Understanding Latent Group Structure of Cryptocurrencies: Covariate-assisted Spectral Clustering for Dynamic Network

Li GUO & Yubo TAO

Singapore Management Univeristy

Crypto-Currencies in a Digital Economy

November, 2017

◆□> ◆□> ◆目> ◆目> ◆日> ● ●

Motivation	Challenges: Data Issue	Methodology	Simulation	Empirical Results	Conclusions
		Ou	ıtline		

Motivation

Challenges: Data Issue

Methodology

Simulation

Empirical Results

Motivation	Challenges: Data Issue	Methodology	Simulation	Empirical Results	Conclusions
		Ag	enda		

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Motivation

Challenges: Data Issue

Methodology

Simulation

Empirical Results

Visualization Grouping Grouping Based on DSBM (Bhattacharyya&Chatterjee, 201' Grouping Based on Covariate-assisted Spectral Clustering Asset Pricing Inference Hypothesis Development Asset Pricing Inference Time Series Return predictability Comparison

Cross Sectional Return predictability Comparison

Motivation	Challenges: Data Issue	Methodology	Simulation	Empirical Results	Conclusions
		Moti	vation		

Background:

- Emerging of Altcoin Market:
 - 787 cryptocurrencies; US\$102.6 Billion circulating supply and US\$1.9 Trillian at the end of June 2017;

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- Network Effect (attention from central banks and institutional investors)
- Investors Behavior Bias (return reversal)
- Innovation of Blockchain Technology (new algorithm and proof types)
- RQ: How fundamental information and return structure jointly determine a market segmentation?

Motivation	Challenges: Data Issue	Methodology	Simulation	Empirical Results 00000000000000000	Conclusions
		Ag	enda		

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Motivation

Challenges: Data Issue

Methodology

Simulation

Empirical Results

Visualization Grouping Grouping Based on DSBM (Bhattacharyya&Chatterjee, 201 Grouping Based on Covariate-assisted Spectral Clustering Asset Pricing Inference Hypothesis Development Asset Pricing Inference Time Series Return predictability Comparison

Cross Sectional Return predictability Comparison

Motivation	Challenges: Data Issue	Methodology	Simulation	Empirical Results 00000000000000000	Conclusions
		D	ata		

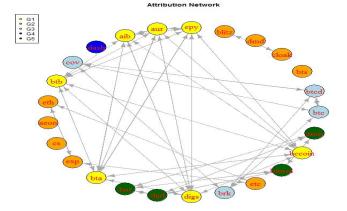
- Data Source: Cryptocompare
- Sample Period:
 - In-sample Estimation: from 2015-Jun-01 to 2016-Dec-31.
 - Out-of-Sample Tests: from 2017-01-01 to 2017-06-30.
- Cryptocurrency Daily Return:
 - 191 Cryptos Sorted on Market Cap, Age, Maximum Price and Doller Volume;

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- Contract Information:
 - Algorithm
 - Proof Types
 - Premined Indicator
 - Total Coin Supply

Empirical Results

Conclusions


Return Network Structure from Adaptive LASSO

Empirical Results

Conclusions

Visualization: Node Features (Attribution Network Structure)

Attribution

æ

・ロト ・聞ト ・ヨト ・ヨト

Motivation	Challenges: Data Issue	Methodology	Simulation	Empirical Results	Conclusions
		Ag	enda		

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Motivation

Challenges: Data Issue

Methodology

Simulation

Empirical Results

Visualization Grouping Grouping Based on DSBM (Bhattacharyya&Chatterjee, 201' Grouping Based on Covariate-assisted Spectral Clustering Asset Pricing Inference Hypothesis Development Asset Pricing Inference Time Series Return predictability Comparison

Cross Sectional Return predictability Comparison

Modelling Undirected Graphs

• Dynamic Stochastic Blockmodel:

$$A_t(i,j) = \begin{cases} \text{Bernoulli}(P_t(i,j)), & \text{if } i < j \\ 0, & \text{if } i = j \\ A_t(j,i), & \text{if } i > j \end{cases}$$
(1)

$$\mathcal{A}_t := \mathbb{E}(\mathcal{A}_t | Z_t) = Z_t \mathcal{B}_t Z_t^{\top}, \qquad (2)$$

where $Z_t \in \{0,1\}^{N \times K}$ is the *clustering matrix* such that there is only one 1 in each row and at least one 1 in each column.

• Node Covariates:

• Regularized Graph Laplacian:

$$L_{\tau,t} = D_{\tau,t}^{-1/2} A_t D_{\tau,t}^{-1/2}, \tag{3}$$

where $D_{\tau,t} = D_t + \tau_t I$ and D is a diagonal matrix with $D_t(i,i) = \sum_{j=1}^N A_t(i,j)$, and $\tau_t = N^{-1} \sum_{i=1}^N D_t(i,i)$.

• Similarity Matrices (Covariate-assisted Graph Laplacian):

$$S_t = L_{\tau,t} + \alpha_t X X^\top.$$
(4)

where $\alpha_t \in [0,\infty)$ is a tuning parameter

Motivation	Challenges: Data Issue	Methodology	Simulation	Empirical Results	Conclusions
		Ag	enda		

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Motivation

Challenges: Data Issue

Methodology

Simulation

Empirical Results Visualization

Grouping Grouping Based on DSBM (Bhattacharyya&Chatterjee, 2017) Grouping Based on Covariate-assisted Spectral Clustering

Asset Pricing Inference

Hypothesis Development Asset Pricing Inference Time Series Return predictability Comparison Cross Sectional Return predictability Comparison

Motivation

Empirical Results

Conclusions

Simulation Settings

- Misclustering Rate with Number of Nodes:
 - Block Probability:

$$B_{t} = \frac{3}{N} \begin{bmatrix} \sqrt{N} & 0.1 \log(N)^{t/T} & 0.1 \log(N)^{t/T} \\ 0.1 \log(N)^{t/T} & \log(N)^{t/T+1} & 0.1 \log(N)^{t/T} \\ 0.1 \log(N)^{t/T} & 0.1 \log(N)^{t/T} & 0.80.1 \log(N)^{t/T} \end{bmatrix};$$

•
$$N = \{10, 15, \cdots, 100\};$$

- T = 10, $s = N^{1/2}$, # of Replication: 100;
- Misclustering Rate with Number of Membership Changes:
 - Block Probability:

$$B_{t} = \frac{3}{N} \begin{bmatrix} \sqrt{N} & 0.1 \log(N)^{t/T} & 0.1 \log(N)^{t/T} \\ 0.1 \log(N)^{t/T} & \log(N)^{t/T+1} & 0.1 \log(N)^{t/T} \\ 0.1 \log(N)^{t/T} & 0.1 \log(N)^{t/T} & 0.80.1 \log(N)^{t/T} \end{bmatrix};$$

• Maximum number of membership changes: *s* = [0, 2, 4, 5, 10, 20, 25, 50, 100]

- N = 100, T = 10, # of Replication: 100;
- Misclustering Rate with Number of Horizons:
 - Block Probability:

$$B_{t} = \frac{3}{N} \begin{bmatrix} \sqrt{N} & 0.1 \log(N)^{t/T} & 0.1 \log(N)^{t/T} \\ 0.1 \log(N)^{t/T} & \log(N)^{t/T+1} & 0.1 \log(N)^{t/T} \\ 0.1 \log(N)^{t/T} & 0.1 \log(N)^{t/T} & 0.80.1 \log(N)^{t/T} \end{bmatrix};$$

• $T = \{10, 30, 50, \dots, 210\};$
• $N = 100, s = N^{1/2}, \# \text{ of Replication: } 100;$

Empirical Results

Conclusions

Performance with Growing Number of Vertices

Empirical Results

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Conclusions

Performance with Growing Sample Periods

Motivation	Challenges: Data Issue	Methodology	Simulation	Empirical Results	Conclusions
		Ag	enda		

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Motivation

Challenges: Data Issue

Methodology

Simulation

Empirical Results

Visualization Grouping Grouping Based on DSBM (Bhattacharyya&Chatterjee, 2017) Grouping Based on Covariate-assisted Spectral Clustering Asset Pricing Inference Hypothesis Development

Asset Pricing Inference Time Series Return predictability Comparison Cross Sectional Return predictability Comparison

Empirical Results

Conclusions

Visualization: Combined Network Structure

Motivation	Challenges: Data Issue	Methodology	Simulation	Empirical Results	Conclusions
		Groupir	g Results		

Table: Group Members

	Cryptocurrency
Group 1	Ethereum, Bitbar, Ethereum Classic, Expanse, Aurora coin
Group 2	Cryptospots, Amis, Bitusd, Digix Dao, Bancor Network Token
Group 3	Bitshares, Cloakcoin, Covencoin, Diamond, Blitzcoin
Group 4	Empyrean, Diggits, Advanced Internet Block, Aeoncoin, Bata
Group 5	Bitcoin, Breakout coin, Digital Cash, Bitcoin Dark, Bitconnect Coin

Motivation

hallenges: Data Issue

Methodology

Simulatio

Empirical Results

Conclusions

DSBM Evaluation I

- Within Group Connection_g = $\frac{\# \text{ of Degrees within Group g}}{N_{\sigma}}$
- Cross Group Connection_g = $\frac{\# \text{ of Degrees between Group g and other Groups}}{N_g}$

Table: Evaluation Criteria: Return Inferred Adjacency Matrix

Group ID	Within Group Connection	Cross Group Connection	Diff (W - C)
G1	0.073	0.066	0.007***
G2	0.234	0.125	0.111***
G3	0.041	0.064	-0.02***
G4	0.149	0.097	0.052***
G5	0.015	0.015	0.000
All	0.103	0.073	0.030***

Empirical Results

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Conclusions

DSBM Evaluation II

- Within Group Connection_g = $\frac{\# \text{ of Degrees within Group g}}{N_{g}}$
- Cross Group Connection_g = $\frac{\# \text{ of Degrees between Group g and other Groups}}{N_g}$

Table: Evaluation Criteria: Algorithm

Group ID	Within Group Connection	Cross Group Connection	Diff (W - C)
G1	0.131	0.155	-0.024
G2	0.163	0.170	-0.006
G3	0.179	0.175	0.004
G4	0.161	0.170	-0.009
G5	0.142	0.153	-0.011
All	0.155	0.165	-0.009

Empirical Results

Conclusions

DSBM Evaluation III

- Within Group Connection_g = $\frac{\# \text{ of Degrees within Group g}}{N_{a}}$
- Cross Group Connection_g = $\frac{\# \text{ of Degrees between Group g and other Groups}}{N_g}$

Table: Evaluation Criteria: Proof Types

Group ID	Within Group Connection	Cross Group Connection	Diff (W - C)
G1	0.273	0.300	-0.027
G2	0.314	0.322	-0.008
G3	0.303	0.310	-0.007
G4	0.311	0.310	0.001
G5	0.222	0.273	-0.050
All	0.284	0.303	-0.018

Covariate-assisted Spectral Clustering Evaluation I

- Within Group Connection_g = $\frac{\# \text{ of Degrees within Group g}}{N_{g}}$
- Cross Group Connection_g = $\frac{\# \text{ of Degrees between Group g and other Groups}}{N_g}$

Table: Evaluation Criteria: Return Inferred Adjacency Matrix

Group ID	Within Group Connection	Cross Group Connection	Diff (W - C)
G1	0.064	0.074	-0.010***
G2	0.078	0.078	0.001
G3	0.066	0.076	-0.010***
G4	0.111	0.091	0.020***
G5	0.098	0.087	0.012***
All	0.083	0.081	0.002***

Covariate-assisted Spectral Clustering Evaluation II

- Within Group Connection_g = $\frac{\# \text{ of Degrees within Group g}}{N_g}$
- Cross Group Connection_g = $\frac{\# \text{ of Degrees between Group g and other Groups}}{N_g}$

Table: Evaluation Criteria: Algorithm

Group ID	Within Group Connection	Cross Group Connection	Diff (W - C)
G1	0.227	0.164	0.062
G2	0.622	0.039	0.583
G3	0.162	0.122	0.040
G4	0.522	0.176	0.347
G5	0.183	0.140	0.043
All	0.343	0.128	0.215

Covariate-assisted Spectral Clustering Evaluation III

- Within Group Connection_g = $\frac{\# \text{ of Degrees within Group g}}{N_g}$
- Cross Group Connection_g = $\frac{\# \text{ of Degrees between Group g and other Groups}}{N_g}$

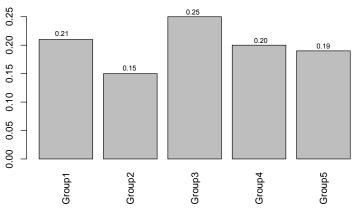
Table: Evaluation Criteria: Proof Types

Group ID	Within Group Connection	Cross Group Connection	Diff (W - C)
G1	0.514	0.312	0.202
G2	0.302	0.116	0.186
G3	0.579	0.213	0.366
G4	0.810	0.242	0.568
G5	0.514	0.323	0.191
All	0.544	0.241	0.302

Empirical Results

Asset Pricing Inference: Hypothesis Development

- Rational Price: Information Diffusion
 - Within Group Return Predictability
 - Lead-Lag Effects across Groups
- Behavior Bias: Overreaction.
 - **Time Series Return Predictability**: Stronger return predictability of lagged return for groups with low centrality than high centrality groups.
 - Cross Sectional Return Predictability: Contrarian strategy should be more profitable for those groups with lower centrality score.



Empirical Results

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Conclusions

Asset Pricing Inference: Group Centrality

Centrality Score of Similarity Matrix

Empirical Results

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● のへで

Fundamental Comparison under Different Centrality Score: Algorithm

Empirical Results

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Fundamental Comparison under Different Centrality Score: Proof Types

Time Series Return Predictability: Daily

	G1	G2	G3	G4	G5	G2 - G3
Ret_{t-1}	-0.11***	-0.25***	-0.06	-0.24***	-0.20***	-0.19***
	(-2.73)	(-6.65)	(-1.46)	(-6.32)	(-5.00)	
Ret_{t-1}^2	-0.21	0.63***	0.44	-0.10	0.17	
	(-0.72)	(5.67)	(1.11)	(-0.49)	(0.88)	
Monday	-0.01	0.00	0.00	0.01	-0.00	
	(-0.62)	(0.32)	(0.21)	(1.12)	(-0.14)	
Tuesday	-0.01	0.00	0.01	0.01	0.01	
	(-0.74)	(0.10)	(0.71)	(0.99)	(1.49)	
Wednesday	-0.00	0.01	-0.00	0.01	0.01	
	(-0.52)	(0.87)	(-0.53)	(0.50)	(0.80)	
Thursday	0.01	0.00	0.00	0.02*	0.01	
	(0.99)	(0.17)	(0.47)	(1.90)	(1.54)	
Friday	-0.00	-0.00	0.01	0.02*	-0.00	
	(-0.48)	(-0.03)	(0.65)	(1.82)	(-0.03)	
Saturday	0.01	0.01	-0.00	0.02	0.00	
	(0.66)	(0.67)	(-0.59)	(1.60)	(0.19)	
R^2	0.020	0.099	0.011	0.065	0.046	

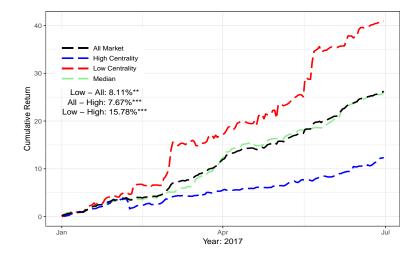
▲□▶ ▲圖▶ ▲目▶ ▲目▶ 三目 - のへで

Empirical Results

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Conclusions

Time Series Return predictability Comparison I


Empirical Results

Conclusions

Time Series Return predictability Comparison II

Empirical Results

Conclusions

▲□▶ ▲圖▶ ▲注▶ ▲注▶ … 注: 釣ぬ()

Motivation	Challenges: Data Issue	Methodology	Simulation	Empirical Results	Conclusions	
Agenda						

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Motivation

- Challenges: Data Issue
- Methodology

Simulation

Empirical Results

Visualization Grouping Grouping Based on DSBM (Bhattacharyya&Chatterjee, 201 Grouping Based on Covariate-assisted Spectral Clustering Asset Pricing Inference Hypothesis Development Asset Pricing Inference Time Series Return predictability Comparison

Cross Sectional Return predictability Compa

• Covariate-assisted Spectral Clustering is useful to Understand Cryptocurrency Market Structure.

- 1. Attribution Matrix provides most valuable information to connect within group members.
- 2. Return based adjacency matrix reveal connections across different groups.
- 3. Within group connection is stronger than cross group connection.
- 4. Behavior bias is stronger for those groups with low market centrality.
 - a. Time Series Return Predictability based on lagged return shows high $\Delta \textit{CSFE}$ for groups with low centrality.
 - b. Contrarian strategy reveal higher investment value for the low centrality groups than the high centrality groups.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()