ [Uncertainty and Complexity in Portfolio Decisions](#page-0-0)

Figure 15: A proportion of risky choices selected by subjects for the single investment/portfolio (128/128 trials) setup averaged over all subjects.

[aINS](#page-24-0)(left) **CaINS**

Figure 16: Derived aINS(l) regions for subject 1 (left) and 19 (right); axis are scaled in millimeters.
[Uncertainty and Complexity in Portfolio Decisions](#page-0-0)

[aINS](#page-24-0)(right) DaINS

Figure 17: Derived aINS(r) regions for subject 1 (left) and 19 (right); axis are scaled in millimeters.
[Uncertainty and Complexity in Portfolio Decisions](#page-0-0)

Cluster Activation: Results

Table 3: Z-scores and p-values of activated "risk" clusters during the ID stimuli. The position of the cluster local maximum is denoted in the MNI (Montreal Neurological Institute) standard at 2mm resolution. Average stands for a mean value of each cluster (results of the Ncut parcellation with $K = 1000$). Analysis done in the FSL (FEAT/FLAME) software. \rightarrow [aINS](#page-24-0) \rightarrow [DMPFC](#page-23-0)

Figure 18: Sample autocorrelation function of DMPFC \hat{Z} for subjects 1 (top) and 19 (bottom), respectively.

Figure 19: Sample autocorrelation function of aINS(left) \hat{Z} for subjects 1 (top) and 19 (bottom), respectively. [Uncertainty and Complexity in Portfolio Decisions](#page-0-0)

Figure 20: Sample autocorrelation function of aINS(right) \hat{Z} for subjects 1 (top) and 19 (bottom), respectively. [Uncertainty and Complexity in Portfolio Decisions](#page-0-0)

Figure 21: Time series of the correlation coefficient derived by the rolling window (250 top, 500 bottom) for the center voxel and: horizontal, vertical diagonal neighboring voxel for aINS(right) of subject 1.

