
RETURNS AND VOLATILITIES IN HIGH DIMENSION

A GENERAL FACTOR MODEL APPROACH

MARC HALLIN
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Parallel to the outburst of big data in data sciences and statistics, the analysis of

high-dimensional time series in the past few years has become one of the most

active subjects of econometrics and financial econometrics.
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Parallel to the outburst of big data in data sciences and statistics, the analysis of

high-dimensional time series in the past few years has become one of the most

active subjects of econometrics and financial econometrics.

The reason is that data in those fields generally take the form of n time series

observed over a time period T , where n is quite large—often, latger than T .

“Traditional asymptotics” (fixed n; T → ∞) then are inadequate, or infeasible,

due to the usual problems related with the “curse of dimensionality”

Factor models, under their various forms (static/dynamic, observed/unobserved

factors, ... ) arguably are the most successful methods in that context—possibly,

the only succesful ones ...

The situation is even more problematic with volatilities ...
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The literature is huge, and develops at a fast pace, basically in all domains of

applications: genetics, chemometrics, environmental studies, image analysis,

finance, econometrics ...

Much of that literature deals with sampling models: methods are developed for

high-dimensional independent and identically distributed observations. At best,

those methods are shown to resist some degree of serial dependence.

In econometrics and financial econometrics (but also in environmetrics), serial

dependence is ubiquitous, and the time series aspects of the problem should not

be ignored—quite on the contrary, they MUST be exploited.
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Econometricians in that respect were somewhat ahead of statisticiansa.

Statisticians indeed still restrict much of their analysis to i.i.d. (often Gaussian)

data. Econometricians for several decades have been struggling with time series

in high dimension where, out of the need for applicable methods, they had to

come up with feasible solutions. Prototypes are the pioneering contributions by

• Sargent, T.J. and C.A. Sims (1977). Business cycle modelling without pretending

to have too much a priori economic theory, in C.A. Sims, Ed., New Methods in

Business Cycle Research, Federal Reserve Bank of Minneapolis, Minneapolis, pp.

45-109

• Chamberlain, G. (1983). Funds, factors, and diversification in arbitrage pricing

models. Econometrica 51, 1281-1304

• Chamberlain, G. and M. Rothschild (1983). Arbitrage, factor structure and

mean-variance analysis in large asset markets. Econometrica 51, 1305-1324.

aStatisticians mostly resort to the mathematically beautiful theory of large ran-

dom matrices—spiked models, etc.—which is poorly fit to statistical applications.
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Those papers can be considered as early forerunners of the present literature on

factor models—a literature that only started some 20 tears later, in the early

2000’s, essentially with the contributions by

• Stock and Watson (2002) Journal of Business and Economic Statistics 20,

147–162 (“static” factor models),

• Forni, Hallin, Lippi and Reichlin (2000) The Review of Economics and

Statistics 82, 540–554 (the “general dynamic factor model”), and

• Bai and Ng (2002) Econometrica 70, 191–221 (“static” factor models).

Those papers triggered the modern developments of factor models, and

hundreds of papers have followed.
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OUTLINE OF THE LECTURES

In these four lectures, we will show how factor models allow us to conduct, in a

nonparametric and basically model-free way, a combined study of returns and

volatilities, based on the onservation of a large panel of observed stock returns.

1. The general dynamic factor method

2. Identifying the number of factors

3. Dynamic factors in the presence of blocks

4. Dynamic factors and volatilities: extracting the market volatility shocks.
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1. PANEL DATA AND THE FACTOR MODEL STRATEGY

Observations in econometrics, increasingly often, take the form of an n× T

double-indexed array

{Xit; i = 1, . . . , n, t = 1, . . . , T}

of observed random variables, where i is a cross-sectional index and t stands for

time. Such an array is called a panel.

Each row in the panel is a univariate time series of length T , while each column

can be considered the observation, at time t, of a n-dimensional time series.

The dimension n, in econometric applications, is often of the order of several

hundreds or a thousand. All those series exhibit complex (lagged)

cross-correlations, a sensible parametrization of which is infeasible (even the

simplest VAR(1) model would involve n2 autoregression parameters, plus

n(n+ 1)/2 innovation covariances: for n = 1000, this means a number of

parameters of the order of 106!).
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a real-life example

evolution of US sectors GDP growth rates (450 series), over 28 years
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Other real-life datasets examples include

– the daily returns of the Standard & Poor 100 stocks over ten years: n = 90,

T = 3457 in M. Barigozzi and M. Hallin (2017) Generalized dynamic factor

models and volatilities: estimation and forecasting, Journal of

Econometrics 201, 307–321;

– (Eurozone macroeconomics): monthly macroeconomic indicators

(industrial production, prices, money aggregates, interest rates (nominal

and real), spreads, etc.) over 10 years: n = 447, T = 120 in M. Forni,

M. Hallin, M. Lippi, and L. Reichlin (2001) Coincident and leading

indicators for the Euro area, The Economic Journal 111, 62-85;

– (joint analysis of three international stock markets): daily returns, over 15

years, of Standard & Poor 500 for the US, Standard & Poor Europe 350 for

Europe, and Nikkei 225 for Japan: n = 830 stocks, T = 4000 days in

M. Barigozzi, M. Hallin and S. Soccorsi (2017) Identification of global and

national shocks in international financial markets via general dynamic

factor models, Submitted.

– ...

Traditional multivariate time series methods in such datasets are totally helpless
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The factor model approach in the analysis of such datasets consists in

decomposing the observation Xit into a sum

Xit = χit + ξit,

of two mutually orthogonal (uncorrelated, all leads and lags) unobserved

components: the common component χit and the idiosyncratic component

ξit.

Various characterizations of commonality/idiosyncrasy lead to various factor

models, exact or approximate, static or dynamic, etc.

All those characterizations share one common point, though, which is required

for their “technical success”:

• χit has “reduced rank”: although n-dimensional, it is driven by a small

number q of mutually orthogonal shocks (ε1t, . . . , εqt)′: the “common

shocks”

• ξit is only “mildly” cross-correlated
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factor models are a “divide and rule” strategy

If we manage to disentangle χit and ξit, and to recover the common shocks,

(ε1t, . . . , εqt)′, then

• we can handle (e.g., forecast) χit;

• as for ξit, being “mildly” cross-correlated, it can be analyzed (e.g.,

forecast) componentwise without much loss.

Putting χit and ξit together again, we have defeated the curse of

dimensionality!
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US sectors GDP growth rates (450 series), over 28 years
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a real-life example

decompose into a common component (with q = 2)
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a real-life example

and an idiosyncratic component

. – p.9/48



Since their introduction, factor model methods have been quite successful in the

analysis of large panels of econometric data, and have entered daily practice in

most national statistical institutes, central banks and business cycle analysis

institutions.

Questions to be answered:

• How to define “common” and “idiosyncratic” (technical and interpretational

issues)?

• Definition/Existence of a decomposition into “common + idiosyncratic”?

• How to disentangle “common” and “idiosyncratic”: estimation, consistency,

rates, identification of q, etc.

• How to analyze volatilities (based on an observed panel of returns)?
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2. PANEL DATA: COMMON VERSUS IDIOSYNCRATIC

An n× T panel

X11, X12, . . . , X1T

..

.
..
.

..

.

Xn1, Xn2, . . . , XnT

is a finite realization of some double-indexed stochastic process of the form

X := {Xit|i ∈ N, t ∈ Z},

hence, a collection of n observed time series of length T , related to n individuals

or “cross-sectional items”, or, equivalently, one single time series in dimension n.
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Panel data: common versus idiosyncratic

The following assumption will be made throughout.

ASSUMPTION A1(i). The process X is second-order time-stationary, that is, for all i,

i′, i′′, t and k, the variances Var(Xit) and covariances Cov(Xi′tXi′′,t−k) exist,

are finite, and do not depend on t.

For simplicity, we henceforth also assume that all Xit’s are centered and, in order

to avoid trivialities, nondegenerate:

ASSUMPTION A1(ii). For all i ∈ N and t ∈ Z, E[Xit] = 0 and 0 < E[X2
it].

... and, whenever needed,

ASSUMPTION A1(iii). For all n ∈ N the n-dimensional process

X(n) := {Xit| 1 ≤ i ≤ n, t ∈ Z}

admits a spectral density.
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Panel data: common versus idiosyncratic

Let Assumption A1 hold, and denote by H
X the (Hilbert) space spanned by X,

equipped with the L2 covariance scalar product, that is, the set of all

L2-convergent linear combinations of Xit’s and limits of L2-convergent

sequences thereof.

Similarly, we use the notation H
X
t , HX

(n)
, and H

X
(n)

t for the subspaces of HX

spanned by {Xis| i ∈ N, s ≤ t}, {Xis| 1 ≤ i ≤ n, t ∈ Z}, and

{Xis| 1 ≤ i ≤ n, s ≤ t}, respectively.
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Panel data: common versus Idiosyncratic

A panel is not a “natural” object, but an artificial construction.
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Panel data: common versus Idiosyncratic

A panel is not a “natural” object, but an artificial construction.

The n time series constituting the panel have been put together by someone,

who did it on purpose—usually, for the reason that those series all carry, or are

expected to carry, some information about some unobservable feature or latent

process of interest.
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A panel is not a “natural” object, but an artificial construction.

The n time series constituting the panel have been put together by someone,

who did it on purpose—usually, for the reason that those series all carry, or are

expected to carry, some information about some unobservable feature or latent

process of interest.

Those unobserved common features, in general, are the most relevant issue of

the analysis. However, their exact relation to the observed Xit prior to the

analysis is not known, and “commonness” is the only way to identify it:
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Panel data: common versus Idiosyncratic

A panel is not a “natural” object, but an artificial construction.

The n time series constituting the panel have been put together by someone,

who did it on purpose—usually, for the reason that those series all carry, or are

expected to carry, some information about some unobservable feature or latent

process of interest.

Those unobserved common features, in general, are the most relevant issue of

the analysis. However, their exact relation to the observed Xit prior to the

analysis is not known, and “commonness” is the only way to identify it:

Example: the business cycle, which is common to all variables describing an

economy, but remains otherwise undefined;

Example: the market liquidity, which is common to a market-wide panel of

liquidity measurements, but remains otherwise undefined; etc.
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Panel data: common versus Idiosyncratic

A panel is not a “natural” object, but an artificial construction.

The n time series constituting the panel have been put together by someone,

who did it on purpose—usually, for the reason that those series all carry, or are

expected to carry, some information about some unobservable feature or latent

process of interest.

Those unobserved common features, in general, are the most relevant issue of

the analysis. However, their exact relation to the observed Xit prior to the

analysis is not known, and “commonness” is the only way to identify it:

Example: the business cycle, which is common to all variables describing an

economy, but remains otherwise undefined;

Example: the market liquidity, which is common to a market-wide panel of

liquidity measurements, but remains otherwise undefined; etc.

Variables orthogonal to all “common variables” will be called “idiosyncratic”.

Moreover, the cross-sectional ordering of the panel, which in principle, is

arbitrary, should play no role in the characterization of “commonness” and

“idiosyncrasy”. Sensible concepts and sensible statistical procedures should be

invariant under permutation of cross-sectional items.
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Panel data: common versus Idiosyncratic

More precise definitions are needed, though.

How should we define “common”? “idiosyncratic”? What should we impose on

χit and ξit in order for the decomposition

Xit = χit + ξit, that is, “common”it + “idiosyncratic”it, i ∈ N, t ∈ Z

to make sense, to exist, and to enjoy the properties required for the success of

the “factor model strategy”?

A variety of definitions of “idiosyncratic”, hence a variety of “factor model” can

be found in the literature.
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Idiosyncratic?

Idiosyncratic components are expected to be item-specific, or nearly so. One

therefore might be tempted to call idiosyncratic those processes {ζit} in H
X that

do not exhibit any cross-correlation at all: ζit and ζi′,t−k mutually orthogonal for

all i′ 6= i and all k ∈ Z).

Imposing such a condition leads to the so-called exact or strong factor model

considered, for instance, by Sargent and Sims (1997).
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Idiosyncratic?

Idiosyncratic components are expected to be item-specific, or nearly so. One

therefore might be tempted to call idiosyncratic those processes {ζit} in H
X that

do not exhibit any cross-correlation at all: ζit and ζi′,t−k mutually orthogonal for

all i′ 6= i and all k ∈ Z).

Imposing such a condition leads to the so-called exact or strong factor model

considered, for instance, by Sargent and Sims (1997).

That requirement, however, is too restrictive for most practical purpose. It is

unpleasantly sensitive, in particular, to the possible presence in the panel of two

closely related series: if, for instance, X2t is of the form X2t = a(L)X1t for some

linear filter a(L), it automatically gets treated as fully “common”, although it

could be strictly orthogonal to Xit for all t and i > 2.

The requirement that the idiosyncratic components ξit be cross-sectionally

strictly orthogonal to each other at all leads and lags therefore has to be

weakened into a milder requirement of “limited cross-correlation”, yielding an

approximate or weak factor model.

. – p.16/48



Idiosyncratic?

In order to introduce a more precise definition of that idea of “mild

cross-correlation”, let us consider two examples of extreme idiosyncrasy/extreme

commonness.
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Idiosyncratic?

In order to introduce a more precise definition of that idea of “mild

cross-correlation”, let us consider two examples of extreme idiosyncrasy/extreme

commonness.

Let

Xit = φit+ψit, i ∈ N, t ∈ Z with φit = φt i.i.d. N (0, σ2
φ), and ψit i.i.d. N (0, σ2

ψ)

where φt and ψi,t−k are orthogonal for all i, t, and k.

Clearly (Law of Large Numbers),

φit = lim
n→∞

n−1
n
∑

j=1

Xjt and ψit = Xit − lim
n→∞

n−1
n
∑

j=1

Xjt

where convergence holds in quadratic mean, so that the processes

{φit, i ∈ N, t ∈ Z} and {ψit, i ∈ N, t ∈ Z} both are in H
X.

Since it has no cross-correlations at all, {ψit} is an example of extreme

idiosyncrasy, whereas φit = φt, which appears in all cross-sectional items,

qualifies as an example of extreme “commonness”.
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Idiosyncratic?

Now, consider arbitrary sequences

n
∑

i=1

∞
∑

k=−∞

a
(n)
ik ψi,t−k

of normed (i.e., with coefficients satisfying
∑n
i=1

∑

∞

k=−∞
(a

(n)
ik )2 = 1 for all n)

linear combinations of the ψ’s. Their variances are

n
∑

i=1

∞
∑

k=−∞

(a
(n)
ik )2σ2

ψ = σ2
ψ .

It follows that the maximal variance, for given n, over all normed linear

combinations, of the ψit’s, remains bounded as n → ∞.
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Common?

The situation is entirely different for the linear combinations

w(n) :=
n
∑

i=1

∞
∑

k=−∞

a
(n)
ik φi,t−k =

n
∑

i=1

∞
∑

k=−∞

a
(n)
ik φt−k

involving the φ’s. We have

σ2
w(n) =

∞
∑

k=−∞

(
n
∑

i=1

a
(n)
ik )2σ2

φ.

Choosing, for instance, a
(n)
ik = a

(n)
k (a

(n)
ik ’s that do not depend on i, so that

n
∑

∞

k=−∞
(a

(n)
k )2 = 1), we obtain

σ2
w(n) =

∞
∑

k=−∞

(na
(n)
k )2σ2

φ = n2
∞
∑

k=−∞

(a
(n)
k )2σ2

φ = nσ2
φ.

It immediately follows that the maximal variance, for given n, over all normed

linear combinations, of the φit’s, tends to infinity as n→ ∞.
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Idiosyncratic?

Another example is

Xit = φit+ψit, i ∈ N, t ∈ Z with φit = (1−ρiL)
−1εt, εt i.i.d. N (0, 1), and ψit i.i.d. N (0, σ2

ψ)

where εt and ψi,t−k are orthogonal for all i, t, and k:

the maximal variance, for given n, over all normed linear combinations, of the

φit’s, tends to infinity as n → ∞while the same maximum for the ψit’s remains

bounded.
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• The family of “exploding” sequences of linear combinations of the Xit’s is

spanning a sequence of subspaces of H(n): denote them by H
(n)
common;

• The family of “bounded” sequences of linear combinations of the Xit’s is

spanning a sequence of subspaces of H(n): denote them by H
(n)

idio
.

... this construction has a principal components flavor
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dynamic principal components

• The normed linear combination W
(n)
1;t of present, past and future values of

X
(n)
t := (X1t, . . . , Xnt)′ maximizing the variance is called X

(n)
t ’s first dynamic

principal component, its variance λ
(n)
1 is X

(n)
t ’s first integrated dynamic

eigenvalue

• the normed linear combination W
(n)
2;t of present, past and future values of

X
(n)
t := (X1t, . . . , Xnt)′ maximizing the variance subject to being orthogonal, at

all leads and lags, to W
(n)
1;t , is called X

(n)
t ’s second dynamic principal

component, its variance λ
(n)
2 is X

(n)
t ’s second integrated dynamic eigenvalue

• ...

• the normed linear combination W
(n)
n;t of ...

(As we shall see, those dynamic principal components and integrated dynamic

eigenvalues are related to the eigenvectors and eigenvalues of X(n)’s spectral

density matrix.)
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common? Idiosyncratic?

Let q be such that λ
(n)
q → ∞ and λ

(n)
q+1 bounded as n → ∞; assume q <∞. In

practice, q is very small compared to n.

Then,

• H
(n)
common is spanned by W

(n)
1;t , . . . ,W

(n)
q;t

• H
(n)

idio
is spanned by W

(n)
q+1;t, . . . ,W

(n)
n;t

• H
(n)
common and H

(n)

idio
are mutually orthogonal (all leads and lags)
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The general dynamic factor model

DEFINITION 1. A random variable ζ in H
X, with variance 0 < σ2

ζ , is called common

(relative to the process X) if ζ/σζ is the limit in quadratic mean of a sequence of

elements of H
(n)
common.

DEFINITION 2. The closed space spanned by the common variables is called the

common space Hcommon. Its orthogonal complement (in H
X) is called the

idiosyncratic space Hidio.

The following definition then can be adopted:

define χit and ξit as the projections of Xit onto Hcommon and Hidio,

respectively.
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The general dynamic factor model

The following assumption makes sense (constructing counterexamples is quite

difficult, and they are weird)

ASSUMPTION A2 The common space Hcommon has “limited complexity”, that is,

is driven by a finite (but unspecified) number q of mutually orthogonal white

noises—denote them as {Ut} = {(U1t, . . . , Uqt)′| t ∈ Z}.
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The general dynamic factor model

The above definitions straightforwardly lead to the following extremely general

representation result.

THEOREM 1. Under the assumptions made, there exist two uniquely defined

mutually orthogonal processes χχχ = {χit} and ξξξ = {ξit} in H
X
com and H

X

idio
,

respectively, such that

Xit = χit + ξit i ∈ N, t ∈ Z.

Moreover, there exist a q-tuple {Ut} = {(U1t, . . . , Uqt)′} of mutually orthogonal

white noises (namely, Var(Ujt) = 1 and Cov(Ujt, Uj′t′ ) = 0 unless j′ = j and

t′ = t), and a collection of one-sided square-summable filters Bij(L),

i ∈ N, j = 1, . . . , q such that this decomposition takes the form

Xit = χit + ξit with χit =

q
∑

j=1

Bij(L)Ujt i ∈ N, t ∈ Z

and H
U
t = H

χχχ
t for all t ∈ Z.

DEFINITION. The above decomposition is called the general dynamic factor

model representation of X—in short, a general dynamic factor model for X.
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• No “factors”, thus, but a common component driven by a finite (and

unspecified) number q of white noises: the common shocks of the panel. Those

shocks, are loaded, with lags, by Xit via the one-sided filters Bij(L), ∈ N,

j = 1, . . . , q.

• Common shocks remain largely undetermined, but the space they are

spanning at time t is uniquely characterized as the innovation space of the

(unobserved, but unique) common component χχχ.

• The existence and uniqueness of the general dynamic factor model

representation of X do not require (beyond second-order stationarity and a

finite q) any constraint on the data-generating process. Therefore, it does not

constitute a statistical “model” in the usual sense.

• The properties required by the “factor model strategy” are satisfied: χit is driven

by q-dimensional white noise, and ξit is only mildly cross-correlated (no pervasive

cross-correlations).

• Let χ
(n)
it and ξ

(n)
it denote the projections of Xit onto H

(n)
common and H

(n)

idio
,

respectively. Under mild assumptions, it can be shown (Forni, Hallin, Lippi and

Reichlin 2000) that χ
(n)
it and ξ

(n)
it consistently recover χit and ξit as both n and T

tend to infinity,.
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5. PCA AND STATIC FACTOR MODELS

The most popular way of turning the decomposition of Theorem 2 into a

statistically tractable model, however, is not the general factor model one, and

consists in imposing on the common component χit a simple linear structure, of

the form






χit = bi1F1t + . . .+ birFrt

Ft := (F1t, . . . , Frt)′ = A1Ft−1 + . . .+ApFt−p +RUt i ∈ N, t ∈ Z

where Ut := (U1t, . . . , Uqt)′ is a q-tuple of white noises, the r × r matrices

A1, . . . ,Ap define some stationary VAR, and the r × q matrix R has rank q.

Expressing Ft in terms of the Ut’s and placing restrictions on the

cross-covariances of idiosyncratics yield a particular form of the General

Dynamic Factor where the common space at time t has finite dimension r.
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PCA and Static Factor Models

Here, Xit depends in a static way (instantaneous dependence: loading

constants instead of loading filters) on the unobserved r-dimensional latent

process {Ft}: the VAR(p) dynamics of the r factors (F1t, . . . , Frt), driven by the

q-dimensional common shocks Ut (r ≥ q), are to account for the dynamics of

the common components throughout the panel.

The dimension of the space spanned by the χit’s for given t is r < ∞ (since all

χit’s, for fixed t, are linear combinations of F1t, . . . , Frt). This is a very restrictive

assumption, as we shall see.

But the dynamic dimension of the doubly indexed process {χit} is q, since it is

driven by q white noises (q ≤ r).
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PCA and Static Factor Models

Denote by

ΛΛΛ
(n)
r :=











λ
(n)
1 . . . 0

. . .

0 . . . λ
(n)
r











and P
(n)
r :=











p
(n)′
1

.

.

.

p
(n)′
r











:=











p
(n)
11 . . . p

(n)
1n

.

.

.
. . .

.

.

.

p
(n)
r1 . . . p

(n)
rn











the r × r diagonal matrix containing the r largest eigenvalues of the n× n

covariance matrix E[X
(n)
t X

(n)′
t ] and the corresponding r × n matrix of row

eigenvectors.

Then
(

ΛΛΛ
(n)
r

)

−1/2
P

(n)
r X

(n)
t

is the standardized projection of X
(n)
t onto the r-dimensional space spanned by

X
(n)
t ’s r first principal components (standard, static PCA).
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PCA and Static Factor Models

It can be shown (see Bai and Ng (2002) or Stock and Watson (2002a and b) and

many others) that, provided that

• the assumptions of the static factor model hold (hard to check for!), and

• further assumptions on the cross-correlations of the static principal

components (which are othogonal at lag 0 only) are satisfied (hard to

check for!),

those projections converge, as both n and T tend to infinity, to the space

spanned by Ft, the only identified feature of the model.

However, the static factor model is placing severe restrictions on the

data-generating process.
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PCA and Static Factor Models

Those restrictions at first sight may look quite innocuous, but they are not.

Consider, for instance, the very simple case under which q = 1 (one single

common shock Ut) and the elementary AR(1) loading scheme

χit = ρiχi,t−1 + Ut t ∈ Z, ρi ∈ (−1, 1), i ∈ N.

with ρi drawn from a uniform distribution between, say, -.8 and .8

Here the stochastic variables χit for fixed t and i ∈ N are spanning an

infinite-dimensional space. This very simple case does not admit a finite-r static

representation, as each lag of Ut has to be counted as one distinct factor.

This very simple case does not admit a finite-r static representation, as each lag

of Ut has to be counted as one distinct factor.
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7. DYNAMIC PCA AND DYNAMIC FACTOR MODELS

When either the assumptions of static factor models or those on the

cross-correlations of the static principal components fail to hold, static PCA does

not provide a consistent estimation of the common/idiosyncratic decomposition.

Fortunately, if projections onto the static principal components are replaced by

projections onto the so-called dynamic principal components, consistency holds

(Forni et al. 2000) without any assumptions (but Assumptions A1–A3).
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Brillinger’s Dynamic Principal Components

The problem with traditional (static) principal components in a time series

context is that serial dependencies are overlooked/unexploited.

A static principal component
∑n
i=1 aiζi,t associated with a small static

eigenvalue may have a negligible instantaneous impact on ζζζt. But the same

linear combination may have a high covariance with ζζζt+1, hence a high

predictive value: discarding it then results in a significant loss of information.

As a result, static principal components in general do not provide any

reasonable solution to the dimension reduction problem in the presence of serial

dependence. Besides this conceptual failure, static principal components, when

computed from serially dependent observations, also run into technical

problems: while cross-sectionally uncorrelated at fixed time t, they typically still

exhibit lagged cross-correlations.
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Brillinger’s Dynamic Principal Components

The concept of dynamic principal component was introduced by

Brillinger (1981).
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Brillinger’s Dynamic Principal Components

The concept of dynamic principal component was introduced by

Brillinger (1981).

Dynamic principal components are based on a factorization of spectral density

matrices. Therefore, let us make the additional assumption that all {Xt, t ∈ Z}

processes in the panel admit spectral densities. More precisely, we assume the

following.
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Brillinger’s Dynamic Principal Components

The concept of dynamic principal component was introduced by

Brillinger (1981).

Dynamic principal components are based on a factorization of spectral density

matrices. Therefore, let us make the additional assumption that all {Xt, t ∈ Z}

processes in the panel admit spectral densities. More precisely, we assume the

following.

ASSUMPTION A3. For all n ∈ N, the spectral measure of {X
(n)
t , t ∈ Z} is absolutely

continuous with respect to the Lebesgue measure on [−π, π], that is, {X
(n)
t } has

a spectral density matrix ΣΣΣ(n)(θ), with entries (σij(θ)), θ ∈ [−π, π].

• The matrices ΣΣΣ(n)(θ) are nested for all θ (so that σij(θ) needs no n superscript),

Hermitian and positive semidefinite.

• Spectral densities always are defined up to a set of θ values with Lebesgue

measure zero; rather than functions, we are dealing with equivalence classes of

a.e. equal functions, thus.

• By ΣΣΣ(n)(θ), in the sequel, we tacitly mean a representative of such a class; the

same comment applies to ΣΣΣ(n)(θ)’s eigenvalues and eigenvectors.
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Brillinger’s Dynamic Principal Components

Since each ΣΣΣ(n)(θ) is Hermitian positive semidefinite, it has n nonnegative

eigenvalues, associated with n eigenvectors

λ
(n)
1 (θ) ≥ λ

(n)
2 (θ) ≥ . . . ≥ λ

(n)
n (θ) and p

(n)
1 (θ),p

(n)
2 (θ), . . . ,p

(n)
n (θ);

call them the dynamic eigenvalues and dynamic eigenvectors of {X
(n)
t },

respectively.
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Brillinger’s Dynamic Principal Components

It can be shown that the univariate process

{W
(n)
jt := p(n)′

j
(L)X

(n)
t | t ∈ Z}

with variance (the integrated jth dynamic eigenvalue)

λ
(n)
j :=

∫ π

−π
λ
(n)
j (θ)dθ

is the normed linear combination of past, present and future values of the

n-dimensional process X(n) maximizing the variance subject to being

orthogonal (all leads and lags) to W
(n)
1t ...W

(n)
j−1,t.

Call it X(n)’s jth dynamic principal component (j = 1, . . . , n)

It is easily seen that A2, under A1-A3, implies that

• the qth eigenvalue λ
(n)
q (θ) diverges to infinity as n→ ∞ θ-a.e. in [−π, π], and

• the (q + 1)thth eigenvalue λ
(n)
q+1(θ) is bounded as n→ ∞ θ-a.e. in [−π, π].

. – p.37/48



Dynamic PCA and dynamic factor models

Denote by χ
(n)
it the projection of Xit onto the space spanned by the first q

dynamic components W
(n)
1t , . . . ,W

(n)
qt . That projection takes the form

χ
(n)
it := K

(n)
i (L)X

(n)
t ,

where

K
(n)
i (θ) := p

(n)∗
1,i (θ)p

(n)′
1 (θ) + . . .+ p

(n)∗
q,i (θ)p

(n)′
q (θ) θ ∈ [−π, π].

The following result shows how the sequence χ
(n)
it yields a consistent

reconstruction of the general dynamic factor decomposition: basically,

χ
(n)
it = χit + oP(1) ξ

(n)
it := X

(n)
it − χ

(n)
it = ξit + oP(1) as n → ∞, i ∈ N, t ∈ N.
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Dynamic PCA and dynamic factor models

In practice, spectral densities (hence the filters K
(n)
i (L)) are to be estimated

from the data (finite n and T ); we will not enter into the details of the estimation

of spectral densities (the estimators we are using involve lag-window estimates of

the cross-spectrum of Xit and Xjt).

This yields consistent estimators χn,Tit and ξn,Tit of χit and ξit. More precisely,

THEOREM. (Forni, Hallin, Lippi, and Reichlin 2000). Under very general assumptions

on the lag-window estimates of spectral densities, for all ε > 0 and η > 0, there

exists a N0(ε, η) such that

P
[∣

∣

∣χ
n,T
it − χit

∣

∣

∣ > ε
]

≤ η and P
[∣

∣

∣ξ
n,T
it − ξit

∣

∣

∣ > ε
]

≤ η

for all sequence t = t∗(T ) satisfying

0 < a ≤ lim inf
T→∞

t∗(T )

T
≤ limsup

T→∞

t∗(T )

T
≤ b < 1

for some (fixed) a and b, all n ≥ N0, and all T larger than some T0(n, ε, η).
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Dynamic PCA and dynamic factor models

This is fine in the “center” of the observation period, but not quite useful at the

end of it (for i ∼ n), hence for forecasting ...

The reason is that , unlike the projections on static principal components, the

projection onto Brillinger’s dynamic principal components typically yields

two-sided filters K
(n)
i (L).

As a consequence, practitioners have been favoring the static factor model

despite of its more restrictive (and hardly checkable) assumptions and lack of

parsimony

That two-sidedness issue has been solved later in Forni, Hallin, Lippi and

Zaffaroni (2015 and 2017), where a relation between dynamic and static facto

models is established.
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8. ONE-SIDEDNESS ISSUES: BACK TO THE STATIC MODEL!

A solution indeed was made possible, thanks to a result in

Anderson, B.D.O. and M. Deistler (2008). Properties of zero-free transfer function

matrices, SICE Journal of Control, Measurement and System Integration 1, 1-9.

on “tall” vectors.
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tall vectors

We say that an n-dimensional vector process is tall if its dynamic rank (the

dimension of the white noise it is driven by) is strictly less than n.

For example, any (q + 1)-dimensional vector of common components

(χ1t χ2t · · · χq+1,t),

has dimension q + 1 while its dynamic rank cannot exceed q: such a (q + 1)-tuple

is tall.
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tall vectors

Anderson and Deistler prove the following result.

Let wt be q-dimensional white noise. Consider the tall vector

Yt = D(L)wt

with dimension n > q and rank q. Assume that D(L) (a (n× q) filter) is rational,

that is, there exist matrix filters (Eij(L)) and (Fij(L)) such that

D(L) =

(

Eij(L)

Fij(L)

)

, i = 1, . . . , n, j = 1, . . . q

where Fij(0) = 1, (Eij(L)) has degree m, and (Fij(L)) has degree p: D(L) thus

involves P = nq(m+ p+ 1) parameters.

For generic values of the parameters in RP , Yt admits a finite autoregressive

representation

A(L)Yt = Rwt

where A(L) is n× n and R is n× q.

Moreover it can be proved that, for n = q + 1, this autoregressive representation
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Tall vectors and the dynamic factor model

For almost all values of i1, . . . , iq+1, it holds that the (q + 1)-tuple

(χi1,t, . . . , χiq+1,t) has dynamic rank q, hence is tall with dimension (q + 1) and

rank q. Assume for convenience that n = m(q + 1), where m ∈ N, and write

(χ1,t, . . . , χn,t) as (χχχ1′
t , . . . ,χχχ

m′

t )′.

The Anderson-Deistler result applies, so that

















A1(L) 0 · · · 0

0 A2(L) · · · 0
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0 0 · · · Am(L)
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R1

R2
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vt,

that is, for some An(L), Rn and vt, we have the AR representation

An(L)χχχnt = Rnvt

where the vectors χχχkt are non overlapping (q + 1)-dimensional subvectors of

(χ1,t, . . . , χn,t), the blocks Ak(L) are (q + 1)× (q + 1), the matrix Rn is n× q

and vt is q-dimensional white noise.
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From general dynamic to static factors!

Since

An(L)χχχnt = Rnvt

we have

An(L)Xnt = An(L)(χχχnt + ξξξnt) = Rnvt +An(L)ξξξnt

where, being a linear transformation of idiosyncratic components,AAAn(L)ξξξnt itself

is idiosyncratic:

THIS IS A STATIC FACTOR MODEL

FOR THE FILTERED PANEL An(L)Xnt.
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From this, Forni, Hallin, Lippi and Zaffaroni (Journal of Econometrics, 2015, 2017)

deduce a winning strategy for a one-sided reconstruction of the common

components χit (hence, also for the ξit’s),

yielding consistency rates comparable to those obtained (Bai 2003) for the static

method—-the validity of which, however, requires the much more stringent

assumptions of the static model.

Numerical exercises (both Monte-Carlo and empirical: see Forni, Giovannelli,

Lippi, and Soccorsi (2016) ”Dynamic Factor model with infinite dimensional factor

space: forecasting,” CEPR Discussion Papers 11161) demonstrate the forecasting

superiority of the resulting method, which seems to outperform all other methods

proposed in the literature while remaining valid under much milder and more

general assumptions on the data-generating process.
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9. SOME CONCLUSIONS, AND FUTURE PERSPECTIVES

The General Dynamic Factor Model method

• successfully can handle high-dimensional time series data without placing

(much) restrictions on the data-generating process—a model-free approach

besed on a general representation result

• contains all other factor models as particular cases

• is computationally comparable to its static counterpart (essentially, only

requires additional (q + 1)-dimensional VAR fitting)

• is based on a decomposition “reduced rank” + “idiosyncratic” that admits an

intuitive interpretation in terms of common shocks on top of its “operational

justification” (contrary to other similarly “operational” decompositions such as

“reduced rank” + “sparse” ... )

• outperforms its competitors even in case the assumptions required for their

validity are satisfied
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All codes for general dynamic factor model methods (with comments) can be

downloaded from Matteo Barigozzi’s website at the LSE.
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HERMANN OTTO HIRSCHFELD LECTURE SERIES 2017
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. – p.1/33



Summing up, under very general assumptions A1 (second-order stationarity), A2

(unspecified but finite number q of common shocks), and A3 (existence of

spectral densities), we have established

• the characteristic behavior of the dynamic eigenvalues of X(n):

λ
(n)
q (θ) diverges to ∞ θ-a.e. as n → ∞;

λ
(n)
q+1(θ) θ-a.e. bounded as n → ∞.

• that the (two-sided) estimation methods by Forni et al. (2000) projecting Xit

onto its estimated q first dynamic principal components provides a consistent, as

n and T → ∞, reconstruction of the common component χit

• that the (one-sided) estimation methods by Forni et al. (2015, 2017) projecting

an autoregressive transform of Xit onto its estimated q first static principal

components provides a consistent, as n and T → ∞, reconstruction of the

common component χit

So far, however, it has been assumed that q is known. In practice, q has to be

identified from the data.
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One possibility is eye-inspection

Example: evolution of US sectors GDP growth rates (450 series), over 28 years
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Evolution of US sectors GDP growth rates (450 series), over 28 years : integrated

spectral eigenvalues
∫ π
−π λ

(n)
j (θ)dθ
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In practice, eye-inspection is not that bad ... however, more sophisticated

identification methods are desirable.

• An information-theoretic identification procedure has been first proposed in

Bai, J. and S. Ng (2002) Determining the number of factors in approximate factor

models. Econometrica 70, 191-221.

for the static case. As we shall see, it is not without drawbacks (and, in practice, it

performs poorly).

• The dynamic case has been considered in

Hallin M. and R. Lǐska (2007). Determining the number of factors in the general

dynamic factor model. Journal of the American Statistical Association 102, 603-

617.

• Based on the ideas developed there, the drawbacks of Bai and Ng have been

fixed in

Alessi, L., M. Barigozzi, and M. Capasso (2010). Improved penalization for

determining the number of factors in approximate factor models. Statistics &

Probability Letters 80, 1806-1813.
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• a totally different method, based on the theory of random matrices and

hypothesis testing ideas, has been proposed in

Onatski, A. (2010). Determining the number of factors from empirical distribution

of eigenvalues. The Review of Economics and Statistics 92, 1004-1016.

but for “exact” static factor models

We will focus on Hallin and Lǐska (2007) and the general dynamic case (Alessi et

al. being a particular case).
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1. POPULATION LEVEL

In order to fix the ideas, first assume that the spectral density matrices ΣΣΣ(n)(θ),

with eigenvalues λ
(n)
j (θ), are known
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1. POPULATION LEVEL

In order to fix the ideas, first assume that the spectral density matrices ΣΣΣ(n)(θ),

with eigenvalues λ
(n)
j (θ), are known

Let

q̂n := Argmin0≤k≤kmax
L(n)(k)

where kmax is some maximal number of factors we are willing to consider, and

L(n)(k) :=
1

n

n
∑

j=k+1

∫ π

−π
λ
(n)
j (θ)dθ + kp(n)

with

•

1

n

n
∑

j=k+1

∫ π

−π
λ
(n)
j (θ)dθ is the average contribution of idiosyncratics, would

k factors be selected (“unexplained variance”, to be minimized)

• kp(n) a penalty (or we would automatically select q̂n = n, which yields

L(n)(k) = 0)
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1. POPULATION LEVEL

In order to fix the ideas, first assume that the spectral density matrices ΣΣΣ(n)(θ),

with eigenvalues λ
(n)
j (θ), are known

Let

q̂n := Argmin0≤k≤kmax
L(n)(k)

where kmax is some maximal number of factors we are willing to consider, and

L(n)(k) :=
1

n

n
∑

j=k+1

∫ π

−π
λ
(n)
j (θ)dθ + kp(n)

with

•

1

n

n
∑

j=k+1

∫ π

−π
λ
(n)
j (θ)dθ is the average contribution of idiosyncratics, would

k factors be selected (“unexplained variance”, to be minimized)

• kp(n) a penalty (or we would automatically select q̂n = n, which yields

L(n)(k) = 0)

Note that q̂n here is not random (since the λ’s aren’t)
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the choice of the penalty factor p(n) is crucial:
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the choice of the penalty factor p(n) is crucial:

• it has to go to zero as n → ∞, or a slowly diverging eigenvalue will go

undetected (overpenalization)
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the choice of the penalty factor p(n) is crucial:

• it has to go to zero as n → ∞, or a slowly diverging eigenvalue will go

undetected (overpenalization)

• it cannot not go to zero too fast, or q̂n → ∞ as n → ∞ (underpenalization).
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the choice of the penalty factor p(n) is crucial:

• it has to go to zero as n → ∞, or a slowly diverging eigenvalue will go

undetected (overpenalization)

• it cannot not go to zero too fast, or q̂n → ∞ as n → ∞ (underpenalization).

The divergence rate of the diverging eigenvalues λ
(n)
1 , . . . , λ

(n)
q plays a

fundamental role here
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linearly diverging eigenvalues

Assumption (A4) The smallest diverging eigenvalue of ΣΣΣ(n) diverges linearly in n,

that is, there exist constants 0 < c−q ≤ c+q such that

c−q ≤ lim inf
n→∞

n−1λ
(n)
q (θ) ≤ lim sup

n→∞

n−1λ
(n)
q (θ) ≤ c+q

(a natural assumption if some “cross-sectional stability” of the influence of each

factor, implying a linear divergence of all diverging λ
(n)
j (θ)’s, is assumed), and

the only rate invariant under cross-sectional permutations.

However, only c−q ≤ lim infn→∞ n−1λ
(n)
q (θ) is needed below.
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consistency: population level

Lemma. Let the penalty p(n) be such that

lim
n→∞

p(n) = 0 and lim
n→∞

np(n) = ∞.

Then, limn→∞ q̂n = q (q is consistently identified).
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consistency: population level

Lemma. Let the penalty p(n) be such that

lim
n→∞

p(n) = 0 and lim
n→∞

np(n) = ∞.

Then, limn→∞ q̂n = q (q is consistently identified).

Important, but distressing Remark. The function n 7→ p(n) is an adequate penalty

(yielding consistent q̂n)

iff

n 7→ cp(n) also is, where c > 0 is an arbitrary constant!
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proof ...

The proof is extremely simple.
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proof ...

The proof is extremely simple.

Let us show that

lim
n→∞

[L(n)(k)− L(n)(q)] > 0

for all k 6= q (where q is the “true” number of factors—so that, for n large enough,

q is a minimizer of L(n)(k))
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proof ...

The proof is extremely simple.

Let us show that

lim
n→∞

[L(n)(k)− L(n)(q)] > 0

for all k 6= q (where q is the “true” number of factors—so that, for n large enough,

q is a minimizer of L(n)(k))

that is, let us show that there exists a finite n0 such that for all n > n0 and k 6= q,

1

n

n
∑

j=k+1

{∫ π

−π
λ
(n)
j (θ)dθ

}

+ kp(n) >
1

n

n
∑

j=q+1

{∫ π

−π
λ
(n)
j (θ)dθ

}

+ qp(n)
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proof ...

• either k > q; the claim takes the form

n
∑

j=k+1

{∫ π

−π
λ
(n)
j (θ)dθ

}

+nkp(n) >
k

∑

j=q+1

{∫ π

−π
λ
(n)
j (θ)dθ

}

+
n
∑

j=k+1

{∫ π

−π
λ
(n)
j (θ)dθ

}

+nqp(n),
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proof ...

• either k > q; the claim takes the form

n
∑

j=k+1

{∫ π

−π
λ
(n)
j (θ)dθ

}

+nkp(n) >
k

∑

j=q+1

{∫ π

−π
λ
(n)
j (θ)dθ

}

+
n
∑

j=k+1

{∫ π

−π
λ
(n)
j (θ)dθ

}

+nqp(n),

that is,

np(n) >
1

k − q

k
∑

j=q+1

{∫ π

−π
λ
(n)
j (θ)dθ

}

which follows, for n large enough, from the fact that np(n) → ∞, whereas

1

k − q

k
∑

j=q+1

{∫ π

−π
λ
(n)
j (θ)dθ

}

remains bounded.
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proof ...

• or k < q; the claim takes the form

q
∑

j=k+1

{∫ π

−π
λ
(n)
j (θ)dθ

}

+

n
∑

j=q+1

{∫ π

−π
λ
(n)
j (θ)dθ

}

+nkp(n) >

n
∑

j=q+1

{∫ π

−π
λ
(n)
j (θ)dθ

}

+nqp(n),

that is,

1

n

q
∑

j=k+1

{∫ π

−π
λ
(n)
j (θ)dθ

}

> (q − k)p(n)

. – p.13/33



proof ...

• or k < q; the claim takes the form

q
∑

j=k+1

{∫ π

−π
λ
(n)
j (θ)dθ

}

+

n
∑

j=q+1

{∫ π

−π
λ
(n)
j (θ)dθ

}

+nkp(n) >

n
∑

j=q+1

{∫ π

−π
λ
(n)
j (θ)dθ

}

+nqp(n),

that is,

1

n

q
∑

j=k+1

{∫ π

−π
λ
(n)
j (θ)dθ

}

> (q − k)p(n)

which follows, for n large enough, from the fact that p(n) → 0, while
1

n
λ
(n)
j (θ) is

bounded from below for j ≤ q
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2. SAMPLE LEVEL

In practice, ΣΣΣ(n)(θ) is unknown, and has to be estimated: denote by ΣΣΣ(n,T )(θ)

the lag-window spectral estimate

ΣΣΣ(n,T )(θ) :=
1

π

MT
∑

u=−MT

w(M−1
T u)ΓΓΓ

(n,T )
u e−iuθ

where ΓΓΓ
(n,T )
u stands for the sample cross-covariance matrix of Xnt and Xn,t−u

based on T observations, α 7→ w(α) is a positive even weight function, and MT a

truncation parameter

denote by λ
(n,T )
i (θ) the corresponding eigenvalues
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lag window spectral estimation

Under adequate assumptions on MT and w, the following uniform consistency

property holds for ΣΣΣ(n,T )(θ):

there exists constants L1, L2, and T0 such that

sup
n

max
1≤i,j≤n

sup
θ

E

[

∣

∣

∣ΣΣΣ(n,T )(θ)−ΣΣΣ(n)(θ)
∣

∣

∣

2

ij

]

≤ L1MTT−1 + L2M
−4
T

for any T > T0 (uniform version of Parzen 1957)
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information criterion

The information criterion now takes the form

ICT
n (k) :=

1

n

n
∑

j=k+1

1

2MT + 1

MT
∑

ℓ=−MT

λ
(n,T )
j (θℓ) + kp(n, T )

where θℓ := πℓ/(2MT + 1) for ℓ = −MT , . . . ,MT , and p(n, T ) is a penalty now

depending on both n and T
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n

n
∑

j=k+1

1

2MT + 1

MT
∑

ℓ=−MT

λ
(n,T )
j (θℓ) + kp(n, T )

where θℓ := πℓ/(2MT + 1) for ℓ = −MT , . . . ,MT , and p(n, T ) is a penalty now

depending on both n and T

The selected q̂Tn is the (now, random) quantity

q̂Tn := Argmin0≤k≤qmax
ICT

n (k)

N.B. The information criterion also can be taken under logarithmic form

ICT
n (k) := log





1

n

n
∑

j=k+1

1

2MT + 1

MT
∑

ℓ=−MT

λ
(n,T )
j (θℓ)



+ kp(n, T )
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3. CONSISTENCY

Proposition. Under assumptions A1-A4 and conditions

(a) p(n, T ) → 0,

(b) min(n,M2
T ,M

−1/2
T T 1/2)p(n, T ) → ∞,

(c) the entries σij(θ) of ΣΣΣ(n)(θ)are uniformly (in n and θ) bounded, and

(d) have uniformly bounded (in n and θ) derivatives up to the order two,

P
[

q̂Tn = q
]

→ 1 as n and T tend to infinity
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(a) p(n, T ) → 0,

(b) min(n,M2
T ,M

−1/2
T T 1/2)p(n, T ) → ∞,

(c) the entries σij(θ) of ΣΣΣ(n)(θ)are uniformly (in n and θ) bounded, and

(d) have uniformly bounded (in n and θ) derivatives up to the order two,

P
[

q̂Tn = q
]

→ 1 as n and T tend to infinity

Important Remark. Here again, p(n, T ) is thus an adequate penalty (yielding

consistent q̂Tn ) iff cp(n, T ) also is, where c > 0 is an arbitrary constant!
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limited practical value of consistency

Due to the role of that arbitrary positive constant c, the above consistency result

at first sight does not have any practical value: by varying c, one can obtain (for

fixed n and T ) any value of q between 0 and qmax!!!!
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Due to the role of that arbitrary positive constant c, the above consistency result

at first sight does not have any practical value: by varying c, one can obtain (for

fixed n and T ) any value of q between 0 and qmax!!!!

The same remark holds for most information criterion methods (certainly, for Bai

and Ng’s) ...

Let us show, however, how this interplay between the constant c and the

dependence of q̂Tn on n and T can be exploited in a clever, cross-validation spirit
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Typical behavior of c 7→ q̂Tc;n

Let q̂Tc;n denote the selected value of q based on the penalty function cp(n, T )
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Typical behavior of c 7→ q̂Tc;n

Let q̂Tc;n denote the selected value of q based on the penalty function cp(n, T )

Empirical findings:

• there exist intervals of c values such that q̂Tc;n = 0, 1, . . . , q − 1, q

irrespective of n and T (“stability intervals”)

• for c ≃ 0, q̂Tc;n ≃ qmax (essentially, no penalty); for c “large”, q̂Tc;n = 0 (gross

overpenalization)

• in between, consistency implies that q̂Tc;n be an eventually redescending

function of n, T

Explanation: for various c values, the values of q̂Tc;n are well ordered for n (when

plotted against n, graphs do not cross)

• for c ∼ 0, q̂Tc;n = qmax (no penalty)

• for c small (underpenalization), q̂Tc;n is too large, hence (consistency) tends

to q from above

• for c neither too small nor to big, q̂Tc;n is neither too small nor to big, hence

is stable (in view of consistency, at q)

• for c big (overpenalization), q̂Tc;n is too small, hence (consistency) tends to

q from below

• for c very big (overpenalization), q̂Tc;n = 0
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A numerical example

As an illustration, a panel of size n = 300 and length T = 300 was generated

– The common part was modelled with q = 3 factors and MA loadings

– The truncation parameter was set as MT = [0.75
√

T ]

– A triangular window was used, qmax was set to 19, and

– the penalty function

p3(n, T ) =
(

min
[

n,M2
T ,M

−1/2
T T 1/2

])

−1
log

(

min
[

n,M2
T ,M

−1/2
T T 1/2

])

was chosen.
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MA loadings (a1) (a2)
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S
c

c

MA loadings, q = 3, n = T = 300, MT = [0.75
√

T ]. Graphs of (nj , Tj) 7→ q
Tj
c;nj

and

c 7→ Sc :=

[

1
IJ

∑

i,j

(

q̂
Tj
c;ni

−
1
IJ

∑

i,j q̂
Tj
c;ni

)2
]1/2

for

(nj , Tj) = (120, 120), (130, 130), . . . , (300, 300) and various values of c, using

penalty function p1qmax = 19, and ICT
2;n
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MA loadings (b1) (b2)
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T ]. Graphs of (nj , Tj) 7→ q
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and

c 7→ Sc :=

[

1
IJ

∑

i,j

(

q̂
Tj
c;ni

−
1
IJ

∑

i,j q̂
Tj
c;ni

)2
]1/2

for

(nj , Tj) = (120, 120), (130, 130), . . . , (300, 300) and various values of c, using

penalty function p1, qmax = 19, and ICT
2;n
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The most informative picture (also, for automatic detection) is a joint plot of

c 7→ Sc :=





1

IJ

∑

i,j



q̂
Tj
c;ni

−

1

IJ

∑

i,j

q̂
Tj
c;ni





2



1/2

(for I values of ni and J values of Tj) and

c 7→ q̂Tc;n

(the “final” selection for c)
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The most informative picture (also, for automatic detection) is a joint plot of

c 7→ Sc :=





1

IJ

∑

i,j



q̂
Tj
c;ni

−

1

IJ

∑

i,j

q̂
Tj
c;ni





2



1/2

(for I values of ni and J values of Tj) and

c 7→ q̂Tc;n

(the “final” selection for c)

• a successful automatic selection procedure consists in picking the value

of q̂Tc;n associated with the second stability interval of c 7→ Sc
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MA loadings

The relevant plots are thus
(c1)
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MA loadings, q = 3, n = T = 300; MT = [0.75
√

T ]. Simultaneous plots of c 7→ Sc

and c 7→ qTc,n, using penalty function p1, qmax = 19.
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AR loadings
(d1)
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T ]. Simultaneous plots of c 7→ Sc and c 7→ qTc,n,

using penalty function p1, qmax = 19.
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heuristics of the c 7→ q̂c behavior 1/3

• for simplicity, assume again that ΣΣΣ(θ) is known

• q̂nc is characterized by the fact that

•

1

(k − q̂)

k
∑

j=q̂+1

∫

λ
(n)
j (θ)dθ < c np(n) k = q̂ + 1, q̂ + 2, ...,

that is,
1

ℓ

q̂+ℓ
∑

j=q̂+1

∫

λ
(n)
j (θ)dθ < c np(n) for all ℓ = 1, 2, . . .,

which holds iff it holds for ℓ = 1

and

•

1

(q̂ − k)

q̂
∑

j=k+1

∫

λ
(n)
j (θ)dθ > c np(n) k = q̂ − 1, q̂ − 2, ...

that is,
1

ℓ+ 1

q̂
∑

j=q̂−ℓ

∫

λ
(n)
j (θ)dθ > c np(n) for all ℓ = 0, 1, 2, . . .,

which holds iff it holds for ℓ = 0
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heuristics of the c 7→ q̂c behavior 2/3

• q̂ thus is fully identified by

1

n

∫

λq̂+1
(n)(θ)dθ < c p(n) <

1

n

∫

λq̂
(n)(θ)dθ
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heuristics of the c 7→ q̂c behavior 2/3

• q̂ thus is fully identified by

1

n

∫

λq̂+1
(n)(θ)dθ < c p(n) <

1

n

∫

λq̂
(n)(θ)dθ

• that is, once c is chosen, the criterion identifies the number of factors as

the (unique, in view of monotonocity in c) q̂nc such that

c p(n) “separates”
1

n

∫

λq̂+1
(n)(θ)dθ and

1

n

∫

λq̂
(n)(θ)dθ

• graphical evidence ...

. – p.27/33



heuristics of the c 7→ q̂c behavior 3/3

k=1 

k=q 

k=q−1 
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n 

q
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n
=q−1 

∧

c = c
max

 

. 

. 

. 

x 

q
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n
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∧

q
c

n
=q+2

q
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n
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∧

∧

. 

. 

. 

 k=q
max

   

c=c
1
 

c=c
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c=c
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c=c
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c=c
5
 

c = 0

q
c

n
=q+3

∧

q
c

n
=q+4

∧

c=c
6
 

c=c
7
 

Heuristic behavior of c 7→ Sc. Graphs of n 7→
1
n

∫

λ
(n)
k (θ)dθ, k = 1, . . . , qmax (in

red: O(n−1) for k > q, ∼constant for k ≤ q), and n 7→ cp(n), c = 0, . . . , cmax (in

blue: go to zero at rate slower than n−1), along with the corresponding q̂
(n)
c ’s.

Note that Sc1 = Sc3 = 0, whereas Sc2 , Sc4 , . . . , Sc7 are strictly positive.
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4. AN APPLICATION

A panel of n = 132 monthly time series observed from January 1960 through

December 2003 (T = 528).

These series are considered by economists to be a representative summary of the

U.S. economy and have been studied by Stock and Watson (2005), Giannone et

al. (2005a,b), and Bai and Ng (2005) with surprisingly divergent conclusions

Stock and Watson found 7 static factors

Giannone et al. (2005a,b) (based on a different methodology and restricting to

a carefully selected subset of 12 series) arrived at 2 factors

Bai and Ng do not give a clear-cut conclusion; in an early version of their article,

they mention up to 10 static factors, and 7 dynamic ones, but in their final

version, they conclude in favor of 4 dynamic factors spanning 7 static ones

Much instability, thus—either due to the fact that the assumptions of the model

considered (which is not the general dynamic factor model) do not hold, or to

the fact that they (Bai and Ng) “put c = 1”, or both.

. – p.29/33



(a) 1960-2003
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(b) 1960-1982
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(c) 1983-2003
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An analysis of the US Economy dataset (1960-2003). Simultaneous plots of c 7→ Sc

and c 7→ qTc,n, using penalty function p1, qmax = 19, and ICT
2;n criterion, over the

periods 1960-2003, 1960-1982, and 1983-2003.
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(a) 1960-2003
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An analysis of the US Economy dataset (1960-2003). Simultaneous plots of c 7→ Sc

and c 7→ qTc,n, using penalty function p1, qmax = 19, and ICT
2;n criterion, over the

period 1960-2003.

q = 3? 1? The conclusion is not very clear ...
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(b) 1960-1982

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

q c;
n

*T

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
0

0.5

1

1.5

2

2.5

c

S
c

An analysis of the US Economy dataset (1960-2003). Simultaneous plots of c 7→ Sc

and c 7→ qTc,n, using penalty function p1, qmax = 19, and ICT
2;n criterion, over the

period 1960-1982.

q = 3 clearly emerges
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(c) 1983-2003
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An analysis of the US Economy dataset (1960-2003). Simultaneous plots of c 7→ Sc

and c 7→ qTc,n, using penalty function p1, qmax = 19, and ICT
2;n criterion, over the

period 1983-2003.

the conclusion is very clearly q = 1.
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A GENERAL FACTOR MODEL APPROACH
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Hallin, M. and R. Lǐska (2011) Dynamic factors in the presence of block structure.

Journal of Econometrics 163, 29-41.

Hallin, M., CH. Mathias, H. Pirotte, and D. Veredas (2011) Market liquidity as

dynamic factors. Journal of Econometrics 163, 42-50.

. – p.2/59



• What happens in the presence of blocks (a panel consisting of two or several

subpanels)?

example:

(a) a panel of nF =96 French economic series {XF
it}

(b) a panel of nG=114 German economic series {XG
jt}

(c) the joint panel (n= 210) {XF
it , X

G
jt}
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Subpanel spectral eigenvalues (two subpanels)

Behavior of 10 largest dynamic eigenvalues (averaged over frequencies):

(a) France; (b) Germany; (c) France and Germany.

20 50 100 150 20020 50 100 150 200 20 50 100 150 200

panel Y panel Z panel X 

n n n
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Panels with two blocks

Three distinct analyses can be conducted, based on

• two marginal factor models, with qF and qG common shocks, respectively

XF
it = χF

it + ξFit

XG
jt = χG

jt + ξGjt

• a global factor model, with q common shocks

XF
it = χFG

it + ξFG
it

XG
jt = χFG

jt + ξFG
jt

This provides three decompositions of the whole Hilbert space H spanned by the

panel into

• an F-common space H
χ
F and an F-idiosyncratic space H

ξ
F :=

(

H
χ
F

)

⊥

• a G-common space H
χ
G and a G-idiosyncratic space H

ξ
G :=

(

H
χ
G

)

⊥

• an FG-common space H
χ
FG and an FG-idiosyncratic space

H
ξ
FG :=

(

H
χ
FG

)

⊥
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Panels with two blocks

Clearly,

H
χ
F ⊆ H

χ
FG and H

χ
G ⊆ H

χ
FG

so that

max(qF , qG) ≤ q ≤ qF + qG.
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Panels with two blocks

More formally, consider two double-indexed sequences

Y := {Yit, i ∈ N, t ∈ Z}

and

Z := {Zjt, j ∈ N, t ∈ Z},

where t stands for time and i, j are cross-sectional indices, of observed random

variables.

Let Yny := {Yny ,t, t ∈ Z} and Znz := {Znz ,t, t ∈ Z} be the ny- and

nz-dimensional subprocesses of Y and Z, respectively, where

Yny,t :=
(

Y1t . . . , Ynyt
)

′
and Znz,t := (Z1t . . . , Znzt)

′ , and write

Xn,t := (Y1t . . . , Ynyt, Z1t . . . , Znzt)
′ := (Y′

ny,t Z
′

nz ,t)
′

with n := (ny, nz) and n := ny + nz .

. – p.7/59



Panels with two blocks

We throughout assume that X satisfies our assumptions A1, A2, and A3. All

stochastic variables in this paper belong to the Hilbert space L2(Ω,F ,P), where

(Ω,F ,P) is some given probability space.

The Hilbert subspaces spanned by the processes Y, Z and X are denoted by

Hy , Hz and H, respectively.
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Panels with two blocks

• Denoting by ΣΣΣy;ny (θ) and ΣΣΣz;nz (θ) the (ny × ny) and (nz × nz) spectral density

matrices of Yny ,t and Znz,t, and by ΣΣΣyz;n(θ) = ΣΣΣ∗

zy;n(θ) their (ny × nz)

cross-spectrum matrix, write

ΣΣΣn(θ) =:





ΣΣΣy;ny (θ) ΣΣΣyz;n(θ)

ΣΣΣzy;n(θ) ΣΣΣz;nz (θ)



 , θ ∈ [−π, π]

for the (n× n) spectral density matrix of Xn,t, with elements σi1i2 (θ), σj1j2 (θ) or

σk1k2
(θ), k1, k2 = 1, . . . , n, i1, i2 = 1, . . . , ny , j1, j2 = 1, . . . , nz .

• For any θ ∈ [−π, π], let λy;ny ,i(θ) be ΣΣΣy;ny (θ)’s i-th eigenvalue (in decreasing

order of magnitude). The function θ 7→ λy;ny ,i(θ) is called ΣΣΣy;ny (θ)’s i-th dynamic

eigenvalue.

• The notation θ 7→ λz;nz ,j(θ) and θ 7→ λn,k(θ) is used in an obvious way for the

dynamic eigenvalues of ΣΣΣz;nz (θ) and ΣΣΣn(θ), respectively.

• The corresponding dynamic eigenvectors, of dimensions (ny × 1), (nz × 1), and

(n× 1), are denoted by py;ny ,i(θ), pz;nz,j(θ), and pn,k(θ), respectively.
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Panels with two blocks

Note on the asymptotics.

Let ny , nz , n = ny + nz . When considering asymptotics, both ny and nz tend to

infinity. But the joint panel Xn should not be taken as piling a block of Y ’s on top

of a block of Z’s. Rather, for each n, the ny and nz cross-sectional indices should

be assigned “at random” to the two blocks. Such allocation clearly does not

perturb spectral eigenvalues etc.
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Panels with two blocks

Under Assumptions A1-A3, those subpanel dynamic eigenvalues have the typical

asymptotic behavior:

For some qy , qz ∈ N,

(i) the qy-th dynamic eigenvalue of ΣΣΣy;ny (θ), λy;ny ,qy (θ), diverges as ny → ∞,

a.e. in [−π, π], while the (qy + 1)-th one, λy;ny ,qy+1(θ), is θ-a.e. bounded;

(ii) the qz-th dynamic eigenvalue of ΣΣΣz;nz (θ), λz;nz ,qz (θ), diverges as nz → ∞,

a.e. in [−π, π], while the (qz + 1)-th one, λz;nz ,qz+1(θ), is θ-a.e. bounded.

That behavior entails a similar behavior for the dynamic eigenvalues λn,k(θ)

of ΣΣΣn(θ) of the joint panel.

For some q ∈ N, with max(qy , qz) ≤ q ≤ qy + qz ,

(iii) ΣΣΣn(θ)’s q-th dynamic eigenvalue λn,q(θ) diverges as min(ny , nz) → ∞, a.e.

in [−π, π], while the (q + 1)-th one, λn,q+1(θ), is θ-a.e. bounded.
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Panels with two blocks

We then have the following factor model representations.

(a) Y has a dynamic factor representation (qy shocks—call them the

y−fcommon shocks, spanning the y-common space H
χ
y , with orthogonal

complement Hξ
y)

Yit = χy;it + ξy;it =

qy
∑

l=1

by;il(L)uy;lt + ξy;it , i ∈ N, t ∈ Z;

(b) Z has a dynamic factor representation (qz shocks—call them the

z−common shocks, spanning the z-common space H
χ
z , with orthogonal

complement Hξ
z)

Zjt = χz;jt + ξz;jt =

qz
∑

l=1

bz;jl(L)uz;lt + ξz;jt , j ∈ N, t ∈ Z;

(c) X has a dynamic factor representation (q shocks—call them the joint

common shocks, spanning the joint common space H
χ
x , with orthogonal

complement Hξ
x)

Xkt =



















Yit = χxy;it + ξxy;it =

q
∑

l=1

bxy;il(L)ult + ξxy;it, k ∈ N, t ∈ Z if Xkt = Yit

Zjt = χxz;jt + ξxz;jt =

q
∑

l=1

bxz;jl(L)ult + ξxz;jt, k ∈ N, t ∈ Z if Xkt = Zjt

All filters involved have square-summable coefficients.
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Panels with two blocks

Letting H
χ
F∩G := H

χ
F

⋂

H
χ
G,

• either Hχ
F∩G = {0}, and qF + qG = q

• or Hχ
F∩G 6= {0}, and it is driven by qF∩G := qF + qG − q mutually

orthogonal white noises

The elements of Hχ
F∩G being both F- and G-common, can be called “strongly

common”. Each common component decomposes into a “strongly common

component φ” (its projection onto H
χ
F∩G) and a residual ψ, which we call

“weakly common”:

χF
it = φF ;it + ψF ;it and χG

jt = φG;jt + ψG;jt.
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Panels with two blocks

Similarly,
(

H
χ
FG

)

⊥
⊆

(

H
χ
F

)

⊥
and

(

H
χ
FG

)

⊥
⊆

(

H
χ
G

)

⊥
.

Being both F- and G- idiosyncratic, the space
(

H
χ
FG

)

⊥

can be called “strongly

idiosyncratic”. Each marginally idiosyncratic component decomposes into a

“strongly idiosyncratic component ξ” and a residual ν, which we call “weakly

idiosyncratic”:

ξFit = νF ;it + ξFG
it and ξGjt = νG;jt + ξFG

jt .
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Panels with two blocks

We thus have two decompositions into four mutually orthogonal components:

XF
it =

χFG
it

︷ ︸︸ ︷

φF ;it + ψF ;it + νF ;it +ξ
FG
it and XG

jt =

χFG
jt

︷ ︸︸ ︷

φG;jt + ψG;jt + νG;jt +ξ
FG
jt , i, j ∈ N, t ∈ Z.

︸ ︷︷ ︸

χF
it

︸ ︷︷ ︸

ξF
it

︸ ︷︷ ︸

χG
jt

︸ ︷︷ ︸

ξG
jt
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Panels with two blocks

More generally, with obvious notation, we obtain the decompositions

Yit =

χxy;it

︷ ︸︸ ︷

φy;it + ψy;it + νy;it +ξxy;it and Zjt =

χxz;jt

︷ ︸︸ ︷

φz;jt + ψz;jt + νz;jt +ξxz;jt , i, j ∈ N, t ∈ Z.

︸ ︷︷ ︸

χy;it

︸ ︷︷ ︸

ξy;it

︸ ︷︷ ︸

χz;jt

︸ ︷︷ ︸

ξz;jt

of the original observations into four mutually orthogonal components.

These decompositions induce additive decompositions of the variances of the

observations into a sum of four terms indicating the relative contributions of each

component.
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identification of factor numbers

Before turning to a data-driven reconstruction of those decompositions, the

dynamic dimensions qF , qG and q are to be estimated via the Hallin and Lǐska

method, the application and conclusions of which we briefly summarize.

Consistency of the Hallin and Lǐska method requires the additional assumption

ASSUMPTION 4. Linear divergence of dynamic eigenvalues: letting n := nF + nG

and n := (nF , nG), λnq(θ) is O(n) (and not o(n)) as n → ∞ (meaning both nF

and nG → ∞)
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Identification of factor numbers

• The lag window method (Bartlett lag window of size MT ) provides estimations

ΣΣΣT
n (θl) of ΣΣΣn(θ) at frequencies θl := πl/(MT + 1/2) for l = −MT , . . . ,MT .

• Based on these estimations, consider the information criterion

ICT
n;c(k) := log





1

n− k

n
∑

i=k+1

1

2MT + 1

MT
∑

l=−MT

λTni(θl)



+kcp(n, T ), 0 ≤ k ≤ q max, c ∈ R
+
0 ,

where p(n, T ) is o(1) and p−1(n, T ) = o
(

min(n,M2
T ,M

−1/2
T T 1/2)

)

as both n and

T tend to infinity

qmax is some predetermined upper bound; c > 0 is arbitrary

(eigenvalues λT
ni(θl) are those of ΣΣΣT

n (θl))
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Identification of factor numbers

• The lag window method (Bartlett lag window of size MT ) provides estimations

ΣΣΣT
n (θl) of ΣΣΣn(θ) at frequencies θl := πl/(MT + 1/2) for l = −MT , . . . ,MT .

• Based on these estimations, consider the information criterion

ICT
n;c(k) := log





1

n− k

n
∑

i=k+1

1

2MT + 1

MT
∑

l=−MT

λTni(θl)



+kcp(n, T ), 0 ≤ k ≤ q max, c ∈ R
+
0 ,

where p(n, T ) is o(1) and p−1(n, T ) = o
(

min(n,M2
T ,M

−1/2
T T 1/2)

)

as both n and

T tend to infinity

qmax is some predetermined upper bound; c > 0 is arbitrary

(eigenvalues λT
ni(θl) are those of ΣΣΣT

n (θl))

For any c > 0, a consistent identification of the number of factors is

qTn;c := argmin0≤k≤qmax
ICT

n;c(k).

• but of course, qTn;c heavily depends on c!!
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The Hallin-Lǐska procedure

• Consider a J−tuple q
Tj
c,nj

, j = 1, . . . , J , where nj = (ny;j , nz;j) with

0 < ny;1 < . . . < ny;J = ny , 0 < nz;1 < . . . < nz;J = nz ,

and 0 < T1 ≤ . . . ≤ TJ = T (possibly, T1 = TJ = T )

and the corresponding “history” q
Tj
c;nj

, j = 1, . . . , J of the selection.

• The procedure is based on a joint plot of c 7→ Sc, where

S2
c := J−1

J
∑

j=1

(q
Tj
nj ;c − J−1

J
∑

j=1

q
Tj
nj ;c)

2

and c 7→ q̂Tc;n (the “final” identification for given c).
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The Hallin-Lǐska procedure

• Consider a J−tuple q
Tj
c,nj

, j = 1, . . . , J , where nj = (ny;j , nz;j) with

0 < ny;1 < . . . < ny;J = ny , 0 < nz;1 < . . . < nz;J = nz ,

and 0 < T1 ≤ . . . ≤ TJ = T (possibly, T1 = TJ = T )

and the corresponding “history” q
Tj
c;nj

, j = 1, . . . , J of the selection.

• The procedure is based on a joint plot of c 7→ Sc, where

S2
c := J−1

J
∑

j=1

(q
Tj
nj ;c − J−1

J
∑

j=1

q
Tj
nj ;c)

2

and c 7→ q̂Tc;n (the “final” identification for given c).

The procedure consists in picking the value of q̂Tc;n associated with the second

stability interval of c 7→ Sc
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• The Hallin-Lǐska method is applied to the three estimated spectral density

matrices, yielding estimated values of the numbers q, qF , qG and

qF∩G = qF + qG − q of factors
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France and Germany
(a) France
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(b) Germany
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qF = 2 factors are identified for France, qG = 3 for Germany
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France and Germany

(c) France & Germany
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q = 3 joint factors are identified

This implies that France’s common space is a proper subspace of Germany’s

common space, and coincides with the strongly common subspace.
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Next,

• applying the Forni-Lippi method to the global panel easily yields consistent

reconstructions of χFG
it and ξFG

it (France), χFG
jt and ξFG

jt (Germany);

• applying the Forni-Lippi method to the marginal panels similarly would yield

consistent reconstructions of χF ;it, ξF ;it and χG;jt, ξG;jt, hence, by difference,

νF ;it = χFG
it − χF ;it = ξF ;it − ξFG

it

and

νG;jt = χFG
jt − χG;jt = ξG;jt − ξFG

jt .
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Note that χy;it also is the common component of χxy;it (yit’s common

component in the joint factor model decomposition), so that the same result can

be obtained from factorizing the joint common spectral density matrices.

As a reconstruction of χy;it we therefore rather consider the projection χn

y;it of

χn

xy;it onto the space spanned by the first qy dynamic principal components

Vn

y;t :=
(

V n

y;1t, . . . , V
n

y;qyt

)

′

, with V n

y;kt := p∗

χxy ;n,k
(L)χχχn

xy,;t,

of the spectral density matrix ΣΣΣχxy ;n(θ) of χχχn
xy;t =

(

χn

xy;1t, . . . , χ
n
xy;t

)

′

; pχxy ;n,k(θ)

here denotes the dynamic eigenvector associated with ΣΣΣχxy ;n(θ)’s k-th

dynamic eigenvalue λχxy ;n,k(θ).

Similar results, with obvious notational adjustments, hold for the Z’s.

• Disentangling the strongly common component φ and the weakly common

component ψ is more tricky, though ...
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Disentangling the strongly and weakly common components ...

• By definition, φF ;it is obtained as the projection of χF
it onto H

χ
F∩G, and ψF ;it

follows as the residual χF
it − φF ;it.

• Unlike H
χ
y and H

χ
z , however, Hχ

F∩G is not characterized via an explicit

sequence of orthonormal bases (it is not related to any set of dynamic PC’s).

• The previous Forni-Hallin-Lippi-Reichlin methods, thus, do not apply unless some

sequence of orthonormal bases can be computed from some different

approach.
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Preparation (1)

The following proposition is adapted from Theorem 8.3.1 in Brillinger (1981).

Assume that the (r + s)-dimensional second-order mean zero stationary process

{(ζζζ′t, ηηη
′

t)
′, t ∈ Z} is such that the spectral density matrix ΣΣΣηη(θ) of ηηηt is nonsingular.

PROPOSITION 1. The projection of ζζζt onto the closed space Hη spanned by

{ηηηt , t ∈ Z}—that is, the r-tuple A∗(L)ηηηt of square summable linear combinations

of the present, past and future of ηηηt minimizing

E[(ζζζt −A∗(L)ηηηt)
′(ζζζt −A∗(L)ηηηt)]

is

ΣΣΣζη(L)ΣΣΣ
−1
ηη (L)ηηηt,

where ΣΣΣζη(θ) denotes the cross-spectrum of ζζζt and ηηηt.

Actually, Brillinger also requires (ζζζ′t, ηηη
′

t)
′ to have absolutely summable

autocovariances, so that the filter ΣΣΣζη(L)ΣΣΣ
−1
ηη (L) also is absolutely summable.

We, however, do not need this here.
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Preparation (2)

The following result, to the best of our knowledge, is new.

Let H1, H2 and H12 be the Hilbert spaces spanned by {V1;t, t ∈ Z}, {V2;t, t ∈ Z},

and {(V′

1;t,V
′

2;t)
′, t ∈ Z}, respectively, where V1;t := (V1;1,t, . . . , V1;q1,t)

′ is a

q1-tuple (resp. V2;t := (V2;1,t, . . . , V2;q2,t)
′ a q2-tuple) of mutually orthogonal (at

all leads and lags) nondegenerate stochastic processes: the dynamic

dimensions of H1 and H2 are thus q1 and q2, respectively. Denoting by

ΣΣΣ(θ) =:





ΣΣΣ11(θ) ΣΣΣ12(θ)

ΣΣΣ21(θ) ΣΣΣ22(θ)



 , θ ∈ [−π, π],

the spectral density matrix of (V′

1;t,V
′

2;t)
′, with

ΣΣΣ11(θ) = diag(λ1;1(θ), . . . , λ1;q1 (θ))

and

ΣΣΣ22(θ) = diag(λ2;1(θ), . . . , λ2;q2 (θ)),

assume that ΣΣΣ(θ) has rank q12 θ-a.e., so that H12 has dynamic dimension q12,

and the intersection H1∩2 := H1 ∩H2 dynamic dimension q1∩2 = q1 + q2 − q12.

We have the following result.
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Preparation (2)

PROPOSITION 2. (i) The spectral density

ΣΣΣ
−1/2
22 (θ)ΣΣΣ21(θ)diag(λ−1

1;1(θ), . . . , λ
−1
1;q1

(θ))ΣΣΣ12(θ)ΣΣΣ
−1/2
22 (θ), θ ∈ [−π, π]

of the q2-dimensional process ΣΣΣ
−1/2
22 (L)ΣΣΣ21(L)ΣΣΣ

−1
11 (L)V1;t has a maximal

eigenvalue equal to one, with multiplicity q1∩2.

(ii) Denoting by p1∩2;1(θ), . . . ,p1∩2;q1∩2
(θ) an arbitrary orthonormal basis of the

corresponding q1∩2-dimensional eigenspace, the process

{ΥΥΥt := (Υ1,t, . . . ,Υq1∩2,t)
′, t ∈ Z}, with

Υk,t := p∗

1∩2;k
(L)ΣΣΣ

−1/2
22 (L)V2;t, k = 1, . . . , q1∩2,

provides an orthonormal basis for H1∩2.

The intuition is that a random variable Υ ∈ H2, that is, of the form Υ = a∗

Υ
(L)V2;t,

belongs to H1∩2 iff it coincides with its projection onto the space H1 spanned by

the V1;t’s. That projection, on H1∩2, is thus an identity—so that its q1∩2 largest

eigenvalues are ones.

Now, in view of Proposition 1, ΣΣΣ
−1/2
22 (L)ΣΣΣ21(L)ΣΣΣ

−1
11 (L)V1;t is the projection of the

standardized random vector V1;t onto the space spanned by the standardized

process {V2;t}; the spectral density in part (i) is the spectral density of that

projection.
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Preparation (2)

PROOF. A random variable Υ ∈ H2, that is, a variable of the form Υ = a∗

Υ
(L)V2;t

with a∗

Υ
(L) := (a

Υ,1(L), . . . , aΥ,q2
(L)) belongs to H1∩2 iff it coincides with its

projection onto the space H1 spanned by the V1;t’s.

In view of Proposition 1, that projection is

a∗

Υ
(L)ΣΣΣ21(L)diag(λ−1

1;1(L), . . . , λ
−1
1;q1

(L))V1;t.

The variance of a projection being less than or equal to the variance of the

projected variable, the variance of that projection is less than or equal to the

variance of Υ itself:
∫ π

−π
a∗

Υ(θ)ΣΣΣ21(θ)diag(λ−1
1;1(θ), . . . , λ

−1
1;q1

(θ))ΣΣΣ12(θ)aΥ(θ)dθ

=

∫ π

−π
a∗

Υ(θ)ΣΣΣ
1/2
22 (θ)

[

ΣΣΣ
−1/2
22 (θ)ΣΣΣ21(θ)diag(λ−1

1;1(θ), . . . , λ
−1
1;q1

(θ))ΣΣΣ12(θ)ΣΣΣ
−1/2
22 (θ)

]

ΣΣΣ
1/2
22 (θ)aΥ(θ)dθ

≤

∫ π

−π
a∗

Υ(θ)ΣΣΣ22(θ)aΥ(θ)dθ,

irrespective of ΣΣΣ
1/2
22 (θ)aΥ(θ).
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Preparation (2)

It follows that

• the spectral density matrix

ΣΣΣ
−1/2
22 (θ)ΣΣΣ21(θ)diag(λ−1

1;1(θ), . . . , λ
−1
1;q1

(θ))ΣΣΣ12(θ)ΣΣΣ
−1/2
22 (θ), θ ∈ [−π, π]

has eigenvalues less than or equal to one (θ-a.e.), and that

• Υ is in H1∩2 iff ΣΣΣ
1/2
22 (θ)aΥ(θ) belongs to the eigenspace of that matrix

associated with eigenvalue one.

The q1∩2 random variables

Υk,t := p∗

1∩2;k
(L)ΣΣΣ

−1/2
22 (L)V2;t, k = 1, . . . , q1∩2,

clearly satisfy that condition, and it is easy to check that the spectral density of

{ΥΥΥt, t ∈ Z} moreover is the q1∩2 × q1∩2 identity matrix.

The result follows. �
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Disentangling the strongly weakly common components ...

• Proposition 2, with H1 = H
χ
y;n (spanned by Vn

y;t) and H2 = H
χ
z;n (spanned by

Vn
z;t), hence q1 = qy , q2 = qz and q1∩2 = qy∩z , provides an orthonormal basis

Vn

F∩G;t for the intersection;

• Proposition 1 then provides the desired projection φny;it of χn

y;it onto that

intersection.
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Disentangling the strongly weakly common components ...

More precisely, denote by

ΣΣΣn

V
(θ) :=





ΣΣΣn

VyVy
(θ) ΣΣΣn

VyVz
(θ)

ΣΣΣn

VzVy
(θ) ΣΣΣn

VzVz
(θ)





the spectrum of (Vn′

y;t,V
n′

z;t)
′.

The matrix in part (i) of Proposition 2 (namely, the spectral density of the

projection onto H
χ
z;n (spanned by Vn

z;t of the standardized version of Vn
y;t here

takes the form

[ΣΣΣn

VzVz
(θ)]−1/2ΣΣΣn

VzVy
(θ)[ΣΣΣn

VyVy
(θ)]−1ΣΣΣn

VyVz
(θ)[ΣΣΣn

VzVz
(θ)]−1/2;

denote by py∩z;n,1(θ), . . . , py∩z;n,qy∩z (θ) its qy∩z first eigenvectors.
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Disentangling the strongly weakly common components ...

An orthonormal basis of Hχ
y;n ∩H

χ
z;n is Vn

y∩z;t := (V n

y∩z;1,t, . . . , V
n
y∩z;qy∩z ,t

)′

where, in view of part (ii) of the same proposition,

V n

y∩z;k,t := p∗

y∩z;n,k
(L)

(

ΣΣΣn

VzVz

)

−1/2
(L)Vn

z;t, k = 1, . . . , qy∩z .

Since

χn

y;it =

qy
∑

k=1

p
χxy ;n,k,i

(L)V n

y:k,t = (p
χxy ;n,1,i

(L), . . . , p
χxy ;n,qy ,i

(L))Vn

y:t

(the projection onto the y-dynamic principal components of χn

xy;it), we first

compute the projection onto H
χ
y;n ∩H

χ
z;n of Vn

y:t.
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Disentangling the strongly weakly common components ...

That projection is obtained by applying Proposition 1 to the

(qy + qy∩z)-dimensional random vector (Vn′

y:t,V
n′

y∩z;t)
′, with spectral density





ΣΣΣn

VyVy
(θ) ΣΣΣn

VyVy∩z
(θ)

ΣΣΣn

Vy∩zVy
(θ) ΣΣΣn

Vy∩zVy∩z
(θ)



 =





diag(λχxy ;n,1(θ), . . . , λχxy ;n,qy (θ)) ΣΣΣn

VyVy∩z
(θ)

ΣΣΣn

Vy∩zVy
(θ) Iny∩z×y∩z(θ)



 ,

where ΣΣΣn

VyVy∩z
(θ) follows from classical spectral algebra:
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Disentangling the strongly weakly common components ...

Write

Py∩z;n(θ) := diag(λ
−1/2
χxz ;n,1(θ), . . . , λ

−1/2
χxz ;n,qz (θ))

(

py∩z;n,1(θ), . . . ,py∩z;n,qy∩z (θ)
)

,

Pχxy ;n(θ) :=
(

pχxy ;n,1(θ), . . . ,pχxy ;n,qy (θ)
)

,

Pχxz ;n(θ) :=
(

pχxz ;n,1(θ), . . . ,pχxy ;n,qz (θ)
)

,

Pn(y)(θ) :=
(

pn,1(y)(θ), . . . ,pn,q,(y)(θ)
)

,

and

Pn(z)(θ) :=
(

pn,1,(z)(θ), . . . ,pn,q,(z)(θ)
)

,

with pn,k(y)(θ) collecting the components pn,k,i(θ) of pn,k(θ) such that Xit

belongs to the y-subpanel

and pn,k,(z)(θ) collecting the components pn,k,j(θ) such that Xjt belongs to the

z-subpanel).

Then,
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Disentangling the strongly weakly common components ...

we have

ΣΣΣn

VyVy∩z
(θ) = P∗

χxy ;n
(θ)Pn(y)(θ)diag(λn,1(θ), . . . , λn,q(θ))P

∗

n(z)(θ)Pχxz ;n(θ)Py∩z;n(θ).

The desired projection of Vn
y:t, in view of Proposition 1, is ΣΣΣn

VyVy∩z
(L)Vn

y∩z;t.

Hence, the reconstructions we are proposing are, for the strongly common

component φy;it,

φny;it := (p
χxy ;n,1,i

(L), . . . , p
χxy ;n,qy ,i

(L))ΣΣΣn

VyVy∩z
(L)Vn

y∩z;t

= (p
χxy ;n,1,i

(L), . . . , p
χxy ;n,qy ,i

(L))P∗

χxy ;n
(L)P

n(y)(L)

×diag(λ
n,1(L), . . . , λn,q(L))P

∗

n(z)(L)Pχxz ;n
(L)Py∩z;n(L)P

∗

y∩z;n(L)V
n

z;t

=: H∗

y;n,i(L)V
n

z;t,

and, for the weakly common one ψy;it, ψ
n

y;it := χn

y;it − φny;it.

With obvious changes, we similarly define φnz;jt and ψn

z;jt.
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Disentangling the strongly weakly common components ...

Wee then have the following consistency result for φny;it and φnz;jt (hence ψn

y;it

and ψn

z;jt).

PROPOSITION. Let Assumptions A1, A2, A3, and and A4 hold. Then

lim
min(ny,nz)→∞

φny;it = φy;it and lim
min(ny,nz)→∞

φnz;jt = φz;jt

in quadratic mean, for any i, j, and t.

PROOF. The proof still follows from Proposition 2 of Forni et al. (2000), and the fact

that all spectral densities involved, for given n, are locally continuous functions of

ΣΣΣn(θ). �
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Further results

We refer to the JoE paper for results on estimation, and the more complicated

case of K > 2 blocks
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Applications

Dataset of monthly Industrial Production Indexes for France, Germany, and Italy,

observed from January 1995 through December 2006 (T = 143 throughout).

All data were preadjusted by taking a log-difference transformation, then

centered and normalized using their sample means and standard errors.
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Two blocks: France, Germany

Yit : French data, ny = nF = 96

Zjt : German data, nz = nG = 114 (hence n = nFG = 210)

• We ran the identification method on the French and German subpanels, with

sequences nF,j = 96− 2j, j = 1, . . . , 5 and nG,j = 96− 2j, j = 1, . . . , 5,

respectively, then on the pooled panel, with sequence nFG,j = 210− 2j,

j = 1, . . ., 8 and an “almost constant ” proportion 96/210, 114/210 of French and

German observations (namely, ⌈96nFG,j/210⌉ French observations, and

⌊114nFG,j/210⌋ German ones. In all cases, we put Tj = T = 143, j = 1, . . . , 5.

• The range for c values, after some preliminary exploration, was taken as

[0, 0.0002, 0.0004, . . . , 0.5], and qmax was set to 10.

• Panels were randomly ordered prior to the analysis. The penalty function was

p(n, T ) =
(

min
[

n,M2
T ,M

−1/2
T T 1/2

])

−1/2
.
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France and Germany

(a) France
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qF = 2 factors are identified for France, qG = 3 for Germany
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France and Germany

(c) France & Germany
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France and Germany

ξξ

ψ

ν

GERMANYFRANCE

   F-common

  G-idiosyncratic

φ
F,{FG}

φ
G,{FG}

:18.2%

:13.6%

 F,G-common

 G-common

  F-idiosyncratic

 F,G-idiosyncratic

2 FACTORS

1 FACTOR

:4.9%
F,{G},{F}

:12.4%
 G,{G},{F}

:76.9%
 F,{FG}

:74.0%
 G,{FG}

 strongly idiosyncratic

strongly common

Empty space

Decomposition of the France-Germany panel data into four mutually orthogonal

components, with the corresponding percentages of explained variation.

• The French-common factors thus are strongly common (no weakly common

space), whereas one German-common factor is French-idiosyncratic, and

explains almost as much (12.4 %) of German variation as the two strongly

common ones (13.6 %).
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Three blocks : France, Germany and Italy

• Additional block : Italy, nI = 91, T = 143; now n = nFGI = 301

• From the resulting panel (n = nFGI = 301 series), we can extract six

subpanels—the three panels we already analyzed in Section 6.1 (the two-block

French-German panel, the French and the German one-block subpanels), one

new one-block subpanel (the marginal Italian one, with nI = 91), two new

two-block subpanels (the French-Italian one, with nFI = 187 and the

German-Italian one, with nGI = 205, respectively).

• Analyzing these new subpanels along the same lines as before (with, using

obvious notation, nI,j = 91− 2j, j = 1, . . . , 5, nGI,j = 191− 2j, j = 1, . . . , 8,

nFI,j = 187− 2j, j = 1, . . . , 8, and nFGI,j = 301− 2j, j = 1, . . . , 15), still with

MT = 0.5
√

T = 5, the same penalty function and the same qmax = 10 as before,

we obtain the identification results shown in the following four graphs.
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Three blocks : France, Germany and Italy
(d) Italy
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(e) France & Italy
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(f) Germany & Italy
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(g) France & Germany & Italy
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Italy and Germany: four identified factors; the whole panel also has 4 factors
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• These graphs again very clearly identify a total number of qT
n,FGI = 4 joint

common factors (for c ∈ [0.1710, 0.1718]), qT
(nF,nI ),FI

= 3 (for c ∈ [0.1838, 0.1886])

French-Italian, and qT
(nG,nI ),GI

= 4 (for c ∈ [0.1786, 0.1800]) German-Italian

marginal “binational” factors, and qTnI ,I
= 2 (for c ∈ [0.2118, 0.22218]) marginal

Italian factors. Along with the figures obtained in Section 6.1 for France and

Germany, this implies that Hχ
F ⊂ H

χ
G, hence H

χ
F ∩ H

ξ
G = {0} = H

χ
GI ∩H

ξ
F . The

relations between those various (dynamic) dimensions are easily obtained; for

instance, q(nF ,nG),FG= qnF ,F + qnG,G− q(nF ,nG), a relation we already used in

Section 6.1, or

q(nF ,nG),FG= qnF ,F+qnG,G+qnI ,I−q(nF ,nG),FG−q(nF ,nI ),FI−q(nG,nI ),GI+q(nF ,nG,nI),FGI .

These relations imply that the three countries are sharing one strongly common

factor. As already noted, France (two factors) has no specific common factor,

but one (the strongly common one) shared with Germany and Italy, and one

shared withGermany alone. Both Italy (two factors) and Germany (three factors)

have a “national” factor. Italy’s “non national” factor is the strongly common

one; Germany’s “non national” factors are those shared with France, and

include the strongly common one. The Italian and German “national” factors

need not be mutually orthogonal.
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ν
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Decomposition of the France-Germany-Italy panel data into eight components,

with the corresponding percentages of explained variation.
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• the three countries all exhibit a high percentage of about 70 % of strongly

idiosyncratic variation

• France has no common components but those shared with Germany and Italy

(one), and with Germany alone (one)

• both Italy and Germany have a “national common component, which in the

case of Italy induces a nonnegligible percentage of about 3.9 % of weakly

idiosyncratic variation in the other two countries (Germany and France)

• Italy’s only “non national” common factor is the strongly common one, which is

common to the three countries under study
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An application to Finance

Liquidity

• An asset is liquid if it is easily convertible into cash, the reference asset with

perfect liquidity.

• This definition is often rephrased in terms of time, volume, and cost: when

people think about liquidity, they may think about trading quickly, about trading

large size, or about trading at low cost.

• The time dimension refers to resiliency—the speed with which pricing errors

caused by uninformative order-flow shocks are corrected or neutralized in the

market. Cost refers to tightness—the accepted price for immediacy in resolving

the trade. Last, volume refers to depth—the volume that can be traded without

price variations.
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• Though the concept of liquidity is qualitatively clear, its quantitative evaluation

poses a major problem.

• Liquidity is an unobserved variable, hence is evaluated via liquidity-related

proxies—call them liquidity measures.

• measuring liquidity is a delicate task because of the difficulty to capture the

three dimensions of liquidity in a single measure yet reaching a consensus on the

liquidity measures to be taken into account.

This double difficulty seriously challenges the objectivity of any final assessment.

• Daily close or open bid-ask spreads—the difference between the lowest ask

and highest bid prices for an asset at some given point in time—measure liquidity

effects, but mainly cover tightness.

• Daily realized volumes only cover transacted depth ...
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Market Liquidity

Market Liquidity aims at measuring “commonness in liquidity across securities”.

• There is empirical evidence that a “common” or “market” component is

significantly present in various liquidity measures taken over a large cross-section

of stocks.

Two typical contributions :

• Hasbrouck and Seppi (Journal of Financial Economics, 2001) perform a

(classical, hence static) Principal Component Analysis on liquidity measures, out

of which they consider up to three principal components.

• Korajczyk and Sadka (Journal of Financial Economics, 2008) study a very large

sample (more than 4000 stocks followed during 18 years), they use via a static

factor model method, for eight distinct measures, and extract up to the third

principal component for each liquidity measure.
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• None of these approaches fully exploits the time series nature of the data.

• They all overlook the leading/lagging phenomenons that may exist among the

various liquidity measures and are particularly relevant here, since

liquidity-related data are highly autocorrelated.

• • Dynamic factor models quite naturally enter into the picture: they allow for

disentangling commonness (market components) and idiosyncrasy

(stock-specific components), not only across panels consisting of some given

liquidity measure observed over a large number of stocks, but also across panels

juxtaposing several such measures.

• • General Dynamic Factor Model methods do not impose any restriction

(beyond the usual assumptions of second-order stationarity, etc.) on the actual

data generating process.
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Application

Dataset (two blocks):

• daily close relative bid-ask spread and

• daily realized dollar volume,

for 426 S&P500 listed stocks from January 2004 till December 2006—a period

considered as a “normal” state of market liquidity.

. – p.54/59



Number of Factors
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Number of Factors

Daily realized dollar volumes
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Number of Factors

Daily close relative bid-ask spreads
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Number of Factors
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Conclusions

• The general dynamic factor model, along with the Forni et al. estimation

method and the Hallin-Lǐska identification procedure, allows for a subtle analysis

of (weakly, strongly, etc.) “common” and “idiosyncratic” variations in the

presence of blocks;

• when several conflicting proxies are considered for unobserved quantities, the

same method allows for summarizing those proxies by extracting their strongly

common shocks.

• For details on the K-block case, we refere to Hallin and Lǐska (2011).
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1. INTRODUCTION

Slight change in notation:

let

Y11, Y12, . . . , Y1T
.
.
.

.

.

.
.
.
.

Yn1, Yn2, . . . , YnT

denote a n× T panel of returns, that is, the finite realization of a stochastic

process of the form

{Yit|i ∈ N, t ∈ Z}.

• Hence, a collection of n time series of returns, observed over a period of length

T , related to n individuals stocks

Both n and T are “large”, and (n, T )-asymptotics are considered throughout.

. – p.2/37



These n observed series are exposed, in general, to the influence of the same

covariables, which are not recorded, inducing complex interrelations that are

not statistically tractable, or that would involve uncomfortably many

parameters ...

... parametric methods, as a rule, are helpless or unrealistic (or both) ...

... factor model methods (under their various forms) in this context appear to be

the most successful tools.

But they never were applied in the analysis of volatilities.

Recall that, when applied to {Yit|i ∈ N, t ∈ Z}, factor model methods aim at

identifying and reconstructing a decomposition of Yit (actually, a decomposition

of the Hilbert space spanned by the panel) into two mutually orthogonal parts

Yit = Xit + Zit = “common”it + “idiosyncratic”it

where
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1. Introduction

Yit = Xit + Zit = “common”it + “idiosyncratic”it

where (the so-called “general dynamic factor model” or GDFM)

• the common component {Xit|i ∈ N, t ∈ Z} is driven by a small number q

(q unspecified) of mutually orthogonal white noises—the “common” or “market

shocks” {u1t}, ..., {uqt}:

Xit =

q
∑

k=1

bik(L)ukt i ∈ N, t ∈ Z;

yielding a reduced-rank linear process (with rank q)

• the idiosyncratic component {Zit|i ∈ N, t ∈ Z} is only mildly cross-

correlated—here (GDFM), such that all normed linear combinations of the form

n
∑

i=1

∞
∑

j=−∞

aijZi,t−j

have bounded variance as n→ ∞. i ∈ N, j = 1, . . . , q; equivalently, the

eigenvalues of Zit’s n× n spectral density matrices are bounded as n→ ∞.

• the filters bij(L) are one-sided and square-summable.
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1. Introduction

... a “divide and rule” strategy:

• Being reduced rank, the series of common components somehow can be

handled as a low-dimensional series—in particular, the (low-dimensional)

common shocks can be recovered and fundamental representations of the

Xit’s can be estimated

• Being only mildly cross-correlated, the n-dimensional series of idiosyncratic

components Zit can be handled, without much loss, as n univariate

(auto-correlated but not cross-correlated) series. In particular, univariate AR fits

and a global VAR fit roughly produce the same residuals
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• Decomposing stock returns into a market-driven and an idiosyncratic or

stock-specific component is certainly an important issue ...

• In financial econometrics, risk management, and portfolio optimization, risks

and volatilities are at least as important: decomposing volatilities into a common,

market-driven contribution and an individual, idiosyncratic one is perhaps the

main issues. Market-driven risks indeed cannot be diversified away, while

individual ones can be eliminated through clever portfolio diversification ....

• being entirely based on the covariance structure of levels or returns, however,

the above factor model decomposition cannot tell us anything about a

decomposition of volatilities.
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It may seem natural to define “market risk” or “market volatility” as the risk

associated with the market-driven component of returns:

market risk := risk of the market-driven component of returns

This is the approach adopted, for instance, in Fan, Liao, and Shi (2013) where the

risk associated with a (second-order stationary) panel is measured by its

unconditional marginal covariance matrix, and “market risk” is defined as the

covariance matrix ΣΣΣcommon = Cov(X) of the common component (in a low rank

+ sparse a context).

aWould Fan et al. consider a general dynamic factor model approach, their

assumption of sparsity could be dropped.
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“Natural” as it is, that idea is not a good idea or, at least, it is ways too simplistic.

The decomposition between level-common and level-idiosyncratic indeed has

been based on the (unconditional) (auto)covariance structure of levels only,

which carries no information on volatilities (which deal with conditional variances

or scales). Therefore, this cannot be a good approach:

market volatility shocks are likely to affect the volatility of level-idiosyncratic

components as well as they affect the volatility of level-icommon components

Building on that remark, we propose a two-step general dynamic factor

procedure to extract the market volatility shocks from a large panel of stock

returns.

• The method is entirely nonparametric and model-free.

• As a by-product, it provides considerable insight on the way market volatility

shocks are loaded and propagate across the panel.
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2. the General Dynamic Factor Model

The factor model decomposition we are adopting here is the so-called General

Dynamic Factor Model one (Forni, Hallin, Lippi, and Reichlin (2000)), which

encompasses all others, and is based on an idea of dynamic (non-)

pervasiveness.

. – p.9/37



2. the General Dynamic Factor Model

More precisely, assume that {Yit|i = 1, . . . , n; t ∈ Z} is zero-mean, second-order

stationary, and has a spectral density matrix ΣΣΣn(θ), θ ∈ [−π, π], with eigenvalues

λY;n,i(θ), i = 1, . . . , n (the dynamic eigenvalues, in decreasing order of

magnitude)

Then, {Yit} admits a general dynamic factor representation

Yit = Xit + Zit =

q
∑

k=1

bik(L)ukt + Zit i ∈ N, t ∈ Z

iff for some finite q ∈ N,

• the qth dynamic eigenvalue λY;n,q(θ), diverges as n→ ∞, a.e. in [−π, π], while

• the (q + 1)th one, λY;n,q+1(θ), is θ-a.e. bounded.

Such behavior is quite typical; although “q = ∞” (an infinite number of diverging

dynamic eigenvalues) is mathematically possible, it only happens under very

weird and contrived data-generating mechanisms: see Hallin and Lippi

(Stochastic Processes and their Applications, 2013).
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2. the General Dynamic Factor Model

Methods have been proposed to estimate and analyze that General Dynamic

Factor Model decomposition:

• based on Brillinger’s concept of dynamic principal components, hence

two-sided filters, see Forni, Hallin, Lippi, and Reichlin (2000)

• for a more sophisticated one, involving one-sided filters only, see Forni, Hallin,

Lippi and Zaffaroni (2015, 2017).

That factor model analysis, applied to the levels (returns) Yit, is Step 1 of our

two-step procedure.

So far, nothing about volatilities ... the analysis just performed is entirely based on

the levels’ covariance structure, which does not contain any information on

volatilities.
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2. the General Dynamic Factor Model

So far, nothing about volatilities ...

Traditional (univariate) analyses of volatilities are based on some nonlinear

transformation of innovations or residuals et (for instance, the (centered) squared

residuals e2t , or their (centered) logarithms).

The problem is: how can we obtain such residuals?

Typically, residuals are obtained by fitting parametric time series models to the

observed returns which, because of the curse of dimensionality, is impossible

here (or, the factor model approach would not be necessary)

The general dynamic factor method actually allows us to recover two collections

of residuals: one for the common components, and another one for the

idiosyncratic components.
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2. the General Dynamic Factor Model

Forni, Hallin, Lippi, and Zaffaroni (Journal of Econometrics 2015, 2017) show that,

under an additional (but mild) assumption of a rational spectrum, there exist a

(block-diagonal) n× n matrix An(L) of one-sided filters (that can be estimated

via classical (q + 1)-dimensional VAR fitting) such that

(In −An(L))Yn,t = Hnut + (In −An(L))Zn,t =: en,t + ˜Zn,t, t ∈ Z,

where

˜Zn,t := (In −An(L))Zn,t is idiosyncratic (its largest dynamic eigenvalue is

θ–a.e. bounded as n → ∞) and

en,t := Hnut is n-dimensional white noise (the fundamental shocks of

Yn,t’s common component Xn,t , with reduced rank q).

(Without loss of generality, we can impose the identifying assumption that

H′

nHn = nIq).
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2. the General Dynamic Factor Model

This decomposition

(In −An(L))Yn,t =: en,t + ˜Zn,t, t ∈ Z,

is a static factor model representation of Yn,t

hence can be analyzed via the static factor methods developed by Stock,

Watson, Bai, Ng, etc. ... without imposing, however, the restrictive assumptions

they need), yielding a consistent one-sided, hence feasible, reconstruction

of en,t and ˜Zn,t .
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2. the General Dynamic Factor Model

This decomposition

(In −An(L))Yn,t =: en,t + ˜Zn,t, t ∈ Z,

is a static factor model representation of Yn,t

hence can be analyzed via the static factor methods developed by Stock,

Watson, Bai, Ng, etc. ... without imposing, however, the restrictive assumptions

they need), yielding a consistent one-sided, hence feasible, reconstruction

of en,t and ˜Zn,t .

Those en,t’s are the residuals we need for an analysis of the volatility of the

level-common components. They are a reduced-rank process (dimension n,

driven by q-dimensional noise).

As for the idiosyncratic ˜Zn,t’s, since they are only mildly cross-correlated,

residuals vit can be obtained via individual AR fitting: those vit’s are the residuals

we need for an analysis of the volatility of the level-idiosyncratic components.
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3. Common and idiosyncratic volatility/Market volatility

The general dynamic factor model analysis of returns thus points at two sources

of information on market volatility shocks:

• volatility of the components eit of en,t (volatility of level-common components)

• volatility of the shocks vit driving the components ˜Zn,it of ˜Zn,t (volatility of

level-idiosyncratic components).

... two panels of residuals, thus, affected by, and hence containing information

on, the same market volatility shocks we are inerested in.

Those two (large) panels of residuals have to be analyzed jointly (a

two-block-panel analysis).

That two-block analysis is the object of Step 2 of our two-step factor model

analysis.
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3. Common and idiosyncratic volatility/Market volatility

Before turning to the problem of analyzing panels in the presence of blocks, we

need choosing a volatility proxy. Denoting by et some univariate residual (the

estimated value of some uncorrelated zero-mean white noise), any monotone

increasing function st of e2t , in principle, could serve as a proxy.

For simplicity, we followed the literature and chose

sit := log(e2it) and wit := log(v2it)

as proposed by Engle and Marcucci (2006).

Feel free, however, to use your favorite one; we tried several ones on empirical

data, and the results are only marginally affected.

• After due centering, the {sn,it}’s and {wn,it}’s then constitute the two n× T

subpanels of a 2n× T panel with block structure.

. – p.16/37



4. Panels with block structure (two blocks)

Recall the general decomposition into four mutually orthogonal components:

XF
it =

χFG
it

︷ ︸︸ ︷

φF ;it + ψF ;it + ζF ;it +ξ
FG
it and XG

jt =

χFG
jt

︷ ︸︸ ︷

φG;jt + ψG;jt + ζG;jt +ξ
FG
jt , i, j ∈ N, t ∈ Z.

︸ ︷︷ ︸

χF
it

︸ ︷︷ ︸

ξF
it

︸ ︷︷ ︸

χG
jt

︸ ︷︷ ︸

ξG
jt

φF ;it is F- and G-common: strongly common

ψF ;it is F-common but G-idiosyncratic: weakly F-common

ζF ;it is F-idiosyncratic but G-common: weakly F-idiosyncratic

ξFG
it is FG-idiosyncratic: strongly idiosyncratic

etc. (same for Germany)
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4. Panels with block structure (two blocks)

Statistical analysis:

• identification of qF , qG and q via the Hallin-Lǐska (JASA 2007) method

• consistent reconstruction of φF ;it, ψF ;it, etc. and estimation of their

contributions to the total sum of squares as in Hallin and Lǐska (Journal of

Econometrics 2011)
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4. Panels with block structure (two blocks)

In our case,

the role of France is played by the {sn,it}’s (originating from the

level-common shocks),

the role of Germany by the {wn,it}’s originating from the

level-idiosyncratic shocks).

The strongly common, weakly common and weakly idiosyncratic components all

qualify as “market-driven volatilities”. In the S&P100 case below, Q = qs = qw = 1

is identified. Then, the decomposition only has strongly common components

and strongly idiosyncratic ones:

XF
it =

χFG
it

︷ ︸︸ ︷

φF ;it + 0 + 0+ξFG
it and XG

jt =

χFG
jt

︷ ︸︸ ︷

φG;jt + 0 + 0+ξFG
jt , i, j ∈ N, t ∈ Z.

︸ ︷︷ ︸

χF
it

︸ ︷︷ ︸

ξF
it

︸ ︷︷ ︸

χG
jt

︸ ︷︷ ︸

ξG
jt

That decomposition follows from the joint analysis—no need to consider the

blocks separately anymore.
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5. Application: S&P100

We illustrate the method by an application to the S&P100 series : n = 90 series

[some stocks were not traded, and were removed from the analysis] of daily

log-returns observed between January 2000 and September 2013 (T =3457).

Step 1. A FACTOR MODEL ANALYSIS OF THE LEVELS Yit

• a number q = 1 of dynamic factors is identified via the Hallin-Lǐska (JASA 2007)

method

• the one-sided method of Forni-Hallin-Lippi-Zaffaroni (Journal of Econometrics

2015, 2017) yields (a reconstruction of) the level-common components Xit, their

shocks eit, and the level-idiosyncratic Z̃it

• univariate AR models (orders selected via AIC or BIC) are fitted to the Z̃it’s,

yielding residuals vit

• the volatility proxies {sn,it} are computed from the level-common shocks eit

• the volatility proxies {wn,it} are computed from the level-idiosyncratic

shocks vit
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5. Application: S&P100

The market shocks uTt on returns, period 2000–2013.

00 01 02 03 04 05 06 07 08 09 10 11 12 13
−10

−5

0

5

10

time

See

• the dot–com bubble, the Enron (late 2001) and Worldcom (mid–2002) scandals

• the 2003 Iraq war

• the Great 2008–2009 Financial crisis starting with Lehman Brothers bankruptcy

(September 2008);

• the 2010–2012 euro sovereign bond crisis.

The largest shocks over the period, by far, are those related with the 2008–2009

financial crisis.
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It is interesting to compute the ratios between the sum of the (empirical)

variances of the estimated common components XT
t to the sum of the

(empirical) variances of the observed returns:

R2
Y.market :=

∑n
i=1

∑T
t=1(X

T
it)

2

∑n
i=1

∑T
t=1(Yit)

2
. ≈ 0.36

(an average (over the panel) of the relative contribution of the common shocks)

and also

R2
Yi.market :=

∑T
t=1(X

T
it)

2

∑T
t=1(Yit)

2
, i = 1, . . . , n

a stock-specific measure of the relative contribution of the common shocks

(averaged over time), and

R2
Yt.market :=

∑n
i=1(X

T
it)

2

∑n
i=1(Yit)

2
, t = 1, . . . , T,

measuring the evolution through time of the average (over the panel)

contribution of common shocks.

. – p.22/37



5. Application: S&P100

0 0.2 0.4 0.6 0.8 1
0

5
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Histogram for the proportions R2
Yi.market

of variance explained by the market

shocks to returns across the panel.
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5. Application: S&P100

00 01 02 03 04 05 06 07 08 09 10 11 12 13
0

5

10

15

20

25

time

Time series of the proportions R2
Yt.market

of variance explained by

the market shocks to returns at time t.
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5. Application: S&P100

Step 2. A 2-BLOCK FACTOR MODEL ANALYSIS OF THE VOLATILITY PROXIES {sn,it}

AND {wn,it}

Evidence of factor structure in the volatility proxy panels.

50 70 90
0

1

2

3

4

Level–common

n j

50 70 90
0

0.2

0.4

0.6

0.8

1

Level–idiosyncratic

n j

140 160 180
0

0.5

1

1.5

2

2.5

Joint

n j

Ten largest dynamic eigenvalues, averaged over frequencies, computed

for panels of increasing sizes: 45 ≤ nj ≤ n = 90 for the level–common and

level–idiosyncratic volatility panels, and 135 ≤ nj ≤ 2n = 180 for the joint

volatility panel. . – p.25/37



5. Application: S&P100

Step 2. A 2-BLOCK FACTOR MODEL ANALYSIS OF THE VOLATILITIES {sn,it} AND {wn,it}

• the following numbers of dynamic factors are identified via the Hallin-Lǐska

(JASA 2007) method: qs = 1, qw = 1, qsw = 1.

• This again implies that a unique volatility-strongly-common shock is driving both

the level-common sit’s and the level-idiosyncratic wit’s: no weakly common nor

weakly idiosyncratic components here, which greatly simplifies the analysis (a

standard FHLZ approach to the 2n-dimensional panel is sufficient)

• That common shock thus qualifies as the market volatility shock, impacting both

the level-common and level-idiosyncratic components of the S&P100 panel, with

different strengths, though
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5. Application: S&P100
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Estimated market shock exp(εTt ) on volatilities, period 2000–2013.

Note

• 01 the dotcom bubble

• 03 Iraq war

• 09 is the Great Financial Crisis (which started in 2008)

• 11-12 is the Eurocrisis
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5. Application: S&P100

The overall contribution of market shocks to the variances of the volatility proxies

sit and wit can be evaluated by means of the ratios

R2
s.market :=

∑T
t=1

∑n
i=1(φ

T
s;it)

2

∑T
t=1

∑n
i=1(s

T
it)

2
≈ 0.60

and

R2
w.market :=

∑T
t=1

∑n
i=1(φ

T
w;it)

2

∑T
t=1

∑n
i=1(s

T
it)

2
≈ 0.17

For each individual stock i, a measure of the same impact is

R2
si.market :=

∑T
t=1(φ

T
s;it)

2

∑T
t=1(s

T
it)

2
and R2

wi.market :=

∑T
t=1(φ

T
w;it)

2

∑T
t=1(s

T
it)

2
, i = 1, . . . , n;

while their evolution through time is captured by

R2
st.market :=

∑n
i=1(φ

T
s;it)

2

∑n
i=1(s

T
it)

2
and R2

wt.market :=

∑n
i=1(φ

T
w;it)

2

∑n
i=1(s

T
it)

2
, t = 1, . . . , T.
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5. Application: S&P100
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Histograms for the proportions of variances explained by the market volatility

shocks across the panel: R2
si.market

(left) and R2
wi.market

(right).
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5. Application: S&P100
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Time series of the estimated proportions R2
st.market

(black) and R2
wt.market

(red) of

variances explained by the market volatility shocks.
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5. Application: S&P100

The transfer or impulse–response functions describing the dynamic loading, by

the volatility proxies, of the market volatility shocks. For each stock i, those

functions take the form of scalar filters (one for sit, another one for wit), plotted

as sequences of coefficients associated with the various lags.
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2

level–common volatility

lag
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−0.5

0

0.5
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1.5

2

level–idiosyncratic volatility

lag

Median, maximum, and minimum of the distribution of impulse–response func-

tions of volatilities to a one–standard-deviation market volatility shock, that is, the

sequence of loading coefficients divided by the standard error of the shocks, for

level–common (left) and level–idiosyncratic (right) volatilities, respectively.

The right-hand figure, showing a distinctive differentiation of stock behaviors, is

the interesting one (the volatility risks associated with stocks yielding low

impulse-response coefficients can be diversified away). . – p.31/37



5. Application: S&P100

0 5 10 15 20

0

0.1

0.2

0.3

0.4

0.5

Finance

lag

 

 

AIG

BAC

C

GS

JPM

0 5 10 15 20

0

0.1

0.2

0.3

0.4

0.5

Technology

lag

 

 

AAPL

AMZN

HPQ

IBM

MSFT

Impulse–response functions of volatilities to a one–standard-deviation market

volatility shock, that is, the sequence of loading coefficients divided by the stan-

dard error of the shocks, for level–idiosyncratic volatilities of selected stocks from

the Financial (left) and Technology (right) sectors, respectively.

The Technology sector offers more opportunities for diversification.
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5. Application: S&P100

Finally, to conclude, we turn to the analysis, for a few selected stocks, of the

market-driven volatilities, which we define as

χT
e2;it

:= exp(φT
s;it+s̄

T
it), χT

v2;it
:= exp(φT

w;it+w̄
T
it), i = 1, . . . , n, t = 1, . . . , T,N

where s̄Tit and w̄T
it stand for empirical means.
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Kernel-smoothed cross–sectional averages of market volatilities. The bandwidth

used corresponds to 3 weeks of trading (15 days).

. – p.33/37



level–common volatility level–idiosyncratic volatility
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Estimated market volatilities for five selected stocks from the Financial sector,

along with their smoothed versions (black solid line).
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level–common volatility level–idiosyncratic volatility
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Estimated market volatilities for five selected stocks from the Technological sector,

along with their smoothed versions (black solid line).
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6. Conclusions and perspectives

• Dynamic factor methods can be applied to volatilities in high-dimensional time

series (in large panels of stocks)

• contrary to most existing methods for the analysis of volatility, they are fully

nonparametric and model-free: curse of dimensionality turns into a blessing!

• the decompositions between “level-common” and “level-idiosyncratic” on one

hand, between “volatility-common” and “volatility-idiosyncratic” in general do

not coincide: common volatility shocks do affect level-idiosyncratic components

as well as the level-common one;

• dynamic portfolio optimization—where diversification is the main issue—should

take into account the market impact on the volatilities of the level-idiosyncratic

components as well as their impact on the level-common ones;

• the particular case of a single market shock (qs = 1, qw = 1, qsw = 1) is

particularly simple, and might well be the rule in financial panels: to be checked

against other datasets;

• our approach opens the door to volatility prediction and portfolio optimization

without curse of dimensionality in large panels of stock returns.
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