Time-varying Volatility Estimation with high Frequency Cryptocurrencies

Presenter: Shi Chen

Ladislaus von Bortkiewicz Chair of Statistics C.A.S.E.-Center for Applied Statistics and Economics Humboldt–Universität zu Berlin http://lvb.wiwi.hu-berlin.de

High Frequency (HF) Cryptocurrency Trading

Spread (BCH/EUR)

Recent Trades (BCH/EUR)

1 - 15 of 250 trades

Time	•	Order (Price	\$	Vo	lume 👙
18:37:05	+00:00	buy	€1,061	.0	0.25	i820000
18:37:05	+00:00	buy	€1,060	.8	0.21	540000
18:37:05	+00:00	buy	€1,054	.8	0.21	540000
18:37:05	+00:00	buy	€1,052	.0	0.14	500000
18:36:53	+00:00	sell	€1,050	.0	17.91	719153
18:36:53	+00:00	sell	€1,050	.0	0.32	000000
18:36:53	+00:00	sell	€1,050	.0	4.00	000000
18:36:53	+00:00	sell	€1,050	.0	0.00	201000
18:36:53	+00:00	sell	€1,050	.0	2.00	000000
18:36:53	+00:00	sell	€1,050	.0	1.00	000000
18:36:53	+00:00	sell	€1,050	.0	1.00	000000
18:36:53	+00:00	sell	€1,050	.0	0.02	000000
18:36:53	+00:00	sell	€1,050	.0	1.18	571428
18:36:53	+00:00	sell	€1,050	.0	0.25	000000
18:36:53	+00:00	sell	€1,050	.0	0.7	000000
					47	
<	1 2	3	4 5		1/	>

HF Cryptocurrency Trading

Spread (BCH/EUR)

Recent Trades (BCH/EUR)

1 - 15 of 250 trades

Time 🔻	Order	Price 🔶	Volume	
18:39:11 +00:00	sell	€1,075.0	0.06900000	
18:39:11 +00:00	sell	€1,075.0	0.50000000	
18:39:11 +00:00	buy	€1,088.9	1.73518517	
18:39:11 +00:00	buy	€1,088.8	7.04000000	
18:39:11 +00:00	buy	€1,080.0	0.20000000	
18:39:11 +00:00	buy	€1,075.0	0.12587000	
18:39:10 +00:00	buy	€1,074.9	0.89894483	
18:39:05 +00:00	buy	€1,074.8	0.06940000	
18:39:05 +00:00	buy	€1,074.7	0.09260000	
18:39:05 +00:00	buy	€1,074.6	0.09260000	
18:39:05 +00:00	buy	€1,060.8	1.09224540	
18:39:05 +00:00	buy	€1,060.0	2.88410934	
18:39:05 +00:00	buy	€1,060.0	0.10000000	
18:39:04 +00:00	buy	€1,060.0	0.01269066	
18:38:58 +00:00	sell	€1,052.3	0.02742651	
< 1 2	3 4	5	17 >	

Event = surprise element?

HF CC

HF CC

Jump Detection

- In the case where a large jump occurs, a simple glance at the dataset might be sufficient to decide this issue.
- Such large jumps are usually infrequent, small frequent jumps should also be considered.
- Characterize jumps both theoretically and empirically.
- Need efficient tests available for jumps that are sufficiently robust to withstand misspecification and small sample bias.
- Literature: Xue, Genday and Fagan (2014), Alt-Sahalia and Jacod (2009) etc.

CC Market

 Cryptocurrencies (CC) still represent an emerging market that suffers many changes because of updating regulatory requirements and contradictory attitudes from institutions and influential people

Data Source

mkraken

- Data collected by Prof. Dr. Hermann Elendner.
- □ Trading period: trading never stops, 24/7, every single day.
- Cryptocurrency/Fiat exchange rates
 - Source: kraken.com
 - Largest Bitcoin exchange in euro volume and liquidity.

#	Name	 Market Cap 	Price	Volume (24h)	Circulating Supply	Change (24h)
1	B Bitcoin	€95,721,192,940	€5739.54	€5,747,818,097	16,677,500 BTC	7.66%
2	Ethereum	€25,900,477,737	€270.64	€1,194,641,852	95,701,059 ETH	3.79%
3	3 Bitcoin Cash	€16,290,313,750	€969.65	€3,513,114,092	16,800,275 BCH	-28.91%
4	- Ripple	€6,701,057,015	€0.173911	€145,051,449	38,531,538,922 XRP *	2.43%
5	Litecoin	€2,831,427,640	€52.62	€257,057,548	53,810,507 LTC	4.37%
6	Dash	€2,733,118,150	€355.60	€484,397,807	7,686,039 DASH	16.05%

Source: coinmarketcap.com

Data Structure

2017-06-28 BTC/EURO

- □ 1st level bid and ask price of CC/EUR exchange rate.
- ⊡ Timespan: 23.06.2017 30.07.2017, 24/7 every single day.

HF CC

Basic Model

 \Box Observe a microstruct-noise contaminated Y_t with latent X_t ,

$$Y_t = X_t + \varepsilon_t, \quad t \ge 0$$

with $E(\varepsilon_t|X) = 0$.

 Efficient log price X_t is semi-martingale, Delbaen and Schachermayer (1994),

$$X_t = X_0 + \int_0^t a_s ds + \int_0^t \sigma_s dW_s$$

- ▶ $(a_s)_{s\geq 0}$ càdlàg drift process, $(\sigma_s)_{s\geq 0}$ càdlàg volatility process.
- $\int_0^t \sigma_s^2 ds$ integrated volatility.

HF CC

Robust Integrated Volatility Estimator

⊡ Realized kernel estimator: weighted autocovariances.

- Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008)
- Two-scale/Multi-scale estimator: weighted subsampled RVs.
 - Zhang, Mykland, Podolskij and Aït-Sahalia (2005)
 - Zhang (2006, 2011)
- Pre-averaging estimator: take weighted local averages before taking squares.
 - Jacod, Li, Mykland, Podolskij, and Vetter (2009)
 - Podolskij and Vetter (2009)

Price process with Jumps

When

$$X_t = X_0 + \int_0^t a_s ds + \int_0^t \sigma_s dW_s + \sum_{j=1}^{N_t} J_j$$

: The limit of RV $\sum_{i=2}^{N} (X_{t_i} - X_{t_{i-1}})^2$ is $\int_0^t \sigma_s^2 ds + \sum_{j=1}^{N_t} J_i^2$

- \boxdot In practice, it is necessary to distinguish the $\int_0^t \sigma_s^2 ds$ from $\sum_{j=1}^{N_t} J_j^2$
- □ The bipower variation, $\sum_{i=2}^{N_i} |X_{t_{i+1}} X_{t_i}| |X_{t_i} X_{t_{i-1}}|$, converges to $\lambda_1 \int_0^t \sigma_s^2 ds$ as $max|t_i t_{i-1}| \to 0$.
- Barndorff-Nelson and Shephard (2004, 2006) etc.

HF CC

3_3

Non-synchronicity

□ Suppose covariation of two price process X_t^1, X_t^2 as $\langle X^1, X^2 \rangle$, its realized volatility estimator is,

$$V_{\Delta_n} = \sum_{i=1}^{\left[\frac{t}{\Delta_n}\right]} \left(\overline{X}_{i\Delta_n}^1 - \overline{X}_{(i-1)\Delta_n}^1 \right) \left(\overline{X}_{i\Delta_n}^2 - \overline{X}_{(i-1)\Delta_n}^2 \right)$$

► Actual transaction are recorded at random times.

A portion of data missing at pre-specified grid.
 Based on Hayashi and Yoshida (2005),

$$\mathsf{E}[V_{\Delta_n}] = \mathsf{E}\left[\sum_{i=1}^{\lfloor \frac{t}{\Delta_n} \rfloor} \left\{ \langle X^1, X^2 \rangle_{\tau^1(i\Delta_n) \wedge \tau^2(i\Delta_n)} - \langle X^1, X^2 \rangle_{\tau^1((i-1)\Delta_n) \vee \tau^2((i-1)\Delta_n)} \right\} \mathsf{I}_{G^1 \wedge G^2} \right]$$

HF CC —

Jump Detection - BTC/EURO

Image: Interpretending of the state of t

Jump Detection - BTC/EURO

 \boxdot h=200: unstable since 12th of July. The impacts last longer. HF CC

Jump Detection - Ripple/EURO

➡ h=100: similar pattern as Bitcoin HF CC

Empirical Finding

Event?

 $\hfill Jumps$ may be caused by the exogenous events. source: HF Cbitcoinmagazine.com

Outlook

- □ Co-movement across different CC/Fiat exchange.
- Efficient tests for jumps that are sufficiently robust to withstand misspecification and small sample bias.
- Combine with sentiment analysis.

References

YI XUE, RAMAZAN GENCAY and STEPHEN FAGAN Jump detection with wavelets for high-frequency financial time series

Quantitative Finance Vol. 14, No. 8, 1427-1444.

🔋 N Hautsch, M Podolskij

Preaveraging-based estimation of quadratic variation in the presence of noise and jumps: theory, implementation, and empirical evidence

Journal of Business & Economic Statistics 31 (2), 165-183.

References

- YACINE AÏT-SAHALIA1 AND JEAN JACOD Testing for jumps in a discretely observed process The Annals of Statsistics Vol. 37, No. 1, 184-222.
- 🔋 N Hautsch, M Podolskij

Preaveraging-based estimation of quadratic variation in the presence of noise and jumps: theory, implementation, and empirical evidence

Journal of Business & Economic Statistics 31 (2), 165-183.

