The Macroeconomics of Central-Bank-Issued Digital Currencies

John Barrdear, Bank of England

Michael Kumhof, Bank of England

Berlin, November 16, 2017

Disclaimer

The views expressed herein are those of the authors, and should not be attributed to the Bank of England.

1 Introduction

- The emergence of the distributed ledger technology (DLT) and of Bitcoin was a watershed moment in the history of 'e-monies'.
- It may, for the first time, be <u>technically feasible</u> for central banks to offer universal access to their balance sheet.
 - Existing centralized RTGS systems: Not robust for universal access.
 - New decentralized DLT systems: Can potentially solve this problem.
- Question: Is universal access economically desirable.

2 What is a Digital Currency?

- Traditional electronic payment systems:
 - **Tiered** ledgers:
 - * Payments are routed through and verified by specific third parties.
 - * Third parties arranged in a hierarchical network.
 - Third parties hold deposits on behalf of end users.
 - Third parties are critical to the operation of the system.
- Digital currencies:
 - **Distributed** ledgers:
 - * Payments are peer-to-peer and verified by multiple verifiers.
 - * Verifiers arranged in a peer-to-peer network.
 - Transaction verifiers do not hold deposits on behalf of end users.
 - Transaction verifiers are not critical to the operation of the system.
- Bitcoin:
 - Combines a distributed ledger with an alternative monetary system.
 - CBDC in BoE research:
 - * Rejects the monetary system of Bitcoin.
 - * Takes inspiration from its payment system.

Maintaining the Ledger

- Arriving at a consensus over the contents of the ledger is critical.
- In a permissionless system like Bitcoin (where entry is open), suggested additions to the ledger are **cheap talk**: <u>Costless</u>, non-binding and unverifiable.
- Cryptocurrencies (e.g. Bitcoin) make proposed changes costly:
 - Through a proof-of-work system:
 - * Winner-takes-all.
 - * Probability of winning increases in individual computing power.
 - * Probability of winning decreases in aggregate computing power.
 - Result:
 - * Negative externality: Too much investment in computing power.
 - * O'Dwyer and Malone (2014): Bitcoin, in 2014, consumed 5GW.
 - * As much electricity as the entire country of Ireland.
 - * Deetman (2016): By 2020, it could be 15GW.
- A permissioned system (e.g. CBDC) makes proposed changes binding:
 - Transaction verifiers are regulated to ensure veracity.
 - Trust in central party replaces proof-of-work system.

3 What is a Central-Bank Digital Currency (CBDC)?

- Access to the central bank's balance sheet.
- Availability: 24/7.
- Universal: Banks, firms and households.
- Electronic: For resiliency reasons, probably using DLT.
- National-currency denominated: 1:1 exchange rate.
- Issued only through spending or against eligible assets: Government bonds.
- Interest-bearing:
 - To equate demand and supply at 1:1 exchange rate.
 - Second tool of countercyclical monetary policy.
- Coexisting with present banking system:
 - Banks remain the creators of the marginal unit of domestic currency.
 - The vast majority of deposits would remain with banks, and be insured.
 - <u>Credit</u> provision would remain the purview of existing intermediaries.

4 The Model

4.1 Overview

- Based on Benes and Kumhof (2012) and Jakab and Kumhof (2015).
- Households:
 - Deposits: Obtained through bank loans.
 - CBDC: Obtained in exchange for government debt.
 - Deposits and CBDC jointly generate liquidity.
- Banks: Create new deposits by making new loans.
- Government:
 - Fiscal policy.
 - Traditional monetary policy.
 - CBDC monetary policy.

4.2 Endogenous Deposits and Exogenous CBDC

- Sidrauski-Brock monetary models of the 1980s/1990s:
 - 1. Representative household with a demand for money.
 - 2. Government exogenously supplies <u>all</u> money.
- The main problem is 2, not 1. Therefore, in our model:
 - Bank deposits (97% of all money) enter into TA cost technology.
 - Government money is omitted entirely.
 - Incorrect assumption: New bank deposits are deposited by non-banks.
 - Correct assumption: New bank deposits are created through new loans.
- CBDC puts exogenous government money back into the model. But:
 - 1. CBDC is universally accessible (unlike reserves).
 - 2. CBDC is interest-bearing (unlike cash).
 - 3. CBDC competes with bank deposits.

Intermediation of Loanable Funds (ILF) versus Financing Through Money Creation (FMC) Intermediation of Loanable Funds Model

Financing Through Money Creation Model

Loan transaction requires only digital ledger entries and no intermediation Deposits and loans are predetermined variables

Key Difference ILF-FMC: Budget Constraints

- Budget Constraints in ILF Model: Saver + Borrower Household
 - Saver Household $\Delta deposits_t^s = income_t^s spending_t^s$
 - Borrower Household $-\Delta loans_t^b = income_t^b spending_t^b$

• Budget Constraint in FMC+CBDC Model: Representative Household only

 $\Delta deposits_t^r - \Delta loans_t^r + \Delta CBDC_t^r = income_t^r - spending_t^r$

Deposits and loans are jump variables

4.3 Banks

- Loans: Bernanke, Gertler and Gilchrist (1999)
 - Costly state verification.
 - Difference: Pre-committed lending rates.
- Deposits: Schmitt-Grohé and Uribe (2004)
 - Transactions cost technology.
 - Difference: "Money" = bank deposits + CBDC.
 - Monetary Distortion = Liquidity Taxes:

$$\tau_t^{\ell i q} = \mathbf{1} + s_t + s_t' v_t$$

- Equivalent to consumption taxes and capital income taxes.
- Banks' effect on the real economy:
 - * Through these taxes.
 - * Not through intermediation of "loanable funds".

4.4 The Liquidity-Generating Function (LGF)

- Combines the liquidity generated by bank deposits and CBDC.
- Functional form: $f_t^x = \left((1-\gamma)^{\frac{1}{\epsilon}} \left(Deposits_t \right)^{\frac{\epsilon-1}{\epsilon}} + \gamma^{\frac{1}{\epsilon}} \left(T^{fintec} CBDC_t \right)^{\frac{\epsilon-1}{\epsilon}} \right)^{\frac{\epsilon}{\epsilon-1}}$
- Market clearing: Interest rates on loans, deposits and CBDC adjust.

- 4.5 Fiscal Policy
- 4.5.1 Government Budget Constraint

$$b_t^g + m_t^g = r_t b_{t-1}^g + r_{m,t} m_{t-1}^g + g_t + tr f_t - \tau_t$$

CBDC enters like government debt, but with a much lower interest rate

4.5.2 Fiscal Policy Rule

- Overall Deficit Ratio: $gdx_t^{rat} = 100 \frac{g\check{d}x_t}{g\check{d}p_t} = 100 \frac{B_t^g + M_t^g - B_{t-1}^g - M_{t-1}^g}{GDP_t}$
 - Relevant stock change: Government Debt + CBDC.
 - Insulates budget from potentially highly volatile CBDC seigniorage flows.
- Rule for Deficit Ratio:

$$gdx_t^{rat} = gdx_{ss}^{rat} - 100d^{gdp} \ln\left(\frac{g\check{d}p_t}{gdp_{ss}}\right)$$

4.6 Monetary Policy - The Policy Rate

$$i_{t} = (i_{t-1})^{i_{i}} \left(\frac{x \pi_{tgt}^{p} \left(1 + \phi_{b} \left(b_{t}^{rat} - \overline{b}^{rat} \right) \right)}{\beta_{u}} \right)^{\left(1 - i_{i}\right)} \left(\frac{\pi_{4,t+3}^{p}}{\left(\pi_{tgt}^{p} \right)^{4}} \right)^{\frac{\left(1 - i_{i}\right)i_{\pi}p}{4}}$$

4.7 Monetary Policy - CBDC

- Why not target monetary aggregates? The 1980s debate versus CBDC.
- Three arguments against targeting monetary aggregates:
 - 1. Problems in defining the relevant aggregate: Does not apply to CBDC.
 - 2. Problems in controlling the aggregate: Does not apply to CBDC.
 - 3. Lower benefits of controlling the aggregate: Poole (1970).
 - Volatility increases if money demand shocks are important.
 - This argument does apply in our model, but much more weakly than in Poole (1970).
 - Reason: Banks remain the creators of the marginal unit of money.
- To study the third argument, we need to define CBDC policy rules.

4.7.1 Quantity Rule for CBDC

$$m_t^{rat} = m_{tgt}^{rat} S_t^{ms} - 100 m_{\pi^p} E_t \ln \left(\frac{\pi_{4,t+3}^p}{\left(\pi_{tgt}^p \right)^4} \right)$$

- Fix the quantity of CBDC, let CBDC interest rate clear the market.
- $m_{\pi^p} > 0$: Removes CBDC from circulation in a boom.
- 4.7.2 Price Rule for CBDC $i_{m,t} = \frac{i_t}{\mathfrak{sp}} \left(\frac{\pi_{4,t+3}^p}{\left(\pi_{tgt}^p \right)^4} \right)^{-i_{\pi p}^m}$
 - Fix interest rate on CBDC, let the quantity of CBDC clear the market.
 - $i_{\pi p}^m > 0$: Makes CBDC less attractive in a boom.

4.8 Implications for the ZLB

- What happens as you approach the ZLB from above?
- Key observations:
 - This means you are in a slump and want to stimulate the economy.
 - The CBDC interest rate would hit the ZLB first.
 - The CBDC interest rate is a rate on money.
 - To stimulate the economy, the rate on money must <u>rise</u>.
- Implication: Optimal CBDC policy would drive you away from the ZLB.
- It makes no sense to sell CBDC as a way to pay negative interest rates.

5 Steady State Effects of the Transition to CBDC

- Assumptions:
 - Issue CBDC against government debt.
 - Magnitude: 30% of GDP.
- Results:

	Steady State
	Output Effect
1. Lower Real Policy Rates	+1.8%
2. Higher Deposit Rates Relative to Policy Rates	-0.9%
3. Reductions in Fiscal Tax Rates	+1.1%
4. Reductions in Liquidity Tax Rates	+0.9%
Total	+2.9%

The Main Factors Explained

- 1. Lower real interest rates:
 - Assumption: CBDC issued against government debt.
 - CBDC is not defaultable, government debt is.
 - CBDC carries a lower interest rate than government debt.

2. Lower distortionary taxes:

- Much larger central bank balance sheet.
- Therefore much larger seigniorage flows.
- Also: Lower interest costs (see above).
- Assumption: Seigniorage is used to réduce distortionary taxes.

3. Lower transactions costs:

- Modern money is 95%+ created by private banks.
- This is costly: Spreads, regulation, bank market power, collateral.
- You can therefore never reach the Friedman rule.
- But with CBDC you can get much closer.

Transition to Steady State with CBDC solid line = actual transition ; dotted line = change in long-run steady state

6 Quantity Rules or Price Rules for CBDC?

Shock to Demand for Total Liquidity solid line = quantity rule ; dotted line = price rule

7 Financial Stability: CBDC Bank Runs?

- There is no easy way to run from bank deposits to CBDC in aggregate.
- Two reasons:
 - 1. Aggregate increases in CBDC demand do not affect bank deposits:
 - Central bank sells CBDC only against government debt.
 - <u>Not</u> against bank deposits.
 - CBDC purchases among non-banks are irrelevant.
 - 2. CBDC policy rules can further discourage volatile CBDC demand.

8 Countercyclical CBDC Rules

Solid Line = Policy Rate, Dotted Line = Policy Rate minus Fixed Spread, Dashed Line = CBDC Rate

9 Conclusions

- CBDC has significant benefits \implies further research is worthwhile.
- Increase in steady-state GDP could be as much as 3%.
- Improved ability to stabilize inflation and the business cycle.
- Should reduce some FS risks, but may introduce others.
- The design of a successful transition is the critical issue.